FHSST Authors

The Free High School Science Texts: Textbooks for High School Students Studying the Sciences
Chemistry
Grades 10-12

Version 0
November 9, 2008

Copyright 2007 "Free High School Science Texts"
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no FrontCover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

STOP!!!!

Did you notice the FREEDOMS we've granted you?

Our copyright license is different! It grants freedoms

 rather than just imposing restrictions like all those other textbooks you probably own or use.- We know people copy textbooks illegally but we would LOVE it if you copied our's - go ahead copy to your hearts content, legally!
- Publishers' revenue is generated by controlling the market, we don't want any money, go ahead, distribute our books far and wide - we DARE you!
- Ever wanted to change your textbook? Of course you have! Go ahead, change ours, make your own version, get your friends together, rip it apart and put it back together the way you like it. That's what we really want!
- Copy, modify, adapt, enhance, share, critique, adore, and contextualise. Do it all, do it with your colleagues, your friends, or alone but get involved! Together we can overcome the challenges our complex and diverse country presents.
- So what is the catch? The only thing you can't do is take this book, make a few changes and then tell others that they can't do the same with your changes. It's share and share-alike and we know you'll agree that is only fair.
- These books were written by volunteers who want to help support education, who want the facts to be freely available for teachers to copy, adapt and re-use. Thousands of hours went into making them and they are a gift to everyone in the education community.

FHSST Core Team

Mark Horner ; Samuel Halliday ; Sarah Blyth ; Rory Adams ; Spencer Wheaton

FHSST Editors

Jaynie Padayachee ; Joanne Boulle ; Diana Mulcahy ; Annette Nell ; René Toerien ; Donovan
Whitfield

FHSST Contributors

Rory Adams ; Prashant Arora; Richard Baxter ; Dr. Sarah Blyth ; Sebastian Bodenstein ; Graeme Broster ; Richard Case ; Brett Cocks ; Tim Crombie ; Dr. Anne Dabrowski ; Laura Daniels ; Sean Dobbs ; Fernando Durrell ; Dr. Dan Dwyer ; Frans van Eeden ; Giovanni Franzoni ; Ingrid von Glehn ; Tamara von Glehn ; Lindsay Glesener ; Dr. Vanessa Godfrey ; Dr. Johan Gonzalez ; Hemant Gopal ; Umeshree Govender ; Heather Gray ; Lynn Greeff ; Dr. Tom Gutierrez ; Brooke Haag ; Kate Hadley ; Dr. Sam Halliday ; Asheena Hanuman ; Neil Hart ; Nicholas Hatcher ; Dr. Mark Horner ; Robert Hovden ; Mfandaidza Hove ; Jennifer Hsieh ; Clare Johnson ; Luke Jordan ; Tana Joseph ; Dr. Jennifer Klay ; Lara Kruger ; Sihle Kubheka ; Andrew Kubik ; Dr. Marco van Leeuwen ; Dr. Anton Machacek; Dr. Komal Maheshwari ; Kosma von Maltitz ; Nicole Masureik ; John Mathew ; JoEllen McBride ; Nikolai Meures ; Riana Meyer ; Jenny Miller ; Abdul Mirza ; Asogan Moodaly ; Jothi Moodley ; Nolene Naidu ; Tyrone Negus ; Thomas O'Donnell ; Dr. Markus Oldenburg ; Dr. Jaynie Padayachee ; Nicolette Pekeur ; Sirika Pillay ; Jacques Plaut ; Andrea Prinsloo ; Joseph Raimondo ; Sanya Rajani ; Prof. Sergey Rakityansky ; Alastair Ramlakan ; Razvan Remsing ; Max Richter ; Sean Riddle ; Evan Robinson ; Dr. Andrew Rose ; Bianca Ruddy ; Katie Russell ; Duncan Scott ; Helen Seals ; Ian Sherratt ; Roger Sieloff ; Bradley Smith ; Greg Solomon; Mike Stringer ; Shen Tian ; Robert Torregrosa ; Jimmy Tseng ; Helen Waugh ; Dr. Dawn Webber ; Michelle Wen ; Dr. Alexander Wetzler ; Dr. Spencer Wheaton ; Vivian White ; Dr. Gerald Wigger ; Harry Wiggins ; Wendy Williams ; Julie Wilson ; Andrew Wood ; Emma Wormauld ; Sahal Yacoob ; Jean Youssef

Contributors and editors have made a sincere effort to produce an accurate and useful resource. Should you have suggestions, find mistakes or be prepared to donate material for inclusion, please don't hesitate to contact us. We intend to work with all who are willing to help make this a continuously evolving resource!
www.fhsst.org

