FHSST Authors

The Free High School Science Texts: Textbooks for High School Students Studying the Sciences
Physics
Grades 10-12

Version 0
November 9, 2008

Copyright 2007 "Free High School Science Texts"
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no FrontCover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

STOP!!!!

Did you notice the FREEDOMS we've granted you?

Our copyright license is different! It grants freedoms

 rather than just imposing restrictions like all those other textbooks you probably own or use.- We know people copy textbooks illegally but we would LOVE it if you copied our's - go ahead copy to your hearts content, legally!
- Publishers' revenue is generated by controlling the market, we don't want any money, go ahead, distribute our books far and wide - we DARE you!
- Ever wanted to change your textbook? Of course you have! Go ahead, change ours, make your own version, get your friends together, rip it apart and put it back together the way you like it. That's what we really want!
- Copy, modify, adapt, enhance, share, critique, adore, and contextualise. Do it all, do it with your colleagues, your friends, or alone but get involved! Together we can overcome the challenges our complex and diverse country presents.
- So what is the catch? The only thing you can't do is take this book, make a few changes and then tell others that they can't do the same with your changes. It's share and share-alike and we know you'll agree that is only fair.
- These books were written by volunteers who want to help support education, who want the facts to be freely available for teachers to copy, adapt and re-use. Thousands of hours went into making them and they are a gift to everyone in the education community.

FHSST Core Team

Mark Horner ; Samuel Halliday ; Sarah Blyth ; Rory Adams ; Spencer Wheaton

FHSST Editors

Jaynie Padayachee ; Joanne Boulle ; Diana Mulcahy ; Annette Nell ; René Toerien ; Donovan
Whitfield

FHSST Contributors

Rory Adams ; Prashant Arora; Richard Baxter ; Dr. Sarah Blyth ; Sebastian Bodenstein ; Graeme Broster ; Richard Case ; Brett Cocks ; Tim Crombie ; Dr. Anne Dabrowski ; Laura Daniels ; Sean Dobbs ; Fernando Durrell ; Dr. Dan Dwyer ; Frans van Eeden ; Giovanni Franzoni ; Ingrid von Glehn ; Tamara von Glehn ; Lindsay Glesener ; Dr. Vanessa Godfrey ; Dr. Johan Gonzalez ; Hemant Gopal ; Umeshree Govender ; Heather Gray ; Lynn Greeff ; Dr. Tom Gutierrez ; Brooke Haag ; Kate Hadley ; Dr. Sam Halliday ; Asheena Hanuman ; Neil Hart ; Nicholas Hatcher ; Dr. Mark Horner ; Robert Hovden ; Mfandaidza Hove ; Jennifer Hsieh ; Clare Johnson ; Luke Jordan ; Tana Joseph ; Dr. Jennifer Klay ; Lara Kruger ; Sihle Kubheka ; Andrew Kubik ; Dr. Marco van Leeuwen ; Dr. Anton Machacek; Dr. Komal Maheshwari ; Kosma von Maltitz ; Nicole Masureik ; John Mathew ; JoEllen McBride ; Nikolai Meures ; Riana Meyer ; Jenny Miller ; Abdul Mirza ; Asogan Moodaly ; Jothi Moodley ; Nolene Naidu ; Tyrone Negus ; Thomas O'Donnell ; Dr. Markus Oldenburg ; Dr. Jaynie Padayachee ; Nicolette Pekeur ; Sirika Pillay ; Jacques Plaut ; Andrea Prinsloo ; Joseph Raimondo ; Sanya Rajani ; Prof. Sergey Rakityansky ; Alastair Ramlakan ; Razvan Remsing ; Max Richter ; Sean Riddle ; Evan Robinson ; Dr. Andrew Rose ; Bianca Ruddy ; Katie Russell ; Duncan Scott ; Helen Seals ; Ian Sherratt ; Roger Sieloff ; Bradley Smith ; Greg Solomon; Mike Stringer ; Shen Tian ; Robert Torregrosa ; Jimmy Tseng ; Helen Waugh ; Dr. Dawn Webber ; Michelle Wen ; Dr. Alexander Wetzler ; Dr. Spencer Wheaton ; Vivian White ; Dr. Gerald Wigger ; Harry Wiggins ; Wendy Williams ; Julie Wilson ; Andrew Wood ; Emma Wormauld ; Sahal Yacoob ; Jean Youssef

Contributors and editors have made a sincere effort to produce an accurate and useful resource. Should you have suggestions, find mistakes or be prepared to donate material for inclusion, please don't hesitate to contact us. We intend to work with all who are willing to help make this a continuously evolving resource!
www.fhsst.org

