
Package mathfont v. 3.0 User Guide
Conrad Kosowsky

January 2026
kosowsky.latex@gmail.com

For easy, off-the-shelf use, type the following in your preamble
and compile with X ELATEX or LuaLATEX:

\usepackage[〈font name〉]{mathfont}

As of version 2.0, using LuaLATEX is recommended. Minor
backwards incompatible changes in version 3.0.

Overview
The mathfont package adapts Unicode text fonts for math mode. The
package allows the user to specify a default font for different classes
of math symbols, and it enables Unicode input in math mode. The
package provides tools to change the font locally for math alphabet
characters. When typesetting with LuaTEX, mathfont adds resizable
delimiters, big operators, and a MathConstants table to text fonts.

Handling fonts in TEX and LATEX is a notoriously difficult task because fonts are complicated.1
The mathfont package addresses this situation by providing tools to use TrueType and Open-
Type fonts in math mode and in the main text, and this user guide explains how to operate
mathfont. For version history and code implementation, see mathfont-code.pdf, and for
a list of all symbols accessible with mathfont, see mathfont-symbol-list.pdf. Those two
pdf files, this user guide, and four example files are included in the mathfont installation and
are available on ctan. Because Unicode text fonts are plentiful, I hope that this package
expands the possibilities for typesetting math in LATEX.

1 Loading and Basic Functionality
Loading fonts for math typesetting is more complicated than for regular text. First, selecting

Acknowledgements: Thanks to Lyric Bingham for her work checking my Unicode hex values. Thanks to
Matthew Braham, Sergio Callegari, Daniel Flipo, Shyam Sundar, Adrian Vollmer, Herbert Voss, and Andreas
Zidak for pointing out bugs in previous versions of mathfont. Thanks to Jean-François Burnol for pointing
out an error in the documentation in reference to his mathastext package.

1The last few decades have seen huge advances in loading fonts with TEX. Donald Knuth originally de-
signed TEX to load only fonts created with Metafont, and more recent engines such as Jonathan Kew’s X ETEX
and Hans Hagen, et al.’s LuaTEX have extended TEX’s font-loading capabilities to Unicode. X ETEX sup-
ports OpenType and TrueType fonts natively, and LuaTEX can load OpenType fonts through the luaotfload
package. Information on X ETEX is available at https://tug.org/xetex/, and information on LuaTEX
is available at the official website for LuaTEX: http://www.luatex.org/. See also Ulrike Fischer, et al.,
“luaotfload—OpenType ‘loader’ for Plain TEX and LATEX,” https://ctan.org/pkg/luaotfload. For dis-
cussion of fonts generally, see Yannis Haralambous, Fonts & Encodings (Sebastopol: O’Reilly Media, Inc.,
2007).

1

https://tug.org/xetex/
http://www.luatex.org/
https://ctan.org/pkg/luaotfload

2 User Guide Loading and Basic Functionality

Table 1: Comparison of General Font-Loading Packages
Text font Math font

Traditional TEX font mathastext No general package
Unicode font (for math typesetting) mathfont or mathspec unicode-math
Unicode font (for text only) fontspec fontspec

fonts for math mode, both in plain TEX and in the nfss, involves additional macros above
and beyond what we need to load text fonts. Second, TEX expects fonts for math to contain
extra information for formatting equations.2 Broadly speaking, we say that a math font con-
tains this extra information, whereas a text font does not, and typesetting math with glyphs
from one or more text fonts may yield messier equations than using a properly prepared
math font. The functionality of mathfont then is twofold: (1) provide a wrapper around the
nfss commands for math typesetting that serves as a high-level interface; and (2) implement
LuaTEX callbacks that artificially convert text fonts into math fonts at loading.3 Although
mathfont tries its best to get your fonts right, it may run into trouble when picking fonts
to load. If this happens, you should declare your font family and shapes in the nfss before
setting any fonts with mathfont.

