Simulating Braided Rivers with Swarm

SwarmFest09

Dr Crile Doscher Lincoln University Canterbury, New Zealand

Overview

- Braided Rivers
- A complex systems approach
- Use of Swarm
- Challenges/Next Steps

Braided Rivers

Characterised by:

- Steep river valley slopes
- High sediment discharge
- Unconstrained laterally
- Noncohesive bed sediments (e.g shingle, gravel, sand) across a range of particle sizes
- Frequent channel shifts

Rivers "having a number of alluvial channels with bars and islands between meeting and dividing again" Lane (1957)

Home to...

- Salmon
- Trout
- Black Stilt (Kaki)

Important for...

- Hydro Power
- Shingle/Gravel
- Recreation

Some Interesting Properties...

Power Law Scaling – spatial and temporal

- Size and number of channels
- Size and number of islands
- Area of river bed occupied
- Frequency and magnitude of changes (channel)
- Dynamic (in space and time)
- Across a range of spatial scales

Similar behaviours across scales

Prototype (Poerua River)

~1:2500 Laboratory Model

Some Interesting Properties...

Power Law Scaling – spatial and temporal

- Size and number of channels
- Size and number of islands
- Area of river bed occupied
- Frequency and magnitude of changes (channel)
- Dynamic (in space and time)
- Across a range of spatial scales
- "Complex" System Behaviour
- Two hypotheses I'd like to test:
 - Behaviour is a result of multi-scale interactions
 - Behaviour is a result of energy dissipation modes (Macbeth's Principle)

A Complex Systems Analysis

A system of many parts coupled together in a nonlinear fashion

- Large number of mutually interacting dynamical parts
 - Water and sediment
 - "Local" rules create Systemic behaviour
- Feedback loops
 - Flowing water affects sediment which affects flowing water, etc...
- Thermodynamically open
 - Order increase (*entropy decreases*) despite the lack of "central control"
- Unpredictable "emergent" behaviour"
 - Power Law Scaling
 - Hierarchical or nested system (e.g. Turbulence)
- The system is greater than the sum of its parts

Swarm applied to Braided Rivers

- At this stage, a very simple model
- Riverbed elevations read in from a DEM and stored in grid cells
- Agents are "drops" of water (volumes really), moving over the surface
- Movement determined by finding the steepest downward slope from the eight surrounding neighbours
- Simple sediment transport model
- Here's what it looks like...

Challenges and Next Steps

- I wasn't a programmer when I started this...
 - Figuring out how to build the model
 - Heatbugs, Paul Box's Biox
 - Multiple agents in a cell (Paul Johnson's MultiGridCell)
 - I'm still not a programmer...
- Non-Swarm related problems
 - Testable hypotheses

Challenges and <u>Next Steps</u>

- Multi-scale grids
- Different "speeds"
 - Step methods that are multiples of the time step?
 - Asynchronus updating?
 - Concurrency?
- Better sediment transport methods
- Hypothesis testing

Briefly - Macbeth's Principle

Act 1, Scene VII – Macbeth's castle

Hautboys and torches. Enter a Sewer, and divers Servants with dishes and service, and pass over the stage. Then enter MACBETH

MACBETH:

If it were done when 'tis done, then 'twere well It were done quickly

Translation: systems select modes that dissipate energy as quickly as possible

Finally, my thanks to...

Giant shoulders:

- Marcus Daniels help at a desperate time
- Paul Johnson MultiGridCell object code
- Paul Box GIS import methods
- Steve Railsback help at another desperate time
- Gary for rescheduling this talk