Contents

I Introduction 1
II Matter and Materials 3
1 Classification of Matter - Grade 10 5
1.1 Mixtures 5
1.1.1 Heterogeneous mixtures 6
1.1.2 Homogeneous mixtures 6
1.1.3 Separating mixtures 7
1.2 Pure Substances: Elements and Compounds 9
1.2.1 Elements 9
1.2.2 Compounds 9
1.3 Giving names and formulae to substances 10
1.4 Metals, Semi-metals and Non-metals 13
1.4.1 Metals 13
1.4.2 Non-metals 14
1.4.3 Semi-metals 14
1.5 Electrical conductors, semi-conductors and insulators 14
1.6 Thermal Conductors and Insulators 15
1.7 Magnetic and Non-magnetic Materials 17
1.8 Summary 18
2 What are the objects around us made of? - Grade 10 21
2.1 Introduction: The atom as the building block of matter 21
2.2 Molecules 21
2.2.1 Representing molecules 21
2.3 Intramolecular and intermolecular forces 25
2.4 The Kinetic Theory of Matter 26
2.5 The Properties of Matter 28
2.6 Summary 31
3 The Atom - Grade 10 35
3.1 Models of the Atom 35
3.1.1 The Plum Pudding Model 35
3.1.2 Rutherford's model of the atom 36
3.1.3 The Bohr Model 37
3.2 How big is an atom? 38
3.2.1 How heavy is an atom? 38
3.2.2 How big is an atom? 38
3.3 Atomic structure 38
3.3.1 The Electron 39
3.3.2 The Nucleus 39
3.4 Atomic number and atomic mass number 40
3.5 Isotopes 42
3.5.1 What is an isotope? 42
3.5.2 Relative atomic mass 45
3.6 Energy quantisation and electron configuration 46
3.6.1 The energy of electrons 46
3.6.2 Energy quantisation and line emission spectra 47
3.6.3 Electron configuration 47
3.6.4 Core and valence electrons 51
3.6.5 The importance of understanding electron configuration 51
3.7 Ionisation Energy and the Periodic Table 53
3.7.1 Ions 53
3.7.2 Ionisation Energy 55
3.8 The Arrangement of Atoms in the Periodic Table 56
3.8.1 Groups in the periodic table 56
3.8.2 Periods in the periodic table 58
3.9 Summary 59
4 Atomic Combinations - Grade 11 63
4.1 Why do atoms bond? 63
4.2 Energy and bonding 63
4.3 What happens when atoms bond? 65
4.4 Covalent Bonding 65
4.4.1 The nature of the covalent bond 65
4.5 Lewis notation and molecular structure 69
4.6 Electronegativity 72
4.6.1 Non-polar and polar covalent bonds 73
4.6.2 Polar molecules 73
4.7 Ionic Bonding 74
4.7.1 The nature of the ionic bond 74
4.7.2 The crystal lattice structure of ionic compounds 76
4.7.3 Properties of Ionic Compounds 76
4.8 Metallic bonds 76
4.8.1 The nature of the metallic bond 76
4.8.2 The properties of metals 77
4.9 Writing chemical formulae 78
4.9.1 The formulae of covalent compounds 78
4.9.2 The formulae of ionic compounds 80
4.10 The Shape of Molecules 82
4.10.1 Valence Shell Electron Pair Repulsion (VSEPR) theory 82
4.10.2 Determining the shape of a molecule 82
4.11 Oxidation numbers 85
4.12 Summary 88
5 Intermolecular Forces - Grade 11 91
5.1 Types of Intermolecular Forces 91
5.2 Understanding intermolecular forces 94
5.3 Intermolecular forces in liquids 96
5.4 Summary 97
6 Solutions and solubility - Grade 11 101
6.1 Types of solutions 101
6.2 Forces and solutions 102
6.3 Solubility 103
6.4 Summary 106
7 Atomic Nuclei - Grade 11 107
7.1 Nuclear structure and stability 107
7.2 The Discovery of Radiation 107
7.3 Radioactivity and Types of Radiation 108
7.3.1 Alpha (α) particles and alpha decay 109
7.3.2 Beta (β) particles and beta decay 109
7.3.3 Gamma (γ) rays and gamma decay 110
7.4 Sources of radiation 112
7.4.1 Natural background radiation 112
7.4.2 Man-made sources of radiation 113
7.5 The 'half-life' of an element 113
7.6 The Dangers of Radiation 116
7.7 The Uses of Radiation 117
7.8 Nuclear Fission 118
7.8.1 The Atomic bomb - an abuse of nuclear fission 119
7.8.2 Nuclear power - harnessing energy 120
7.9 Nuclear Fusion 120
7.10 Nucleosynthesis 121
7.10.1 Age of Nucleosynthesis ($225 \mathrm{~s}-10^{3} \mathrm{~s}$) 121
7.10.2 Age of lons $\left(10^{3} \mathrm{~s}-10^{13} \mathrm{~s}\right)$ 122
7.10.3 Age of Atoms ($10^{13} \mathrm{~s}-10^{15} \mathrm{~s}$) 122
7.10.4 Age of Stars and Galaxies (the universe today) 122
7.11 Summary 122
8 Thermal Properties and Ideal Gases - Grade 11 125
8.1 A review of the kinetic theory of matter 125
8.2 Boyle's Law: Pressure and volume of an enclosed gas 126
8.3 Charles's Law: Volume and Temperature of an enclosed gas 132
8.4 The relationship between temperature and pressure 136
8.5 The general gas equation 137
8.6 The ideal gas equation 140
8.7 Molar volume of gases 145
8.8 Ideal gases and non-ideal gas behaviour 146
8.9 Summary 147
9 Organic Molecules - Grade 12 151
9.1 What is organic chemistry? 151
9.2 Sources of carbon 151
9.3 Unique properties of carbon 152
9.4 Representing organic compounds 152
9.4.1 Molecular formula 152
9.4.2 Structural formula 153
9.4.3 Condensed structural formula 153
9.5 Isomerism in organic compounds 154
9.6 Functional groups 155
9.7 The Hydrocarbons 155
9.7.1 The Alkanes 158
9.7.2 Naming the alkanes 159
9.7.3 Properties of the alkanes 163
9.7.4 Reactions of the alkanes 163
9.7.5 The alkenes 166
9.7.6 Naming the alkenes 166
9.7.7 The properties of the alkenes 169
9.7.8 Reactions of the alkenes 169
9.7.9 The Alkynes 171
9.7.10 Naming the alkynes 171
9.8 The Alcohols 172
9.8.1 Naming the alcohols 173
9.8.2 Physical and chemical properties of the alcohols 175
9.9 Carboxylic Acids 176
9.9.1 Physical Properties 177
9.9.2 Derivatives of carboxylic acids: The esters 178
9.10 The Amino Group 178
9.11 The Carbonyl Group 178
9.12 Summary 179
10 Organic Macromolecules - Grade 12 185
10.1 Polymers 185
10.2 How do polymers form? 186
10.2.1 Addition polymerisation 186
10.2.2 Condensation polymerisation 188
10.3 The chemical properties of polymers 190
10.4 Types of polymers 191
10.5 Plastics 191
10.5.1 The uses of plastics 192
10.5.2 Thermoplastics and thermosetting plastics 194
10.5.3 Plastics and the environment 195
10.6 Biological Macromolecules 196
10.6.1 Carbohydrates 197
10.6.2 Proteins 199
10.6.3 Nucleic Acids 202
10.7 Summary 204
III Chemical Change 209
11 Physical and Chemical Change - Grade 10 211
11.1 Physical changes in matter 211
11.2 Chemical Changes in Matter 212
11.2.1 Decomposition reactions 213
11.2.2 Synthesis reactions 214
11.3 Energy changes in chemical reactions 217
11.4 Conservation of atoms and mass in reactions 217
11.5 Law of constant composition 219
11.6 Volume relationships in gases 219
11.7 Summary 220
12 Representing Chemical Change - Grade 10 223
12.1 Chemical symbols 223
12.2 Writing chemical formulae 224
12.3 Balancing chemical equations 224
12.3.1 The law of conservation of mass 224
12.3.2 Steps to balance a chemical equation 226
12.4 State symbols and other information 230
12.5 Summary 232
13 Quantitative Aspects of Chemical Change - Grade 11 233
13.1 The Mole 233
13.2 Molar Mass 235
