| Top |
NcmFftlogSBesselJNcmFftlogSBesselJ — Logarithm fast fourier transform for a kernel given by the spatial correlation function multipoles. |
Description
This object computes the function (see NcmFftlog) $$Y_n = \int_0^\infty t^{\frac{2\pi i n}{L}} K(t) dt,$$ where the kernel are the spherical bessel function of the first kind $K(t) = t^q j_{\ell}(t)$.
Functions
ncm_fftlog_sbessel_j_new ()
NcmFftlogSBesselJ * ncm_fftlog_sbessel_j_new (guint ell,gdouble lnr0,gdouble lnk0,gdouble Lk,guint N);
Creates a new fftlog Spherical Bessel J object.
ncm_fftlog_sbessel_j_set_ell ()
void ncm_fftlog_sbessel_j_set_ell (NcmFftlogSBesselJ *fftlog_jl,const guint ell);
ncm_fftlog_sbessel_j_set_q ()
void ncm_fftlog_sbessel_j_set_q (NcmFftlogSBesselJ *fftlog_jl,const gdouble q);
ncm_fftlog_sbessel_j_set_best_lnr0 ()
void
ncm_fftlog_sbessel_j_set_best_lnr0 (NcmFftlogSBesselJ *fftlog_jl);
Sets the value of $\ln(r_0)$ which gives the best results for the transformation based on the current value of $\ln(k_0)$, this is based in the rule of thumb $\mathrm{max}_x^*(j_l)$ where $ x^* \approx l + 1$.
ncm_fftlog_sbessel_j_set_best_lnk0 ()
void
ncm_fftlog_sbessel_j_set_best_lnk0 (NcmFftlogSBesselJ *fftlog_jl);
Sets the value of $\ln(k_0)$ which gives the best results for the transformation based on the current value of $\ln(r_0)$, this is based in the rule of thumb $\mathrm{max}_x^*(j_l)$ where $ x^* \approx l+1$.