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Chapter 17

Electrochemical Reactions - Grade
12

17.1 Introduction

Chapter 15 in Grade 11 discussed oxidation, reduction and redox reactions. Oxidation involves
a loss of electrons and reduction involves a gain of electrons. A redox reaction is a reaction
where both oxidation and reduction take place. What is common to all of these processes is that
they involve a transfer of electrons and a change in the oxidation state of the elements that are
involved.

Exercise: Oxidation and reduction

1. Define the terms oxidation and reduction.

2. In each of the following reactions say whether the iron in the reactants is
oxidised or reduced.

(a) Fe → Fe2+ + 2e−

(b) Fe3+ + e− → Fe2+

(c) Fe2O3 → Fe

(d) Fe2+ → Fe3+ + e−

(e) Fe2O3 + 2Al → Al2

3. In each of the following equations, say which elements in the reactants are
oxidised and which are reduced.

(a) CuO(s) + H2(g) → Cu(s) + H2O(g)

(b) 2NO(g) + 2CO(g) → N2(g) + 2CO2(g)

(c) Mg(s) + FeSO4(aq) → MgSO4(aq) + Fe(s)

(d) Zn(s) + 2AgNO3(aq) → 2Ag + Zn(NO3)2(aq)

4. Which one of the substances listed below acts as the oxidising agent in the
following reaction?

3SO2 + Cr2O
2−
7 + 2H+ → 3SO2−

4 + 2Cr3+ + H2O

(a) H+

(b) Cr3+

(c) SO2

(d) Cr2O
2−
7
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17.2 CHAPTER 17. ELECTROCHEMICAL REACTIONS - GRADE 12

In Grade 11, an experiment was carried out to see what happened when zinc granules are added
to a solution of copper(II) sulphate. In the experiment, the Cu2+ ions from the copper(II)
sulphate solution were reduced to copper metal, which was then deposited in a layer on the zinc
granules. The zinc atoms were oxidised to form Zn2+ ions in the solution. The half reactions
are as follows:

Cu2+(aq) + 2e− → Cu(s) (reduction half reaction)

Zn(s) → Zn2+(aq) + 2e− (oxidation half reaction)

The overall redox reaction is:

Cu2+(aq) + Zn → Cu(s) + Zn2+(aq)

There was an increase in the temperature of the reaction when you carried out this experiment.
Is it possible that this heat energy could be converted into electrical energy? In other words, can
we use a chemical reaction where there is an exchange of electrons, to produce electricity? And
if this is possible, what would happen if an electrical current was supplied to cause some type
of chemical reaction to take place?

An electrochemical reaction is a chemical reaction that produces a voltage, and therefore a
flow of electrical current. An electrochemical reaction can also be the reverse of this process, in
other words if an electrical current causes a chemical reaction to take place.

Definition: Electrochemical reaction
If a chemical reaction is caused by an external voltage, or if a voltage is caused by a chemical
reaction, it is an electrochemical reaction.

Electrochemistry is the branch of chemistry that studies these electrochemical reactions. In
this chapter, we will be looking more closely at different types of electrochemical reactions, and
how these can be used in different ways.

17.2 The Galvanic Cell

Activity :: Experiment : Electrochemical reactions
Aim:

To investigate the reactions that take place in a zinc-copper cell
Apparatus:

zinc plate, copper plate, measuring balance, zinc sulphate (ZnSO4) solution (1
mol.dm−3), copper sulphate (CuSO4) solution (1 mol.dm−3), two 250 ml beakers,
U-tube, Na2SO4 solution, cotton wool, ammeter, connecting wire.
Method:

1. Measure the mass of the copper and zinc plates and record your findings.

2. Pour about 200 ml of the zinc sulphate solution into a beaker and put the zinc
plate into it.

3. Pour about 200 ml of the copper sulphate solution into the second beaker and
place the copper plate into it.

4. Fill the U-tube with the Na2SO4 solution and seal the ends of the tubes with
the cotton wool. This will stop the solution from flowing out when the U-tube
is turned upside down.
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5. Connect the zinc and copper plates to the ammeter and observe whether the
ammeter records a reading.

6. Place the U-tube so that one end is in the copper sulphate solution and the
other end is in the zinc sulphate solution. Is there a reading on the ammeter?
In which direction is the current flowing?

7. Take the ammeter away and connect the copper and zinc plates to each other
directly using copper wire. Leave to stand for about one day.

8. After a day, remove the two plates and rinse them first with distilled water,
then with alcohol and finally with ether. Dry the plates using a hair dryer.

9. Weigh the zinc and copper plates and record their mass. Has the mass of the
plates changed from the original measurements?

Note: A voltmeter can also be used in place of the ammeter. A voltmeter will
measure the potential difference across the cell.

A

+
-salt

bridge

CuSO4(aq) ZnSO4(aq)

electron flow

ZnCu

+

Results:

During the experiment, you should have noticed the following:

• When the U-tube containing the Na2SO4 solution was absent, there was no
reading on the ammeter.

• When the U-tube was connected, a reading was recorded on the ammeter.

• After the plates had been connected directly to each other and left for a day,
there was a change in their mass. The mass of the zinc plate decreased, while
the mass of the copper plate increased.

• The direction of electron flow is from the zinc plate towards the copper plate.

Conclusions:

When a zinc sulphate solution containing a zinc plate is connected by a U-tube
to a copper sulphate solution containing a copper plate, reactions occur in both
solutions. The decrease in mass of the zinc plate suggests that the zinc metal has
been oxidised. The increase in mass of the copper plate suggests that reduction has
occurred here to produce more copper metal. This will be explained in detail below.

17.2.1 Half-cell reactions in the Zn-Cu cell

The experiment above demonstrated a zinc-copper cell. This was made up of a zinc half cell
and a copper half cell.
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Definition: Half cell
A half cell is a structure that consists of a conductive electrode surrounded by a conductive
electrolyte. For example, a zinc half cell could consist of a zinc metal plate (the electrode)
in a zinc sulphate solution (the electrolyte).

How do we explain what has just been observed in the zinc-copper cell?

• Copper plate

At the copper plate, there was an increase in mass. This means that Cu2+ ions from the
copper sulphate solution were deposited onto the plate as atoms of copper metal. The
half-reaction that takes place at the copper plate is:

Cu2+ + 2e− → Cu (Reduction half reaction)

Another shortened way to represent this copper half-cell is Cu2+/Cu.

• Zinc plate

At the zinc plate, there was a decrease in mass. This means that some of the zinc goes
into solution as Z2+ ions. The electrons remain on the zinc plate, giving it a negative
charge. The half-reaction that takes place at the zinc plate is:

Zn → Zn2+ + 2e− (Oxidation half reaction)

The shortened way to represent the zinc half-cell is Zn/Zn2+.

The overall reaction is:

Zn + Cu2+ + 2e− → Zn2+ + Cu + 2e− or, if we cancel the electrons:

Zn + Cu2+ → Zn2+ + Cu

For this electrochemical cell, the standard notation is:

Zn|Zn2+||Cu2+|Cu

where

| = a phase boundary (solid/aqueous)

|| = the salt bridge

In the notation used above, the oxidation half-reaction at the anode is written on the left, and
the reduction half-reaction at the cathode is written on the right. In the Zn-Cu electrochemical
cell, the direction of current flow in the external circuit is from the zinc electrode (where there
has been a build up of electrons) to the copper electrode.

17.2.2 Components of the Zn-Cu cell

In the zinc-copper cell, the copper and zinc plates are called the electrodes. The electrode
where oxidation occurs is called the anode, and the electrode where reduction takes place is
called the cathode. In the zinc-copper cell, the zinc plate is the anode and the copper plate is
the cathode.

Definition: Electrode
An electrode is an electrical conductor that is used to make contact with a metallic part
of a circuit. The anode is the electrode where oxidation takes place. The cathode is the
electrode where reduction takes place.
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The zinc sulphate and copper sulphate solutions are called the electrolyte solutions.

Definition: Electrolyte
An electrolyte is a substance that contains free ions and which therefore behaves as an
electrical conductor.

The U-tube also plays a very important role in the cell. In the Zn/Zn2+ half-cell, there is a build
up of positive charge because of the release of electrons through oxidation. In the Cu2+/Cu half-
cell, there is a decrease in the positive charge because electrons are gained through reduction.
This causes a movement of SO2−

4 ions into the beaker where there are too many positive ions,
in order to neutralise the solution. Without this, the flow of electrons in the outer circuit stops
completely. The U-tube is called the salt bridge. The salt bridge acts as a transfer medium
that allows ions to flow through without allowing the different solutions to mix and react.