You must use one of X ELATEX or LuaLATEX to typeset a document with mathfont. You
can load mathfont with the standard \usepackage syntax, and the package accepts five op-
tional arguments. If you use LuaTEX, the options adjust or no-adjust will manually specify
whether mathfont should adapt text fonts for math mode, and mathfont selects adjust by
default. If you use X ETEX, mathfont cannot adjust any font objects with Lua callbacks, and
either of these package options will cause an error.4 For this reason, using LuaTEX with
mathfont is recommended as of version 2.0. The options default-loader and fontspec-
loader determine which font-loading code mathfont uses. If you load the package with the
default-loader option, mathfont uses a built-in font-loader, and if you load the package
with fontspec-loader, mathfont uses the font-loader from fontspec. If you load mathfont
with any other optional argument, the package will interpret it as a font name and call
\documentfont (described in the next section) on your argument. Doing so selects that font
for the text of your document and for the character classes in the upper portion of Table 3.

The mathfont package is closely related to several other LATEX packages. The functionality
is closest to that of mathspec by Andrew Gilbert Moschou.5 That package is compatible

2Specifically, this extra information is a set of large variants, math-specific parameter values associated
with individual characters, and a MathConstants table. Also, math fonts often use slightly wider bounding
boxes for letters in math mode—the Computer Modern f is a well-known example. (Compare math-mode f
and italic f . Without italic correction, we have f.) For this reason, mathfont provides an interface to enlarge
the bounding boxes of most Unicode characters when they appear in math mode. See section 5 for details.

3Values for MathConstants table are different from but inspired by Ulrik Vieth, “Understanding the Æs-
thetics of Math Typesetting,” (BachoTEX Conference, 2008) and Ulrik Vieth “OpenType Math Illuminated,”
TUGboat 30 (2009): 22–31. See also Bogusław Jackowski, “Appendix G Illuminated,” TUGboat 27 (2006):
83–90.

4With X ELATEX, mathfont does not add big operators or resizable delimiters to the font. This means you
will have to use the Computer Modern defaults, load a separate math font for resizable characters, or end up
with a document where large operators and delimiters do not scale like they do normally.

5Andrew Gilbert Moschou, “mathspec—Specify arbitrary fonts for mathematics in X ETEX,” https://
ctan.org/pkg/mathspec.

https://ctan.org/pkg/mathspec
https://ctan.org/pkg/mathspec

Setting the Default Font User Guide 3

Table 2: Main User-Level Control Sequences Provided by mathfont
Control Sequence Use Engine

\documentfont Set font for text and math

X ETEX and
LuaTEX

\mainfont Set font for text
\mathfont Set font for math
\mathfontshapes Declare font shapes in the preamble
\newmath〈specifier〉 Create local font-change command for math
\mathfontcommands Create several local font-change commands

\mathconstantsfont Select MathConstants table for use

LuaTEX only

\charmline Enlarge bounding box; change size of extensibles
\charmfile Call \charmline on each line from a file
\charminfo Print charm information of a character
\charmtype Print type of a character for charm purposes
\hsurdfactor Move overline for square root horizontally
\vsurdfactor Move overline for square root vertically
\rulethicknessfactor Set rule thickness for square root, fractions

with X ETEX only and loads text fonts for use in math. The unicode-math package is a main
LATEX package for loading actual Unicode math fonts, and if you have a Unicode font with
proper math support, rather than a text font that you want to use for equations, consider
using that package instead of mathfont.6 Users who want a text font for math with pdfLATEX
should consider Jean-François Burnol’s mathastext because mathfont is incompatible with
pdfTEX.7 Finally, you may be better off using fontspec if your document does not contain
any math.8 The fontspec package is designed to load TrueType and OpenType fonts for text
and provides a high-level interface for selecting OpenType font features. Table 1 summarizes
this information.

2 Setting the Default Font
The mathfont package provides three commands for setting fonts in your document. The
\mathfont command sets the font for various classes of characters when they appear in math
mode, and after you call \mathfont on any class of characters, you can use Unicode input
for that class of characters in math mode. The \mainfont command sets the font outside
of equations. The control sequence \documentfont calls both \mainfont and \mathfont,
calls \mathconstantsfont if the engine is LuaTEX, and calls \mathfontcommands if in the

6Will Robertson, et al., “unicode-math—Unicode mathematics support for XeTeX and LuaTeX,” https:
//ctan.org/pkg/unicode-math.

7Jean-François Burnol, “mathastext—Use the text font in maths mode,” https://ctan.org/pkg/
mathastext. In several previous versions of this documentation, I mischaracterized the approach of mathas-
text to TEX’s internal mathematics spacing. In fact, mathastext preserves and in some cases extends rules for
space between various math-mode characters.