13.3 An equation to calculate moles and mass in chemical reactions 237
13.4 Molecules and compounds 239
13.5 The Composition of Substances 242
13.6 Molar Volumes of Gases 246
13.7 Molar concentrations in liquids 247
13.8 Stoichiometric calculations 249
13.9 Summary 252
14 Energy Changes In Chemical Reactions - Grade 11 255
14.1 What causes the energy changes in chemical reactions? 255
14.2 Exothermic and endothermic reactions 255
14.3 The heat of reaction 257
14.4 Examples of endothermic and exothermic reactions 259
14.5 Spontaneous and non-spontaneous reactions 260
14.6 Activation energy and the activated complex 261
14.7 Summary 264
15 Types of Reactions - Grade 11 267
15.1 Acid-base reactions 267
15.1.1 What are acids and bases? 267
15.1.2 Defining acids and bases 267
15.1.3 Conjugate acid-base pairs 269
15.1.4 Acid-base reactions 270
15.1.5 Acid-carbonate reactions 274
15.2 Redox reactions 276
15.2.1 Oxidation and reduction 277
15.2.2 Redox reactions 278
15.3 Addition, substitution and elimination reactions 280
15.3.1 Addition reactions 280
15.3.2 Elimination reactions 281
15.3.3 Substitution reactions 282
15.4 Summary 283
16 Reaction Rates - Grade 12 287
16.1 Introduction 287
16.2 Factors affecting reaction rates 289
16.3 Reaction rates and collision theory 293
16.4 Measuring Rates of Reaction 295
16.5 Mechanism of reaction and catalysis 297
16.6 Chemical equilibrium 300
16.6.1 Open and closed systems 302
16.6.2 Reversible reactions 302
16.6.3 Chemical equilibrium 303
16.7 The equilibrium constant 304
16.7.1 Calculating the equilibrium constant 305
16.7.2 The meaning of k_{c} values 306
16.8 Le Chatelier's principle 310
16.8.1 The effect of concentration on equilibrium 310
16.8.2 The effect of temperature on equilibrium 310
16.8.3 The effect of pressure on equilibrium 312
16.9 Industrial applications 315
16.10Summary 316
17 Electrochemical Reactions - Grade 12 319
17.1 Introduction 319
17.2 The Galvanic Cell 320
17.2.1 Half-cell reactions in the $\mathrm{Zn}-\mathrm{Cu}$ cell 321
17.2.2 Components of the $\mathrm{Zn}-\mathrm{Cu}$ cell 322
17.2.3 The Galvanic cell 323
17.2.4 Uses and applications of the galvanic cell 324
17.3 The Electrolytic cell 325
17.3.1 The electrolysis of copper sulphate 326
17.3.2 The electrolysis of water 327
17.3.3 A comparison of galvanic and electrolytic cells 328
17.4 Standard Electrode Potentials 328
17.4.1 The different reactivities of metals 329
17.4.2 Equilibrium reactions in half cells 329
17.4.3 Measuring electrode potential 330
17.4.4 The standard hydrogen electrode 330
17.4.5 Standard electrode potentials 333
17.4.6 Combining half cells 337
17.4.7 Uses of standard electrode potential 338
17.5 Balancing redox reactions 342
17.6 Applications of electrochemistry 347
17.6.1 Electroplating 347
17.6.2 The production of chlorine 348
17.6.3 Extraction of aluminium 349
17.7 Summary 349
IV Chemical Systems 353
18 The Water Cycle - Grade 10 355
18.1 Introduction 355
18.2 The importance of water 355
18.3 The movement of water through the water cycle 356
18.4 The microscopic structure of water 359
18.4.1 The polar nature of water 359
18.4.2 Hydrogen bonding in water molecules 359
18.5 The unique properties of water 360
18.6 Water conservation 363
18.7 Summary 366
19 Global Cycles: The Nitrogen Cycle - Grade 10 369
19.1 Introduction 369
19.2 Nitrogen fixation 369
19.3 Nitrification 371
19.4 Denitrification 372
19.5 Human Influences on the Nitrogen Cycle 372
19.6 The industrial fixation of nitrogen 373
19.7 Summary 374
20 The Hydrosphere - Grade 10 377
20.1 Introduction 377
20.2 Interactions of the hydrosphere 377
20.3 Exploring the Hydrosphere 378
20.4 The Importance of the Hydrosphere 379
20.5 lons in aqueous solution 379
20.5.1 Dissociation in water 380
20.5.2 lons and water hardness 382
20.5.3 The pH scale 382
20.5.4 Acid rain 384
20.6 Electrolytes, ionisation and conductivity 386
20.6.1 Electrolytes 386
20.6.2 Non-electrolytes 387
20.6.3 Factors that affect the conductivity of water 387
20.7 Precipitation reactions 389
20.8 Testing for common anions in solution 391
20.8.1 Test for a chloride 391
20.8.2 Test for a sulphate 391
20.8.3 Test for a carbonate 392
20.8.4 Test for bromides and iodides 392
20.9 Threats to the Hydrosphere 393
20.10Summary 394
21 The Lithosphere - Grade 11 397
21.1 Introduction 397
21.2 The chemistry of the earth's crust 398
21.3 A brief history of mineral use 399
21.4 Energy resources and their uses 400
21.5 Mining and Mineral Processing: Gold 401
21.5.1 Introduction 401
21.5.2 Mining the Gold 401
21.5.3 Processing the gold ore 401
21.5.4 Characteristics and uses of gold 402
21.5.5 Environmental impacts of gold mining 404
21.6 Mining and mineral processing: Iron 406
21.6.1 Iron mining and iron ore processing 406
21.6.2 Types of iron 407
21.6.3 Iron in South Africa 408
21.7 Mining and mineral processing: Phosphates 409
21.7.1 Mining phosphates 409
21.7.2 Uses of phosphates 409
21.8 Energy resources and their uses: Coal 411
21.8.1 The formation of coal 411
21.8.2 How coal is removed from the ground 411
21.8.3 The uses of coal 412
21.8.4 Coal and the South African economy 412
21.8.5 The environmental impacts of coal mining 413
21.9 Energy resources and their uses: Oil 414
21.9.1 How oil is formed 414
21.9.2 Extracting oil 414
21.9.3 Other oil products 415
21.9.4 The environmental impacts of oil extraction and use 415
21.10Alternative energy resources 415
21.11Summary 417
22 The Atmosphere - Grade 11 421
22.1 The composition of the atmosphere 421
22.2 The structure of the atmosphere 422
22.2.1 The troposphere 422
22.2.2 The stratosphere 422
22.2.3 The mesosphere 424
22.2.4 The thermosphere 424
22.3 Greenhouse gases and global warming 426
22.3.1 The heating of the atmosphere 426
22.3.2 The greenhouse gases and global warming 426
22.3.3 The consequences of global warming 429
22.3.4 Taking action to combat global warming 430
22.4 Summary 431
23 The Chemical Industry - Grade 12 435
23.1 Introduction 435
23.2 Sasol 435
23.2.1 Sasol today: Technology and production 436
23.2.2 Sasol and the environment 440
23.3 The Chloralkali Industry 442
23.3.1 The Industrial Production of Chlorine and Sodium Hydroxide 442
23.3.2 Soaps and Detergents 446
23.4 The Fertiliser Industry 450
23.4.1 The value of nutrients 450
23.4.2 The Role of fertilisers 450
23.4.3 The Industrial Production of Fertilisers 451
23.4.4 Fertilisers and the Environment: Eutrophication 454
23.5 Electrochemistry and batteries 456
23.5.1 How batteries work 456
23.5.2 Battery capacity and energy 457
23.5.3 Lead-acid batteries 457
23.5.4 The zinc-carbon dry cell 459
23.5.5 Environmental considerations 460
23.6 Summary 461
A GNU Free Documentation License 467