Contents

I Introduction 1
1 What is Physics? 3
II Grade 10 - Physics 5
2 Units 9
2.1 Introduction 9
2.2 Unit Systems 9
2.2.1 SI Units 9
2.2.2 The Other Systems of Units 10
2.3 Writing Units as Words or Symbols 10
2.4 Combinations of SI Base Units 12
2.5 Rounding, Scientific Notation and Significant Figures 12
2.5.1 Rounding Off 12
2.5.2 Error Margins 13
2.5.3 Scientific Notation 13
2.5.4 Significant Figures 15
2.6 Prefixes of Base Units 15
2.7 The Importance of Units 17
2.8 How to Change Units 17
2.8.1 Two other useful conversions 19
2.9 A sanity test 19
2.10 Summary 19
2.11 End of Chapter Exercises 21
3 Motion in One Dimension - Grade 10 23
3.1 Introduction 23
3.2 Reference Point, Frame of Reference and Position 23
3.2.1 Frames of Reference 23
3.2.2 Position 25
3.3 Displacement and Distance 28
3.3.1 Interpreting Direction 29
3.3.2 Differences between Distance and Displacement 29
3.4 Speed, Average Velocity and Instantaneous Velocity 31
3.4.1 Differences between Speed and Velocity 35
3.5 Acceleration 38
3.6 Description of Motion 39
3.6.1 Stationary Object 40
3.6.2 Motion at Constant Velocity 41
3.6.3 Motion at Constant Acceleration 46
3.7 Summary of Graphs 48
3.8 Worked Examples 49
3.9 Equations of Motion 54
3.9.1 Finding the Equations of Motion 54
3.10 Applications in the Real-World 59
3.11 Summary 61
3.12 End of Chapter Exercises: Motion in One Dimension 62
4 Gravity and Mechanical Energy - Grade 10 67
4.1 Weight 67
4.1.1 Differences between Mass and Weight 68
4.2 Acceleration due to Gravity 69
4.2.1 Gravitational Fields 69
4.2.2 Free fall 69
4.3 Potential Energy 73
4.4 Kinetic Energy 75
4.4.1 Checking units 77
4.5 Mechanical Energy 78
4.5.1 Conservation of Mechanical Energy 78
4.5.2 Using the Law of Conservation of Energy 79
4.6 Energy graphs 82
4.7 Summary 83
4.8 End of Chapter Exercises: Gravity and Mechanical Energy 84
5 Transverse Pulses - Grade 10 87
5.1 Introduction 87
5.2 What is a medium? 87
5.3 What is a pulse? 87
5.3.1 Pulse Length and Amplitude 88
5.3.2 Pulse Speed 89
5.4 Graphs of Position and Velocity 90
5.4.1 Motion of a Particle of the Medium 90
5.4.2 Motion of the Pulse 92
5.5 Transmission and Reflection of a Pulse at a Boundary 96
5.6 Reflection of a Pulse from Fixed and Free Ends 97
5.6.1 Reflection of a Pulse from a Fixed End 97
5.6.2 Reflection of a Pulse from a Free End 98
5.7 Superposition of Pulses 99
5.8 Exercises - Transverse Pulses 102
6 Transverse Waves - Grade 10 105
6.1 Introduction 105
6.2 What is a transverse wave? 105
6.2.1 Peaks and Troughs 106
6.2.2 Amplitude and Wavelength 107
6.2.3 Points in Phase 109
6.2.4 Period and Frequency 110
6.2.5 Speed of a Transverse Wave 111
6.3 Graphs of Particle Motion 115
6.4 Standing Waves and Boundary Conditions 118
6.4.1 Reflection of a Transverse Wave from a Fixed End 118
6.4.2 Reflection of a Transverse Wave from a Free End 118
6.4.3 Standing Waves 118
6.4.4 Nodes and anti-nodes 122
6.4.5 Wavelengths of Standing Waves with Fixed and Free Ends 122
6.4.6 Superposition and Interference 125
6.5 Summary 127
6.6 Exercises 127
7 Geometrical Optics - Grade 10 129
7.1 Introduction 129
7.2 Light Rays 129
7.2.1 Shadows 132
7.2.2 Ray Diagrams 132
7.3 Reflection 132
7.3.1 Terminology 133
7.3.2 Law of Reflection 133
7.3.3 Types of Reflection 135
7.4 Refraction 137
7.4.1 Refractive Index 139
7.4.2 Snell's Law 139
7.4.3 Apparent Depth 143
7.5 Mirrors 146
7.5.1 Image Formation 146
7.5.2 Plane Mirrors 147
7.5.3 Ray Diagrams 148
7.5.4 Spherical Mirrors 150
7.5.5 Concave Mirrors 150
7.5.6 Convex Mirrors 153
7.5.7 Summary of Properties of Mirrors 154
7.5.8 Magnification 154
7.6 Total Internal Reflection and Fibre Optics 156
7.6.1 Total Internal Reflection 156
7.6.2 Fibre Optics 161
7.7 Summary 163
7.8 Exercises 164
8 Magnetism - Grade 10 167
8.1 Introduction 167
8.2 Magnetic fields 167
8.3 Permanent magnets 169
8.3.1 The poles of permanent magnets 169
8.3.2 Magnetic attraction and repulsion 169
8.3.3 Representing magnetic fields 170
8.4 The compass and the earth's magnetic field 173
8.4.1 The earth's magnetic field 175
8.5 Summary 175
8.6 End of chapter exercises 176
9 Electrostatics - Grade 10 177
9.1 Introduction 177
9.2 Two kinds of charge 177
9.3 Unit of charge 177
9.4 Conservation of charge 177
9.5 Force between Charges 178
9.6 Conductors and insulators 181
9.6.1 The electroscope 182
9.7 Attraction between charged and uncharged objects 183
9.7.1 Polarisation of Insulators 183
9.8 Summary 184
9.9 End of chapter exercise 184
10 Electric Circuits - Grade 10 187
10.1 Electric Circuits 187
10.1.1 Closed circuits 187
10.1.2 Representing electric circuits 188
10.2 Potential Difference 192
10.2.1 Potential Difference 192
10.2.2 Potential Difference and Parallel Resistors 193
10.2.3 Potential Difference and Series Resistors 194
10.2.4 Ohm's Law 194
10.2.5 EMF 195
10.3 Current 198
10.3.1 Flow of Charge 198
10.3.2 Current 198
10.3.3 Series Circuits 199
10.3.4 Parallel Circuits 200
10.4 Resistance 202
10.4.1 What causes resistance? 202
10.4.2 Resistors in electric circuits 202
10.5 Instruments to Measure voltage, current and resistance 204
10.5.1 Voltmeter 204
10.5.2 Ammeter 204
10.5.3 Ohmmeter 204
10.5.4 Meters Impact on Circuit 205
10.6 Exercises - Electric circuits 205
III Grade 11 - Physics 209
11 Vectors 211
11.1 Introduction 211
11.2 Scalars and Vectors 211
11.3 Notation 211
11.3.1 Mathematical Representation 212
11.3.2 Graphical Representation 212
11.4 Directions 212
11.4.1 Relative Directions 212
11.4.2 Compass Directions 213
11.4.3 Bearing 213
11.5 Drawing Vectors 214
11.6 Mathematical Properties of Vectors 215
11.6.1 Adding Vectors 215
11.6.2 Subtracting Vectors 217
11.6.3 Scalar Multiplication 218
11.7 Techniques of Vector Addition 218
11.7.1 Graphical Techniques 218
11.7.2 Algebraic Addition and Subtraction of Vectors 223
11.8 Components of Vectors 228
11.8.1 Vector addition using components 231
11.8.2 Summary 235
11.8.3 End of chapter exercises: Vectors 236
11.8.4 End of chapter exercises: Vectors - Long questions 237
12 Force, Momentum and Impulse - Grade 11 239
12.1 Introduction 239
12.2 Force 239
12.2.1 What is a force? 239
12.2.2 Examples of Forces in Physics 240
12.2.3 Systems and External Forces 241
12.2.4 Force Diagrams 242
12.2.5 Free Body Diagrams 243
12.2.6 Finding the Resultant Force 244
12.2.7 Exercise 246
12.3 Newton's Laws 246
12.3.1 Newton's First Law 247
12.3.2 Newton's Second Law of Motion 249
12.3.3 Exercise 261
12.3.4 Newton's Third Law of Motion 263
12.3.5 Exercise 267
12.3.6 Different types of forces 268
12.3.7 Exercise 275
12.3.8 Forces in equilibrium 276
12.3.9 Exercise 279
12.4 Forces between Masses 282
12.4.1 Newton's Law of Universal Gravitation 282
12.4.2 Comparative Problems 284
12.4.3 Exercise 286
12.5 Momentum and Impulse 287
12.5.1 Vector Nature of Momentum 290
12.5.2 Exercise 291
12.5.3 Change in Momentum 291
12.5.4 Exercise 293
12.5.5 Newton's Second Law revisited 293
12.5.6 Impulse 294
12.5.7 Exercise 296
12.5.8 Conservation of Momentum 297
12.5.9 Physics in Action: Impulse 300
12.5.10 Exercise 301
12.6 Torque and Levers 302
12.6.1 Torque 302
12.6.2 Mechanical Advantage and Levers 305
12.6.3 Classes of levers 307
12.6.4 Exercise 308
12.7 Summary 309
12.8 End of Chapter exercises 310
13 Geometrical Optics - Grade 11 327
13.1 Introduction 327
13.2 Lenses 327
13.2.1 Converging Lenses 329
13.2.2 Diverging Lenses 340
13.2.3 Summary of Image Properties 343
13.3 The Human Eye 344
13.3.1 Structure of the Eye 345
13.3.2 Defects of Vision 346
13.4 Gravitational Lenses 347
13.5 Telescopes 347
13.5.1 Refracting Telescopes 347
13.5.2 Reflecting Telescopes 348
13.5.3 Southern African Large Telescope 348
13.6 Microscopes 349
13.7 Summary 351
13.8 Exercises 352
14 Longitudinal Waves - Grade 11 355
14.1 Introduction 355
14.2 What is a longitudinal wave? 355
14.3 Characteristics of Longitudinal Waves 356
14.3.1 Compression and Rarefaction 356
14.3.2 Wavelength and Amplitude 357
14.3.3 Period and Frequency 357
14.3.4 Speed of a Longitudinal Wave 358
14.4 Graphs of Particle Position, Displacement, Velocity and Acceleration 359
14.5 Sound Waves 360
14.6 Seismic Waves 361
14.7 Summary - Longitudinal Waves 361
14.8 Exercises - Longitudinal Waves 362
15 Sound - Grade 11 363
15.1 Introduction 363
15.2 Characteristics of a Sound Wave 363
15.2.1 Pitch 364
15.2.2 Loudness 364
15.2.3 Tone 364
15.3 Speed of Sound 365
15.4 Physics of the Ear and Hearing 365
15.4.1 Intensity of Sound 366
15.5 Ultrasound 367
15.6 SONAR 368
15.6.1 Echolocation 368
15.7 Summary 369
15.8 Exercises 369
16 The Physics of Music - Grade 11 373
16.1 Introduction 373
16.2 Standing Waves in String Instruments 373
16.3 Standing Waves in Wind Instruments 377
16.4 Resonance 382
16.5 Music and Sound Quality 384
16.6 Summary - The Physics of Music 385
16.7 End of Chapter Exercises 386
17 Electrostatics - Grade 11 387
17.1 Introduction 387
17.2 Forces between charges - Coulomb's Law 387
17.3 Electric field around charges 392
17.3.1 Electric field lines 393
17.3.2 Positive charge acting on a test charge 393
17.3.3 Combined charge distributions 394
17.3.4 Parallel plates 397
17.4 Electrical potential energy and potential 400
17.4.1 Electrical potential 400
17.4.2 Real-world application: lightning 402
17.5 Capacitance and the parallel plate capacitor 403
17.5.1 Capacitors and capacitance 403
17.5.2 Dielectrics 404
17.5.3 Physical properties of the capacitor and capacitance 404
17.5.4 Electric field in a capacitor 405
17.6 Capacitor as a circuit device 406
17.6.1 A capacitor in a circuit 406
17.6.2 Real-world applications: capacitors 407
17.7 Summary 407
17.8 Exercises - Electrostatics 407
18 Electromagnetism - Grade 11 413
18.1 Introduction 413
18.2 Magnetic field associated with a current 413
18.2.1 Real-world applications 418
18.3 Current induced by a changing magnetic field 420
18.3.1 Real-life applications 422
18.4 Transformers 423
18.4.1 Real-world applications 425
18.5 Motion of a charged particle in a magnetic field 425
18.5.1 Real-world applications 426
18.6 Summary 427
18.7 End of chapter exercises 427
19 Electric Circuits - Grade 11 429
19.1 Introduction 429
19.2 Ohm's Law 429
19.2.1 Definition of Ohm's Law 429
19.2.2 Ohmic and non-ohmic conductors 431
19.2.3 Using Ohm's Law 432
19.3 Resistance 433
19.3.1 Equivalent resistance 433
19.3.2 Use of Ohm's Law in series and parallel Circuits 438
19.3.3 Batteries and internal resistance 440
19.4 Series and parallel networks of resistors 442
19.5 Wheatstone bridge 445
19.6 Summary 447
19.7 End of chapter exercise 447
20 Electronic Properties of Matter - Grade 11 451
20.1 Introduction 451
20.2 Conduction 451
20.2.1 Metals 453
20.2.2 Insulator 453
20.2.3 Semi-conductors 454
20.3 Intrinsic Properties and Doping 454
20.3.1 Surplus 455
20.3.2 Deficiency 455
20.4 The p-n junction 457
20.4.1 Differences between p - and n -type semi-conductors 457
20.4.2 The p-n Junction 457
20.4.3 Unbiased 457
20.4.4 Forward biased 457
20.4.5 Reverse biased 458
20.4.6 Real-World Applications of Semiconductors 458
20.5 End of Chapter Exercises 459
IV Grade 12-Physics 461
21 Motion in Two Dimensions - Grade 12 463
21.1 Introduction 463
21.2 Vertical Projectile Motion 463
21.2.1 Motion in a Gravitational Field 463
21.2.2 Equations of Motion 464
21.2.3 Graphs of Vertical Projectile Motion 467
21.3 Conservation of Momentum in Two Dimensions 475
21.4 Types of Collisions 480
21.4.1 Elastic Collisions 480
21.4.2 Inelastic Collisions 485
21.5 Frames of Reference 490
21.5.1 Introduction 490
21.5.2 What is a frame of reference? 491
21.5.3 Why are frames of reference important? 491
21.5.4 Relative Velocity 491
21.6 Summary 494
21.7 End of chapter exercises 495
22 Mechanical Properties of Matter - Grade 12 503
22.1 Introduction 503
22.2 Deformation of materials 503
22.2.1 Hooke's Law 503
22.2.2 Deviation from Hooke's Law 506
22.3 Elasticity, plasticity, fracture, creep 508
22.3.1 Elasticity and plasticity 508
22.3.2 Fracture, creep and fatigue 508
22.4 Failure and strength of materials 509
22.4.1 The properties of matter 509
22.4.2 Structure and failure of materials 509
22.4.3 Controlling the properties of materials 509
22.4.4 Steps of Roman Swordsmithing 510
22.5 Summary 511
22.6 End of chapter exercise 511
23 Work, Energy and Power - Grade 12 513
23.1 Introduction 513
23.2 Work 513
23.3 Energy 519
23.3.1 External and Internal Forces 519
23.3.2 Capacity to do Work 520
23.4 Power 525
23.5 Important Equations and Quantities 529
23.6 End of Chapter Exercises 529
24 Doppler Effect - Grade 12 533
24.1 Introduction 533
24.2 The Doppler Effect with Sound and Ultrasound 533
24.2.1 Ultrasound and the Doppler Effect 537
24.3 The Doppler Effect with Light 537
24.3.1 The Expanding Universe 538
24.4 Summary 539
24.5 End of Chapter Exercises 539
25 Colour - Grade 12 541
25.1 Introduction 541
25.2 Colour and Light 541
25.2.1 Dispersion of white light 544
25.3 Addition and Subtraction of Light 544
25.3.1 Additive Primary Colours 544
25.3.2 Subtractive Primary Colours 545
25.3.3 Complementary Colours 546
25.3.4 Perception of Colour 546
25.3.5 Colours on a Television Screen 547
25.4 Pigments and Paints 548
25.4.1 Colour of opaque objects 548
25.4.2 Colour of transparent objects 548
25.4.3 Pigment primary colours 549
25.5 End of Chapter Exercises 550
26 2D and 3D Wavefronts - Grade 12 553
26.1 Introduction 553
26.2 Wavefronts 553
26.3 The Huygens Principle 554
26.4 Interference 556
26.5 Diffraction 557
26.5.1 Diffraction through a Slit 558
26.6 Shock Waves and Sonic Booms 562
26.6.1 Subsonic Flight 563
26.6.2 Supersonic Flight 563
26.6.3 Mach Cone 566
26.7 End of Chapter Exercises 568
27 Wave Nature of Matter - Grade 12 571
27.1 Introduction 571
27.2 de Broglie Wavelength 571
27.3 The Electron Microscope 574
27.3.1 Disadvantages of an Electron Microscope 577
27.3.2 Uses of Electron Microscopes 577
27.4 End of Chapter Exercises 578
28 Electrodynamics - Grade 12 579
28.1 Introduction 579
28.2 Electrical machines - generators and motors 579
28.2.1 Electrical generators 580
28.2.2 Electric motors 582
28.2.3 Real-life applications 582
28.2.4 Exercise - generators and motors 584
28.3 Alternating Current 585
28.3.1 Exercise - alternating current 586
28.4 Capacitance and inductance 586
28.4.1 Capacitance 586
28.4.2 Inductance 586
28.4.3 Exercise - capacitance and inductance 588
28.5 Summary 588
28.6 End of chapter exercise 589
29 Electronics - Grade 12 591
29.1 Introduction 591
29.2 Capacitive and Inductive Circuits 591
29.3 Filters and Signal Tuning 596
29.3.1 Capacitors and Inductors as Filters 596
29.3.2 LRC Circuits, Resonance and Signal Tuning 596
29.4 Active Circuit Elements 599
29.4.1 The Diode 599
29.4.2 The Light Emitting Diode (LED) 601
29.4.3 Transistor 603
29.4.4 The Operational Amplifier 607
29.5 The Principles of Digital Electronics 609
29.5.1 Logic Gates 610
29.6 Using and Storing Binary Numbers 616
29.6.1 Binary numbers 616
29.6.2 Counting circuits 617
29.6.3 Storing binary numbers 619
30 EM Radiation 625
30.1 Introduction 625
30.2 Particle/wave nature of electromagnetic radiation 625
30.3 The wave nature of electromagnetic radiation 626
30.4 Electromagnetic spectrum 626
30.5 The particle nature of electromagnetic radiation 629
30.5.1 Exercise - particle nature of EM waves 630
30.6 Penetrating ability of electromagnetic radiation 631
30.6.1 Ultraviolet(UV) radiation and the skin 631
30.6.2 Ultraviolet radiation and the eyes 632
30.6.3 X-rays 632
30.6.4 Gamma-rays 632
30.6.5 Exercise - Penetrating ability of EM radiation 633
30.7 Summary 633
30.8 End of chapter exercise 633
31 Optical Phenomena and Properties of Matter - Grade 12 635
31.1 Introduction 635
31.2 The transmission and scattering of light 635
31.2.1 Energy levels of an electron 635
31.2.2 Interaction of light with metals 636
31.2.3 Why is the sky blue? 637
31.3 The photoelectric effect 638
31.3.1 Applications of the photoelectric effect 640
31.3.2 Real-life applications 642
31.4 Emission and absorption spectra 643
31.4.1 Emission Spectra 643
31.4.2 Absorption spectra 644
31.4.3 Colours and energies of electromagnetic radiation 646
31.4.4 Applications of emission and absorption spectra 648
31.5 Lasers 650
31.5.1 How a laser works 652
31.5.2 A simple laser 654
31.5.3 Laser applications and safety 655
31.6 Summary 656
31.7 End of chapter exercise 657
V Exercises 659
32 Exercises 661
VI Essays 663
Essay 1: Energy and electricity. Why the fuss? 665
33 Essay: How a cell phone works 671
34 Essay: How a Physiotherapist uses the Concept of Levers 673
35 Essay: How a Pilot Uses Vectors 675A GNU Free Documentation License677

Chapter 21

Motion in Two Dimensions Grade 12

21.1 Introduction

In Chapter 3, we studied motion in one dimension and briefly looked at vertical motion. In this chapter we will discuss vertical motion and also look at motion in two dimensions. In Chapter 12, we studied the conservation of momentum and looked at applications in one dimension. In this chapter we will look at momentum in two dimensions.