Definition: Salt bridge
A salt bridge, in electrochemistry, is a laboratory device that is used to connect the oxidation
and reduction half-cells of a galvanic cell.

17.2.3 The Galvanic cell

In the zinc-copper cell the important thing to notice is that the chemical reactions that take place
at the two electrodes cause an electric current to flow through the outer circuit. In this type
of cell, chemical energy is converted to electrical energy. These are called galvanic cells.
The zinc-copper cell is one example of a galvanic cell. A galvanic cell (which is also sometimes
referred to as a voltaic or electrochemical cell) consists of two metals that are connected by
a salt bridge between the individual half-cells. A galvanic cell generates electricity using the
reactions that take place at these two metals, each of which has a different reaction potential.

So what is meant by the ’reaction potential’ of a substance? Every metal has a different half
reaction and different dissolving rates. When two metals with different reaction potentials are
used in a galvanic cell, a potential difference is set up between the two electrodes, and the result
is a flow of current through the wire that connects the electrodes. In the zinc-copper cell, zinc
has a higher reaction potential than copper and therefore dissolves more readily into solution.
The metal ’dissolves’ when it loses electrons to form positive metal ions. These electrons are
then transferred through the connecting wire in the outer circuit.

Definition: Galvanic cell
A galvanic (voltaic) cell is an electrochemical cell that uses a chemical reaction between
two dissimilar electrodes dipped in an electrolyte, to generate an electric current.

Interesting
Fact

teresting
Fact

It was the Italian physician and anatomist Luigi Galvani who marked the birth
of electrochemistry by making a link between chemical reactions and electricity.
In 1780, Galvani discovered that when two different metals (copper and zinc for
example) were connected together and then both touched to different parts of a
nerve of a frog leg at the same time, they made the leg contract. He called this
”animal electricity”. While many scientists accepted his ideas, another scientist,
Alessandro Volta, did not. In 1800, because of his professional disagreement over
the galvanic response that had been suggested by Luigi Galvani, Volta developed
the voltaic pile, which was very similar to the galvanic cell. It was the work of
these two men that paved the way for all electrical batteries.
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Worked Example 83: Understanding galvanic cells

Question: For the following cell:

Zn|Zn2+||Ag+|Ag

1. Give the anode and cathode half-reactions.

2. Write the overall equation for the chemical reaction.

3. Give the direction of the current in the external circuit.

Answer
Step 1 : Identify the oxidation and reduction reactions
In the standard notation format, the oxidation reaction is written on the left and the
reduction reaction on the right. So, in this cell, zinc is oxidised and silver ions are
reduced.

Step 2 : Write the two half reactions
Oxidation half-reaction:
Zn → Zn2+ + 2e−

Reduction half-reaction:
Ag+ + e− → Ag

Step 3 : Combine the half-reactions to get the overall equation.
When you combine the two half-reactions, all the reactants must go on the left side
of the equation and the products must go on the right side of the equation. The
overall equation therefore becomes:

Zn + Ag+ + e− → Zn2+ + 2e− + Ag

Note that this equation is not balanced. This will be discussed later in the chapter.

Step 4 : Determine the direction of current flow
A build up of electrons occurs where oxidation takes place. This is at the zinc
electrode. Current will therefore flow from the zinc electrode to the silver electrode.

17.2.4 Uses and applications of the galvanic cell

The principles of the galvanic cell are used to make electrical batteries. In science and tech-
nology, a battery is a device that stores chemical energy and makes it available in an electrical
form. Batteries are made of electrochemical devices such as one or more galvanic cells, fuel
cells or flow cells. Batteries have many uses including in torches, electrical appliances (long-life
alkaline batteries), digital cameras (lithium battery), hearing aids (silver-oxide battery), digital
watches (mercury battery) and military applications (thermal battery). Refer to chapter 23 for
more information on batteries.

The galvanic cell can also be used for electroplating. Electroplating occurs when an electrically
conductive object is coated with a layer of metal using electrical current. Sometimes, electroplat-
ing is used to give a metal particular properties such as corrosion protection or wear resistance.
At other times, it can be for aesthetic reasons for example in the production of jewellery. This
will be discussed in more detail later in this chapter.
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Exercise: Galvanic cells

1. The following half-reactions take place in an electrochemical cell:

Fe → Fe3+ + 3e−

Fe2+ + 2e− → Fe

(a) Which is the oxidation half-reaction?

(b) Which is the reduction half-reaction?

(c) Name one oxidising agent.

(d) Name one reducing agent.

(e) Use standard notation to represent this electrochemical cell.

2. For the following cell:

Mg|Mg2+||Mn2+|Mn

(a) Give the cathode half-reaction.

(b) Give the anode half-reaction.

(c) Give the overall equation for the electrochemical cell.

(d) What metals could be used for the electrodes in this electrochemical cell.

(e) Suggest two electrolytes for this electrochemical cell.

(f) In which direction will the current flow?

(g) Draw a simple sketch of the complete cell.

3. For the following cell:

Sn|Sn2+||Ag+|Ag

(a) Give the cathode half-reaction.

(b) Give the anode half-reaction.

(c) Give the overall equation for the electrochemical cell.

(d) Draw a simple sketch of the complete cell.

17.3 The Electrolytic cell

In section 17.2, we saw that a chemical reaction that involves a transfer of electrons, can be used
to produce an electric current. In this section, we are going to see whether the ’reverse’ process
applies. In other words, is it possible to use an electric current to force a particular chemical
reaction to occur, which would otherwise not take place? The answer is ’yes’, and the type of
cell that is used to do this, is called an electrolytic cell.

Definition: Electrolytic cell
An electrolytic cell is a type of cell that uses electricity to drive a non-spontaneous reaction.

An electrolytic cell is activated by applying an electrical potential across the anode and cathode
to force an internal chemical reaction between the ions that are in the electrolyte solution. This
process is called electrolysis.

Definition: Electrolysis
In chemistry and manufacturing, electrolysis is a method of separating bonded elements and
compounds by passing an electric current through them.
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Activity :: Demonstration : The movement of coloured ions
A piece of filter paper is soaked in an ammonia-ammonium chloride solution and

placed on a microscope slide. The filter paper is then connected to a supply of
electric current using crocodile clips and connecting wire as shown in the diagram
below. A line of copper chromate solution is placed in the centre of the filter paper.
The colour of this solution is initially green-brown.

copper chromate (green brown)

start of reaction

+ -

+ -

negative ions positive ions

after 20 minutes

+ -

+ -

The current is then switched on and allowed to run for about 20 minutes. After
this time, the central coloured band disappears and is replaced by two bands, one
yellow and the other blue, which seem to have separated out from the first band of
copper chromate.

Explanation:

• The cell that is used to supply an electric current sets up a potential difference
across the circuit, so that one of the electrodes is positive and the other is
negative.

• The chromate (CrO2−
4 ) ions in the copper chromate solution are attracted

to the positive electrode, while the Cu2+ ions are attracted to the negative
electrode.

Conclusion:
The movement of ions occurs because the electric current in the outer circuit

sets up a potential difference between the two electrodes.

Similar principles apply in the electrolytic cell, where substances that are made of ions can be
broken down into simpler substances through electrolysis.

17.3.1 The electrolysis of copper sulphate

There are a number of examples of electrolysis. The electrolysis of copper sulphate is just one.

Activity :: Demonstration : The electrolysis of copper sulphate
Two copper electrodes are placed in a solution of blue copper sulphate and are

connected to a source of electrical current as shown in the diagram below. The
current is turned on and the reaction is left for a period of time.
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+ –

+ –

positive anode negative cathode

copper electrode copper electrode

CuSO4 solution

SO2−
4 Cu2+

Observations:

• The initial blue colour of the solution remains unchanged.

• It appears that copper has been deposited on one of the electrodes but dissolved

from the other.

Explanation:

• At the negative cathode, positively charged Cu2+ ions are attracted to the
negatively charged electrode. These ions gain electrons and are reduced to
form copper metal, which is deposited on the electrode. The half-reaction that
takes place is as follows:

Cu2+(aq) + 2e− → Cu(s) (reduction half reaction)

• At the positive anode, copper metal is oxidised to form Cu2+ ions. This is
why it appears that some of the copper has dissolved from the electrode. The
half-reaction that takes place is as follows:

Cu(s) → Cu2+(aq) + 2e− (oxidation half reaction)

• The amount of copper that is deposited at one electrode is approximately the
same as the amount of copper that is dissolved from the other. The number
of Cu2+ ions in the solution therefore remains almost the same and the blue
colour of the solution is unchanged.

