
NAME
grap − Kernighan and Bentley’s language for typesetting graphs

SYNOPSIS
grap [−d defines_file] [−D] [−M include path] [−v] [−u] [−C] [filename ...]

DESCRIPTION
grap is an implementation of Kernighan and Bentley’s language for typesetting graphs, as described in
‘‘Grap-A Language for Typesetting Graphs, Tutorial and User Manual,’’ by Jon L. Bentley and Brian W.
Kernighan, revised May 1991, which is the primary source for information on how to use grap. As of this
writing, it is available electronically at http://www.kohala.com/start/troff/cstr114.ps

This version is a black box implementation of grap, and some inconsistencies are to be expected. The
remainder of this manual page will briefly outline the grap language as implemented here.

grap is a pic(1) pre-processor. It takes commands embedded in a troff(1) source file which are sur-
rounded by .G1 and .G2 macros, and rewrites them into pic commands to display the graph. Other lines
are copied. Output is always to the standard output, which is usually redirected. Input is from the given
filenames, which are read in order. A filename of − is the standard input. If no filenames are
given, input is read from the standard input.

Because grap is a pic preprocessor, and gnu pic will output TeX, it is possible to use grap with TeX.

The −d option specifies a file of macro definitions to be read at startup, and defaults to
/usr/local/share/grap/grap.defines. The −D option inhibits the reading of any initial macros file. The defines
file can also be given using the GRAP_DEFINES environment variable. (See below).

−v prints the version information on the standard output and exits.

−u makes labels unaligned by default. This version of grap uses new features of gnu pic to align the left
and right labels with the axes, that is that the left and right labels run at right angles to the text of the paper.
This may be useful in porting old grap programs.

−M is followed by a colon-separated list of directories used to search for relative pathnames included via
copy. The path is also used to locate the defines file, so if the −d changes the defines file name to a relative
name, it will be searched for in the path given by −M. The search path always includes the current directory,
and by default that directory is searched last.

All grap commands are included between .G1 and .G2 macros, which are consumed by grap. The out-
put contains pic between .PS and .PE macros. Any arguments to the .G1 macro in the input are argu-
ments to the .PS macro in the output, so graphs can be scaled just like pic diagrams. If −C is given, any
macro beginning with .G1 or .G2 is treated as a .G1 or .G2 macro, for compatibility with old versions of
troff.

The grap commands are sketched below. Refer to Kernighan and Bentley’s paper for the details.

New versions of groff(1) will invoke grap if −G is given.

Commands

Commands are separated from one another by newlines or semicolons (;).

frame [line_description] [ht height wid width] [[(top bottom left right)
line_description] ...]

frame [ht height wid width] [line_description] [[(top bottom left right)
line_description] ...]

This describes how the axes for the graph are drawn. A line_description is a pic line descrip-
tion, e.g., dashed 0.5, or the literal solid. If the first line_description is given, the frame
is drawn with that style. The default is solid. The height and width of the frame can also be speci-
fied in inches. The default line style can be over-ridden for sides of the frame by specifying addi-
tional parameters to frame.

BSD August 19, 1998 1

GRAP (1) System General Commands Manual GRAP (1)

If no plotting commands have been given before the frame command is issued, the frame will be
output at that point in the plotting stream relative to embedded troff or pic commands. Otherwise
the frame is output before the first plotted object (even invisible ones).

coord [name] [x expr, expr] [y expr, expr] [log x log y log log]

The coord command specifies a new coordinate system or sets limits on the default system. It
defines the largest and smallest values that can be plotted, and therefore the scale of the data in the
frame. The limits for the x and y coordinate systems can be given separately. If a name is given, that
coordinate system is defined, if not the default system is modified.

A coordinate system created by one coord command may be modified by subsequent coord com-
mands. A grap program may declare a coordinate space using coord, copy a file of data through
a macro that plots the data and finds its maxima and minima, and then define the size of the coordi-
nate system with a second coord statement.

