Measures of Tipping Points, Robustness.

and Path Dependence

Aaron . Bramson



Motivation

@ The idea of tipping points is important for topics as diverse as
segregation, marketing, rioting, global warming, idea diffusion,
election outcome, and many, many more.

@ Robustness considerations have extended beyond engineering
and ecology to political regimes, computer algorithms, and
decision procedures.

@ Analyzing and exploiting path dependence plays a significant role
in technology spread, institutional design, legal theory and the
evolution of culture.

@ However these concepts have not been generally and formally
defined and, as a result, the terms’ uses across these various
applications are hardly consistent.



Motivation
@ Complex systems analyses need to capture processes rather

than a series of static snapshots.

@ Existing statistical techniques are ill-suited to measure
properties of system dynamics.

@ Developing techniques to measure these features could
provide a means to compare models across disciplines.

@ Provides a conceptual benefit for understanding and
categorizing system behaviors.

@ Makes the inventor very popular at social gatherings.



Bui|ding 3 Markov Model

@ Markov models are comprised of a set of states and the
probabilistically weighted transitions among those states.

@ The Markov model representation must be built in a specific
way to run the properties of system dynamics analysis.

@A state in the Markov model is a complete specification of the Q aspects
of one configuration of the system.

Si = {Xi@.X2@, . . .XQ}

@ Example: If our system is an iterated game played by six players each with four
possible actions then each state of the system has six aspects and each aspect
takes on one of four values. That is S = {a(Plm), a(P2w), . . .., a(P6w)}

and a particular state 53 might be {as, az, as, a1, a4, as}.



Bui|ding 3 Markov Model

@ For each independent trial start with the initial state.



Bui|ding 3 Markov Model

@ Record which state it transitions into.



Bui|ding 3 Markov Model

@ And do it again...



Bui|ding 3 Markov Model

@ ...and again...



Bui|ding 3 Markov Model

@ ...and again...



Bui|ding 3 Markov Model

@ ...and again...



Bui|ding 3 Markov Model

@ ...until you reach what looks to be an equilibrium
or you've run out of data for that trial.

¥,



Bui|ding 3 Markov Model

@ Then run another independent trial and track its dynamics
through the state space.



Bui|ding 3 Markov Model

@ Then run another independent trial and track its dynamics
through the state space.




Bui|ding 3 Markov Model

@ Then run yet another independent trial and track its dynamics
through the state space.

@ Continue to do this as long as is reasonable.
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Bui|ding 3 Markov Model

@ And when you’ve run through all your data or have done as
many simulations as you can stand, compile them into one
diagram that captures all the observed dynamics.
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Bui|ding 3 Markov Model

@ And that’s not alllll By using the frequency of transitions
from your data you can produce the desired Markov model
representation of your system’s dynamics.
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Paths and Cycles

@A path is an ordered collection of states and transitions such that from each state
there exists a positive probability to transition to the successor state within the
collection. A path from Si to $j denoted ~5(5i, §j) is the set of states § such that

(i) so=Sin$
(ii) There exists T such that for allt < T P(st+1in §|stin§) > O
(iii) sT=5;in §
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Landmarks in System Dynamics

@ A system state that always transitions to itself is called an equilibrium or
stable state. An equilibrium ei is a state Si such that P(st+1 = Si|st = i) = 1.

@ Those states from which the system will eventually move into a specific attractor
are said to be in that attractor’s basin of attraction. The basin of Ai or B(Ai) is a
set of states § such that there exists an h > 0 P(st+h = Ai|stin §) = 1.

@ The support of a state (also known as its in-component) is the set of states
which have a path to it.
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Landmarks in System Dynamics

@The overlap of a collection of states is the set of states in all of their
in-components (i.e. the intersection of thier supports).

@ A state’s out-degree is the number of distinct successor states (states that

may be immediate transitioned into). The out-degree ki of state Si equals
| {Si : P(st+1 = §j |sc = 5) > O}.

@ S5k will be used to denote a neighboring state and S« the set of neighboring states.
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Landmarks in System Dynamics

@The reach of a state (also called its out-component and written R(Si)) is the set of
states that the system may enter by following some sequence of transitions; i.e. all
possible future states given an initial state.

@ Every successor state’s reach is less than or equal to the previous state’s reach.
For every i and j, ~(Si, §j) implies |R(Si)| = |R(S))].
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Landmarks in System Dynamics

@A core of a set is a subset wherein every member of the subset is in the
reach of every member of the subset. This is the strongly connected component of
a selected collection of states.

@ Some sets will have multiple cores — the set of §'s cores can be called §'s mantle.

@ The perimeter of a set is the collection of those states in the set that may
transition to states outside the set. That is, § such that P(st+1 not in §|s:in §) > 0
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Critical Behavior

@ A state transition is considered critical behavior if and only if it produces a decrease

in stretch; i.e. ~(Si, §j) such that |R(Si)| > |R(S))].

@ The stretch-gap of a transition is the change in the percent of the total number
of states that can be reached. This quantity equals|R(Si))|/ N — |R(S;)| / N.