Conclusion:
In this demonstration, an electric current was used to split CuSO4 into its com-

ponent ions, Cu2+ and SO2−
4 . This process is called electrolysis.

17.3.2 The electrolysis of water

Water can also undergo electrolysis to form hydrogen gas and oxygen gas according to the
following reaction:

2H2O(l) → 2H2(g) + O2(g)

This reaction is very important because hydrogen gas has the potential to be used as an en-
ergy source. The electrolytic cell for this reaction consists of two electrodes (normally platinum
metal), submerged in an electrolyte and connected to a source of electric current.

The reduction half-reaction that takes place at the cathode is as follows:
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2H2O(l) + 2e− → H2(g) + 2OH−(aq)

The oxidation half-reaction that takes place at the anode is as follows:

2H2O(l) → O2(g) + 4H+(aq) + 4e−

17.3.3 A comparison of galvanic and electrolytic cells

It should be much clearer now that there are a number of differences between a galvanic and an
electrolytic cell. Some of these differences have been summarised in table 17.1.

Item Galvanic cell Electrolytic cell
Metals used for electrode Two metals with different

reaction potentials are used
as electrodes

The same metal can be
used for both the cathode
and the anode

Charge of the anode negative positive
Charge of the cathode positive negative
The electrolyte solution/s The electrolyte solutions

are kept separate from one
another, and are connected
only by a salt bridge

The cathode and anode are
in the same electrolyte

Energy changes Chemical potential energy
from chemical reactions is
converted to electrical en-
ergy

An external supply of elec-
trical energy causes a chem-
ical reaction to occur

Applications Run batteries, electroplat-
ing

Electrolysis e.g. of water,
NaCl

Table 17.1: A comparison of galvanic and electrolytic cells

Exercise: Electrolyis

1. An electrolytic cell consists of two electrodes in a silver chloride (AgCl) solution,
connected to a source of current. A current is passed through the solution and
Ag+ ions are reduced to a silver metal deposit on one of the electrodes.

(a) Give the equation for the reduction half-reaction.

(b) Give the equation for the oxidation half-reacion.

2. Electrolysis takes place in a solution of molten lead bromide (PbBr) to produce
lead atoms.

(a) Draw a simple diagram of the electrolytic cell.

(b) Give equations for the half-reactions that take place at the anode and
cathode, and include these in the diagram.

(c) On your diagram, show the direction in which current flows.

17.4 Standard Electrode Potentials

If a voltmeter is connected in the circuit of an electrochemical cell, a reading is obtained. In
other words, there is a potential difference between the two half cells. In this section, we are
going to look at this in more detail to try to understand more about the electrode potentials
of each of the electrodes in the cell. We are going to break this section down so that you build
up your understanding gradually. Make sure that you understand each subsection fully before
moving on, otherwise it might get confusing!
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17.4.1 The different reactivities of metals

All metals have different reactivities. When metals react, they give away electrons and form
positive ions. But some metals do this more easily than others. Look at the following two half
reactions:

Zn → Zn2+ + 2e−

Cu → Cu2+ + 2e−

Of these two metals, zinc is more reactive and is more likely to give away electrons to form Zn2+

ions in solution, than is copper.

17.4.2 Equilibrium reactions in half cells

Let’s think back to the Zn-Cu electrochemical cell. This cell is made up of two half cells and
the reactions that take place at each of the electrodes are as follows:

Zn → Zn2+ + 2e−

Cu2+ + 2e− → Cu

At the zinc electrode, the zinc metal loses electrons and forms Zn2+ ions. The electrons are
concentrated on the zinc metal while the Zn2+ ions are in solution. But some of the ions will be
attracted back to the negatively charged metal, will gain their electrons again and will form zinc
metal. A dynamic equilibrium is set up between the zinc metal and the Zn2+ ions in solution
when the rate at which ions are leaving the metal is equal to the rate at which they are joining

it again. The situation looks something like the diagram in figure 17.1.

-
-
-

-

--

-

- -

---
2+

2+
2+

2+

2+
Zn2+ ions in solution

zinc metal

concentration of electrons on metal surface

Figure 17.1: Zinc loses electrons to form positive ions in solution. The electrons accumulate on
the metal surface.

The equilibrium reaction is represented like this:

Zn2+(aq) + 2e− ⇔ Zn(s)

(NOTE: By convention, the ions are written on the left hand side of the equation)

In the zinc half cell, the equilibrium lies far to the left because the zinc loses electrons easily
to form Zn2+ ions. We can also say that the zinc is oxidised and that it is a strong reducing agent.

At the copper electrode, a similar process takes place. The difference though is that copper is
not as reactive as zinc and so it does not form ions as easily. This means that the build up of
electrons on the copper electrode is less (figure 17.2).

The equilibrium reaction is shown like this:
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-
-

-

-

-

--

2+
2+

Cu2+ ions in solution

copper metal

concentration of electrons on metal surface

Figure 17.2: Zinc loses electrons to form positive ions in solution. The electrons accumulate on
the metal surface.

Cu2+(aq) + 2e− ⇔ Cu(s)

The equation lies far to the right because most of the copper is present as copper metal rather
than as Cu2+ ions. In this half reaction, the Cu2+ ions are reduced.

17.4.3 Measuring electrode potential

If we put the two half cells together, a potential difference is set up in two places in the Zn-Cu
cell:

1. There is a potential difference between the metal and the solution surrounding it because
one is more negative than the other.

2. There is a potential difference between the Zn and Cu electrodes because one is more
negative than the other.

It is the potential difference (recorded as a voltage) between the two electrodes that causes
electrons, and therefore current, to flow from the more negative electrode to the less negative
electrode.

The problem though is that we cannot measure the potential difference (voltage) between a
metal and its surrounding solution in the cell. To do this, we would need to connect a voltmeter
to both the metal and the solution, which is not possible. This means we cannot measure the
exact electrode potential (EoV) of a particular metal. The electrode potential describes the
ability of a metal to give up electrons. And if the exact electrode potential of each of the
electrodes involved can’t be measured, then it is difficult to calculate the potential difference
between them. But what we can do is to try to describe the electrode potential of a metal
relative to another substance. We need to use a standard reference electrode for this.

17.4.4 The standard hydrogen electrode

Before we look at the standard hydrogen electrode, it may be useful to have some more under-
standing of the ideas behind a ’reference electrode’. Refer to the Tip box on ’Understanding the
ideas behind a reference electrode’ before you read further.

Important: Understanding the ideas behind a reference electrode

Adapted from www.chemguide.co.uk
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Let’s say that you have a device that you can use to measure heights from some distance away.
You want to use this to find out how tall a particular person is. Unfortunately, you can’t see
their feet because they are standing in long grass. Although you can’t measure their absolute
height, what you can do is to measure their height relative to the post next to them. Let’s say
that person A for example is 15 cm shorter than the height of the post. You could repeat this
for a number of other people (B and C). Person B is 30 cm shorter than the post and person C
is 10 cm taller than the post.

A

B C

You could summarise your findings as follows:

Person Height relative to post (cm)
A -15
B -30
C +10

Although you don’t know any of their absolute heights, you can rank them in order, and do some
very simple sums to work out exactly how much taller one is than another. For example, person
C is 25 cm taller than A and 40 cm taller than B.

As mentioned earlier, it is difficult to measure the absolute electrode potential of a particular
substance, but we can use a reference electrode (similar to the ’post’ in the Tip box example)
that we use to calculate relative electrode potentials for these substances. The reference elctrode
that is used is the standard hydrogen electrode (figure 17.3).

Definition: Standard hydrogen electrode

The standard hydrogen electrode is a redox electrode which forms the basis of the scale of
oxidation-reduction potentials. The actual electrode potential of the hydrogen electrode is
estimated to be 4.44 0.02 V at 250C, but its standard electrode potential is said to be zero
at all temperatures so that it can be used as for comparison with other electrodes. The
hydrogen electrode is based on the following redox half cell:

2H+(aq) + 2e− → H2(g)

A standard hydrogen electrode consists of a platinum electrode in a solution containing H+ ions.
The solution (e.g. H2SO4) that contains the H+ ions has a concentration of 1 mol.dm−3. As
the hydrogen gas bubbles over the platinum electrode, an equilibrium is set up between hydrogen
molecules and hydrogen ions in solution. The reaction is as follows:
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b

bc

bc

bc

bc

bc

[H3O+]

(1 mol.dm−3)

25 ◦CPt

H2 gas

(1 x atmosphereric pressure)

Figure 17.3: The standard hydrogen electrode

2H+(aq) + 2e− ⇔ H2(g)

The position of this equilibrium can change if you change some of the conditions (e.g. concen-
tration, temperature). It is therefore important that the conditions for the standard hydrogen
electrode are standardised as follows: pressure = 100 kPa (1atm); temperature = 298 K (250C)
and concentration = 1 mol.dm−3.