Chapter 13

Quantitative Aspects of Chemical Change - Grade 11

An equation for a chemical reaction can provide us with a lot of useful information. It tells us what the reactants and the products are in the reaction, and it also tells us the ratio in which the reactants combine to form products. Look at the equation below:

$$
F e+S \rightarrow F e S
$$

In this reaction, every atom of iron (Fe) will react with a single atom of sulfur (S) to form one molecule of iron sulfide (FeS). However, what the equation doesn't tell us, is the quantities or the amount of each substance that is involved. You may for example be given a small sample of iron for the reaction. How will you know how many atoms of iron are in this sample? And how many atoms of sulfur will you need for the reaction to use up all the iron you have? Is there a way of knowing what mass of iron sulfide will be produced at the end of the reaction? These are all very important questions, especially when the reaction is an industrial one, where it is important to know the quantities of reactants that are needed, and the quantity of product that will be formed. This chapter will look at how to quantify the changes that take place in chemical reactions.

13.1 The Mole

Sometimes it is important to know exactly how many particles (e.g. atoms or molecules) are in a sample of a substance, or what quantity of a substance is needed for a chemical reaction to take place.

You will remember from chapter 3 that the relative atomic mass of an element, describes the mass of an atom of that element relative to the mass of an atom of carbon-12. So the mass of an atom of carbon (relative atomic mass is 12 u) for example, is twelve times greater than the mass of an atom of hydrogen, which has a relative atomic mass of 1 u . How can this information be used to help us to know what mass of each element will be needed if we want to end up with the same number of atoms of carbon and hydrogen?

Let's say for example, that we have a sample of 12 g carbon. What mass of hydrogen will contain the same number of atoms as 12 g carbon? We know that each atom of carbon weighs twelve times more than an atom of hydrogen. Surely then, we will only need 1 g of hydrogen for the number of atoms in the two samples to be the same? You will notice that the number of particles (in this case, atoms) in the two substances is the same when the ratio of their sample masses (12 g carbon: 1 g hydrogen $=12: 1$) is the same as the ratio of their relative atomic masses (12 $\mathrm{u}: 1 \mathrm{u}=12: 1$).

To take this a step further, if you were to weigh out samples of a number of elements so that the mass of the sample was the same as the relative atomic mass of that element, you would find that the number of particles in each sample is 6.023×10^{23}. These results are shown in table 13.1 below for a number of different elements. So, 24.31 g of magnesium (relative atomic mass $=24.31 \mathrm{u}$) for example, has the same number of atoms as 40.08 g of calcium (relative atomic mass $=40.08 \mathrm{u}$).

Table 13.1: Table showing the relationship between the sample mass, the relative atomic mass and the number of atoms in a sample, for a number of elements.

Element	Relative atomic mass (u)	Sample mass (g)	Atoms in sample
Hydrogen (H)	1.01	1.01	6.023×10^{23}
Carbon (C)	12.01	12.01	6.023×10^{23}
Magnesium (Mg)	24.31	24.31	6.023×10^{23}
Sulfur (S)	32.07	32.07	6.023×10^{23}
Calcium (Ca)	40.08	40.08	6.023×10^{23}

This result is so important that scientists decided to use a special unit of measurement to define this quantity: the mole or 'mol'. A mole is defined as being an amount of a substance which contains the same number of particles as there are atoms in 12 g of carbon. In the examples that were used earlier, 24.31 g magnesium is one mole of magnesium, while 40.08 g of calcium is one mole of calcium. A mole of any substance always contains the same number of particles.

Definition: Mole
 The mole (abbreviation ' n ') is the SI (Standard International) unit for 'amount of substance'. It is defined as an amount of substance that contains the same number of particles (atoms, molecules or other particle units) as there are atoms in 12 g carbon.

In one mole of any substance, there are 6.023×10^{23} particles. This is known as Avogadro's number.

Definition: Avogadro constant

The number of particles in a mole, equal to 6.023×10^{23}. It is also sometimes referred to as the number of atoms in 12 g of carbon-12.

The original hypothesis that was proposed by Amadeo Avogadro was that 'equal volumes of gases, at the same temperature and pressure, contain the same number of molecules'. His ideas were not accepted by the scientific community and it was only four years after his death, that his original hypothesis was accepted and that it became known as 'Avogadro's Law'. In honour of his contribution to science, the number of particles in one mole was named Avogadro's number.
\qquad

Exercise: Moles and mass

1. Complete the following table:

Element	Relative atomic mass (\mathbf{u})	Sample mass $\mathbf{(g)}$	Number of moles in the sample
Hydrogen	1.01	1.01	
Magnesium	24.31	24.31	
Carbon	12.01	24.02	
Chlorine	35.45	70.9	
Nitrogen		42.08	

2. How many atoms are there in...
(a) 1 mole of a substance
(b) 2 moles of calcium
(c) 5 moles of phosphorus
(d) 24.31 g of magnesium
(e) 24.02 g of carbon

13.2 Molar Mass

Definition: Molar mass

Molar mass (M) is the mass of 1 mole of a chemical substance. The unit for molar mass is grams per mole or g. mol^{-1}.