8Will Robertson and Khaled Hosny, “fontspec—Advanced font selection in X ELATEX and LuaLATEX,”
https://ctan.org/pkg/fontspec.

https://ctan.org/pkg/unicode-math
https://ctan.org/pkg/unicode-math
https://ctan.org/pkg/mathastext
https://ctan.org/pkg/mathastext
https://ctan.org/pkg/fontspec

4 User Guide Setting the Default Font

Table 3: Character Classes
Keyword Meaning Default Shape Identifier Alphabetic?

upper Upper-Case Latin italic Yes
lower Lower-Case Latin italic Yes
diacritics Diacritics upright Yes
greekupper Upper-Case Greek upright Yes
greeklower Lower-Case Greek italic Yes
digits Arabic Numerals upright Yes
operator Operator Font upright* N/A†

delimiters Delimiter upright No
radical Square Root Symbol upright No
symbols Basic Math Symbols upright No
bigops Big Operators upright No

agreekupper Upper-Case Ancient Greek upright Yes
agreeklower Lower-Case Ancient Greek italic Yes
cyrillicupper Upper-Case Cyrillic upright Yes
cyrilliclower Lower-Case Cyrillic italic Yes
hebrew Hebrew upright Yes
extsymbols Extended Math Symbols upright No
arrows Arrows upright No
extbigops Extended Big Operators upright No
bb Blackboard Bold (double-struck) upright No
cal Caligraphic upright No
frak Fraktur upright No
bcal Bold Caligraphic upright No
bfrak Bold Fraktur upright No
†Technically opererator is not a class of symbols but rather is a local font-change instruction similar to
what is described in section 3 of this user guide.

document preamble. Each of these three commands accepts one optional argument and one
mandatory argument, so the full syntax is

\documentfont[〈rm, sf, tt, or empty〉]{〈font name〉}
\mainfont[〈rm, sf, tt, or empty〉]{〈font name〉}
\mathfont[〈keywords〉]{〈font name〉}

More recent calls to any of these commands will override previous instructions, and all font
changes through these macros are local. This is a backwards-incompatible change in version
3.0. For context, LATEX classifies fonts into family (what most users typically think of as
a “font”), series (the weight, usually medium or bold), and shape (the appearance, usually
upright or italic). The mandatory argument of these three commands specifies a font family,
and the optional argument of \mathfont specifies font series and shape. To choose a series
and shape outside of math mode, you should use the standard commands from the kernel.9

9Specifically, \fontseries and \fontshape locally select arbitrary series and shapes from the nfss, and
the kernel provides macros that reformat their argument such as \textbf and \textit.

Setting the Default Font User Guide 5

Table 4: Shape Identifiers
Identifier Series Uses nfss Series Shape Uses nfss Shape

upright medium \mddefault upright \shapedefault
italic medium \mddefault italic \itdefault
bold bold \bfdefault upright \shapedefault
bolditalic bold \bfdefault italic \itdefault
〈series〉/〈shape〉 〈series〉 〈shape〉

The optional argument for \mainfont and \documentfont determines how mathfont
stores the font information. Using rm, sf, or tt will prompt mathfont to set both
\familydefault and one of \rmdefault, \sfdefault, or \ttdefault respectively to the
requested nfss family. The corresponding \rmfamily, \sffamily, or \ttfamily command
will switch to the font family thereafter. Providing an empty optional argument instructs
mathfont to switch to the font family without saving the font name, and in this case, you
will see no change in the effects of \rmfamily and friends. If you do not provide an optional
argument, mathfont uses rm.

The optional argument for \mathfont should be a comma-separated list of keywords from
Table 3, and it determines which math-mode characters will undergo a font change. When
you use this command, mathfont sets the font family for every character in those keywords
when in math mode to the mandatory argument. For a list of characters associated with
the different keywords, see mathfont_symbol_list.pdf. If you do not specify an optional
argument, \mathfont uses all keywords from the upper half of Table 3 (but not including
delimiters, radical, or bigops characters in X ETEX), so calling \mathfont with no op-
tional argument is a fast way to change the font for most common math characters.