In order to use the hydrogen electrode, it needs to be attached to the electrode system that
you are investigating. For example, if you are trying to determine the electrode potential of
copper, you will need to connect the copper half cell to the hydrogen electrode; if you are trying
to determine the electrode potential of zinc, you will need to connect the zinc half cell to the
hydrogen electrode and so on. Let’s look at the examples of zinc and copper in more detail.

1. Zinc

Zinc has a greater tendency than hydrogen to form ions, so if the standard hydrogen
electrode is connected to the zinc half cell, the zinc will be relatively more negative because
the electrons that are released when zinc is oxidised will accumulate on the metal. The
equilibria on the two electrodes are as follows:

Zn2+(aq) + 2e− ⇔ Zn(s)

2H+(aq) + 2e− ⇔ H2(g)

In the zinc half-reaction, the equilibrium lies far to the left and in the hydrogen half-
reaction, the equilibrium lies far to the right. A simplified representation of the cell is
shown in figure 17.4.

The voltmeter measures the potential difference between the charge on these electrodes. In
this case, the voltmeter would read 0.76 and would show that Zn is the negative electrode
(i.e. it has a relatively higher number of electrons).

2. Copper

Copper has a lower tendency than hydrogen to form ions, so if the standard hydrogen
electrode is connected to the copper half cell, the hydrogen will be relatively more negative.
The equilibria on the two electrodes are as follows:
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V

-
-

-

-
-

---

-
-

H electrode

(less negative)

Zn electrode with electrons

Figure 17.4: When zinc is connected to the standard hydrogen electrode, relatively few electrons
build up on the platinum (hydrogen) electrode. There are lots of electrons on the zinc electrode.

Cu2+(aq) + 2e− ⇔ Cu(s)

2H+(aq) + 2e− ⇔ H2(g)

In the copper half-reaction, the equilibrium lies far to the right and in the hydrogen half-
reaction, the equilibrium lies far to the left. A simplified representation of the cell is shown
in figure 17.5.

V

-
-

-

-
-

--
-

-
-

H electrode Cu electrode

Figure 17.5: When copper is connected to the standard hydrogen electrode, relatively few elec-
trons build up on the copper electrode. There are lots of electrons on the hydrogen electrode.

The voltmeter measures the potential difference between the charge on these electrodes. In
this case, the voltmeter would read 0.34 and would show that Cu is the positive electrode
(i.e. it has a relatively lower number of electrons).

17.4.5 Standard electrode potentials

The voltages recorded earlier when zinc and copper were connected to a standard hydrogen
electrode are in fact the standard electrode potentials for these two metals. It is important
to remember that these are not absolute values, but are potentials that have been measured
relative to the potential of hydrogen if the standard hydrogen electrode is taken to be zero.

Important: Conventions and voltage sign

By convention, the hydrogen electrode is written on the left hand side of the cell. The sign of
the voltage tells you the sign of the metal electrode.
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In the examples we used earlier, zinc’s electrode potential is actually -0.76 and copper is +0.34.
So, if a metal has a negative standard electrode potential, it means it forms ions easily. The
more negative the value, the easier it is for that metal to form ions. If a metal has a positive

standard electrode potential, it means it does not form ions easily. This will be explained in more
detail below.

Luckily for us, we do not have to calculate the standard electrode potential for every metal. This
has been done already and the results are recorded in a table of standard electrode potentials
(table 17.2).

A few examples from the table are shown in table 17.3. These will be used to explain some of
the trends in the table of electrode potentials.

Refer to table 17.3 and notice the following trends:

• Metals at the top of series (e.g. Li) have more negative values. This means they ionise
easily, in other words, they release electrons easily. These metals are easily oxidised and
are therefore good reducing agents.

• Metal ions at the bottom of the table are good at picking up electrons. They are easily
reduced and are therefore good oxidising agents.

• The reducing ability (i.e. the ability to act as a reducing agent) of the metals in the table
increases as you move up in the table.

• The oxidising ability of metals increases as you move down in the table.

Worked Example 84: Using the table of Standard Electrode Potentials

Question:

The following half-reactions take place in an electrochemical cell:

Cu2+ + 2e− ⇔ Cu

Ag− + e− ⇔ Ag

1. Which of these reactions will be the oxidation half-reaction in the cell?

2. Which of these reactions will be the reduction half-reaction in the cell?

Answer

Step 5 : Determine the electrode potential for each metal

From the table of standard electrode potentials, the electrode potential for the cop-
per half-reaction is +0.34 V. The electrode potential for the silver half-reaction is
+0.80 V.

Step 6 : Use the electrode potential values to determine which metal is
oxidised and which is reduced

Both values are positive, but silver has a higher positive electrode potential than
copper. This means that silver does not form ions easily, in other words, silver is
more likely to be reduced. Copper is more likely to be oxidised and to form ions more
easily than silver. Copper is the oxidation half-reaction and silver is the reduction
half-reaction.
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Half-Reaction E0V

Li+ + e− ⇋ Li -3.04
K+ + e− ⇋ K -2.92
Ba2+ + 2e− ⇋ Ba -2.90
Ca2+ + 2e− ⇋ Ca -2.87
Na+ + e− ⇋ Na -2.71
Mg2+ + 2e− ⇋ Mg -2.37
Mn2+ + 2e− ⇋ Mn -1.18
2H2O + 2e− ⇋ H2(g) + 2OH− -0.83
Zn2+ + 2e− ⇋ Zn -0.76
Cr2+ + 2e− ⇋ Cr -0.74
Fe2+ + 2e− ⇋ Fe -0.44
Cr3+ + 3e− ⇋ Cr -0.41
Cd2+ + 2e− ⇋ Cd -0.40
Co2+ + 2e− ⇋ Co -0.28
Ni2+ + 2e− ⇋ Ni -0.25
Sn2+ + 2e− ⇋ Sn -0.14
Pb2+ + 2e− ⇋ Pb -0.13
Fe3+ + 3e− ⇋ Fe -0.04
2H+ + 2e− ⇋ H2(g) 0.00
S + 2H+ + 2e− ⇋ H2S(g) 0.14
Sn4+ + 2e− ⇋ Sn2+ 0.15
Cu2+ + e− ⇋ Cu+ 0.16

SO2+
4 + 4H+ + 2e− ⇋ SO2(g) + 2H2O 0.17

Cu2+ + 2e− ⇋ Cu 0.34
2H2O + O2 + 4e− ⇋ 4OH− 0.40
Cu+ + e− ⇋ Cu 0.52
I2 + 2e− ⇋ 2I− 0.54
O2(g) + 2H+ + 2e− ⇋ H2O2 0.68
Fe3+ + e− ⇋ Fe2+ 0.77

NO−

3 + 2H+ + e− ⇋ NO2(g) + H2O 0.78
Hg2+ + 2e− ⇋ Hg(l) 0.78
Ag+ + e− ⇋ Ag 0.80

NO−

3 + 4H+ + 3e− ⇋ NO(g) + 2H2O 0.96
Br2 + 2e− ⇋ 2Br− 1.06
O2(g) + 4H+ + 4e− ⇋ 2H2O 1.23
MnO2 + 4H+ + 2e− ⇋ Mn2+ + 2H2O 1.28

Cr2O
2−
7 + 14H+ + 6e− ⇋ 2Cr3+ + 7H2O 1.33

Cl2 + 2e− ⇋ 2Cl− 1.36
Au3+ + 3e− ⇋ Au 1.50

MnO−

4 + 8H+ + 5e− ⇋ Mn2+ + 4H2O 1.52
Co3+ + e− ⇋ Co2+ 1.82
F2 + 2e− ⇋ 2F− 2.87

Table 17.2: Standard Electrode Potentials
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Half-Reaction E0V

Li+ + e− ⇋ Li -3.04
Zn2+ + 2e− ⇋ Zn -0.76
Fe3+ + 3e− ⇋ Fe -0.04
2H+ + 2e− ⇋ H2(g) 0.00
Cu2+ + 2e− ⇋ Cu 0.34
Hg2+ + 2e− ⇋ Hg(l) 0.78
Ag+ + e− ⇋ Ag 0.80

Table 17.3: A few examples from the table of standard electrode potentials

Important: Learning to understand the question in a problem.
Before you tackle this problem, make sure you understand exactly what the question is
asking. If magnesium is able to displace silver from a solution of silver nitrate, this means
that magnesium metal will form magnesium ions and the silver ions will become silver metal.
In other words, there will now be silver metal and a solution of magnesium nitrate. This
will only happen if magnesium has a greater tendency than silver to form ions. In other
words, what the question is actually asking is whether magnesium or silver forms ions more
easily.