21.2 Vertical Projectile Motion

In Chapter 4, we studied the motion of objects in free fall and we saw that an object in free fall falls with gravitational acceleration g. Now we can consider the motion of objects that are thrown upwards and then fall back to the Earth. We call this projectile motion and we will only consider the situation where the object is thrown straight upwards and then falls straight downwards - this means that there is no horizontal displacement of the object, only a vertical displacement.

21.2.1 Motion in a Gravitational Field

When an object is in a gravitational field, it always accelerates downwards with a constant acceleration g whether the object is moving upward or downward. This is shown in Figure 21.1.

Important: Projectiles moving upwards or downwards always accelerate downwards with a constant acceleration g.

Figure 21.1: Objects moving upwards or downwards, always accelerate downwards.

Consider an object thrown upwards from a vertical height h_{o}. We have seen that the object will travel upwards with decreasing velocity until it stops, at which point it starts falling. The time that it takes for the object to fall down to height h_{o} is the same as the time taken for the object to reach its maximum height from height h_{o}.

Figure 21.2: (a) An object is thrown upwards from height h_{0}. (b) After time t_{m}, the object reaches its maximum height, and starts to fall. (c) After a time $2 t_{m}$ the object returns to height h_{0}.

Important: Projectiles take the same the time to reach their greatest height from the point of upward launch as the time they take to fall back to the point of launch.

21.2.2 Equations of Motion

The equations of motion that were used in Chapter 4 to describe free fall can be used for projectile motion. These equations are the same as those equations that were derived in Chapter 3, but with $a=g$. We use $g=9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$ for our calculations.

$$
\begin{aligned}
v_{i} & =\text { initial velocity }\left(\mathrm{m} \cdot \mathrm{~s}^{-1}\right) \text { at } t=0 \mathrm{~s} \\
v_{f} & =\text { final velocity }\left(\mathrm{m} \cdot \mathrm{~s}^{-1}\right) \text { at time } t \\
\Delta x & =\text { height above ground }(\mathrm{m}) \\
t & =\text { time }(\mathrm{s}) \\
\Delta t & =\text { time interval }(\mathrm{s}) \\
g & =\text { acceleration due to gravity }\left(\mathrm{m} \cdot \mathrm{~s}^{-2}\right)
\end{aligned}
$$

$$
\begin{align*}
v_{f} & =v_{i}+g t \tag{21.1}\\
\Delta x & =\frac{\left(v_{i}+v_{f}\right)}{2} t \tag{21.2}\\
\Delta x & =v_{i} t+\frac{1}{2} g t^{2} \tag{21.3}\\
v_{f}^{2} & =v_{i}^{2}+2 g \Delta x \tag{21.4}
\end{align*}
$$

Worked Example 132: Projectile motion

Question: A ball is thrown upwards with an initial velocity of $10 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.

1. Determine the maximum height reached above the thrower's hand.
2. Determine the time it takes the ball to reach its maximum height.

Answer

Step 1 : Identify what is required and what is given
We are required to determine the maximum height reached by the ball and how long it takes to reach this height. We are given the initial velocity $v_{i}=10$
$\mathrm{m} \cdot \mathrm{s}^{-1}$ and the acceleration due to gravity $\mathrm{g}=9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$.

Step 2 : Determine how to approach the problem

Choose down as positive. We know that at the maximum height the velocity of the ball is $0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. We therefore have the following:

- $v_{i}=-10 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ (it is negative because we chose upwards as positive)
- $v_{f}=0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
- $g=+9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$

Step 3 : Identify the appropriate equation to determine the height.
We can use:

$$
v_{f}^{2}=v_{i}^{2}+2 g \Delta x
$$

to solve for the height.
Step 4 : Substitute the values in and find the height.

$$
\begin{aligned}
v_{f}^{2} & =v_{i}^{2}+2 g \Delta x \\
(0)^{2} & =(-10)^{2}+(2)(9,8)(\Delta x) \\
-100 & =19,6 \Delta x \\
\Delta x & =5,102 \ldots m
\end{aligned}
$$

The value for the displacement will be negative because the displacement is upwards and we have chosen downward as positive (and upward as negative). The height will be a positive number, $h=5.10 \mathrm{~m}$.
Step 5 : Identify the appropriate equation to determine the time.
We can use:

$$
v_{f}=v_{i}+g t
$$

to solve for the time.
Step 6 : Substitute the values in and find the time.

$$
\begin{aligned}
v_{f} & =v_{i}+g t \\
0 & =-10+9,8 t \\
10 & =9,8 t \\
t & =1,02 \ldots s
\end{aligned}
$$

Step 7 : Write the final answer.
The ball reaches a maximum height of $5,10 \mathrm{~m}$.
The ball takes $1,02 \mathrm{~s}$ to reach the top.

Worked Example 133: Height of a projectile

Question: A cricketer hits a cricket ball from the ground so that it goes directly upwards. If the ball takes, 10 s to return to the ground, determine its maximum height.

Answer

Step 1 : Identify what is required and what is given
We need to find how high the ball goes. We know that it takes 10 seconds to go up and down. We do not know what the initial velocity of the ball $\left(v_{i}\right)$ is.
Step 2 : Determine how to approach the problem

A problem like this one can be looked at as if there are two motions. The first is the ball going up with an initial velocity and stopping at the top (final velocity is zero). The second motion is the ball falling, its initial velocity is zero and its final velocity is unknown.

$$
\begin{aligned}
v_{f}=0 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
v_{i}=?
\end{aligned}\left\{\begin{array}{l}
v_{i}=0 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
g=9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2} \\
v_{f}=?
\end{array}\right.
$$

Choose down as positive. We know that at the maximum height, the velocity of the ball is $0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. We also know that the ball takes the same time to reach its maximum height as it takes to travel from its maximum height to the ground. This time is half the total time. We therefore have the following for the motion of the ball going down:

- $t=5 \mathrm{~s}$, half of the total time
- $v_{\text {top }}=v_{i}=0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
- $g=9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$
- $\Delta x=$?

Step 3 : Find an appropriate equation to use

We are not given the initial velocity of the ball going up and therefore we do not have the final velocity of the ball coming down. We need to choose an equation that does not have v_{f} in it. We can use the following equation to solve for Δx :

$$
\Delta x=v_{i} t+\frac{1}{2} g t^{2}
$$

Step 4 : Substitute values and find the height.

$$
\begin{aligned}
\Delta x & =(0)(5)+\frac{1}{2}(9,8)(5)^{2} \\
\Delta x & =0+122,5 \mathrm{~m} \\
\text { height } & =122,5 \mathrm{~m}
\end{aligned}
$$

Step 5 : Write the final answer

The ball reaches a maximum height of $122,5 \mathrm{~m}$.

Exercise: Equations of Motion

1. A cricketer hits a cricket ball straight up into the air. The cricket ball has an initial velocity of $20 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.

A What height does the ball reach before it stops to fall back to the ground.
B How long has the ball been in the air for?
2. Zingi throws a tennis ball up into the air. It reaches a height of 80 cm .

A Determine the initial velocity of the tennis ball.
B How long does the ball take to reach its maximum height?
3. A tourist takes a trip in a hot air balloon. The hot air balloon is ascending (moving up) at a velocity of $4 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. He accidentally drops his camera over the side of the balloon's basket, at a height of 20 m . Calculate the velocity with which the camera hits the ground.

21.2.3 Graphs of Vertical Projectile Motion

Vertical projectile motion is similar to motion at constant acceleration. In Chapter 3 you learned about the graphs for motion at constant acceleration. The graphs for vertical projectile motion are therefore identical to the graphs for motion under constant acceleration.
When we draw the graphs for vertical projectile motion, we consider two main situations: an object moving upwards and an object moving downwards.
If we take the upwards direction as positive then for an object moving upwards we get the graphs shown in Figure 21.9.

Figure 21.3: Graphs for an object thrown upwards with an initial velocity v_{i}. The object takes $t_{m} \mathrm{~s}$ to reach its maximum height of $h_{m} \mathrm{~m}$ after which it falls back to the ground. (a) position vs. time graph (b) velocity vs. time graph (c) acceleration vs. time graph.

Worked Example 134: Drawing Graphs of Projectile Motion

Question: Stanley is standing on the a balcony 20 m above the ground. Stanley tosses up a rubber ball with an initial velocity of $4,9 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. The ball travels
upwards and then falls to the ground. Draw graphs of position vs. time, velocity vs. time and acceleration vs. time. Choose upwards as the positive direction.

Answer

Step 1 : Determine what is required

We are required to draw graphs of

1. Δx vs. t
2. v vs. t
3. a vs. t

Step 2 : Analysis of problem

There are two parts to the motion of the ball:

1. ball travelling upwards from the building
2. ball falling to the ground

We examine each of these parts separately. To be able to draw the graphs, we need to determine the time taken and displacement for each of the motions.

Step 3 : Find the height and the time taken for the first motion.
For the first part of the motion we have:

- $v_{i}=+4,9 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
- $v_{f}=0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
- $g=-9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$

Therefore we can use $v_{f}^{2}=v_{i}^{2}+2 g \Delta x$ to solve for the height and $v_{f}=v_{i}+g t$ to solve for the time.

$$
\begin{aligned}
v_{f}^{2} & =v_{i}^{2}+2 g \Delta x \\
(0)^{2} & =(4,9)^{2}+2 \times(-9,8) \times \Delta x \\
19,6 \Delta x & =(4,9)^{2} \\
\Delta x & =1,225 \mathrm{~m} \\
v_{f} & =v_{i}+g t \\
0 & =4,9+(-9,8) \times t \\
9,8 t & =4,9 \\
t & =0,5 \mathrm{~s}
\end{aligned}
$$

Step 4: Find the height and the time taken for the second motion.

For the second part of the motion we have:

- $v_{i}=0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
- $\Delta x=-(20+1,225) \mathrm{m}$
- $g=-9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$

Therefore we can use $\Delta x=v_{i} t+\frac{1}{2} g t^{2}$ to solve for the time.

$$
\begin{aligned}
\Delta x & =v_{i} t+\frac{1}{2} g t^{2} \\
-(20+1,225) & =(0) \times t+\frac{1}{2} \times(-9,8) \times t^{2} \\
-21,225 & =0-4,9 t^{2} \\
t^{2} & =4,33163 \ldots \\
t & =2,08125 \ldots s
\end{aligned}
$$

Step 5: Graph of position vs. time

The ball starts from a position of 20 m (at $\mathrm{t}=0 \mathrm{~s}$) from the ground and moves upwards until it reaches $(20+1,225) \mathrm{m}$ (at $\mathrm{t}=0,5 \mathrm{~s}$). It then falls back to 20 m (at $\mathrm{t}=0,5+0,5=1,0 \mathrm{~s})$ and then falls to the ground, $\Delta \mathrm{x}=0 \mathrm{~m}$ at ($\mathrm{t}=0,5+$ $2,08=2,58 \mathrm{~s}$).