Characters in math mode often appear in different series or shapes from the same font
family, and mathfont allows users to request particular series and shape combinations by
using the shape identifiers in Table 4. By default, the characters in a 〈keyword〉 will follow
the shape identifier stored in \〈keyword〉default, so for example, \upperdefault is initially
defined to be the character string italic. Table 3 contains the initial value of each default
setting. To change the series and shape, you can redefine any \〈keyword〉default macro to
a different shape identifier, or you can request a different shape identifier in the optional
argument of \mathfont. If you say =〈shape identifier〉 immediately after a keyword and
before the following comma, the package will apply your requested 〈shape identifier〉 to that
keyword. For example, if you say

\mathfont[upper=upright, lower=upright]{Baskerville}

you will see Latin letters appear in upright Baskerville in your equations.
You may include * character immediately after the shape identifier if you want mathfont

to use unmodified characters from the font. This option is most appropriate for situations
such as math operators where you want to use regular text in your equations and do not
need enlarged bounding boxes. For example, the command

\mathfont[upper, lower, operator=italic*]{Times New Roman}

changes all Latin letters to italic Times New Roman and switches math operators to the
same italic text that you would see if you use Times New Roman outside of math. This

6 User Guide Setting the Default Font

feature does not do anything in X ETEX.
The mandatory argument of all three font-setting commands should be a system font

name or an nfss font family name. If you use a system font, you can select OpenType fea-
tures by putting a colon after the font name and following it with the appropriate tags.10

The syntax for specifying features depends on the font-loader: with the built-in font-loader,
you should use the standard “+〈tag〉” or “-〈tag〉” syntax, and when using fontspec as the font-
loader, you should use that package’s high-level interface, as described in the fontspec docu-
mentation. For example, suppose you want math with oldstyle numbers. With the built-in
font-loader, you should add “+onum,” or if using fontspec, you should add Numbers=OldStyle
to your \mathfont command. So to load Adobe Garamond Pro with oldstyle numbering,
you would say

\mathfont{Adobe Garamond Pro:+onum}

with the built-in font-loader or
\mathfont{Adobe Garamond Pro: Numbers=OldStyle}

if using fontspec. With the built-in font-loader, you should separate OpenType tags with
semi-colons, and for fontspec, you should use commas.

When the mandatory argument of a font-changing command is an nfss family name,
mathfont uses that font family. When the engine is X ETEX, you don’t have to do anything
special and can ignore the rest of this paragraph. When the engine is LuaTEX, mathfont
expects the nfss to contain a second entry for the same font family that uses base mode for
loading.11 If 〈name〉 is the mandatory argument, you should tell mathfont the family name
for the base-mode version by storing it in the control sequence \〈name〉-base. If you do not
do this, you will see an error message. My intention is that the first font family is for text,
and the base-mode font family is for math—using two different loading options provides the
greatest access to OpenType font features throughout your document.

You can access blackboard-bold, calligraphic, or fraktur letters in three ways. First, the
Unicode standard contains encoding slots for these types of letters, and the last five keywords
in Table 3 access this portion of the Unicode table.12 If you call \mathfont on one of these
〈keyword〉s, the package defines the macro

\math〈keyword〉{〈text〉}
which behaves like a local font-change command from the next section and converts Latin
letters into 〈keyword〉 style. For example,

\mathfont[bb]{STIXGeneral}

10By default, mathfont enables standard ligatures, traditional TEX ligatures, and lining numbers. The
package sets smcp to true or false depending on whether it is attempting to load a small-caps font. For
the full list of OpenType features, see https://docs.microsoft.com/en-us/typography/opentype/spec/
featurelist.

11The luaotfload package supports three modes for loading fonts: node, base, and harf. The default
setting is node mode. It supports full OpenType features in text but none for math, whereas base mode
supports fewer OpenType features, but they work in both text and math. Loading a font with harf mode
engages HarfBuzz, a font shaper that arranges characters in potentially complicated layouts but also provides
no access to OpenType features in math.