Refer to table 13.1. You will remember that when the mass, in grams, of an element is equal to its relative atomic mass, the sample contains one mole of that element. This mass is called the molar mass of that element.

It is worth remembering the following: On the Periodic Table, the relative atomic mass that is shown can be interpreted in two ways.

1. The mass of a single, average atom of that element relative to the mass of an atom of carbon.
2. The mass of one mole of the element. This second use is the molar mass of the element.

Table 13.2: The relationship between relative atomic mass, molar mass and the mass of one mole for a number of elements.

Element	Relative atomic mass $\mathbf{(u)}$	Molar mass $\mathbf{(g . \mathbf { m o l } ^ { - 1 })} \mathbf{)}$	Mass of one mole of the element $\mathbf{(g)}$
Magnesium	24.31	24.31	24.31
Lithium	6.94	6.94	6.94
Oxygen	16	16	16
Nitrogen	14.01	14.01	14.01
Iron	55.85	55.85	55.85

Worked Example 55: Calculating the number of moles from mass

Question: Calculate the number of moles of iron (Fe) in a 111.7 g sample.

Answer

Step 1: Find the molar mass of iron

If we look at the periodic table, we see that the molar mass of iron is $55.85 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$. This means that 1 mole of iron will have a mass of 55.85 g .

Step 2 : Use the molar mass and sample mass to calculate the number of moles of iron
If 1 mole of iron has a mass of 55.85 g , then: the number of moles of iron in 111.7 g must be:

$$
\frac{111.7 \mathrm{~g}}{55.85 \mathrm{~g} \cdot \mathrm{~mol}^{-1}}=2 \mathrm{~mol}
$$

There are 2 moles of iron in the sample.

Worked Example 56: Calculating mass from moles

Question: You have a sample that contains 5 moles of zinc.

1. What is the mass of the zinc in the sample?
2. How many atoms of zinc are in the sample?

Answer

Step 1 : Find the molar mass of zinc

Molar mass of zinc is $65.38 \mathrm{~g} . \mathrm{mol}^{-1}$, meaning that 1 mole of zinc has a mass of 65.38 g .

Step 2 : Calculate the mass of zinc, using moles and molar mass. If 1 mole of zinc has a mass of 65.38 g , then 5 moles of zinc has a mass of:

$$
65.38 \mathrm{~g} \times 5 \mathrm{~mol}=326.9 \mathrm{~g}(\text { answer to } \mathrm{a})
$$

Step 3 : Use the number of moles of zinc and Avogadro's number to calculate the number of zinc atoms in the sample.

$$
5 \times 6.023 \times 10^{23}=30.115 \times 10^{23}
$$

Exercise: Moles and molar mass

1. Give the molar mass of each of the following elements:
(a) hydrogen
(b) nitrogen
(c) bromine
2. Calculate the number of moles in each of the following samples:
(a) 21.62 g of boron (B)
(b) 54.94 g of manganese (Mn)
(c) 100.3 g of mercury (Hg)
(d) 50 g of barium (Ba)
(e) 40 g of lead (Pb)

13.3 An equation to calculate moles and mass in chemical reactions

The calculations that have been used so far, can be made much simpler by using the following equation:

$$
\mathbf{n} \text { (number of moles) }=\frac{\mathbf{m} \text { (mass of substance in } \mathrm{g} \text {) }}{\mathbf{M}\left(\text { molar mass of substance in } \mathrm{g} \cdot \mathrm{~mol}^{-1}\right)}
$$

Important: Remember that when you use the equation $n=m / M$, the mass is always in grams (g) and molar mass is in grams per mol (g. mol^{-1}).

The equation can also be used to calculate mass and molar mass, using the following equations:

$$
m=n \times M
$$

and

$$
M=\frac{m}{n}
$$

The following diagram may help to remember the relationship between these three variables. You need to imagine that the horizontal line is like a 'division' sign and that the vertical line is like a 'multiplication' sign. So, for example, if you want to calculate ' M ', then the remaining two letters in the triangle are ' m ' and ' n ' and ' m ' is above ' n ' with a division sign between them. In your calculation then, ' m ' will be the numerator and ' n ' will be the denominator.

Worked Example 57: Calculating moles from mass

Question: Calculate the number of moles of copper there are in a sample that weighs 127 g .

Answer
Step 1 : Write the equation to calculate the number of moles

$$
n=\frac{m}{M}
$$

Step 2 : Substitute numbers into the equation

$$
n=\frac{127}{63.55}=2
$$

There are 2 moles of copper in the sample.

Worked Example 58: Calculating mass from moles
Question: You are given a 5 mol sample of sodium. What mass of sodium is in the sample?

Answer
Step 1 : Write the equation to calculate the sample mass.

$$
m=n \times M
$$

Step 2 : Substitute values into the equation.
$\mathrm{M}_{N a}=22.99 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
Therefore,

$$
m=5 \times 22.99=114.95 \mathrm{~g}
$$

The sample of sodium has a mass of 114.95 g .

Worked Example 59: Calculating atoms from mass

Question: Calculate the number of atoms there are in a sample of aluminium that weighs 80.94 g .

Answer
Step 1: Calculate the number of moles of aluminium in the sample.

$$
n=\frac{m}{M}=\frac{80.94}{26.98}=3 \mathrm{moles}
$$

Step 2 : Use Avogadro's number to calculate the number of atoms in the sample.
Number of atoms in 3 mol aluminium $=3 \times 6.023 \times 10^{23}$
There are 18.069×10^{23} aluminium atoms in a sample of 80.94 g .

Exercise: Some simple calculations

1. Calculate the number of moles in each of the following samples:
(a) 5.6 g of calcium
(b) 0.02 g of manganese
(c) 40 g of aluminium
2. A lead sinker has a mass of 5 g .
(a) Calculate the number of moles of lead the sinker contains.
(b) How many lead atoms are in the sinker?
3. Calculate the mass of each of the following samples:
(a) 2.5 mol magnesium
(b) 12 g lithium
(c) 4.5×10^{25} atoms of silica

13.4 Molecules and compounds

So far, we have only discussed moles, mass and molar mass in relation to elements. But what happens if we are dealing with a molecule or some other chemical compound? Do the same concepts and rules apply? The answer is 'yes'. However, you need to remember that all your calculations will apply to the whole molecule. So, when you calculate the molar mass of a molecule, you will need to add the molar mass of each atom in that compound. Also, the number of moles will also apply to the whole molecule. For example, if you have one mole of nitric acid $\left(\mathrm{HNO}_{3}\right)$, it means you have 6.023×10^{23} molecules of nitric acid in the sample. This also means that there are 6.023×10^{23} atoms of hydrogen, 6.023×10^{23} atoms of nitrogen and ($3 \times 6.023 \times$ 10^{23}) atoms of oxygen in the sample.