@ A transition’s criticality is one minus the ratio of the start and end states’ stretch.

The criticality of ~(Si, §j) equals 1 — [R(Sj)| / |R(Si)|.

@ The criticality of a state is the probabilistically weighted sum of the criticality

of all the transitions from that state.
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Tipping Behavior

@A tipping point is a state which is in the perimeter of an equivalence class
for some property. Different properties reveal different kinds of tips.

@The energy level of a state is the number of reference states (e.g. attractors,
functional states, states with high criticality) within its reach. Energy levels
partition the system’s states into equivalence classes.

@ The tippiness of a state Si is the probabilistically weighted proportional
drops in energy of its immediate successors: 1 — Sum over j, Pij ( E(S) / E(51) ).

B Energy Level of 1
B Energy Level of 2
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Stable, Static, and Turbulent

@ A state’s stability is how likely that state is to self-transition: P(st+1 = Si| st = Si).

@ The stability of a set is the probability that the system will not transition out of
the set given that the system starts within the set. We calculate this as the average
of the individual states’ exit probabilities.

@ The degree to which a set is static is the average of the states’ stability values.
@ The turbulence of a set is the average percentage of states that its states can
transition into. We can calculate §'s turbulence with the average ratio of each

state’s degree to the number of states in §: 1/|§| Sum over Si (k / |S]).

@ As a refinement of turbulence, weighted turbulence of the state $i equals zero
if k = 1and for k > 1 can be calculated as Sum over j of 1 — (P(~(S, §j)) — Iz’kf‘:



Sustainable and Susceptible

@ The sustainability of § is the average cumulative long-term probability density
of future states that remain in the set starting from each state in the set:
1/|S| Sum over Si, Sum over t P(st+1 in §|st in §).

@ The degree to which § is susceptible to Si is how much more (or less) likely it is
to transition out of § conditional on it being in a particular state Si of §:
Sum over t P(st+1in §|st in § and so = Si) — sustainability of S.

@ Given this definition we can see that a positive susceptibility means a lower
probability to stay within §.
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Resilient and Recoverable

@ A state’s resilience is the cumulative probability of returning to a state given that
the system starts in that state: Sum over t P(s: = Si|so = Si).

@ 5Set resilience is the probability that the system will return to a set if the initial
state of a sequence is within the state.

@ A transition out of the set is recoverable to the degree that the system will return
to the set after the transition. $ is recoverable from ~(5i, §j) to the degree
calculated by the Sum over t P(s:in §| ~(5i, §j) and Siin § and Sj not in §).

@ Also note that there may be multiple paths from $i back into §. Each path
leading out from $§ back into § can be called a recovery path.



Religble, Robust, 3nd Vulnerable

@ The reliability of a set is the average cumulative long-term probability density
over the states in the set given that the system starts within that set. It is by
1/|S| Sum over Si, Sum over t P(st in §|so in S).

@ The robustness of a set is the average cumulative long-term probability density
over the states in the set given that the system may start at any state.
1/|S| Sum over Si, Sum over t P(st in S).

@ A set’s vulnerability at Si is the difference in the average long-term probability
density over the states in the set compared to the density generated by starting
in Si: Sum over t P(st in §|so = Si) — robustness of §.



Path Sensitivities

@ Any reduction in the size of the reach across a transition is an instance of weak
path preclusion. The degree of weak path preclusion of ~(5i, §j) is the criticality
measure of ~(5i, Sj).

@ Strong path preclusion is when there is a reduction in the number of reference
states or sets that can be reached. The strong path preclusion of ~(5i, §j) is
measured by the tippiness of ~(5i, §j).

@ Trajectory forcing is when a particular transition sends the dynamics down a
specified sequence of states. The force of an exact path from Si to §j can be
measured as the product of the probabilities of all the transitions required to

stay that course.
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Path Sensitivities

@ A state’s exit transitions are path dependent if and only if the distribution of
their probabilities changes conditional on previous states. The degree to which

Si's transitions are path dependent on a set of historical sets S1 equals
Sum over j of neighbors ( P(~(5i, Sj) — P(~(Si, Sj) | SH) )‘?

@ Assume that the system dynamics enter 525 equally often from both 523 and Sz1.
Given the system is at Sz2s5 let’s assume P(x) = P(y) = 0.5. Analyzing the individual

time series of data may reveal that P(x|a) = 0.8 and P(y|b) = 1.0.
So S25’s path dependence on S23 = (0.5 — 0.8)*+ (0.5 — .2)*°= 0.18.

$25's path dependence on 521 = (0.5 — 0_0J2+ (0.5 — 1.0)°=
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So Much More to Do

@ I've created algorithms for most, but not all these measures.

@ There is clearly room for more measures of the properties of
system dynamics using this Markov representation.

@ What about other representations? What measures can’t be
captured this way? Can we develop non-probabilistic measures
of these phenomena?

@ How much does interpretation affect the measure descriptions?
@ Do application results match intuitions about these measures?

@ Can we use this to find equivalence classes for system dynamics?
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