12The Math Alphanumeric Symbols block is U+1D400–U+1D7FF. Most blackboard-bold, calligraphic,
and fraktur letters live in this portion of the Unicode table, although a few live in other places.

https://docs.microsoft.com/en-us/typography/opentype/spec/featurelist
https://docs.microsoft.com/en-us/typography/opentype/spec/featurelist

Local Font Changes User Guide 7

Table 5: Macros to Create Local Font-Change Commands with Preset Shapes
Command Series Uses nfss Series Shape Uses nfss Shape

\newmathrm Medium \mddefault Upright \shapedefault
\newmathit Medium \mddefault Italic \itdefault
\newmathbf Bold \bfdefault Upright \shapedefault
\newmathbfit Bold \bfdefault Italic \itdefault
\newmathsc Medium \mddefault Small Caps \scdefault
\newmathscit Medium \mddefault Italic Small Caps \scdefault\itdefault
\newmathbfsc Bold \bfdefault Small Caps \scdefault
\newmathbfscit Bold \bfdefault Italic Small Caps \scdefault\itdefault

defines \mathbb to typeset blackboard-bold letters using the glyphs from STIXGeneral. Sec-
ond, you may have a Unicode font where the normal Latin letters are themselves double
struck, calligraphic, or fraktur, and in that case, you should declare a local font-change com-
mand using the tools in the next section. Third, mathfont should play nicely with (local)
font-changing macros from other packages, so you should have no problem using, for example,
amssymb with mathfont.13

3 Local Font Changes
With mathfont, it is possible to create commands that locally change the font for math alpha-
bet characters, i.e. those marked as alphabetic in Table 3. (I am slightly abusing notation.
In this section, I mean local as in acting on a small portion of the document, not local with
respect to grouping. All font-change commands from mathfont are local in that regard.) The
commands from this section should appear only in the preamble. The eight commands in
Table 5 accept a 〈control sequence〉 as their first mandatory argument and a 〈font name〉 as
the second, so for example, the macro \newmathrm looks like

\newmathrm{〈control sequence〉}{〈font name〉}
You can specify OpenType features as part of the 〈font name〉 the same way as in the pre-
vious section. The macros in Table 5 define the control sequence in their first argument to
accept a string of characters and convert it to the font family in the second argument. The
series and shape information depend on the command used. For example, writing

\newmathrm{\matharial}{Arial}

creates the macro
\matharial{〈argument〉}

which can be used only in math mode and which converts the math alphabet characters in
its 〈argument〉 into the Arial font with upright shape and medium weight.

The macro \mathfontcommands accepts a single font name as its argument. It calls each
\newmath〈specifier〉 command from Table 5 to define \math〈specifier〉 using the font family

13American Mathematical Society, “amssymb.” See also American Mathematical Society, “amsfonts—TEX
fonts from the American Mathematical Society,” https://ctan.org/pkg/amsfonts.

https://ctan.org/pkg/amsfonts

8 User Guide Declaring Font Shapes

from its argument. For example,

\mathfontcommands{Helvetica}

makes the standard font-changing commands such as \mathrm and \mathit use Helvetica
instead of Computer Modern.

In traditional LATEX, \mathrm and friends do not change the font for Greek characters.
That remains the case until you call \mathfont for greeklower or greekupper characters,
and then any local font-change commands from this section will work on lower-case or upper-
case Greek letters respectively. Similarly, the local font-change commands will affect Cyrillic
and Hebrew characters after you call \mathfont for those keywords.

These nine control sequences provide tools for most local font changes, but they won’t be
able to address everything. Accordingly, mathfont provides general \newmathfontcommand
macro. Its argument structure is

\newmathfontcommand{〈control sequence〉}{〈font name〉}{〈series〉}{〈shape〉}

where the 〈control sequence〉 in the first argument again becomes the macro that changes
characters to the 〈font name〉. You are welcome to use a system font name when you call
\newmathfontcommand, but my intention behind this command is that you can use an nfss
family name for the 〈font name〉. Then the series and shape values can correspond to more
obscure font faces from the nfss family that you would be otherwise unable to access. As
with \mathfont, if you are using LuaTEX and the 〈font name〉 is an nfss family, you should
make sure that you defined \〈font name〉-base, or you will see an error.