Step 6 : Graph of velocity vs. time

The ball starts off with a velocity of $+4,9 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ at $\mathrm{t}=0 \mathrm{~s}$, it then reaches a velocity of $0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ at $\mathrm{t}=0,5 \mathrm{~s}$. It stops and falls back to the Earth. At $\mathrm{t}=1,0 \mathrm{it}$ has a velocity of $-4,9 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. This is the same as the initial upwards velocity but it is downwards. It carries on at constant acceleration until $\mathrm{t}=2,58 \mathrm{~s}$. In other words, the velocity graph will be a straight line. The final velocity of the ball can be calculated as follows:

$$
\begin{aligned}
v_{f} & =v_{i}+g t \\
& =0+(-9,8)(2,08 \ldots) \\
& =-20,396 \ldots \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

Step 7 : Graph of a vs t

We chose upwards to be positive. The acceleration of the ball is downward. $g=-9.8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$. Because the acceleration is constant throughout the motion, the graph looks like this:

Worked Example 135: Analysing Graphs of Projectile Motion

Question: The graph below (not drawn to scale) shows the motion of tennis ball that was thrown vertically upwards from an open window some distance from the ground. It takes the ball $0,2 \mathrm{~s}$ to reach its highest point before falling back to the ground. Study the graph given and calculate

1. how high the window is above the ground.
2. the time it takes the ball to reach the maximum height.
3. the initial velocity of the ball.
4. the maximum height that the ball reaches.
5. the final velocity of the ball when it reaches the ground.

Answer

Step 1 : Find the height of the window.

The initial position of the ball will tell us how high the window is. From the y-axis on the graph we can see that the ball is 4 m from the ground.
The window is therefore 4 m above the ground.

Step 2 : Find the time taken to reach the maximum height.

The maximum height is where the position-time graph show the maximum position - the top of the curve. This is when $t=0,2 \mathrm{~s}$.

It takes the ball 0,2 seconds to reach the maximum height.
Step 3 : Find the initial velocity (v_{i}) of the ball.
To find the initial velocity we only look at the first part of the motion of the ball. That is from when the ball is released until it reaches its maximum height. We have the following for this: Choose upwards as positive.

$$
\begin{aligned}
t & =0,2 \mathrm{~s} \\
g & =-9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2} \\
v_{f} & =0 \mathrm{~m} \cdot \mathrm{~s}^{-1} \text { (because the ball stops) }
\end{aligned}
$$

To calculate the initial velocity of the ball $\left(v_{i}\right)$, we use:

$$
\begin{aligned}
v_{f} & =v_{i}+g t \\
0 & =v_{i}+(-9,8)(0,2) \\
v_{i} & =1,96 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

The initial velocity of the ball is $1,96 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ upwards.

Step 4 : Find the maximum height (Δx) of the ball.

To find the maximum height we look at the initial motion of the ball. We have the following:

$$
\begin{aligned}
t & =0,2 \mathrm{~s} \\
g & =-9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2} \\
v_{f} & =0 \mathrm{~m} \cdot \mathrm{~s}^{-1}(\text { because the ball stops }) \\
v_{i} & =+1,96 \mathrm{~m} \cdot \mathrm{~s}^{-1}(\text { calculated above })
\end{aligned}
$$

To calculate the maximum height (Δx) we use:

$$
\begin{aligned}
\Delta x & =v_{i} t+\frac{1}{2} g t^{2} \\
\Delta x & =(1,96)(0,2)+\frac{1}{2}(-9,8)(0,2)^{2} \\
\Delta x & =0,196 \mathrm{~m}
\end{aligned}
$$

The maximum height of the ball is $(4+0,196)=4,196 \mathrm{~m}$ above the ground.

Step 5 : Find the final velocity (v_{f}) of the ball.

To find the final velocity of the ball we look at the second part of the motion. For this we have:

$$
\begin{aligned}
\Delta x & =-4,196 \mathrm{~m}(\text { because upwards is positive }) \\
g & =-9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2} \\
v_{i} & =0 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

We can use $\left(v_{f}\right)^{2}=\left(v_{i}\right)^{2}+2 g \Delta x$ to calculate the final velocity of the ball.

$$
\begin{aligned}
\left(v_{f}\right)^{2} & =\left(v_{i}\right)^{2}+2 g \Delta x \\
\left(v_{f}\right)^{2} & =(0)^{2}+2(-9,8)(-4,196) \\
\left(v_{f}\right)^{2} & =82,2416 \\
v_{f} & =9,0687 \ldots \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

The final velocity of the ball is $9,07 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ downwards.

Question: A cricketer hits a cricket ball from the ground and the following graph of velocity vs. time was drawn. Upwards was taken as positive. Study the graph and answer the following questions:

1. Describe the motion of the ball according to the graph.
2. Draw a sketch graph of the corresponding displacement-time graph. Label the axes.
3. Draw a sketch graph of the corresponding acceleration-time graph. Label the axes.

Answer

Step 1 : Describe the motion of the ball.

We need to study the velocity-time graph to answer this question. We will break the motion of the ball up into two time zones: $t=0 \mathrm{~s}$ to $\mathrm{t}=2 \mathrm{~s}$ and $\mathrm{t}=2 \mathrm{~s}$ to t $=4 \mathrm{~s}$.
From $t=0 \mathrm{~s}$ to $\mathrm{t}=2 \mathrm{~s}$ the following happens:
The ball starts to move at an initial velocity of $19,6 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and decreases its velocity to $0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ at $\mathrm{t}=2 \mathrm{~s}$. At $\mathrm{t}=2 \mathrm{~s}$ the velocity of the ball is $0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and therefore it stops.
From $t=2 \mathrm{~s}$ to $\mathrm{t}=4 \mathrm{~s}$ the following happens:
The ball moves from a velocity of $0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ to $19,6 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ in the opposite direction to the original motion.
If we assume that the ball is hit straight up in the air (and we take upwards as positive), it reaches its maximum height at $t=2 \mathrm{~s}$, stops, turns around and falls back to the Earth to reach the ground at $\mathrm{t}=4 \mathrm{~s}$.

Step 2 : Draw the displacement-time graph.

To draw this graph, we need to determine the displacements at $\mathrm{t}=2 \mathrm{~s}$ and $\mathrm{t}=4 \mathrm{~s}$.
At $\mathrm{t}=2 \mathrm{~s}$:
The displacement is equal to the area under the graph:
Area under graph $=$ Area of triangle
Area $=\frac{1}{2} \mathrm{bh}$
Area $=\frac{1}{2} \times 2 \times 19,6$
Displacement $=19,6 \mathrm{~m}$
At $\mathrm{t}=4 \mathrm{~s}$:
The displacement is equal to the area under the whole graph (top and bottom).
Remember that an area under the time line must be substracted:
Area under graph $=$ Area of triangle $1+$ Area of triangle 2
Area $=\frac{1}{2} \mathrm{bh}+\frac{1}{2} \mathrm{bh}$
Area $=\left(\frac{1}{2} \times 2 \times 19,6\right)+\left(\frac{1}{2} \times 2 \times(-19,6)\right)$
Area $=19,6-19,6$
Displacement $=0 \mathrm{~m}$
The displacement-time graph for motion at constant acceleration is a curve. The graph will look like this:

Step 3 : Draw the acceleration-time graph.

To draw the acceleration vs. time graph, we need to know what the acceleration is. The velocity-time graph is a straight line which means that the acceleration is constant. The gradient of the line will give the acceleration.
The line has a negative slope (goes down towards the left) which means that the acceleration has a negative value.

Calculate the gradient of the line:
gradient $=\frac{\Delta v}{t}$
gradient $=\frac{0-19,6}{2-0}$
gradient $=\frac{-19,6}{2}$
gradient $=-9,8$
acceleration $=9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$ downwards

Exercise: Graphs of Vertical Projectile Motion

1. Amanda throws a tennisball from a height of $1,5 \mathrm{~m}$ straight up into the air and then lets it fall to the ground. Draw graphs of Δx vs $t ; v$ vs t and a vs t for the motion of the ball. The initial velocity of the tennisball is $2 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. Choose upwards as positive.
2. A bullet is shot from a gun. The following graph is drawn. Downwards was chosen as positive
a Describe the motion of the bullet
b Draw a displacement - time graph
c Draw a acceleration - time graph

21.3 Conservation of Momentum in Two Dimensions

We have seen in Chapter ?? that the momentum of a system is conserved when there are no external forces acting on the system. Conversely, an external force causes a change in momentum Δp, with the impulse delivered by the force, F acting for a time Δt given by:

$$
\Delta p=F \cdot \Delta t
$$

The same principles that were studied in applying the conservation of momentum to problems in one dimension, can be applied to solving problems in two dimensions.
The calculation of momentum is the same in two dimensions as in one dimension. The calculation of momentum in two dimensions is broken down into determining the x and y components of momentum and applying the conservation of momentum to each set of components.

Consider two objects moving towards each other as shown in Figure 21.4. We analyse this situation by calculating the x and y components of the momentum of each object.
P

(a) Before the collision

Figure 21.4: Two balls collide at point P.

Before the collision

Total momentum:

$$
\begin{aligned}
p_{i 1} & =m_{1} v_{i 1} \\
p_{i 2} & =m_{2} v_{i 2} \\
& 475
\end{aligned}
$$

x-component of momentum:

$$
\begin{aligned}
p_{i 1 x} & =m_{1} v_{i 1 x}=m_{1} v_{i 1} \cos \theta_{1} \\
p_{i 2 x} & =m_{2} u_{i 2 x}=m_{2} v_{i 2} \sin \theta_{2}
\end{aligned}
$$

y-component of momentum:

$$
\begin{aligned}
& p_{i 1 y}=m_{1} v_{i 1 y}=m_{1} v_{i 1} \cos \theta_{1} \\
& p_{i 2 y}=m_{2} v_{i 2 y}=m_{2} v_{i 2} \sin \theta_{2}
\end{aligned}
$$

After the collision

Total momentum:

$$
\begin{aligned}
& p_{f 1}=m_{1} v_{f 1} \\
& p_{f 2}=m_{2} v_{f 2}
\end{aligned}
$$

x-component of momentum:

$$
\begin{aligned}
p_{f 1 x} & =m_{1} v_{f 1 x}=m_{1} v_{f 1} \cos \phi_{1} \\
p_{f 2 x} & =m_{2} v_{f 2 x}=m_{2} v_{f 2} \sin \phi_{2}
\end{aligned}
$$

y-component of momentum:

$$
\begin{aligned}
p_{f 1 y} & =m_{1} v_{f 1 y}=m_{1} v_{f 1} \cos \phi_{1} \\
p_{f 2 y} & =m_{2} v_{f 2 y}=m_{2} v_{f 2} \sin \phi_{2}
\end{aligned}
$$

Conservation of momentum

The initial momentum is equal to the final momentum:

$$
\begin{gathered}
p_{i}=p_{f} \\
\\
p_{i}=p_{i 1}+p_{i 2} \\
p_{f}=p_{f 1}+p_{f 2}
\end{gathered}
$$

This forms the basis of analysing momentum conservation problems in two dimensions.

Worked Example 137: 2D Conservation of Momentum

Question: In a rugby game, Player 1 is running with the ball at $5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ straight down the field parallel to the edge of the field. Player 2 runs at $6 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ an angle of 60° to the edge of the field and tackles Player 1. In the tackle, Player 2 stops completely while Player 1 bounces off Player 2. Calculate the velocity (magnitude and direction) at which Player 1 bounces off Player 2. Both the players have a mass of 90 kg .

Answer

Step 1 : Understand what is given and what is being asked

The first step is to draw the picture to work out what the situation is. Mark the initial velocities of both players in the picture.