Worked Example 85: Using the table of Standard Electrode Potentials

Question: Is magnesium able to displace silver from a solution of silver nitrate?
Answer
Step 1 : Determine the half-reactions that would take place if magnesium
were to displace silver nitrate.
The half-reactions are as follows:
Mg2+ + 2e− ⇔ Mg
Ag+ + e− ⇔ Ag

Step 2 : Use the table of electrode potentials to see which metal forms

ions more easily.

Looking at the electrode potentials for the magnesium and silver reactions:
For the magnesium half-reaction: EoV = -2.37
For the silver half-reaction: EoV = 0.80

This means that magnesium is more easily oxidised than silver and the equi-
librium in this half-reaction lies to the left. The oxidation reaction will occur
spontaneously in magnesium. Silver is more easily reduced and the equilibrium
lies to the right in this half-reaction. It can be concluded that magnesium will
displace silver from a silver nitrate solution so that there is silver metal and
magnesium ions in the solution.

Exercise: Table of Standard Electrode Potentials

1. In your own words, explain what is meant by the ’electrode potential’ of a
metal.

2. Give the standard electrode potential for each of the following metals:

(a) magnesium
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(b) lead

(c) nickel

3. Refer to the electrode potentials in table 17.3.

(a) Which of the metals is most likely to be oxidised?

(b) Which metal is most likely to be reduced?

(c) Which metal is the strongest reducing agent?

(d) In the copper half-reaction, does the equilibrium position for the reaction
lie to the left or to the right? Explain your answer.

(e) In the mercury half-reaction, does the equilibrium position for the reaction
lie to the left or to the right? Explain your answer.

(f) If silver was added to a solution of copper sulphate, would it displace the
copper from the copper sulphate solution? Explain your answer.

4. Use the table of standard electrode potentials to put the following in order from
the strongest oxidising agent to the weakest oxidising agent.

• Cu2+

• MnO−

4

• Br2
• Zn2+

5. Look at the following half-reactions.

• Ca2+ + 2e− → Ca

• Cl2 + 2e− → 2Cl

• Fe3+ + 3e− → Fe

• I2 + 2e− → 2I−

(a) Which substance is the strongest oxidising agent?

(b) Which substance is the strongest reducing agent?

6. Which one of the substances listed below acts as the oxidising agent in the
following reaction?

3SO2 + Cr2O
2−
7 + 2H+ → 3SO2−

4 + 2Cr3+ + H2O

(a) H+

(b) Cr3+

(c) SO2

(d) Cr2O
2−
7

(IEB Paper 2, 2004)

7. If zinc is added to a solution of magnesium sulphate, will the zinc displace the
magnesium from the solution? Give a detailed explanation for your answer.

17.4.6 Combining half cells

Let’s stay with the example of the zinc and copper half cells. If we combine these cells as we
did earlier in the chapter (section 17.2), the following two equilibria exist:

Zn2+ + 2e− ⇔ Zn(E0 = −0.76V )

Cu2+ + 2e− ⇔ Cu(E0 = +0.34V )

We know from demonstrations, and also by looking at the sign of the electrode potential, that
when these two half cells are combined, zinc will be the oxidation half-reaction and copper will be
the reduction half-reaction. A voltmeter connected to this cell will show that the zinc electrode
is more negative than the copper electrode. The reading on the meter will show the potential
difference between the two half cells. This is known as the electromotive force (emf) of the
cell.
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Definition: Electromotive Force (emf)
The emf of a cell is defined as the maximum potential difference between two electrodes or
half cells in a voltaic cell. emf is the electrical driving force of the cell reaction. In other
words, the higher the emf, the stronger the reaction.

Definition: Standard emf (E0
cell)

Standard emf is the emf of a voltaic cell operating under standard conditions (i.e. 100 kPa,
concentration = 1 mol.dm−3 and temperature = 298 K). The symbol 0 denotes standard
conditions.

When we want to represent this cell, it is shown as follows:

Zn|Zn2+(1mol.dm−3)||Cu2+(1mol.dm−3)|Cu

The anode half cell (where oxidation takes place) is always written on the left. The cathode
half cell (where reduction takes place) is always written on the right.

It is important to note that the potential difference across a cell is related to the extent to which
the spontaneous cell reaction has reached equilibrium. In other words, as the reaction proceeds
and the concentration of reactants decreases and the concentration of products increases, the
reaction approaches equilibrium. When equilibrium is reached, the emf of the cell is zero and
the cell is said to be ’flat’. There is no longer a potential difference between the two half cells,
and therefore no more current will flow.

17.4.7 Uses of standard electrode potential

Standard electrode potentials have a number of different uses.

Calculating the emf of an electrochemical cell

To calculate the emf of a cell, you can use any one of the following equations:

E0
(cell) = E0 (right) - E0 (left) (’right’ refers to the electrode that is written on the right in

standard cell notation. ’Left’ refers to the half-reaction written on the left in this notation)

E0
(cell) = E0 (reduction half reaction) - E0 (oxidation half reaction)

E0
(cell) = E0 (oxidising agent) - E0 (reducing agent)

E0
(cell) = E0 (cathode) - E0 (anode)

So, for the Zn-Cu cell,

E0
(cell) = 0.34 - (-0.76)

= 0.34 + 0.76

= 1.1 V

Worked Example 86: Calculating the emf of a cell

Question: The following reaction takes place:

Cu(s) + Ag+(aq) → Cu2+(aq) + Ag(s)
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1. Represent the cell using standard notation.

2. Calculate the cell potential (emf) of the electrochemical cell.

Answer

Step 1 : Write equations for the two half reactions involved

Cu2+ + 2e− ⇔ Cu (EoV = 0.16V)

Ag+ + e− ⇔ Ag (EoV = 0.80V)

Step 2 : Determine which reaction takes place at the cathode and

which is the anode reaction

Both half-reactions have positive electrode potentials, but the silver half-reaction
has a higher positive value. In other words, silver does not form ions easily, and
this must be the reduction half-reaction. Copper is the oxidation half-reaction.
Copper is oxidised, therefore this is the anode reaction. Silver is reduced and so
this is the cathode reaction.

Step 3 : Represent the cell using standard notation

Cu|Cu2+(1mol.dm−3)||Ag+(1mol.dm−3)|Ag

Step 4 : Calculate the cell potential

E0
(cell) = E0 (cathode) - E0 (anode)

= +0.80 - (+0.34)

= +0.46 V

Worked Example 87: Calculating the emf of a cell

Question: Calculate the cell potential of the electrochemical cell in which the fol-
lowing reaction takes place, and represent the cell using standard notation.

Mg(s) + 2H+(aq) → Mg2+(aq) + H2(g)

Answer

Step 1 : Write equations for the two half reactions involved

Mg2+ + 2e− ⇔ Mg (EoV = -2.37)

2H+ + 2e− ⇔ H2 (EoV = 0.00)

Step 2 : Determine which reaction takes place at the cathode and

which is the anode reaction

From the overall equation, it is clear that magnesium is oxidised and hydrogen
ions are reduced in this reaction. Magnesium is therefore the anode reaction and
hydrogen is the cathode reaction.

Step 3 : Represent the cell using standard notation

Mg|Mg2+||H+|H2

Step 4 : Calculate the cell potential

E0
(cell) = E0 (cathode) - E0 (anode)

= 0.00 - (-2.37)

= +2.37 V
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Predicting whether a reaction will take place spontaneously

Look at the following example to help you to understand how to predict whether a reaction will
take place spontaneously or not.

In the reaction,

Pb2+(aq) + 2Br−(aq) → Br2(l) + Pb(s)

the two half reactions are as follows:

Pb2+ + 2e− ⇔ Pb (-0.13 V)

Br2 + 2e− ⇔ 2Br− (+1.06 V)

Important: Half cell reactions

You will see that the half reactions are written as they appear in the table of standard electrode
potentials. It may be useful to highlight the reacting substance in each half reaction. In this
case, the reactants are Pb2+ and Br− ions.