4 Default Math Parameters
LuaTEX uses the MathConstants table from the most recent font assigned for use in math
mode, and this means that in a document with multiple math fonts, the choice of MathCon-
stants table can depend on the order of font declaration and be unpredictable. To avoid
potential problems from using the wrong MathConstants table, mathfont provides

\mathconstantsfont[〈shape identifier〉]{〈font name〉}

where 〈shape identifier〉 is a shape identifier from Table 4 and 〈font name〉 is a font name as
in the previous two sections. By default, \mathconstantsfont uses upright for the optional
argument. This macro forces LuaTEX to use the MathConstants table from the requested
font face, and once again, if you use an nfss family name for 〈font name〉 with LuaTEX, make
sure to define \〈font name〉-base appropriately. You don’t need to set the MathConstants
table when you use \documentfont or pass a font name to mathfont at loading because the
package calls \mathconstantsfont automatically in this case. This command does not do
anything in X ETEX.

5 Declaring Font Shapes
You are welcome to use the commands from sections 2 and 4 after \begin{document}, but

Lua Font Adjustments User Guide 9

you are limited in what fonts you can use. LATEX prohibits new font declarations after the
preamble, and at that point, mathfont will only use font faces that already exist in the nfss
or that it used for any purpose previously. What this means in practical terms: if you want
to use \mathfont or \mainfont after \begin{document}, you probably have to use a font
that mathfont handled in some capacity in the preamble. This makes it nonobvious how to
use a font after the preamble if you do not want to set that font for any characters in the
preamble.

To address this situation, mathfont provides the command \mathfontshapes. The pur-
pose of this macro is to declare font shapes before \begin{document} without using them
for anything. It accepts one optional argument and one mandatory argument, so the syntax
is

\mathfontshapes[〈shape identifiers〉]{〈font name〉}
The optional argument should be a comma-separated list of shape identifiers, and by default,
the macro uses upright, upright*, italic, and bold. The mandatory argument should be
a font name like in the previous sections.

After you use \mathfontshapes, you should have no problem using the same font
family for \mainfont. You will also be able to use the font family for \mathfont or
\mathconstantsfont provided that you stick to shape identifiers that appeared in the
optional argument of \mathfontshapes. For example, if you say

\mathfontshapes{Didot}

in your preamble, you can include
\mathfont{Didot}

after the preamble (even if you didn’t have it in the preamble), but if you type
\mathfont[operator=italic*]{Didot}

you will run into problems because \mathfontshapes does not normally use the shape iden-
tifier italic*. You should instead say

\mathfontshapes[italic*]{Didot}

in your preamble to avoid any issues.

6 Lua Font Adjustments
When LuaTEX reads in a font file, mathfont makes the font object in memory appear to
be a math font rather than a text font. Most of this process happen behind the scenes,
but mathfont provides control sequences that allow you to customize some modifications.
With the exception of the read-only control sequences \charminfo and \charmtype, their
wrapped equivalents, and the count variables, all macros from this section should appear in
the preamble only.

The main macro for doing so is \charmline. (Charm stands for “character metric.”) It
accepts one mandatory argument, so the syntax is

\charmline{〈charm information〉}
The 〈charm information〉 should be a sequence of entries separated by a comma and/or

10 User Guide Lua Font Adjustments

Table 6: Number of Entries Required in \charmline

Character Type Total Number of Entries

Everything Else a 5
Delimiters, Radical (Surd Character), Big Operators e 34

space, where entry means one or two numbers or asterisks. If an entry is two numbers, two
asterisks, or one of each, you must separate them with a slash, and the first entry in 〈charm
information〉 should be a single integer between 0 and 1,114,111. The command fully expands
its argument, and you may see strange errors if 〈charm information〉 contains unexpandable
control sequences. Processing uses tonumber() from Lua, so your input can include anything
that Lua recognizes as a number. In particular, you can specify hexadecimal numbers by
prefixing them with 0x.

This macro controls how mathfont adjusts bounding boxes, accent placement, and large
variants. The first entry in 〈charm information〉 corresponds to an entry in the Unicode
table, and mathfont references the remaining entries when it alters properties of the character
in that encoding slot during font loading. For purposes of charm information, a character can
have one of two types: a for “alphabetic” or e for “extensible.”14 Any character that resizes,
such as delimiters, big operators, and the surd character has type e, and you should specify
33 additional entries after the encoding slot. All other characters have type a, and you should
specify 4 additional entries after the encoding slot. If you specify too few charm values,
mathfont will raise an error, and if you provide too many, mathfont ignores the extras and
prints a warning on the terminal. Version 3.0 eliminates type u and requires an extra entry for
type e characters, and these are backwards-incompatible changes. If you call \charmline for
an encoding slot that does not have any charm information, mathfont assumes that character
should be type a. You can change a character to type e by including an ! symbol immediately
after the first entry, and you can change a character to type a by including a ? symbol
immediately after the first entry.