We also know that $m_{1}=m_{2}=90 \mathrm{~kg}$ and $v_{f 2}=0 \mathrm{~ms}^{-1}$.
We need to find the final velocity and angle at which Player 1 bounces off Player 2.
Step 2 : Use conservation of momentum to solve the problem. First find the initial total momentum:
Total initial momentum $=$ Total final momentum. But we have a two dimensional problem, and we need to break up the initial momentum into x and y components.

$$
\begin{aligned}
p_{i x} & =p_{f x} \\
p_{i y} & =p_{f y}
\end{aligned}
$$

For Player 1:

$$
\begin{aligned}
p_{i x 1} & =m_{1} v_{i 1 x}=90 \times 0=0 \\
p_{i y 1} & =m_{1} v_{i 1 y}=90 \times 5
\end{aligned}
$$

For Player 2:

$$
\begin{aligned}
p_{i x 2} & =m_{2} v_{i 2 x}=90 \times 8 \times \sin 60^{\circ} \\
p_{i y 2} & =m_{2} v_{i 2 y}=90 \times 8 \times \cos 60^{\circ}
\end{aligned}
$$

Step 3 : Now write down what we know about the final momentum: For Player 1:

$$
\begin{aligned}
p_{f x 1} & =m_{1} v_{f x 1}=90 \times v_{f x 1} \\
p_{f y 1} & =m_{1} v_{f y 1}=90 \times v_{f y 1}
\end{aligned}
$$

For Player 2:

$$
\begin{aligned}
p_{f x 2} & =m_{2} v_{f x 2}=90 \times 0=0 \\
p_{f y 2} & =m_{2} v_{f y 2}=90 \times 0=0
\end{aligned}
$$

Step 4 : Use conservation of momentum:

The initial total momentum in the x direction is equal to the final total momentum in the x direction.
The initial total momentum in the y direction is equal to the final total momentum in the y direction.
If we find the final x and y components, then we can find the final total momentum.

$$
\begin{aligned}
p_{i x 1}+p_{i x 2} & =p_{f x 1}+p_{f x 2} \\
0+90 \times 8 \times \sin 60^{\circ} & =90 \times v_{f x 1}+0 \\
v_{f x 1} & =\frac{90 \times 8 \times \sin 60^{\circ}}{90} \\
v_{f x 1} & =6.928 \mathrm{~ms}^{-1} \\
477 &
\end{aligned}
$$

$$
\begin{aligned}
p_{i y 1}+p_{i y 2} & =p_{f y 1}+p_{f y 2} \\
90 \times 5+90 \times 8 \times \cos 60^{\circ} & =90 \times v_{f y 1}+0 \\
v_{f y 1} & =\frac{90 \times 5+90 \times 8 \times \cos 60^{\circ}}{90} \\
v_{f y 1} & =9.0 \mathrm{~ms}^{-1}
\end{aligned}
$$

Step 5 : Using the x and y components, calculate the final total v Use Pythagoras's theorem to find the total final velocity:

$$
\begin{aligned}
v_{f t o t} & =\sqrt{v_{f x 1}^{2}+v_{f x 2}^{2}} \\
& =\sqrt{6.928^{2}+9^{2}} \\
& =11.36
\end{aligned}
$$

Calculate the angle θ to find the direction of Player 1's final velocity:

$$
\begin{aligned}
\sin \theta & =\frac{v_{f x y 1}}{v_{f t o t}} \\
\theta & =52.4^{\circ}
\end{aligned}
$$

Therefore Player 1 bounces off Player 2 with a final velocity of $11.36 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ at an angle of 52.4° from the horizontal.

Worked Example 138: 2D Conservation of Momentum: II

Question: In a soccer game, Player 1 is running with the ball at $5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ across the pitch at an angle of 75° from the horizontal. Player 2 runs towards Player 1 at $6 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ an angle of 60° to the horizontal and tackles Player 1 . In the tackle, the two players bounce off each other. Player 2 moves off with a velocity in the opposite x-direction of $0.3 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and a velocity in the y-direction of $6 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.
Both the players have a mass of 80 kg . What is the final total velocity of Player 1 ?

Answer

Step 1 : Understand what is given and what is being asked

The first step is to draw the picture to work out what the situation is. Mark the initial velocities of both players in the picture.

We also know that $m_{1}=m_{2}=80 \mathrm{~kg}$. And $v_{f x 2}=-0.3 \mathrm{~ms}^{-1}$ and $v_{f y 2}=6 \mathrm{~ms}^{-1}$.
We need to find the final velocity and angle at which Player 1 bounces off Player 2.
Step 2 : Use conservation of momentum to solve the problem. First find the initial total momentum:

Total initial momentum $=$ Total final momentum. But we have a two dimensional problem, and we need to break up the initial momentum into x and y components.

$$
\begin{aligned}
p_{i x} & =p_{f x} \\
p_{i y} & =p_{f y}
\end{aligned}
$$

For Player 1:

$$
\begin{aligned}
& p_{i x 1}=m_{1} v_{i 1 x}=80 \times 5 \times \cos 75^{\circ} \\
& p_{i y 1}=m_{1} v_{i 1 y}=80 \times 5 \times \sin 75^{\circ}
\end{aligned}
$$

For Player 2:

$$
\begin{aligned}
p_{i x 2} & =m_{2} v_{i 2 x}=80 \times 6 \times \cos 60^{\circ} \\
p_{i y 2} & =m_{2} v_{i 2 y}=80 \times 6 \times \sin 60^{\circ}
\end{aligned}
$$

Step 3 : Now write down what we know about the final momentum:
For Player 1:

$$
\begin{aligned}
p_{f x 1} & =m_{1} v_{f x 1}=80 \times v_{f x 1} \\
p_{f y 1} & =m_{1} v_{f y 1}=80 \times v_{f y 1}
\end{aligned}
$$

For Player 2:

$$
\begin{aligned}
p_{f x 2} & =m_{2} v_{f x 2}=80 \times(-0.3) \times \cos 60^{\circ} \\
p_{f y 2} & =m_{2} v_{f y 2}=80 \times 6 \times \sin 60^{\circ}
\end{aligned}
$$

Step 4 : Use conservation of momentum:

The initial total momentum in the x direction is equal to the final total momentum in the x direction.
The initial total momentum in the y direction is equal to the final total momentum in the y direction.
If we find the final x and y components, then we can find the final total momentum.

$$
\begin{aligned}
p_{i x 1}+p_{i x 2} & =p_{f x 1}+p_{f x 2} \\
80 \times 5 \cos 75^{\circ}+80 \times \cos 60^{\circ} & =80 \times v_{f x 1}+80 \times(-0.3) \\
v_{f x 1} & =\frac{80 \times 5 \cos 75^{\circ}+80 \times \cos 60^{\circ}+80 \times(-0.3)}{80} \\
v_{f x 1} & =2.0 \mathrm{~ms}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
p_{i y 1}+p_{i y 2} & =p_{f y 1}+p_{f y 2} \\
80 \times 5 \sin 75^{\circ}+80 \times \sin 60^{\circ} & =80 \times v_{f y 1}+80 \times 6 \\
v_{f y 1} & =\frac{80 \times 5 \sin 75^{\circ}+80 \times \sin 60^{\circ}-80 \times 6}{80} \\
v_{f y 1} & =4.0 \mathrm{~ms}^{-1}
\end{aligned}
$$

Step 5 : Using the x and y components, calculate the final total v Use Pythagoras's theorem to find the total final velocity:

$$
\begin{aligned}
v_{f t o t} & =\sqrt{v_{f x 1}^{2}+v_{f x 2}^{2}} \\
& =\sqrt{2^{2}+4^{2}} \\
& =4.5
\end{aligned}
$$

Calculate the angle θ to find the direction of Player 1's final velocity:

$$
\begin{aligned}
\tan \theta & =\frac{v_{f y 1}}{v_{f x 1}} \\
\theta & =26.6^{\circ}
\end{aligned}
$$

Therefore Player 1 bounces off Player 2 with a final velocity of $4.5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ at an angle of 26.6° from the horizontal.

21.4 Types of Collisions

Two types of collisions are of interest:

- elastic collisions
- inelastic collisions

In both types of collision, total momentum is always conserved. Kinetic energy is conserved for elastic collisions, but not for inelastic collisions.

21.4.1 Elastic Collisions

Definition: Elastic Collisions

An elastic collision is a collision where total momentum and total kinetic energy are both conserved.

This means that in an elastic collision the total momentum and the total kinetic energy before the collision is the same as after the collision. For these kinds of collisions, the kinetic energy is not changed into another type of energy.

Before the Collision

Figure 21.5 shows two balls rolling toward each other, about to collide:
Before the balls collide, the total momentum of the system is equal to all the individual momenta added together. Ball 1 has a momentum which we call $p_{i 1}$ and ball 2 has a momentum which we call $p_{i 2}$, it means the total momentum before the collision is:

$$
\begin{aligned}
p_{i}= & p_{i 1}+p_{i 2} \\
& 480
\end{aligned}
$$

Figure 21.5: Two balls before they collide.

We calculate the total kinetic energy of the system in the same way. Ball 1 has a kinetic energy which we call $K E_{i 1}$ and the ball 2 has a kinetic energy which we call $\mathrm{KE}_{i 2}$, it means that the total kinetic energy before the collision is:

$$
K E_{i}=K E_{i 1}+K E_{i 2}
$$

After the Collision

Figure 21.6 shows two balls after they have collided:

Figure 21.6: Two balls after they collide.

After the balls collide and bounce off each other, they have new momenta and new kinetic energies. Like before, the total momentum of the system is equal to all the individual momenta added together. Ball 1 now has a momentum which we call $p_{f 1}$ and ball 2 now has a momentum which we call $p_{f 2}$, it means the total momentum after the collision is

$$
p_{f}=p_{f 1}+p_{f 2}
$$

Ball 1 now has a kinetic energy which we call $K E_{f 1}$ and ball 2 now has a kinetic energy which we call $K E_{f 2}$, it means that the total kinetic energy after the collision is:

$$
K E_{f}=K E_{f 1}+K E_{f 2}
$$

Since this is an elastic collision, the total momentum before the collision equals the total momentum after the collision and the total kinetic energy before the collision equals the total kinetic energy after the collision. Therefore:

$$
\begin{array}{rll}
\text { Initial } & & \text { Final } \\
p_{i} & = & p_{f} \\
p_{i 1}+p_{i 2} & = & p_{f 1}+p_{f 2} \\
& \text { and } \\
K E_{i} & =K E_{f} \tag{21.6}\\
K E_{i 1}+K E_{i 2} & =K E_{f 1}+K E_{f 2}
\end{array}
$$

Worked Example 139: An Elastic Collision

Question: Consider a collision between two pool balls. Ball 1 is at rest and ball 2 is moving towards it with a speed of $2 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. The mass of each ball is 0.3 kg . After the balls collide elastically, ball 2 comes to an immediate stop and ball 1 moves off. What is the final velocity of ball 1 ?

Answer

Step 1 : Determine how to approach the problem

We are given:

- mass of ball $1, m_{1}=0.3 \mathrm{~kg}$
- mass of ball $2, m_{2}=0.3 \mathrm{~kg}$
- initial velocity of ball $1, v_{i 1}=0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
- initial velocity of ball $2, v_{i 2}=2 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
- final velocity of ball $2, v_{f 2}=0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
- the collision is elastic

All quantities are in SI units. We are required to determine the final velocity of ball $1, v_{f 1}$. Since the collision is elastic, we know that

- momentum is conserved, $m_{1} v_{i 1}+m_{2} v_{i 2}=m_{1} v_{f 1}+m_{2} v_{f 2}$
- energy is conserved, $\frac{1}{2}\left(m_{1} v_{i 1}^{2}+m_{2} v_{i 2}^{2}=m_{1} v_{f 1}^{2}+m_{2} v_{f 2}^{2}\right)$

Step 2 : Choose a frame of reference

Choose to the right as positive.

Step 3 : Draw a rough sketch of the situation

Before collision

After collision

Step 4 : Solve the problem

Momentum is conserved. Therefore:

$$
\begin{aligned}
p_{i} & =p_{f} \\
m_{1} v_{i 1}+m_{2} v_{i 2} & =m_{1} v_{f 1}+m_{2} v_{f 2} \\
(0,3)(0)+(0,3)(2) & =(0,3) v_{f 1}+0 \\
v_{f 1} & =2 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

Step 5 : Quote the final answer

The final velocity of ball 1 is $2 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ in the same direction as ball 2 .

Worked Example 140: Another Elastic Collision

Question: Consider two 2 marbles. Marble 1 has mass 50 g and marble 2 has mass 100 g . Edward rolls marble 2 along the ground towards marble 1 in the positive x-direction. Marble 1 is initially at rest and marble 2 has a velocity of 3 $\mathrm{m} \cdot \mathrm{s}^{-1}$ in the positive x-direction. After they collide elastically, both marbles are moving. What is the final velocity of each marble?