This command also determines if a scale is plotted logarithmically. log log means the same thing
as log x log y.

draw [line_name] [line_description] [plot_string]

The draw command defines the style with which a given line will be plotted. If line_name is
given, the style is associated with that name, otherwise the default style is set.
line_description is a pic line description, and the optional plot_string is a string to be
centered at each point. The default line description is invis, and the default plotting string is a cen-
tered bullet, so by default each point is a filled circle, and they are unconnected. If points are being
connected, each draw command ends any current line and begins a new one.

When defining a line style, that is the first draw command for a given line name, specifying no plot
string means that there are to be no plot strings. Omitting the plot string on subsequent draw com-
mands addressing the same named line means not to change the plot string. If a line has been defined
with a plot string, and the format is changed by a subsequent draw statement, the plot string can be
removed by specifying "" in the draw statement.

new is a synonym for draw.

next [line_name] at [coordinates_name] expr, expr [line_description]

The next command plots the given point using the line style given by line_name, or the default if
none is given. If line_name is given, it should have been defined by an earlier draw command, if
not a new line style with that name is created, initialized the same way as the default style. The two
expressions give the point’s x and y values, relative to the optional coordinate system. That system
should have been defined by an earlier coord command, if not, grap will exit. If the optional
line_description is given, it overrides the style’s default line description. You cannot over-
ride the plotting string. To use a different plotting string use the plot command.

The coordinates may optionally be enclosed in parentheses: (expr, expr)

quoted_string [string_modifiers] [, quoted_string [string_modifiers]] ... at
[coordinates_name] expr, expr

plot expr [format_string] at [coordinates_name] expr, expr

These commands both plot a string at the given point. In the first case the literal strings are stacked
above each other. The string modifiers include the pic justification modifiers, and absolute and rela-
tive size modifiers. size expr sets the string size to expr points. If expr is preceded by a + or
-, the size is increased or decreased by that many points.

BSD August 19, 1998 2

GRAP (1) System General Commands Manual GRAP (1)

In the second version, the expr is converted to a string and placed on the graph. format_string
is a printf(3) format string. Only formatting escapes for printing floating point numbers make
sense.

Points are specified the same way as for next commands, with the same consequences for undefined
coordinate systems.

The second form of this command is because the first form can be used with a grap sprintf
expression (See Expressions).

ticks (left right top bottom)[(in out) [expr]] [on auto coord_name]

ticks (left right top bottom) (in out) [expr] [up expr down expr left expr
right expr] at [coord_name] expr [format_string] [[, expr [format_string]] . . .]

ticks (left right top bottom) (in out) [expr] [up expr down expr left expr
right expr] from [coord_name] start_expr to end_expr [by [+ - ∗ /] by_expr]
[format_string]

ticks [left right top bottom] off

This command controls the placement of ticks on the frame. By default, ticks are automatically gen-
erated on the left and bottom sides of the frame.

The first version of this command turns on the automatic tick generation for a given side. The in or
out parameter controls the direction and length of the ticks. If a coord_name is specified, the
ticks are automatically generated using that coordinate system. If no system is specified, the default
coordinate system is used. As with next and plot, the coordinate system must be declared before
the ticks statement that references it. This syntax for requesting automatically generated ticks is an
extension, and will not port to older grap implementations.

The second version of the ticks command overrides the automatic placement of the ticks by speci-
fying a list of coordinates at which to place the ticks. If the ticks are not defined with respect to the
default coordinate system, the coord_name parameter must be given. For each tick a printf(3)
style format string can be given. The format_string defaults to "%g". To place ticks with no
labels, specify format_string as "".

The labels on the ticks may be shifted by specifying a direction and the distance in inches to offset
the label. That is the optional direction and expression immediately preceding the at.