Look at the electrode potential for the first half reaction. The negative value shows that lead
loses electrons easily, in other words it is easily oxidised. The reaction would normally proceed
from right to left (i.e. the equilibrium lies to the left), but in the original equation, the opposite
is happening. It is the Pb2+ ions that are being reduced to lead. This part of the reaction is
therefore not spontaneous. The positive electrode potential value for the bromine half-reaction
shows that bromine is more easily reduced, in other words the equilibrium lies to the right. The
spontaneous reaction proceeds from left to right. This is not what is happening in the original
equation and therefore this is also not spontaneous. Overall it is clear then that the reaction will
not proceed spontaneously.

Worked Example 88: Predicting whether a reaction is spontaneous

Question: Will copper react with dilute sulfuric acid (H2SO4)? You are given the
following half reactions:

Cu2+(aq) + 2e− ⇔ Cu(s) (E0 = +0.34 V)
2H+(aq) + 2e− ⇔ H2(g) (E0 = 0 V)

Answer
Step 5 : For each reaction, look at the electrode potentials and decide in
which direction the equilibrium lies
In the first half reaction, the positive electrode potential means that copper does
not lose electrons easily, in other words it is more easily reduced and the equilibrium
position lies to the right. Another way of saying this is that the spontaneous reaction
is the one that proceeds from left to right, when copper ions are reduced to copper
metal.
In the second half reaction, the spontaneous reaction is from right to left.
Step 6 : Compare the equilibrium positions to the original reaction
What you should notice is that in the original reaction, the reactants are copper
(Cu) and sulfuric acid (2H+). During the reaction, the copper is oxidised and the
hydrogen ions are reduced. But from an earlier step, we know that neither of these
half reactions will proceed spontaneously in the direction indicated by the original
reaction. The reaction is therefore not spontaneous.
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Important:

A second method for predicting whether a reaction is spontaneous

Another way of predicting whether a reaction occurs spontaneously, is to look at the sign of the
emf value for the cell. If the emf is positive then the reaction is spontaneous. If the emf is
negative, then the reaction is not spontaneous.

Balancing redox reactions

We will look at this in more detail in the next section.

Exercise: Predicting whether a reaction will take place spontaneously

1. Predict whether the following reaction will take place spontaneously or not.
Show all your working.

2Ag(s) + Cu2+(aq) → Cu(s) + 2Ag+(aq)

2. Zinc metal reacts with an acid, H+ (aq) to produce hydrogen gas.

(a) Write an equation for the reaction, using the table of electrode potentials.

(b) Predict whether the reaction will take place spontaneously. Show your
working.

3. Four beakers are set up, each of which contains one of the following solutions:

(a) Mg(NO3)2

(b) Ba(NO3)2

(c) Cu(NO3)2

(d) Al(NO3)2

Iron is added to each of the beakers. In which beaker will a spontaneous
reaction take place?

4. Which one of the following solutions can be stored in an aluminium container?

(a) Cu(SO)4

(b) Zn(SO)4

(c) NaCl

(d) Pb(NO3)2

Exercise: Electrochemical cells and standard electrode potentials

1. An electrochemical cell is made up of a copper electrode in contact with a
copper nitrate solution and an electrode made of an unknown metal M in
contact with a solution of MNO3. A salt bridge containing a KNO3 solution
joins the two half cells. A voltmeter is connected across the electrodes. Under
standard conditions the reading on the voltmeter is 0.46V.
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V

Cu Salt bridge (KNO3)

Cu(NO3)2 (aq) MNO3(aq)

M

The reaction in the copper half cell is given by:

Cu → Cu2+ + 2e−

(a) Write down the standard conditions which apply to this electrochemical
cell.

(b) Identify the metal M. Show calculations.

(c) Use the standard electrode potentials to write down equations for the:

i. cathode half-reaction

ii. anode half-reaction

iii. overall cell reaction

(d) What is the purpose of the salt bridge?

(e) Explain why a KCl solution would not be suitable for use in the salt bridge
in this cell.

(IEB Paper 2, 2004)

2. Calculate the emf for each of the following standard electrochemical cells:

(a)
Mg|Mg2+||H+|H2

(b)
Fe|Fe3+||Fe2+|Fe

(c)
Cr|Cr2+||Cu2+|Cu

(d)
Pb|Pb2+||Hg2+|Hg

3. Given the following two half-reactions:

• Fe3+(aq) + e− ⇔ Fe2+(aq)

• MnO−

4 (aq) + 8H+(aq) + 5e− ⇔ Mn2+(aq) + 4H2O(l)

(a) Give the standard electrode potential for each half-reaction.

(b) Which reaction takes place at the cathode and which reaction takes place
at the anode?

(c) Represent the electrochemical cell using standard notation.

(d) Calculate the emf of the cell

17.5 Balancing redox reactions

Half reactions can be used to balance redox reactions. We are going to use some worked examples
to help explain the method.
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Worked Example 89: Balancing redox reactions

Question: Magnesium reduces copper (II) oxide to copper. In the process, magne-
sium is oxidised to magnesium ions. Write a balanced equation for this reaction.

Answer

Step 1 : Write down the unbalanced oxidation half reaction.

Mg → Mg2+

Step 2 : Balance the number of atoms on both sides of the equation.

You are allowed to add hydrogen ions (H+) and water molecules if the reaction takes
place in an acid medium. If the reaction takes place in a basic medium, you can add
either hydroxide ions (OH−) or water molecules. In this case, there is one magne-
sium atom on the left and one on the right, so no additional atoms need to be added.

Step 3 : Once the atoms are balanced, check that the charges balance.

Charges can be balanced by adding electrons to either side. The charge on the left
of the equation is 0, but the charge on the right is +2. Therefore, two electrons
must be added to the right hand side so that the charges balance. The half reaction
is now:

Mg → Mg2+ + 2e−

Step 4 : Repeat the above steps, but this time using the reduction half
reaction.

The reduction half reaction is:

Cu2+ → Cu

The atoms balance but the charges don’t. Two electrons must be added to the right
hand side.

Cu2+ + 2e− → Cu

Step 5 : Multiply each half reaction by a suitable number so that the number
of electrons released in the oxidation half reaction is made equal to the
number of electrons that are accepted in the reduction half reaction.

No multiplication is needed because there are two electrons on either side.

Step 6 : Combine the two half reactions to get a final equation for the overall
reaction.

Mg + Cu2+ + 2e− → Mg2+ + Cu + 2e− (The electrons on either side cancel
and you get...)

Mg + Cu2+ → Mg2+ + Cu

Step 7 : Do a final check to make sure that the equation is balanced

In this case, it is.
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Worked Example 90: Balancing redox reactions

Question: Chlorine gas oxidises Fe(II) ions to Fe(III) ions. In the process, chlorine
is reduced to chloride ions. Write a balanced equation for this reaction.

Answer
Step 1 : Write down the oxidation half reaction.

Fe2+ → Fe3+

Step 2 : Balance the number of atoms on both sides of the equation.
There is one iron atom on the left and one on the right, so no additional atoms need
to be added.

Step 3 : Once the atoms are balanced, check that the charges balance.
The charge on the left of the equation is +2, but the charge on the right is +3.
Therefore, one electron must be added to the right hand side so that the charges
balance. The half reaction is now:

Fe2+ → Fe3+ + e−

Step 4 : Repeat the above steps, but this time using the reduction half
reaction.
The reduction half reaction is:

Cl2 → Cl−

The atoms don’t balance, so we need to multiply the right hand side by two to fix
this. Two electrons must be added to the left hand side to balance the charges.

Cl2 + 2e− → 2Cl−

Step 5 : Multiply each half reaction by a suitable number so that the number
of electrons released in the oxidation half reaction is made equal to the
number of electrons that are accepted in the reduction half reaction.
We need to multiply the oxidation half reaction by two so that the number of electrons
on either side are balanced. This gives:

2Fe2+ → 2Fe3+ + 2e−

Step 6 : Combine the two half reactions to get a final equation for the overall
reaction.

2Fe2+ + Cl2 → 2Fe3+ + 2Cl−

Step 7 : Do a final check to make sure that the equation is balanced
The equation is balanced.

Worked Example 91: Balancing redox reactions in an acid medium

Question: The following reaction takes place in an acid medium:

Cr2O
2−
7 + H2S → Cr3+ + S
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Write a balanced equation for this reaction.

Answer
Step 1 : Write down the oxidation half reaction.