Answer

Step 1 : Decide how to approach the problem

 We are given:- mass of marble $1, m_{1}=50 \mathrm{~g}$
- mass of marble $2, m_{2}=100 \mathrm{~g}$
- initial velocity of marble $1, v_{i 1}=0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
- initial velocity of marble $2, v_{i 2}=3 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
- the collision is elastic

The masses need to be converted to SI units.

$$
\begin{aligned}
& m_{1}=0,05 \mathrm{~kg} \\
& m_{2}=0,1 \mathrm{~kg}
\end{aligned}
$$

We are required to determine the final velocities:

- final velocity of marble $1, v_{f 1}$
- final velocity of marble $2, v_{f 2}$

Since the collision is elastic, we know that

- momentum is conserved, $p_{i}=p_{f}$.
- energy is conserved, $K E_{i}=K E_{f}$.

We have two equations and two unknowns $\left(v_{1}, v_{2}\right)$ so it is a simple case of solving a set of simultaneous equations.

Step 2 : Choose a frame of reference

Choose to the right as positive.

Step 3 : Draw a rough sketch of the situation

Before Collision

Step 4 : Solve problem

Momentum is conserved. Therefore:

$$
\begin{align*}
p_{i} & =p_{f} \\
p_{i 1}+p_{i 2} & =p_{f 1}+p_{f 2} \\
m_{1} v_{i 1}+m_{2} v_{i 2} & =m_{1} v_{f 1}+m_{2} v_{f 2} \\
(0,05)(0)+(0,1)(3) & =(0,05) v_{f 1}+(0,1) v_{f 2} \\
0,3 & =0,05 v_{f 1}+0,1 v_{f 2} \tag{21.7}
\end{align*}
$$

Energy is also conserved. Therefore:

$$
\begin{align*}
K E_{i} & =K E_{f} \\
K E_{i 1}+K E_{i 2} & =K E_{f 1}+K E_{f 2} \\
\frac{1}{2} m_{1} v_{i 1}^{2}+\frac{1}{2} m_{2} v_{i 2}^{2} & =\frac{1}{2} m_{1} v_{f 1}^{2}+\frac{1}{2} m_{2} v_{f 2}^{2} \\
\left(\frac{1}{2}\right)(0,05)(0)^{2}+\left(\frac{1}{2}\right)(0,1)(3)^{2} & =\frac{1}{2}(0,05)\left(v_{f 1}\right)^{2}+\left(\frac{1}{2}\right)(0,1)\left(v_{f 2}\right)^{2} \\
0,45 & =0,025 v_{f 1}^{2}+0,05 v_{f 2}^{2} \tag{21.8}
\end{align*}
$$

Substitute Equation 21.7 into Equation 21.8 and solve for $v_{f 2}$.

$$
\begin{aligned}
m_{2} v_{i 2}^{2} & =m_{1} v_{f 1}^{2}+m_{2} v_{f 2}^{2} \\
& =m_{1}\left(\frac{m_{2}}{m_{1}}\left(v_{i 2}-v_{f 2}\right)\right)^{2}+m_{2} v_{f 2}^{2} \\
& =m_{1} \frac{m_{2}^{2}}{m_{1}^{2}}\left(v_{i 2}-v_{f 2}\right)^{2}+m_{2} v_{f 2}^{2} \\
& =\frac{m_{2}^{2}}{m_{1}}\left(v_{i 2}-v_{f 2}\right)^{2}+m_{2} v_{f 2}^{2} \\
v_{i 2}^{2} & =\frac{m_{2}}{m_{1}}\left(v_{i 2}-v_{f 2}\right)^{2}+v_{f 2}^{2} \\
& =\frac{m_{2}}{m_{1}}\left(v_{i 2}^{2}-2 \cdot v_{i 2} \cdot v_{f 2}+v_{f 2}^{2}\right)+v_{f 2}^{2} \\
0 & =\left(\frac{m_{2}}{m_{1}}-1\right) v_{i 2}^{2}-2 \frac{m_{2}}{m_{1}} v_{i 2} \cdot v_{f 2}+\left(\frac{m_{2}}{m_{1}}+1\right) v_{f 2}^{2} \\
& =\left(\frac{0.1}{0.05}-1\right)(3)^{2}-2 \frac{0.1}{0.05}(3) \cdot v_{f 2}+\left(\frac{0.1}{0.05}+1\right) v_{f 2}^{2} \\
& =(2-1)(3)^{2}-2 \cdot 2(3) \cdot v_{f 2}+(2+1) v_{f 2}^{2} \\
& =9-12 v_{f 2}+3 v_{f 2}^{2} \\
& =3-4 v_{f 2}+v_{f 2}^{2} \\
& =\left(v_{f 2}-3\right)\left(v_{f 2}-1\right)
\end{aligned}
$$

Substituting back into Equation 21.7, we get:

$$
\begin{aligned}
v_{f 1} & =\frac{m_{2}}{m_{1}}\left(v_{i 2}-v_{f 2}\right) \\
& =\frac{0.1}{0.05}(3-3) \\
& =0 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
& \text { or } \\
v_{f 1} & =\frac{m_{2}}{m_{1}}\left(v_{i 2}-v_{f 2}\right) \\
& =\frac{0.1}{0.05}(3-1) \\
& =4 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

But according to the question, ball 1 is moving after the collision, therefore ball 1 moves to the right at $4 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and ball 2 moves to the left with a velocity of 1 $\mathrm{m} \cdot \mathrm{s}^{-1}$.

Worked Example 141: Colliding Billiard Balls

Question: Two billiard balls each with a mass of 150 g collide head-on in an elastic collision. Ball 1 was travelling at a speed of $2 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and ball 2 at a speed of $1,5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. After the collision, ball 1 travels away from ball 2 at a velocity of $1,5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.

1. Calculate the velocity of ball 2 after the collision.
2. Prove that the collision was elastic. Show calculations.

Answer

1. Step 1 : Draw a rough sketch of the situation

Before Collision

After Collision

Step 2 : Decide how to approach the problem
Since momentum is conserved in all kinds of collisions, we can use conservation of momentum to solve for the velocity of ball 2 after the collision.

Step 3 : Solve problem

$$
\begin{aligned}
p_{\text {before }} & =p_{\text {after }} \\
m_{1} v_{i 1}+m_{2} v_{i 2} & =m_{1} v_{f 1}+m_{2} v_{f 2} \\
\left(\frac{150}{1000}\right)(2)+\left(\frac{150}{1000}\right)(-1,5) & =\left(\frac{150}{1000}\right)(-1,5)+\left(\frac{150}{1000}\right)\left(v_{f 2}\right) \\
0,3-0,225 & =-0,225+0,15 v_{f 2} \\
v_{f 2} & =3 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

So after the collision, ball 2 moves with a velocity of $3 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.
2. The fact that characterises an elastic collision is that the total kinetic energy of the particles before the collision is the same as the total kinetic energy of the particles after the collision. This means that if we can show that the initial kinetic energy is equal to the final kinetic energy, we have shown that the collision is elastic.
Calculating the initial total kinetic energy:

$$
\begin{aligned}
E K_{\text {before }} & =\frac{1}{2} m_{1} v_{i 1}^{2}+\frac{1}{2} m_{2} v_{i 2}^{2} \\
& =\left(\frac{1}{2}\right)(0,15)(2)^{2}+\left(\frac{1}{2}\right)(0,15)(-1,5)^{2} \\
& =0.469 \ldots . J
\end{aligned}
$$

Calculating the final total kinetic energy:

$$
\begin{aligned}
E K_{a f t e r} & =\frac{1}{2} m_{1} v_{f 1}^{2}+\frac{1}{2} m_{2} v_{f 2}^{2} \\
& =\left(\frac{1}{2}\right)(0,15)(-1,5)^{2}+\left(\frac{1}{2}\right)(0,15)(2)^{2} \\
& =0.469 \ldots . J
\end{aligned}
$$

So $E K_{\text {before }}=E K_{\text {after }}$ and hence the collision is elastic.

21.4.2 Inelastic Collisions

Definition: Inelastic Collisions

An inelastic collision is a collision in which total momentum is conserved but total kinetic energy is not conserved. The kinetic energy is transformed into other kinds of energy.

So the total momentum before an inelastic collisions is the same as after the collision. But the total kinetic energy before and after the inelastic collision is different. Of course this does not
mean that total energy has not been conserved, rather the energy has been transformed into another type of energy.

As a rule of thumb, inelastic collisions happen when the colliding objects are distorted in some way. Usually they change their shape. The modification of the shape of an object requires energy and this is where the "missing" kinetic energy goes. A classic example of an inelastic collision is a motor car accident. The cars change shape and there is a noticeable change in the kinetic energy of the cars before and after the collision. This energy was used to bend the metal and deform the cars. Another example of an inelastic collision is shown in Figure 21.7.

Figure 21.7: Asteroid moving towards the Moon.
An asteroid is moving through space towards the Moon. Before the asteroid crashes into the Moon, the total momentum of the system is:

$$
p_{i}=p_{i m}+p_{i a}
$$

The total kinetic energy of the system is:

$$
K E_{i}=K E_{i m}+K E_{i a}
$$

When the asteroid collides inelastically with the Moon, its kinetic energy is transformed mostly into heat energy. If this heat energy is large enough, it can cause the asteroid and the area of the Moon's surface that it hits, to melt into liquid rock! From the force of impact of the asteroid, the molten rock flows outwards to form a crater on the Moon.

After the collision, the total momentum of the system will be the same as before. But since this collision is inelastic, (and you can see that a change in the shape of objects has taken place!), total kinetic energy is not the same as before the collision.
Momentum is conserved:

$$
p_{i}=p_{f}
$$

But the total kinetic energy of the system is not conserved:

$$
K E_{i} \neq K E_{f}
$$

Worked Example 142: An Inelastic Collision

Question: Consider the collision of two cars. Car 1 is at rest and Car 2 is moving at a speed of $2 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ in the negative x-direction. Both cars each have a mass of 500 kg . The cars collide inelastically and stick together. What is the resulting velocity of the resulting mass of metal?
Answer
Step 1 : Draw a rough sketch of the situation

Step 2 : Determine how to approach the problem
We are given:

- mass of car $1, m_{1}=500 \mathrm{~kg}$
- mass of car $2, m_{2}=500 \mathrm{~kg}$
- initial velocity of car $1, v_{i 1}=0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
- initial velocity of car $2, v_{i 2}=2 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ to the left
- the collision is inelastic

All quantities are in SI units. We are required to determine the final velocity of the resulting mass, v_{f}.
Since the collision is inelastic, we know that

- momentum is conserved, $m_{1} v_{i 1}+m_{2} v_{i 2}=m_{1} v_{f 1}+m_{2} v_{f 2}$
- kinetic energy is not conserved

Step 3 : Choose a frame of reference

Choose to the left as positive.

Step 4 : Solve problem

So we must use conservation of momentum to solve this problem.

$$
\begin{aligned}
p_{i} & =p_{f} \\
p_{i 1}+p_{i 2} & =p_{f} \\
m_{1} v_{i 1}+m_{2} v_{i 2} & =\left(m_{1}+m_{2}\right) v_{f} \\
(500)(0)+(500)(2) & =(500+500) v_{f} \\
1000 & =1000 v_{f} \\
v_{f} & =1 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

Therefore, the final velocity of the resulting mass of cars is $1 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ to the left.

Worked Example 143: Colliding balls of clay

Question: Two balls of clay, 200 g each, are thrown towards each other according to the following diagram. When they collide, they stick together and move off together. All motion is taking place in the horizontal plane. Determine the velocity of the clay after the collision.

Answer

Step 1 : Analyse the problem

This is an inelastic collision where momentum is conserved.
The momentum before $=$ the momentum after.
The momentum after can be calculated by drawing a vector diagram.

Step 2: Calculate the momentum before the collision

$$
\begin{array}{r}
p_{1}(\text { before })=\mathrm{m}_{1} \mathrm{v}_{\mathrm{i} 1}=(0,2)(3)=0,6 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1} \text { east } \\
p_{2}(\text { before })=\mathrm{m}_{2} \mathrm{v}_{\mathrm{i} 2}=(0,2)(4)=0,8 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1} \text { south }
\end{array}
$$

Step 3 : Calculate the momentum after the collision.