In a balanced chemical equation, the number that is written in front of the element or compound, shows the mole ratio in which the reactants combine to form a product. If there are no numbers in front of the element symbol, this means the number is ' 1 '.

$$
\text { e.g. } \mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

In this reaction, 1 mole of nitrogen reacts with 3 moles of hydrogen to produce 2 moles of ammonia.

Worked Example 60: Calculating molar mass

Question: Calculate the molar mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Answer

Step 1 : Use the periodic table to find the molar mass for each element in the molecule.
Hydrogen $=1.008 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ;$ Sulfur $=32.07 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ;$ Oxygen $=16 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

Step 2: Add the molar masses of each atom in the molecule

$$
M_{\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)}=(2 \times 1.008)+(32.07)+(4 \times 16)=98.09 \mathrm{~g} . \mathrm{mol}^{-1}
$$

Worked Example 61: Calculating moles from mass

Question: Calculate the number of moles there are in 1 kg of MgCl_{2}.

Answer

Step 1 : Write the equation for calculating the number of moles in the sample.

$$
n=\frac{m}{M}
$$

Step 2 : Calculate the values that you will need, to substitute into the equation

1. Convert mass into grams

$$
m=1 \mathrm{~kg} \times 1000=1000 \mathrm{~g}
$$

2. Calculate the molar mass of MgCl_{2}.

$$
M_{\left(M g C l_{2}\right)}=24.31+(2 \times 35.45)=95.21 \mathrm{~g} . \mathrm{mol}^{-1}
$$

Step 3 : Substitute values into the equation

$$
n=\frac{1000}{95.21}=10.5 \mathrm{~mol}
$$

There are 10.5 moles of magnesium chloride in a 1 kg sample.

Worked Example 62: Calculating the mass of reactants and products

Question: Barium chloride and sulfuric acid react according to the following equation to produce barium sulphate and hydrochloric acid.

$$
\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{HCl}
$$

If you have 2 g of $\mathrm{BaCl}_{2} \ldots$

1. What quantity (in g) of $\mathrm{H}_{2} \mathrm{SO}_{4}$ will you need for the reaction so that all the barium chloride is used up?
2. What mass of HCl is produced during the reaction?

Answer
Step 1 : Calculate the number of moles of BaCl_{2} that react.

$$
n=\frac{m}{M}=\frac{2}{208.24}=0.0096 \mathrm{~mol}
$$

Step 2 : Determine how many moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are needed for the reaction According to the balanced equation, 1 mole of BaCl_{2} will react with 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$. Therefore, if 0.0096 moles of BaCl_{2} react, then there must be the same number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ that react because their mole ratio is 1:1.

Step 3 : Calculate the mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ that is needed.

$$
m=n \times M=0.0096 \times 98.086=0.94 g
$$

(answer to 1)
Step 4 : Determine the number of moles of HCl produced.
According to the balanced equation, 2 moles of HCl are produced for every 1 mole of the two reactants. Therefore the number of moles of HCl produced is (2×0.0096), which equals 0.0192 moles.

Step 5: Calculate the mass of HCl .

$$
m=n \times M=0.0192 \times 35.73=0.69 g
$$

(answer to 2)

Activity :: Group work : Understanding moles, molecules and Avogadro's number

Divide into groups of three and spend about 20 minutes answering the following questions together:

1. What are the units of the mole? Hint: Check the definition of the mole.
2. You have a 56 g sample of iron sulfide (FeS)
(a) How many moles of FeS are there in the sample?
(b) How many molecules of FeS are there in the sample?
(c) What is the difference between a mole and a molecule?
3. The exact size of Avogadro's number is sometimes difficult to imagine.
(a) Write down Avogadro's number without using scientific notation.
(b) How long would it take to count to Avogadro's number? You can assume that you can count two numbers in each second.

Exercise: More advanced calculations

1. Calculate the molar mass of the following chemical compounds:
(a) KOH
(b) FeCl_{3}
(c) $\mathrm{Mg}(\mathrm{OH})_{2}$
2. How many moles are present in:
(a) 10 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
(b) 34 g of $\mathrm{Ca}(\mathrm{OH})_{2}$
(c) 2.45×10^{23} molecules of CH_{4} ?
3. For a sample of 0.2 moles of potassium bromide (KBr), calculate...
(a) the number of moles of K^{+}ions
(b) the number of moles of Br^{-}ions
4. You have a sample containing 3 moles of calcium chloride.
(a) What is the chemical formula of calcium chloride?
(b) How many calcium atoms are in the sample?
5. Calculate the mass of:
(a) 3 moles of $\mathrm{NH}_{4} \mathrm{OH}$
(b) 4.2 moles of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
6. 96.2 g sulfur reacts with an unknown quantity of zinc according to the following equation:

$$
Z n+S \rightarrow Z n S
$$

(a) What mass of zinc will you need for the reaction, if all the sulfur is to be used up?
(b) What mass of zinc sulfide will this reaction produce?
7. Calcium chloride reacts with carbonic acid to produce calcium carbonate and hydrochloric acid according to the following equation:

$$
\mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3}+2 \mathrm{HCl}
$$

If you want to produce 10 g of calcium carbonate through this chemical reaction, what quantity (in g) of calcium chloride will you need at the start of the reaction?

13.5 The Composition of Substances

The empirical formula of a chemical compound is a simple expression of the relative number of each type of atom in it. In contrast, the molecular formula of a chemical compound gives the actual number of atoms of each element found in a molecule of that compound.

Definition: Empirical formula

The empirical formula of a chemical compound gives the relative number of each type of atom in it.

Definition: Molecular formula

The molecular formula of a chemical compound gives the exact number of atoms of each element in one molecule of that compound.