Cr2O
2−
7 → Cr3+

Step 2 : Balance the number of atoms on both sides of the equation.
We need to multiply the right side by two so that the number of Cr atoms will
balance. To balance the oxygen atoms, we will need to add water molecules to the
right hand side.

Cr2O
2−
7 → 2Cr3+ + 7H2O

Now the oxygen atoms balance but the hydrogens don’t. Because the reaction takes
place in an acid medium, we can add hydrogen ions to the left side.

Cr2O
2−
7 + 14H+ → 2Cr3+ + 7H2O

Step 3 : Once the atoms are balanced, check that the charges balance.
The charge on the left of the equation is (-2+14) = +12, but the charge on the
right is +6. Therefore, six electrons must be added to the left hand side so that the
charges balance. The half reaction is now:

Cr2O
2−
7 + 14H+ + 6e− → 2Cr3+ + 7H2O

Step 4 : Repeat the above steps, but this time using the reduction half
reaction.
The reduction half reaction after the charges have been balanced is:

S2− → S + 2e−

Step 5 : Multiply each half reaction by a suitable number so that the number
of electrons released in the oxidation half reaction is made equal to the
number of electrons that are accepted in the reduction half reaction.
We need to multiply the reduction half reaction by three so that the number of
electrons on either side are balanced. This gives:

3S2− → 3S + 6e−

Step 6 : Combine the two half reactions to get a final equation for the overall
reaction.

Cr2O
2−
7 + 14H+ + 3S2− → 3S + 2Cr3+ + 7H2O

Step 7 : Do a final check to make sure that the equation is balanced

Worked Example 92: Balancing redox reactions in an alkaline medium

Question: If ammonia solution is added to a solution that contains cobalt(II) ions, a
complex ion is formed, called the hexaaminecobalt(II) ion (Co(NH3)

2+
6 ). In a chem-

ical reaction with hydrogen peroxide solution, hexaaminecobalt ions are oxidised by
hydrogen peroxide solution to the hexaaminecobalt(III) ion Co(NH3)

3+
6 . Write a

balanced equation for this reaction.

Answer
Step 1 : Write down the oxidation half reaction
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Co(NH3)
2+
6 → Co(NH3)

3+
6

Step 2 : Balance the number of atoms on both sides of the equation.
The number of atoms are the same on both sides.

Step 3 : Once the atoms are balanced, check that the charges balance.
The charge on the left of the equation is +2, but the charge on the right is +3.
One elctron must be added to the right hand side to balance the charges in the
equation.The half reaction is now:

Co(NH3)
2+
6 → Co(NH3)

3+
6 + e−

Step 4 : Repeat the above steps, but this time using the reduction half
reaction.
Although you don’t actually know what product is formed when hydrogen peroxide
is reduced, the most logical product is OH−. The reduction half reaction is:

H2O2 → OH−

After the atoms and charges have been balanced, the final equation for the reduction
half reaction is:

H2O2 + 2e− → 2OH−

Step 5 : Multiply each half reaction by a suitable number so that the number
of electrons released in the oxidation half reaction is made equal to the
number of electrons that are accepted in the reduction half reaction.
We need to multiply the oxidation half reaction by two so that the number of electrons
on both sides are balanced. This gives:

2Co(NH3)
2+
6 → 2Co(NH3)

3+
6 + 2e−

Step 6 : Combine the two half reactions to get a final equation for the overall
reaction.

2Co(NH3)
2+
6 + H2O2 → 2Co(NH3)

3+
6 + 2OH−

Step 7 : Do a final check to make sure that the equation is balanced

Exercise: Balancing redox reactions

1. Balance the following equations.

(a) HNO3 + PbS → PbSO4 + NO + H2O

(b) NaI + Fe2(SO4)3 → I2 + FeSO4 + Na2SO4

2. Manganate(VII) ions (MnO−

4 ) oxidise hydrogen peroxide (H2O2) to oxygen
gas. The reaction is done in an acid medium. During the reaction, the man-
ganate(VII) ions are reduced to manganese(II) ions (Mn2+). Write a balanced
equation for the reaction.

3. Chlorine gas is prepared in the laboratory by adding concentrated hydrochloric
acid to manganese dioxide powder. The mixture is carefully heated.

(a) Write down a balanced equation for the reaction which takes place.

(b) Using standard electrode potentials, show by calculations why this mixture
needs to be heated.

(c) Besides chlorine gas which is formed during the reaction, hydrogen chloride
gas is given off when the conentrated hydrochloric acid is heated. Explain
why the hydrogen chloride gas is removed from the gas mixture when the
gas is bubbled through water.
(IEB Paper 2, 2004)

346



CHAPTER 17. ELECTROCHEMICAL REACTIONS - GRADE 12 17.6

4. The following equation can be deduced from the table of standard electrode
potentials:

2Cr2O
2−
7 (aq) + 16H+(aq) → 4Cr3+(aq) + 3O2(g) + 8H2O(l) (E0 =

+0.10V)

This equation implies that an acidified solution of aqueous potassium dichro-
mate (orange) should react to form Cr3+ (green). Yet aqueous laboratory
solutions of potassium dichromate remain orange for years. Which ONE of the
following best explains this?

(a) Laboratory solutions of aqueous potassium dichromate are not acidified

(b) The E0 value for this reaction is only +0.10V

(c) The activation energy is too low

(d) The reaction is non-spontaneous

(IEB Paper 2, 2002)

5. Sulfur dioxide gas can be prepared in the laboratory by heating a mixture of
copper turnings and concentrated sulfuric acid in a suitable flask.

(a) Derive a balanced ionic equation for this reaction using the half-reactions
that take place.

(b) Give the E0 value for the overall reaction.

(c) Explain why it is necessary to heat the reaction mixture.

(d) The sulfur dioxide gas is now bubbled through an aqueous solution of
potassium dichromate. Describe and explain what changes occur during
this process.

(IEB Paper 2, 2002)

17.6 Applications of electrochemistry

Electrochemistry has a number of different uses, particularly in industry. We are going to look
at a few examples.

17.6.1 Electroplating

Electroplating is the process of using electrical current to coat an electrically conductive object
with a thin layer of metal. Mostly, this application is used to deposit a layer of metal that has
some desired property (e.g. abrasion and wear resistance, corrosion protection, improvement of
aesthetic qualities etc.) onto a surface that doesn’t have that property. Electro-refining (also
sometimes called electrowinning is electroplating on a large scale. Electrochemical reactions are
used to deposit pure metals from their ores. One example is the electrorefining of copper.

Copper plays a major role in the electrical reticulation industry as it is very conductive and is
used in electric cables. One of the problems though is that copper must be pure if it is to be
an effective current carrier. One of the methods used to purify copper, is electro-winning. The
copper electro-winning process is as follows:

1. Bars of crude (impure) copper containing other metallic impurities is placed on the anodes.

2. The cathodes are made up of pure copper with few impurities.

3. The electrolyte is a solution of aqueous CuSO4 and H2SO4.
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4. When current passes through the cell, electrolysis takes place. The impure copper anode
dissolves to form Cu2+ ions in solution. These positive ions are attracted to the negative
cathode, where reduction takes place to produce pure copper metal. The reactions that
take place are as follows:

At the anode:
Cu(s) → Cu2+(aq) + 2e−

At the cathode:
Cu+2(aq) + 2e− → Cu(s) (> 99%purity)

5. The other metal impurities (Zn, Au, Ag, Fe and Pb) do not dissolve and form a solid
sludge at the bottom of the tank or remain in solution in the electrolyte.

+ –

+ –

positive anode negative cathode

impure copper electrode pure copper electrode

Cu2+

Figure 17.6: A simplified diagram to illustrate what happens during the electrowinning of copper

17.6.2 The production of chlorine

Electrolysis can also be used to produce chlorine gas from brine/seawater (NaCl). This is some-
times referred to as the ’Chlor-alkali’ process. The reactions that take place are as follows:

At the anode the reaction is:

2Cl− → Cl2(g) + 2e−

whereas at the cathode, the following happens:

2Na+ + 2H2O + 2e− → 2Na+ + 2OH− + H2

The overall reaction is:

2Na+ + 2H2O + 2Cl− → 2Na+ + 2OH− + H2 + Cl2

Chlorine is a very important chemical. It is used as a bleaching agent, a disinfectant, in solvents,
pharmaceuticals, dyes and even plastics such as polyvinlychloride (PVC).
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+ –

+ –

positive anode negative cathode

electrode electrode

NaCl solution

Cl− Na+

Figure 17.7: The electrolysis of sodium chloride

17.6.3 Extraction of aluminium

Aluminum metal is a commonly used metal in industry where its properties of being both light
and strong can be utilized. It is also used in the manufacture of products such as aeroplanes
and motor cars. The metal is present in deposits of bauxite which is a mixture of silicas, iron
oxides and hydrated alumina (Al2O3 x H2O).