When mathfont parses 〈charm information〉, the order of the entries determines their
purpose. As is standard in TEX, mathfont divides all numbers in \charmline by 1000 to
form floats before using them in calculations. For type a characters, the second and third
entries tell LuaTEX how much to stretch the left and right sides of the glyph’s bounding
box when it appears in math mode, and the third entry determines horizontal placement of
top math accents. The final entry determines the bot_accent attribute for that character
in the font object, although LuaTEX does not use this piece of information for formatting
equations.15 If the Unicode value corresponds to a type e character, mathfont interprets
the first 30 entries after the encoding slot as 15 successive pairs of horizontal and vertical
scale factors that determine the size of large variants. For example, the second and third
entries in 〈charm information〉 are the horizontal and vertical scale factors for the first large
variant. The last three entries determine, respectively, horizontal placement of top accents,

14Alphabetic is something of a misnomer that I kept for historical reasons.
15See Hans Hagen and Mikael P. Sundqvist, “On Bottom Accents in OpenType Math,” TUGBoat 44

(2023): 207–208. See also two threads from the LuaTEX developer mailing list from 2012, available at http:
//mailman.ntg.nl/archives/list/dev-luatex@ntg.nl/thread/3SDPLVHQYLVHHOBUA3DWROTWLMUBUQI5/
#WX432F6M52MUIK4WE5I3W7YSJOWDIA4G and https://mailman.ntg.nl/archives/list/dev-luatex@ntg.
nl/thread/PU2VYNG7XBWVBBUY4VIPJOS75NNZM7UE/#PU2VYNG7XBWVBBUY4VIPJOS75NNZM7UE.

http://mailman.ntg.nl/archives/list/dev-luatex@ntg.nl/thread/3SDPLVHQYLVHHOBUA3DWROTWLMUBUQI5/#WX432F6M52MUIK4WE5I3W7YSJOWDIA4G
http://mailman.ntg.nl/archives/list/dev-luatex@ntg.nl/thread/3SDPLVHQYLVHHOBUA3DWROTWLMUBUQI5/#WX432F6M52MUIK4WE5I3W7YSJOWDIA4G
http://mailman.ntg.nl/archives/list/dev-luatex@ntg.nl/thread/3SDPLVHQYLVHHOBUA3DWROTWLMUBUQI5/#WX432F6M52MUIK4WE5I3W7YSJOWDIA4G
https://mailman.ntg.nl/archives/list/dev-luatex@ntg.nl/thread/PU2VYNG7XBWVBBUY4VIPJOS75NNZM7UE/#PU2VYNG7XBWVBBUY4VIPJOS75NNZM7UE
https://mailman.ntg.nl/archives/list/dev-luatex@ntg.nl/thread/PU2VYNG7XBWVBBUY4VIPJOS75NNZM7UE/#PU2VYNG7XBWVBBUY4VIPJOS75NNZM7UE

Lua Font Adjustments User Guide 11

the bot_accent attribute, and the character’s italic correction.
Asterisks and subentries affect how mathfont uses charm information in memory. Writing

an asterisk tells mathfont to use whatever value it has saved in memory, either the default
value or the value from the most recent call to \charmline or \charmfile. When an entry
contains two subentries, mathfont uses the first subentry for unslanted fonts and the second
subentry for slanted or italic fonts. If an entry is a single number or asterisk, mathfont uses
that input for both slanted and unslanted fonts.

If you want to store charm information in a file instead of your document preamble,
you should use the control sequence \charmfile. This command accepts one mandatory
argument, so the syntax is

\charmfile{〈file name〉}
It reads in a file and calls \charmline individually on each line from the file.

The default settings are decent, so for most applications, you can probably ignore charm
information altogether. However, if you find bounding boxes or accent placement to be off
slightly in your equations or if you want to change the scaling for a delimiter or big operator,
you should try calling \charmline with different values to see what works. For a given
character, the scale for changes is the width of that character’s unmodified bounding box.16

For example,
\charmline{0x61, 200, -100, *, 50}

tells mathfont to take the lower-case “a” (U+61, i.e. encoding slot number 97), increase the
bounding box on the left side by 20% of the character width, decrease the bounding box on
the right side by 10% of the character width, do nothing to the top accent, and shift the
bot_accent attribute right by 5% of the character width. There is no general formula for
what charm values to use for a given font! Rather, you will need to make a design choice
based on what looks best, and if you regularly use a specific font, consider making a custom
set of charm values and uploading it to ctan.