The compound ethanoic acid for example, has the molecular formula $\mathrm{CH}_{3} \mathrm{COOH}$ or simply $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$. In one molecule of this acid, there are two carbon atoms, four hydrogen atoms and two oxygen atoms. The ratio of atoms in the compound is $2: 4: 2$, which can be simplified to 1:2:1. Therefore, the empirical formula for this compound is $\mathrm{CH}_{2} \mathrm{O}$. The empirical formula contains the smallest whole number ratio of the elements that make up a compound.

Knowing either the empirical or molecular formula of a compound, can help to determine its composition in more detail. The opposite is also true. Knowing the composition of a substance can help you to determine its formula. There are three different types of composition problems that you might come across:

1. Problems where you will be given the formula of the substance and asked to calculate the percentage by mass of each element in the substance.
2. Problems where you will be given the percentage composition and asked to calculate the formula.
3. Problems where you will be given the products of a chemical reaction and asked to calculate the formula of one of the reactants. These are usually referred to as combustion analysis problems.

Worked Example 63: Calculating the percentage by mass of elements in a

compound

Question: Calculate the percentage that each element contributes to the overall mass of sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$.

Answer

Step 1 : Write down the relative atomic mass of each element in the compound.
Hydrogen $=1.008 \times 2=2.016 \mathrm{u}$
Sulfur $=32.07 \mathrm{u}$
Oxygen $=4 \times 16=64 u$

Step 2: Calculate the molecular mass of sulfuric acid.

Use the calculations in the previous step to calculate the molecular mass of sulfuric acid.

$$
\text { Mass }=2.016+32.07+64=98.09 u
$$

Step 3 : Convert the mass of each element to a percentage of the total mass

 of the compoundUse the equation:

$$
\text { Percentage by mass }=\text { atomic mass } / \text { molecular mass of } \mathrm{H}_{2} \mathrm{SO}_{4} \times 100 \%
$$

Hydrogen

$$
\frac{2.016}{98.09} \times 100 \%=2.06 \%
$$

Sulfur

$$
\frac{32.07}{98.09} \times 100 \%=32.69 \%
$$

Oxygen

$$
\frac{64}{98.09} \times 100 \%=65.25 \%
$$

(You should check at the end that these percentages add up to 100% !)
In other words, in one molecule of sulfuric acid, hydrogen makes up 2.06% of the mass of the compound, sulfur makes up 32.69% and oxygen makes up 65.25%.

Worked Example 64: Determining the empirical formula of a compound

Question: A compound contains 52.2% carbon (C), 13.0\% hydrogen (H) and 34.8% oxygen (O). Determine its empirical formula.

Answer

Step 1 : If we assume that we have 100 g of this substance, then we can convert each element percentage into a mass in grams.
Carbon $=52.2 \mathrm{~g}$, hydrogen $=13 \mathrm{~g}$ and oxygen $=34.8 \mathrm{~g}$
Step 2 : Convert the mass of each element into number of moles

$$
n=\frac{m}{M}
$$

Therefore,

$$
\begin{aligned}
n(\text { carbon }) & =\frac{52.2}{12.01}=4.35 \mathrm{~mol} \\
n(\text { hydrogen }) & =\frac{13}{1.008}=12.90 \mathrm{~mol} \\
n(\text { oxygen }) & =\frac{34.8}{16}=2.18 \mathrm{~mol}
\end{aligned}
$$

Step 3 : Convert these numbers to the simplest mole ratio by dividing by the smallest number of moles
In this case, the smallest number of moles is 2.18 . Therefore...
Carbon

$$
\frac{4.35}{2.18}=2
$$

Hydrogen

$$
\frac{12.90}{2.18}=6
$$

Oxygen

$$
\frac{2.18}{2.18}=1
$$

Therefore the empirical formula of this substance is: $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$. Do you recognise this compound?

Worked Example 65: Determining the formula of a compound

Question: 207 g of lead combines with oxygen to form 239 g of a lead oxide. Use this information to work out the formula of the lead oxide (Relative atomic masses: $\mathrm{Pb}=207 \mathrm{u}$ and $\mathrm{O}=16 \mathrm{u}$).

Answer

Step 1 : Calculate the mass of oxygen in the reactants

$$
239-207=32 g
$$

Step 2 : Calculate the number of moles of lead and oxygen in the reactants.

$$
n=\frac{m}{M}
$$

Lead

$$
\frac{207}{207}=1 \mathrm{~mol}
$$

Oxygen

$$
\frac{32}{16}=2 \mathrm{~mol}
$$

Step 3 : Deduce the formula of the compound

The mole ratio of $\mathrm{Pb}: \mathrm{O}$ in the product is $1: 2$, which means that for every atom of lead, there will be two atoms of oxygen. The formula of the compound is PbO_{2}.

Worked Example 66: Empirical and molecular formula

Question: Vinegar, which is used in our homes, is a dilute form of acetic acid. A sample of acetic acid has the following percentage composition: 39.9\% carbon, 6.7\% hyrogen and 53.4% oxygen.

1. Determine the empirical formula of acetic acid.
2. Determine the molecular formula of acetic acid if the molar mass of acetic acid is $60 \mathrm{~g} / \mathrm{mol}$.

Answer

Step 1 : Calculate the mass of each element in 100 g of acetic acid.
In 100 g of acetic acid, there is $39.9 \mathrm{~g} \mathrm{C}, 6.7 \mathrm{~g} \mathrm{H}$ and 53.4 g O
Step 2 : Calculate the number of moles of each element in 100 g of acetic acid.
$n=\frac{m}{M}$

$$
\begin{aligned}
n_{C} & =\frac{39.9}{12}=3.33 \mathrm{~mol} \\
n_{H} & =\frac{6.7}{1}=6.7 \mathrm{~mol} \\
n_{O} & =\frac{53.4}{16}=3.34 \mathrm{~mol}
\end{aligned}
$$

Step 3 : Divide the number of moles of each element by the lowest number to get the simplest mole ratio of the elements (i.e. the empirical formula) in acetic acid.
Empirical formula is $\mathrm{CH}_{2} \mathrm{O}$
Step 4 : Calculate the molecular formula, using the molar mass of acetic acid.
The molar mass of acetic acid using the empirical formula is $30 \mathrm{~g} / \mathrm{mol}$. Therefore the actual number of moles of each element must be double what it is in the emprical formula.