Here we need to draw a diagram:

$$
\begin{aligned}
p_{1+2}(\text { after }) & =\sqrt{(0,8)^{2}+(0,6)^{2}} \\
& =1
\end{aligned}
$$

Step 4: Calculate the final velocity

First we have to find the direction of the final momentum:

$$
\begin{aligned}
\tan \theta & =\frac{0,8}{0,6} \\
\theta & =53,13^{\circ}
\end{aligned}
$$

Now we have to find the magnitude of the final velocity:

$$
\begin{aligned}
p_{1+2} & =m_{1+2} v_{f} \\
1 & =(0,2+0,2) v_{f} \\
v_{f} & =2,5 \mathrm{~m} \cdot \mathrm{~s}^{-1} \mathrm{E} 53,13^{\circ} \mathrm{S}
\end{aligned}
$$

Exercise: Collisions

1. A truck of mass 4500 kg travelling at $20 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ hits a car from behind. The car (mass 1000 kg) was travelling at $15 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. The two vehicles, now connected carry on moving in the same direction.
a Calculate the final velocity of the truck-car combination after the collision.
b Determine the kinetic energy of the system before and after the collision.
c Explain the difference in your answers for b).
d Was this an example of an elastic or inelastic collision? Give reasons for your answer.
2. Two cars of mass 900 kg each collide and stick together at an angle of 90°.

Determine the final velocity of the cars if
car 1 was travelling at $15 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and
car 2 was travelling at $20 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.

Extension: Tiny, Violent Collisions

Author: Thomas D. Gutierrez

Tom Gutierrez received his Bachelor of Science and Master degrees in Physics from San Jose State University in his home town of San Jose, California. As a Master's student he helped work on a laser spectrometer at NASA Ames Research Centre. The instrument measured the ratio of different isotopes of carbon in CO_{2} gas and could be used for such diverse applications as medical diagnostics and space exploration. Later, he received his PhD in physics from the University of California, Davis where he performed calculations for various reactions in high energy physics collisions. He currently lives in Berkeley, California where he studies proton-proton collisions seen at the STAR experiment at Brookhaven National Laboratory on Long Island, New York.

High Energy Collisions

Take an orange and expand it to the size of the earth. The atoms of the earth-sized orange would themselves be about the size of regular oranges and would fill the entire "earth-orange". Now, take an atom and expand it to the size of a football field. The nucleus of that atom would be about the size of a tiny seed in the middle of the field. From this analogy, you can see that atomic nuclei are very small objects by human standards. They are roughly 10^{-15} meters in diameter -one-hundred thousand times smaller than a typical atom. These nuclei cannot be seen or studied via any conventional means such as the naked eye or microscopes. So how do scientists study the structure of very small objects like atomic nuclei?

The simplest nucleus, that of hydrogen, is called the proton. Faced with the inability to isolate a single proton, open it up, and directly examine what is inside, scientists must resort to a brute-force and somewhat indirect means of exploration: high energy collisions. By colliding protons with other particles (such as other protons or electrons) at very high energies, one hopes to learn about what they are made of and how they work. The American physicist Richard Feynman once compared this process to slamming delicate watches together and figuring out how they work by only examining the broken debris. While this analogy may seem pessimistic, with sufficient mathematical models and experimental precision, considerable information can be extracted from the debris of such high energy
subatomic collisions. One can learn about both the nature of the forces at work and also about the sub-structure of such systems.

The experiments are in the category of "high energy physics" (also known as "subatomic" physics). The primary tool of scientific exploration in these experiments is an extremely violent collision between two very, very small subatomic objects such as nuclei. As a general rule, the higher the energy of the collisions, the more detail of the original system you are able to resolve. These experiments are operated at laboratories such as CERN, SLAC, BNL, and Fermilab, just to name a few. The giant machines that perform the collisions are roughly the size of towns. For example, the RHIC collider at BNL is a ring about 1 km in diameter and can be seen from space. The newest machine currently being built, the LHC at CERN, is a ring 9 km in diameter!

Activity :: Casestudy : Atoms and its Constituents Questions:

1. What are isotopes? (2)
2. What are atoms made up of? (3)
3. Why do you think protons are used in the experiments and not atoms like carbon? (2)
4. Why do you think it is necessary to find out what atoms are made up of and how they behave during collisions? (2)
5. Two protons (mass $1,67 \times 10^{-27} \mathrm{~kg}$) collide and somehow stick together after the collision. If each proton travelled with an initial velocity of $5,00 \times 10^{7} \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and they collided at an angle of 90°, what is the velocity of the combination after the collision. (9)

21.5 Frames of Reference

21.5.1 Introduction

Figure 21.8: Top view of a road with two people standing on opposite sides. A car drives past.

Consider two people standing, facing each other on either side of a road. A car drives past them, heading West. For the person facing South, the car was moving toward the right. However, for the person facing North, the car was moving toward the left. This discrepancy is due to the fact that the two people used two different frames of reference from which to investigate this system. If each person were asked in what direction the car were moving, they would give a different answer. The answer would be relative to their frame of reference.

21.5.2 What is a frame of reference?

```
Definition: Frame of Reference
A frame of reference is the point of view from which a system is observed.
```

In practical terms, a frame of reference is a set of axes (specifying directions) with an origin. An observer can then measure the position and motion of all points in a system, as well as the orientation of objects in the system relative to the frame of reference.

There are two types of reference frames: inertial and non-inertial. An inertial frame of reference travels at a constant velocity, which means that Newton's first law (inertia) holds true. A non-inertial frame of reference, such as a moving car or a rotating carousel, accelerates. Therefore, Newton's first law does not hold true in a non-inertial reference frame, as objects appear to accelerate without the appropriate forces.

21.5.3 Why are frames of reference important?

Frames of reference are important because (as we have seen in the introductory example) the velocity of a car can differ depending on which frame of reference is used.

> Extension: Frames of Reference and Special Relativity
> Frames of reference are especially important in special relativity, because when a frame of reference is moving at some significant fraction of the speed of light, then the flow of time in that frame does not necessarily apply in another reference frame. The speed of light is considered to be the only true constant between moving frames of reference.

The next worked example will explain this.

21.5.4 Relative Velocity

The velocity of an object is frame dependent. More specifically, the perceived velocity of an object depends on the velocity of the observer. For example, a person standing on shore would observe the velocity of a boat to be different than a passenger on the boat.

Worked Example 144: Relative Velocity

Question: The speedometer of a motor boat reads $5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. The boat is moving East across a river which has a current traveling $3 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ North. What would the velocity of the motor boat be according to an observer on the shore?

Answer

Step 1: First, draw a diagram showing the velocities involved.

Step 2: Use the Theorem of Pythagoras to solve for the resultant of the two velocities.

$$
\begin{aligned}
& R=\sqrt{(3)^{2}+(5)^{2}} \\
&= \sqrt{34} \\
&= 5,8 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
& \begin{aligned}
\tan \theta & =\frac{5}{3} \\
\theta & =59,04^{\circ}
\end{aligned} \\
&
\end{aligned}
$$

The observer on the shore sees the boat moving with a velocity of $5,8 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ at $\mathrm{N} 59,04^{\circ} \mathrm{E}$ due to the current pushing the boat perpendicular to its velocity. This is contrary to the perspective of a passenger on the boat who perceives the velocity of the boat to be $5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ due East. Both perspectives are correct as long as the frame of the observer is considered.

Extension:

Worked Example 145: Relative Velocity 2

Question: It takes a man 10 seconds to ride down an escalator. It takes the same man 15 s to walk back up the escalator against its motion. How long will it take the man to walk down the escalator at the same rate he was walking before?

Answer

Step 1 : Determine what is required and what is given

We are required to determine the time taken for a man to walk down an escalator, with its motion.
We are given the time taken for the man to ride down the escalator and the time taken for the man to walk up the escalator, against it motion.
Step 2 : Determine how to approach the problem
Select down as positive and assume that the escalator moves at a velocity v_{e}. If the distance of the escalator is x_{e} then:

$$
\begin{equation*}
v_{e}=\frac{x_{e}}{10 \mathrm{~s}} \tag{21.9}
\end{equation*}
$$

Now, assume that the man walks at a velocity v_{m}. Then we have that:

$$
\begin{equation*}
v_{e}-v_{m}=\frac{x_{e}}{15 \mathrm{~s}} \tag{21.10}
\end{equation*}
$$

We are required to find t in:

$$
\begin{equation*}
v_{e}+v_{m}=\frac{x_{e}}{t} \tag{21.11}
\end{equation*}
$$

Step 3 : Solve the problem
We find that we have three equations and three unknowns (v_{e}, v_{m} and t).
Add (21.10) to (21.11) to get:

$$
2 v_{e}=\frac{x_{e}}{15 \mathrm{~s}}+\frac{x_{e}}{t}
$$

Substitute from (21.9) to get:

$$
2 \frac{x_{e}}{10 \mathrm{~s}}=\frac{x_{e}}{15 \mathrm{~s}}+\frac{x_{e}}{t}
$$

Since x_{e} is not equal to zero we can divide throughout by x_{e}.

$$
\frac{2}{10 \mathrm{~s}}=\frac{1}{15 \mathrm{~s}}+\frac{1}{t}
$$

Re-write:

$$
\frac{2}{10 \mathrm{~s}}-\frac{1}{15 \mathrm{~s}}=\frac{1}{t}
$$

Multiply by t :

$$
t\left(\frac{2}{10 \mathrm{~s}}-\frac{1}{15 \mathrm{~s}}\right)=1
$$

Solve for t :

$$
t=\frac{1}{\frac{2}{10 \mathrm{~s}}-\frac{1}{15 \mathrm{~s}}}
$$

to get:

$$
t=\frac{2}{15} \mathrm{~s}
$$

Step 4 : Write the final answer

The man will take $\frac{1}{15} \mathrm{~s}+\frac{2}{15} \mathrm{~s}=\frac{1}{5} \mathrm{~s}$.

Exercise: Frames of Reference

1. A woman walks north at $3 \mathrm{~km} \cdot \mathrm{hr}^{-1}$ on a boat that is moving east at 4 $\mathrm{km} \cdot \mathrm{hr}^{-1}$. This situation is illustrated in the diagram below.
A How fast is the woman moving according to her friend who is also on the boat?
B What is the woman's velocity according to an observer watching from the river bank?

2. A boy is standing inside a train that is moving at $10 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ to the left. The boy throws a ball in the air with a velocity of $4 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. What is the resultant velocity of the ball
A according to the boy?
B according to someone outside the train?

21.6 Summary

1. Projectiles are objects that move through the air.
2. Objects that move up and down (vertical projectiles) accelerate with a constant acceleration g which is more or less equal to $9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$.
3. The equations of motion can be used to solve vertical projectile problems.

$$
\begin{aligned}
v_{f} & =v_{i}+g t \\
\Delta x & =\frac{\left(v_{i}+v_{f}\right)}{2} t \\
\Delta x & =v_{i} t+\frac{1}{2} g t^{2} \\
v_{f}^{2} & =v_{i}^{2}+2 g \Delta x
\end{aligned}
$$

4. Graphs can be drawn for vertical projectile motion and are similar to the graphs for motion at constant acceleration. If upwards is taken as positive the Δx vs t, v vs t ans a vs t graphs for an object being thrown upwards look like this:

5. Momentum is conserved in one and two dimensions

$$
\begin{aligned}
p & =m v \\
\Delta p & =m \Delta v \\
\Delta p & =F \Delta t
\end{aligned}
$$

6. An elastic collision is a collision where both momentum and kinetic energy is conserved.

$$
\begin{aligned}
p_{\text {before }} & =p_{\text {after }} \\
K E_{\text {before }} & =K E_{\text {after }}
\end{aligned}
$$

7. An inelastic collision is where momentum is conserved but kinetic energy is not conserved.

$$
p_{\text {before }}=p_{\text {after }}
$$

$\mathrm{KE}_{\text {before }} \neq K E_{\text {after }}$
8. The frame of reference is the point of view from which a system is observed.

21.7 End of chapter exercises

1. [IEB 2005/11 HG] Two friends, Ann and Lindiwe decide to race each other by swimming across a river to the other side. They swim at identical speeds relative to the water. The river has a current flowing to the east.

Ann heads a little west of north so that she reaches the other side directly across from the starting point. Lindiwe heads north but is carried downstream, reaching the other side downstream of Ann. Who wins the race?

A Ann
B Lindiwe
C It is a dead heat
D One cannot decide without knowing the velocity of the current.
2. [SC 2001/11 HG1] A bullet fired vertically upwards reaches a maximum height and falls back to the ground.