Electrolysis can be used to extract aluminum from bauxite. The process described below produces
99% pure aluminum:

1. Aluminum is melted along with cryolite (Na3AlF6) which acts as the electrolyte. Cryolite
helps to lower the melting point and dissolve the ore.

2. The anode carbon rods provide sites for the oxidation of O2− and F− ions. Oxygen and
flourine gas are given off at the anodes and also lead to anode consumption.

3. At the cathode cell lining, the Al3+ ions are reduced and metal aluminum deposits on the
lining.

4. The AlF 3−
6 electrolyte is stable and remains in its molten state.

The basic electrolytic reactions involved are as follows: At the cathode:

Al+3 + 3e− → Al(s) (99%purity)

At the anode:

2O2− → O2(g) + 4e−

The overall reaction is as follows:

2Al2O3 → 4Al + 3O2

The only problem with this process is that the reaction is endothermic and large amounts of
electricity are needed to drive the reaction. The process is therefore very expensive.

17.7 Summary

• An electrochemical reaction is one where either a chemical reaction produces an external
voltage, or where an external voltage causes a chemical reaction to take place.
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• In a galvanic cell a chemical reaction produces a current in the external circuit. An
example is the zinc-copper cell.

• A galvanic cell has a number of components. It consists of two electrodes, each of
which is placed in a separate beaker in an electrolyte solution. The two electrolytes are
connected by a salt bridge. The electrodes are connected two each other by an external
circuit wire.

• One of the electrodes is the anode, where oxidation takes place. The cathode is the
electrode where reduction takes place.

• In a galvanic cell, the build up of electrons at the anode sets up a potential difference
between the two electrodes, and this causes a current to flow in the external circuit.

• A galvanic cell is therefore an electrochemical cell that uses a chemical reaction between
two dissimilar electrodes dipped in an electrolyte to generate an electric current.

• The standard notation for a galvanic cell such as the zinc-copper cell is as follows:

Zn|Zn2+||Cu2+|Cu

where

| = a phase boundary (solid/aqueous)

|| = the salt bridge

• The galvanic cell is used in batteries and in electroplating.

• An electrolytic cell is an electrochemical cell that uses electricity to drive a non-spontaneous
reaction. In an electrolytic cell, electrolysis occurs, which is a process of separating ele-
ments and compounds using an electric current.

• One example of an electrolytic cell is the electrolysis of copper sulphate to produce copper
and sulphate ions.

• Different metals have different reaction potentials. The reaction potential of metals (in
other words, their ability to ionise), is recorded in a standard table of electrode potential.
The more negative the value, the greater the tendency of the metal to be oxidised. The
more positive the value, the greater the tendency of the metal to be reduced.

• The values on the standard table of electrode potentials are measured relative to the
standard hydrogen electrode.

• The emf of a cell can be calculated using one of the following equations:

E0
(cell) = E0 (right) - E0 (left)

E0
(cell) = E0 (reduction half reaction) - E0 (oxidation half reaction)

E0
(cell) = E0 (oxidising agent) - E0 (reducing agent)

E0
(cell) = E0 (cathode) - E0 (anode)

• It is possible to predict whether a reaction is spontaneous or not, either by looking at the
sign of the cell’s emf or by comparing the electrode potentials of the two half cells.

• It is possible to balance redox equations using the half-reactions that take place.

• There are a number of important applications of electrochemistry. These include elec-
troplating, the production of chlorine and the extraction of aluminium.

Exercise: Summary exercise
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1. For each of the following, say whether the statement is true or false. If it is
false, re-write the statement correctly.

(a) The anode in an electrolytic cell has a negative charge.

(b) The reaction 2KClO3 → 2KCl + 3O2 is an example of a redox reaction.

(c) Lead is a stronger oxidising agent than nickel.

2. For each of the following questions, choose the one correct answer.

(a) Which one of the following reactions is a redox reaction?

i. HCl + NaOH → NaCl + H2O

ii. AgNO3 + NaI → AgI + NaNO3

iii. 2FeCl3 + 2H2O + SO2 → H2SO4 + 2HCl + 2FeCl2

iv. BaCl2 + MgSO4 → MgCl2 + BaSO4

(IEB Paper 2, 2003)

(b) Consider the reaction represented by the following equation:
Br2(l) + 2I−aq → 2Br−aq + I2(s)

Which one of the following statements about this reaction is correct?

i. bromine is oxidised

ii. bromine acts as a reducing agent

iii. the iodide ions are oxidised

iv. iodine acts as a reducing agent

(IEB Paper 2, 2002)

(c) The following equations represent two hypothetical half-reactions:
X2 + 2e− ⇔ 2X− (+1.09 V) and
Y + + e− ⇔ Y (-2.80 V)
Which one of the following substances from these half-reactions has the
greatest tendency to donate electrons?

i. X−

ii. X2

iii. Y

iv. Y+

(d) Which one of the following redox reactions will not occur spontaneously
at room temperature?

i. Mn + Cu2+ → Mn2+ + Cu

ii. Zn + SO2−
4 + 4H+ → Zn2+ + SO2 + 2H2O

iii. Fe3+ + 3NO2 + 3H2O → Fe + 3NO−

3 + 6H+

iv. 5H2S + 2MnO−

4 + 6H+ → 5S + 2Mn2+ + 8H2O

(e) Which statement is CORRECT for a Zn-Cu galvanic cell that operates
under standard conditions?

i. The concentration of the Zn2+ ions in the zinc half-cell gradually de-
creases.

ii. The concentration of the Cu2+ ions in the copper half-cell gradually
increases.

iii. Negative ions migrate from the zinc half-cell to the copper half-cell.

iv. The intensity of the colour of the electrolyte in the copper half-cell
gradually decreases.

(DoE Exemplar Paper 2, 2008)

3. In order to investigate the rate at which a reaction proceeds, a learner places a
beaker containing concentrated nitric acid on a sensitive balance. A few pieces
of copper metal are dropped into the nitric acid.

(a) Use the relevant half-reactions from the table of Standard Reduction Po-
tentials to derive the balanced nett ionic equation for the reaction that
takes place in the beaker.

(b) What chemical property of nitric acid is illustrated by this reaction?

(c) List three observations that this learner would make during the investiga-
tion.
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(IEB Paper 2, 2005)

4. The following reaction takes place in an electrochemical cell:

Cu(s) + 2AgNO3(aq) → Cu(NO3)2(aq) + 2Ag(s)

(a) Give an equation for the oxidation half reaction.

(b) Which metal is used as the anode?

(c) Determine the emf of the cell under standard conditions.

(IEB Paper 2, 2003)

5. The nickel-cadmium (NiCad) battery is small and light and is made in a sealed
unit. It is used in portable appliances such as calculators and electric razors.
The following two half reactions occur when electrical energy is produced by
the cell.

Half reaction 1: Cd(s) + 2OH−(aq) → Cd(OH)2(s) + 2e−

Half reaction 2: NiO(OH)(s) + H2O(l) + e− → Ni(OH)2(s) + OH−(aq)

(a) Which half reaction (1 or 2) occurs at the anode? Give a reason for your
answer.

(b) Which substance is oxidised?

(c) Derive a balanced ionic equation for the overall cell reaction for the dis-
charging process.

(d) Use your result above to state in which direction the cell reaction will
proceed (forward or reverse) when the cell is being charged.

(IEB Paper 2, 2001)

6. An electrochemical cell is constructed by placing a lead rod in a porous pot
containing a solution of lead nitrate (see sketch). The porous pot is then placed
in a large aluminium container filled with a solution of aluminium sulphate. The
lead rod is then connected to the aluminium container by a copper wire and
voltmeter as shown.

V

copper wire

aluminium containerPb(NO3)2
(aq)

Al2(SO4)3 (aq)

porous pot

lead rod

(a) Define the term reduction.

(b) In which direction do electrons flow in the copper wire? (Al to Pb or Pb
to Al)

(c) Write balanced equations for the reactions that take place at...

i. the anode

ii. the cathode

(d) Write a balanced nett ionic equation for the reaction which takes place in
this cell.

(e) What are the two functions of the porous pot?

(f) Calculate the emf of this cell under standard conditions.

(IEB Paper 2, 2005)
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