The third format of the ticks command over-rides the default tick generation with a set of ticks ar
regular intervals. The syntax is reminiscent of programming language for loops. Ticks are placed
starting at start_expr ending at end_expr one unit apart. If the by clause is specified, ticks are
by_expr units apart. If an operator appears before by_expr each tick is operated on by that oper-
ator instead of +. For example

ticks left out from 2 to 32 by ∗2

will put ticks at 2, 4, 8, 16, and 32. If format_string is specified, all ticks are formatted using it.

The parameters preceding the from act as described above.

The at and for forms of tick command may both be issued on the same side of a frame. For exam-
ple:

ticks left out from 2 to 32 by ∗2
ticks left in 3, 5, 7

will put ticks on the left side of the frame pointing out at 2, 4, 8, 16, and 32 and in at 3, 5, and 7.

BSD August 19, 1998 3

GRAP (1) System General Commands Manual GRAP (1)

The final form of ticks turns off ticks on a given side. If no side is given the ticks for all sides are
cancelled.

tick is a synonym for ticks.

grid (left right top bottom) [ticks off] [line_description] [up expr down expr
left expr right expr] [on auto [coord_name]]

grid (left right top bottom) [ticks off] [line_description] [up expr down expr
left expr right expr] at [coord_name] expr [format_string] [[, expr

[format_string]] . . .]

grid (left right top bottom) [ticks off] [line_description] [up expr down expr
left expr right expr] from [coord_name] start_expr to end_expr [by [+ - ∗ /]

by_expr] [format_string]

The grid command is similar to the ticks command except that grid specifies the placement of
lines in the frame. The syntax is similar to ticks as well.

By specifying ticks off in the command, no ticks are drawn on that side of the frame. If ticks
appear on a side by default, or have been declared by an earlier ticks command, grid does not
cancel them unless ticks off is specified.

Instead of a direction for ticks, grid allows the user to pick a line description for the grid lines. The
usual pic line descriptions are allowed.

Grids are labelled by default. To omit labels, specify the format string as "".

label (left right top bottom) quoted_string [string_modifiers] [, quoted_string
[string_modifiers]] ... [up expr down expr left expr right expr]

The label command places a label on the given axis. It is possible to specify several labels, which
will be stacked over each other as in pic. The final argument, if present, specifies how many inches
the label is shifted from the axis.

By default the labels on the left and right labels run parallel to the frame. You can cancel this by
specifying unaligned as a string_modifier.

circle at [coordinate_name] expr, expr [radius expr] [linedesc]

This draws an circle at the point indicated. By default, the circle is small, 0.025 inches. This can be
over-ridden by specifying a radius. The coordinates of the point are relative to the named coordinate
system, or the default system if none is specified.

This command has been extended to take a line description, e.g., dotted. It also accepts the filling
extensions described below in the bar command.

line [line_description] from [coordinate_name] expr, expr to [coordinate_name]
expr, expr [line_description]

arrow [line_description] from [coordinate_name] expr, expr to
[coordinate_name] expr, expr [line_description]

This draws a line or arrow from the first point to the second using the given style. The default line
style is solid. The line_description can be given either before the from or after the to
clause. If both are given the second is used. It is possible to specify one point in one coordinate sys-
tem and one in another, note that if both points are in a named coordinate system (even if they are in
the same named coordinate system), both points must have coordinate_name given.

BSD August 19, 1998 4

GRAP (1) System General Commands Manual GRAP (1)

copy ["filename"] [until "string"] [thru macro]

The copy command imports data from another file into the current graph. The form with only a file-
name given is a simple file inclusion; the included file is simply read into the input stream and can
contain arbitrary grap commands. The more common case is that it is a number list; see Number
Lists below.

The second form takes lines from the file, splits them into words delimited by one or more spaces,
and calls the given macro with those words as parameters. The macro may either be defined here, or
be a macro defined earlier. See Macros for more information on macros.