Which one of the following statements is true with reference to the acceleration of the bullet during its motion, if air resistance is ignored?

A is always downwards
B is first upwards and then downwards
C is first downwards and then upwards
D decreases first and then increases
3. [SC 2002/03 HG1] Thabo suspends a bag of tomatoes from a spring balance held vertically. The balance itself weighs 10 N and he notes that the balance reads $50 \mathrm{~N} . \mathrm{He}$ then lets go of the balance and the balance and tomatoes fall freely. What would the reading be on the balance while falling?

A 50 N
B 40 N
C 10 N
D 0 N
4. [IEB 2002/11 HG1] Two balls, P and Q, are simultaneously thrown into the air from the same height above the ground. P is thrown vertically upwards and Q vertically downwards with the same initial speed. Which of the following is true of both balls just before they hit the ground? (Ignore any air resistance. Take downwards as the positive direction.)

	Velocity	Acceleration
A	The same	The same
B	P has a greater velocity than Q	P has a negative acceleration; Q has a positive acceleration
C	P has a greater velocity than Q	The same
D	The same	P has a negative acceleration; Q has a positive acceleration

5. [IEB 2002/11 HG1] An observer on the ground looks up to see a bird flying overhead along a straight line on bearing $130^{\circ}\left(40^{\circ} \mathrm{S}\right.$ of E$)$. There is a steady wind blowing from east to west. In the vector diagrams below, I, II and III represent the following:
I the velocity of the bird relative to the air
II the velocity of the air relative to the ground
III the resultant velocity of the bird relative to the ground
Which diagram correctly shows these three velocities?

6. [SC 2003/11] A ball X of mass m is projected vertically upwards at a speed u_{x} from a bridge 20 m high. A ball Y of mass 2 m is projected vertically downwards from the same bridge at a speed of u_{y}. The two balls reach the water at the same speed. Air friction can be ignored.
Which of the following is true with reference to the speeds with which the balls are projected?

A $u_{x}=\frac{1}{2} u_{y}$
B $u_{x}=u_{y}$
C $u_{x}=2 u_{y}$
D $u_{x}=4 u_{y}$
7. [SC 2001/11 HG1] A sphere is attached to a string, which is suspended from a horizontal ceiling.

The reaction force to the gravitational force exerted by the earth on the sphere is ...
A the force of the sphere on the earth.
B the force of the ceiling on the string.
C the force of the string on the sphere.
D the force of the ceiling on the sphere.
8. [SC 2002/03 HG1] A stone falls freely from rest from a certain height. Which on eof the following quantities could be represented on the y-axis of the graph below?

A velocity
B acceleration
C momentum
D displacement
9. A man walks towards the back of a train at $2 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ while the train moves forward at 10 $\mathrm{m} \cdot \mathrm{s}^{-1}$. The magnitude of the man's velocity with respect to the ground is

A $2 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
B $8 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
C $10 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
D $12 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
10. A stone is thrown vertically upwards and it returns to the ground. If friction is ignored, its acceleration as it reaches the highest point of its motion is

A greater than just after it left the throwers hand.
B less than just before it hits the ground.
C the same as when it left the throwers hand.
D less than it will be when it strikes the ground.
11. An exploding device is thrown vertically upwards. As it reaches its highest point, it explodes and breaks up into three pieces of equal mass. Which one of the following combinations is possible for the motion of the three pieces if they all move in a vertical line?

	Mass 1	Mass 2	Mass 3
A	v downwards	v downwards	v upwards
B	v upwards	2v downwards	v upwards
C	2v upwards	v downwards	v upwards
D	v upwards	2v downwards	v downwards

12. [IEB 2004/11 HG1] A stone is thrown vertically up into the air. Which of the following graphs best shows the resultant force exerted on the stone against time while it is in the air? (Air resistance is negligible.)
13. What is the velocity of a ball just as it hits the ground if it is thrown upward at 10 $\mathrm{m} \cdot \mathrm{s}^{-1}$ from a height 5 meters above the ground?
14. [IEB 2005/11 HG1] A breeze of $50 \mathrm{~km} \cdot \mathrm{hr}^{-1}$ blows towards the west as a pilot flies his light plane from town A to village B. The trip from A to B takes 1 h . He then turns west, flying for $\frac{1}{2} \mathrm{~h}$ until he reaches a dam at point C . He turns over the dam and returns to town A. The diagram shows his flight plan. It is not to scale.

A

B

C

D

Figure 21.9: Graphs for an object thrown upwards with an initial velocity v_{i}. The object takes $t_{m} \mathrm{~s}$ to reach its maximum height of $h_{m} \mathrm{~m}$ after which it falls back to the ground. (a) position vs. time graph (b) velocity vs. time graph (c) acceleration vs. time graph.

The pilot flies at the same altitude at a constant speed of $130 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ relative to the air throughout this flight.
a Determine the magnitude of the pilot's resultant velocity from the town A to the village B.
b How far is village B from town A ?
c What is the plane's speed relative to the ground as it travels from village B to the dam at C?
d Determine the following, by calculation or by scale drawing:
i. The distance from the village B to the dam C.
ii. The displacement from the dam C back home to town A .
15. A cannon (assumed to be at ground level) is fired off a flat surface at an angle, θ above the horizontal with an initial speed of v_{0}.
a What is the initial horizontal component of the velocity?
b What is the initial vertical component of the velocity?
c What is the horizontal component of the velocity at the highest point of the trajectory?
d What is the vertical component of the velocity at that point?
e What is the horizontal component of the velocity when the projectile lands?
f What is the vertical component of the velocity when it lands?
16. [IEB 2004/11 HG1] Hailstones fall vertically on the hood of a car parked on a horizontal stretch of road. The average terminal velocity of the hailstones as they descend is 8,0 $\mathrm{m} . \mathrm{s}^{-1}$ and each has a mass of $1,2 \mathrm{~g}$.
a Explain why a hailstone falls with a terminal velocity.
b Calculate the magnitude of the momentum of a hailstone just before it strikes the hood of the car.
c If a hailstone rebounds at $6,0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ after hitting the car's hood, what is the magnitude of its change in momentum?
d The hailstone is in contact with the car's hood for $0,002 \mathrm{~s}$ during its collision with the hood of the car. What is the magnitude of the resultant force exerted on the hood if the hailstone rebounds at $6,0 \mathrm{~m} . \mathrm{s}^{-1}$?
e A car's hood can withstand a maximum impulse of $0,48 \mathrm{~N} \cdot \mathrm{~s}$ without leaving a permanent dent. Calculate the minimum mass of a hailstone that will leave a dent in the hood of the car, if it falls at $8,0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and rebounds at $6,0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ after a collision lasting $0,002 \mathrm{~s}$.
17. [IEB 2003/11 HG1 - Biathlon] Andrew takes part in a biathlon race in which he first swims across a river and then cycles. The diagram below shows his points of entry and exit from the river, A and P, respectively.

During the swim, Andrew maintains a constant velocity of $1,5 \mathrm{~m} . \mathrm{s}^{-1}$ East relative to the water. The water in the river flows at a constant velocity of $2,5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ in a direction 30° North of East. The width of the river is 100 m .

The diagram below is a velocity-vector diagram used to determine the resultant velocity of Andrew relative to the river bed.

a Which of the vectors (AB, BC and AC) refer to each of the following?
i. The velocity of Andrew relative to the water.
ii. The velocity of the water relative to the water bed.
iii. The resultant velocity of Andrew relative to the river bed.
b Determine the magnitude of Andrew's velocity relative to the river bed either by calculations or by scale drawing, showing your method clearly.
c How long (in seconds) did it take Andrew to cross the river?
d At what distance along the river bank (QP) should Peter wait with Andrew's bicycle ready for the next stage of the race?
18. [IEB 2002/11 HG1 - Bouncing Ball]

A ball bounces vertically on a hard surface after being thrown vertically up into the air by a boy standing on the ledge of a building.
Just before the ball hits the ground for the first time, it has a velocity of magnitude 15 $\mathrm{m} . \mathrm{s}^{-1}$. Immediately, after bouncing, it has a velocity of magnitude $10 \mathrm{~m} . \mathrm{s}^{-1}$.
The graph below shows the velocity of the ball as a function of time from the moment it is thrown upwards into the air until it reaches its maximum height after bouncing once.

a At what velocity does the boy throw the ball into the air?
b What can be determined by calculating the gradient of the graph during the first two seconds?
c Determine the gradient of the graph over the first two seconds. State its units.
d How far below the boy's hand does the ball hit the ground?
e Use an equation of motion to calculate how long it takes, from the time the ball was thrown, for the ball to reach its maximum height after bouncing.
f What is the position of the ball, measured from the boy's hand, when it reaches its maximum height after bouncing?
19. [IEB $2001 / 11 \mathrm{HG} 1]$ - Free Falling?

A parachutist steps out of an aircraft, flying high above the ground. She falls for the first few seconds before opening her parachute. A graph of her velocity is shown in Graph A below.

a Describe her motion between A and B .
b Use the information from the graph to calculate an approximate height of the aircraft when she stepped out of it (to the nearest 10 m).
c What is the magnitude of her velocity during her descent with the parachute fully open?
The air resistance acting on the parachute is related to the speed at which the parachutist descends. Graph B shows the relationship between air resistance and velocity of the parachutist descending with the parachute open.

d Use Graph B to find the magnitude of the air resistance on her parachute when she was descending with the parachute open.
e Assume that the mass of the parachute is negligible. Calculate the mass of the parachutist showing your reasoning clearly.
20. An aeroplane travels from Cape Town and the pilot must reach Johannesburg, which is situated 1300 km from Cape Town on a bearing of 50° in 5 hours. At the height at which the plane flies, a wind is blowing at $100 \mathrm{~km} \cdot \mathrm{hr}^{-1}$ on a bearing of 130° for the whole trip.

a Calculate the magnitude of the average resultant velocity of the aeroplane, in $\mathrm{km} \cdot \mathrm{hr}^{-1}$, if it is to reach its destination on time.
b Calculate ther average velocity, in $\mathrm{km} \cdot \mathrm{hr}^{-1}$, in which the aeroplane should be travelling in order to reach Johannesburg in the prescribed 5 hours. Include a labelled, rough vector diagram in your answer.
(If an accurate scale drawing is used, a scale of $25 \mathrm{~km} \cdot \mathrm{hr}^{-1}=1 \mathrm{~cm}$ must be used.)
21. Niko, in the basket of a hot-air balloon, is stationary at a height of 10 m above the level from where his friend, Bongi, will throw a ball. Bongi intends throwing the ball upwards and Niko, in the basket, needs to descend (move downwards) to catch the ball at its maximum height.

Bongi throws the ball upwards with a velocity of $13 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. Niko starts his descent at the same instant the ball is thrown upwards, by letting air escape from the balloon, causing it to accelerate downwards. Ignore the effect of air friction on the ball.
a Calculate the maximum height reached by the ball.
b Calculate the magnitude of the minimum average acceleration the balloon must have in order for Niko to catch the ball, if it takes $1,3 \mathrm{~s}$ for the ball to rach its maximum height.
22. Lesedi (mass 50 kg) sits on a massless trolley. The trolley is travelling at a constant speed of $3 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. His friend Zola (mass 60 kg) jumps on the trolley with a velocity of 2 $\mathrm{m} \cdot \mathrm{s}^{-1}$. What is the final velocity of the combination (lesedi, Zola and trolley) if Zola jumps on the trolley from
a the front
b behind
c the side
(Ignore all kinds of friction)

(b)

Appendix A

GNU Free Documentation License

Version 1.2, November 2002

Copyright (c) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or non-commercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a

Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, A TEX input format, SGML or XML using a publicly available DTD and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-commercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section A.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections A and A above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
3. State on the Title page the name of the publisher of the Modified Version, as the publisher.
4. Preserve all the copyright notices of the Document.
5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
8. Include an unaltered copy of this License.
9. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
11. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
13. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
14. Do not re-title any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
15. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties-for example, statements of peer review or that the text has been approved by an organisation as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section A above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section A is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section A. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section A) to Preserve its Title (section A) will typically require changing the
actual title.

TERMINATION

You may not copy, modify, sub-license, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sub-license or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:
with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