The package provides two commands to query charm information in memory, namely
\charminfo and \charmtype. These macros are weird in that they don’t take an argument.
Rather, they scan (and remove) the next integer from the input stream in the same manner
as a \count variable, so the syntax is

\charminfo〈integer〉
\charmtype〈integer〉

Both macros are fully expandable and work outside the document preamble. If mathfont has
charm information in memory for the Unicode encoding slot 〈integer〉, \charmtype expands
to a or e depending on the type of that character, and \charminfo expands to a space-
separated lists of charm entries. The results of \charminfo look exactly like the input of
\charmline, so typing

\charmline{〈encoding slot〉,\charminfo〈encoding slot〉}
is valid syntax and reassigns the charm information for 〈encoding slot〉 to itself. If 〈integer〉 is
not the encoding slot for a character with charm information, both macros expand to none.

Three count variables affect equation formatting with mathfont. Their default value is
1000, and mathfont divides their value by 1000 to convert them to floats before using them.

16For type a, it’s technically the unmodified bounding box width plus italic correction because mathfont
incorporates the italic correction into the character width.

12 User Guide Lua Font Adjustments

Table 7: Lua Callbacks Created by mathfont
Callback Name What It Does By Default Called?

"mathfont.inspect_font" Nothing Always

"mathfont.pre_adjust" Nothing

If base mode
and nomath

"mathfont.disable_nomath" Set font attribute nomath to false
"mathfont.add_math_constants" Create a MathConstants table
"mathfont.fix_character_metrics" Adjust bounding boxes, add

character-specific math fields,
create large variants

"mathfont.post_adjust" Nothing

"mathfont.finishing_touches" Nothing Always

The first two, \hsurdfactor and \vsurdvactor, affect the positioning of the overline in
square root expressions. Specifically, changing either count scales the bounding box for the
surd (square root) character by the corresponding float value. Larger values of \hsurdvactor
therefore shift the overline to the right, and smaller values do the opposite. Larger values of
\vsurdfactor raise the overline. The third count, \rulethicknessfactor, determines the
thickness of horizontal rules such as the overline in square root expressions or the fraction bar.
You will probably want to increase \rulethicknessfactor for fonts with heavier weight
and decrease it for fonts with lighter weight. Please be aware that mathfont uses the value of
each count only once per font when TEX loads the font for math typesetting. This typically
happens the first time the user enters math mode.

The package provides user-friendly versions of each control sequence in this section.
The macros \CharmInfo and \CharmType accept an integer as a single mandatory argu-
ment and print the results of \charminfo and \charmtype to the terminal. The macros
\SurdHorizontalFactor, \SurdVerticalFactor, and \RuleThicknessFactor similarly ac-
cept a single integer as a mandatory argument and set the corresponding count variable to
that value. Additionally, \IntegralItalicFactor accepts an integer as its argument and
divides the argument by 1000 to form a float. When TEX loads a font, it increases the italic
correction of the integral symbol by that fraction of the symbol’s width, which affects posi-
tioning of limits. For parity in macro names and backwards compatibility, \CharmLine and
\CharmFile are defined to do the same thing as their lower-case counterparts.

Advanced users who want to interact with the font adjustment process directly should
use the seven callbacks in Table 7. When luaotfload loads a font, mathfont (1) always calls
mathfont.inspect_font; (2) calls the middle five callbacks in the order that they appear
in Table 7 if the font object contains nomath=true and was loaded with base mode; and
(3) always calls mathfont.finishing_touches. Functions added to these callbacks should
accept a font object as a single argument and return nothing. Further, please be careful when
loading functions in disable_nomath, add_math_constants, and fix_character_metrics.
If you add a function there, LuaTEX will not carry out the default behavior associated with
the callback, so do not mess with these three callbacks unless you are duplicating the default
behavior or you really know what you’re doing. Otherwise, you risk breaking the package.
See mathfont-code.pdf for more information.