The filename may be omitted if the until clause is present. If so the current file is treated as the
input file until string is encountered at the beginning of the line.

copy is one of the workhorses of grap. Check out the paper and
/usr/local/share/grap/examples for more details.

print (expr string)

Prints its argument to the standard error.

sh block

This passes block to sh(1). Unlike K&B grap no macro or variable expansion is done. I believe
that this is also true for gnu pic version 1.10. See the Macros section for information on defining
blocks.

pic pic_statement

This issues the given pic statements in the enclosing .PS and .PE at the point where the command
is issued.

Statements that begin with a period are considered to be troff(statements) and are output in the
enclosing .PS and .PE at the point where the command appears.

For the purposes of relative placement of pic or troff commands, the frame is output immediately
before the first plotted object, or the frame statement, if any. If the user specifies pic or troff
commands and neither any plottable object nor a frame command, the commands will not be output.

graph Name pic_commands

This command is used to position graphs with respect to each other. The current graph is given the
pic name Name (pic names begin with capital letters). Any pic commands following the graph
are used to position the next graph. The frame of the graph is available for use with pic name
Frame. The following places a second graph below the first:

graph Linear
[graph description]
graph Exponential with .Frame.n at \

Linear.Frame.s - (0, .05)
[graph description]

name = expr

This assigns expr to the variable name. grap has only numeric (double) variables.

Assignment creates a variable if it does not exist. Variables persist across graphs. Assignments can
cascade; a = b = 35 assigns 35 to a and b.

bar (up right) [coordinates_name] offset ht height [wid width] [base
base_offset] [line_description]

BSD August 19, 1998 5

GRAP (1) System General Commands Manual GRAP (1)

bar [coordinates_name] expr, expr, [coordinates_name] expr, expr,
[line_description]

The bar command facilitates drawing bar graphs. The first form of the command describes the bar
somewhat generally and has grap place it. The bar may extend up or to the right, is centered on
offset and extends up or right height units (in the given coordinate system). For example

bar up 3 ht 2

draws a 2 unit high bar sitting on the x axis, centered on x=3. By default bars are 1 unit wide, but this
can be changed with the wid keyword. By default bars sit on the base axis, i.e., bars directed up will
extend from y=0. That may be overriden by the base keyword. (The bar described above has cor-
ners (2.5, 0) and (3.5, 2).)

The line description has been extended to include a fill expr keyword that specifies the shading
inside the bar. Bars may be drawn in any line style.

The second form of the command draws a box with the two points as corners. This can be used to
draw boxes highlighting certain data as well as bar graphs. Note that filled bars will cover data drawn
under them.

Control Flow

if expr then block [else block]

The if statement provides simple conditional execution. If expr is non-zero, the block after the
then statement is executed. If not the block after the else is executed, if present. See Macros
for the definition of blocks. Early versions of this implementation of grap treated the blocks as
macros that were defined and expanded in place. This led to unnecessary confusion because explicit
separators were sometimes called for. Now, grap inserts a separator (;) after the last character in
block, so constructs like

if (x == 3) { y = y + 1 }
x = x + 1

behave as expected. A separator is also appended to the end of a for block.

for name from from_expr to to_expr [by [+ - ∗ /] by_expr] do block

This command executes block iteratively. The variable name is set to from_expr and incre-
mented by by_expr until it exceeds to_expr. The iteration has the semantics defined in the
ticks command. The definition of block is discussed in Marcos. See also the note about implicit
separators in the description of the if command.

An = can be used in place of from.

Expressions

grap supports a most standard arithmetic operators: + - / ∗ ˆ. The carat (ˆ) is exponentiation. In an if
statement grap also supports the C logical operators ==, !=, &&, || and unary !. Also in an if, == and !=
are overloaded for the comparison of quoted strings. Parentheses are used for grouping.

Assignment is not allowed in an expression in any context, except for simple cascading of assignments. a =
b = 35 works as expected; a = 3.5 ∗ (b = 10) does not execute.

grap supports the following functions that take one argument: log, exp, int, sin, cos, sqrt,
rand. The logarithms are base 10 and the trigonometric functions are in radians. eexp returns Euler’s
number to the given power and ln returns the natural logarithm. The natural log and exponentiation func-
tions are extensions and are probably not available in other grap implementations.

BSD August 19, 1998 6

GRAP (1) System General Commands Manual GRAP (1)

If rand is given an argument, it seeds the random number generator with that value. Called with no argu-
ments, it returns a random number uniformly distributed on [0,1). The following two argument functions are
supported: atan2, min, max. atan2 works just like atan2(3).

Other than string comparison, no expressions can use strings. One string valued function exists: sprintf
(format, [expr [, expr]]). It operates like sprintf(3), except returning the value. It can be used
anywhere a quoted string is used.

Macros
grap has a simple but powerful macro facility. Macros are defined using the define command :

define name block

Every occurrence of name in the program text is replaced by the contents of block. block is
defined by a series of statements in nested { }’s, or a series of statements surrounded by the same let-
ter. An example of the latter is

define foo X coord x 1,3 X
Each time foo appears in the text, it will be replaced by coord x 1,3. Macros are literal, and can
contain newlines. If a macro does not span multiple lines, it should end in a semicolon to avoid pars-
ing errors.

Macros can take parameters, too. If a macro call is followed by a parenthesized, comma-separated
list the values starting with $1 will be replaced in the macro with the elements of the list. A $ not fol-
lowed by a digit is left unchanged. This parsing is very rudimentary, no nesting or parentheses or
escaping of commas is allowed. Also, there is no way to say argument 1 followed by a digit (${1}0
in sh(1)). A macro can have at most 32 arguments.

The following will draw a line with slope 1.

define foo { next at $1, $2 }
for i from 1 to 5 { foo(i,i) }

Macros persist across graphs. The file /usr/local/share/grap/grap.defines contains
simple macros for plotting common characters.

See the file /usr/local/share/grap/examples for more examples of macros.

Number Lists

A whitespace-separated list of numbers is treated specially. The list is taken to be points to be plotted using
the default line style on the default coordinate system. If more than two numbers are given, the extra num-
bers are taken to be additional y values to plot at the first x value. Number lists in DWB grap can be
comma-separated, and this grap supports that as well. More precisely, numbers in number lists can be sep-
arated by either whitespace, commas, or both.

1 2 3
4 5 6

Will plot points using the default line style at (1,2), (1,3),(4,5) and (4,6). A simple way to plot a set of num-
bers in a file named ./data is:

copy "./data"

ENVIRONMENT VARIABLES
If the environment variable GRAP_DEFINES is defined, grap will look for its defines file there. If that
value is a relative path name the path specified in the −M option will be searched for it. GRAP_DEFINES
overrides the compiled in location of the defines file, but may be overridden by the −d or −D flags.

BSD August 19, 1998 7

GRAP (1) System General Commands Manual GRAP (1)

FILES
/usr/local/share/grap/grap.defines

SEE ALSO
atan2(3), groff(1), pic(1), printf(3), sh(1), sprintf(3), troff(1)

BUGS
There are several small incompatibilities with K&R grap. They include the sh command not expanding
variables and macros, and a more strict adherence to parameter order in the internal commands.

Although much improved, the error reporting code can still be confused. Notably, an error in a macro is not
detected until the macro is used, and it produces unusual output in the error message.

Iterating many times over a macro with no newlines can run grap out of memory.

AUTHOR
This implementation was done by Ted Faber 〈faber@lunabase.org〉. Bruce Lilly 〈blilly@erols.com〉 con-
tributed many bug fixes, including a considerable revamp of the error reporting code. If you can actually find
an error in your grap code, you can probably thank him. grap was designed and specified by Brian
Kernighan and Jon Bentley.

BSD August 19, 1998 8

	GRAP (1)