Exercise: Moles and empirical formulae

1. Calcium chloride is produced as the product of a chemical reaction.
(a) What is the formula of calcium chloride?
(b) What percentage does each of the elements contribute to the mass of a molecule of calcium chloride?
(c) If the sample contains 5 g of calcium chloride, what is the mass of calcium in the sample?
(d) How many moles of calcium chloride are in the sample?
2. 13 g of zinc combines with 6.4 g of sulfur. What is the empirical formula of zinc sulfide?
(a) What mass of zinc sulfide will be produced?
(b) What percentage does each of the elements in zinc sulfide contribute to its mass?
(c) Determine the formula of zinc sulfide.
3. A calcium mineral consisted of 29.4% calcium, 23.5% sulphur and 47.1% oxygen by mass. Calculate the empirical formula of the mineral.
4. A chlorinated hydrocarbon compound when analysed, consisted of 24.24% carbon, 4.04% hydrogen, 71.72% chlorine. The molecular mass was found to be 99 from another experiment. Deduce the empirical and molecular formula.

13.6 Molar Volumes of Gases

It is possible to calculate the volume of a mole of gas at STP using what we now know about gases.

1. Write down the ideal gas equation

$$
\mathrm{pV}=\mathrm{nRT} \text {, therefore } \mathrm{V}=\frac{n R T}{p}
$$

2. Record the values that you know, making sure that they are in SI units

You know that the gas is under STP conditions. These are as follows:
$\mathrm{p}=101.3 \mathrm{kPa}=101300 \mathrm{~Pa}$
$\mathrm{n}=1$ mole
$\mathrm{R}=8.3 \mathrm{~J} . \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$
$\mathrm{T}=273 \mathrm{~K}$
3. Substitute these values into the original equation.

$$
\begin{gathered}
V=\frac{n R T}{p} \\
V=\frac{1 \mathrm{~mol} \times 8.3 \mathrm{~J} . \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1} \times 273 \mathrm{~K}}{101300 \mathrm{~Pa}}
\end{gathered}
$$

4. Calculate the volume of 1 mole of gas under these conditions

The volume of 1 mole of gas at STP is $22.4 \times 10^{-3} \mathrm{~m}^{3}=22.4 \mathrm{dm}^{3}$.

Important: The standard units used for this equation are P in Pa, V in m^{3} and T in K .
Remember also that $1000 \mathrm{~cm}^{3}=1 \mathrm{dm}^{3}$ and $1000 \mathrm{dm}^{3}=1 \mathrm{~m}^{3}$.

Worked Example 67: Ideal Gas

Question: A sample of gas occupies a volume of $20 \mathrm{dm}^{3}$, has a temperature of 280 K and has a pressure of 105 Pa . Calculate the number of moles of gas that are present in the sample.

Answer

Step 1 : Convert all values into SI units
The only value that is not in SI units is volume. $\mathrm{V}=0.02 \mathrm{~m}^{3}$.
Step 2 : Write the equation for calculating the number of moles in a gas.
We know that $\mathrm{pV}=\mathrm{nRT}$
Therefore,

$$
n=\frac{p V}{R T}
$$

Step 3 : Substitute values into the equation to calculate the number of moles of the gas.

$$
n=\frac{105 \times 0.02}{8.31 \times 280}=\frac{2.1}{2326.8}=0.0009 \mathrm{moles}
$$

Exercise: Using the combined gas law

1. An enclosed gas has a volume of $300 \mathrm{~cm}^{3}$ and a temperature of 300 K . The pressure of the gas is 50 kPa . Calculate the number of moles of gas that are present in the container.
2. What pressure will 3 mol gaseous nitrogen exert if it is pumped into a container that has a volume of $25 \mathrm{dm}^{3}$ at a temperature of $29{ }^{\circ} \mathrm{C}$?
3. The volume of air inside a tyre is 19 litres and the temperature is 290 K . You check the pressure of your tyres and find that the pressure is 190 kPa . How many moles of air are present in the tyre?
4. Compressed carbon dioxide is contained within a gas cylinder at a pressure of 700 kPa . The temperature of the gas in the cylinder is 310 K and the number of moles of gas is 13 moles carbon dioxide. What is the volume of the gas inside?

13.7 Molar concentrations in liquids

A typical solution is made by dissolving some solid substance in a liquid. The amount of substance that is dissolved in a given volume of liquid is known as the concentration of the liquid. Mathematically, concentration (C) is defined as moles of solute (n) per unit volume (V) of solution.

$$
C=\frac{n}{V}
$$

For this equation, the units for volume are dm^{3}. Therefore, the unit of concentration is mol. dm^{-3}. When concentration is expressed in mol.dm ${ }^{-3}$ it is known as the molarity (M) of the solution. Molarity is the most common expression for concentration.

Definition: Concentration

Concentration is a measure of the amount of solute that is dissolved in a given volume of liquid. It is measured in mol. dm^{-3}. Another term that is used for concentration is molarity (M)

Worked Example 68: Concentration Calculations 1

Question: If 3.5 g of sodium hydroxide (NaOH) is dissolved in $2.5 \mathrm{dm}^{3}$ of water, what is the concentration of the solution in mol.dm ${ }^{-3}$?

Answer

Step 1 : Convert the mass of NaOH into moles

$$
n=\frac{m}{M}=\frac{3.5}{40}=0.0875 \mathrm{~mol}
$$

Step 2 : Calculate the concentration of the solution.

$$
C=\frac{n}{V}=\frac{0.0875}{2.5}=0.035
$$

The concentration of the solution is $0.035 \mathrm{~mol}^{\mathrm{dm}}{ }^{-3}$ or 0.035 M

Worked Example 69: Concentration Calculations 2

Question: You have a $1 \mathrm{dm}^{3}$ container in which to prepare a solution of potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$. What mass of KMnO_{4} is needed to make a solution with a concentration of 0.2 M ?

Answer
Step 1 : Calculate the number of moles of KMnO_{4} needed.

$$
C=\frac{n}{V}
$$

therefore

$$
n=C \times V=0.2 \times 1=0.2 \mathrm{~mol}
$$

Step 2 : Convert the number of moles of KMnO_{4} to mass.

$$
m=n \times M=0.2 \times 158.04=31.61 g
$$

The mass of KMnO_{4} that is needed is 31.61 g .

Worked Example 70: Concentration Calculations 3

Question: How much sodium chloride (in g) will one need to prepare $500 \mathrm{~cm}^{3}$ of solution with a concentration of 0.01 M ?

Answer
Step 1 : Convert all quantities into the correct units for this equation.

$$
V=\frac{500}{1000}=0.5 \mathrm{dm}^{3}
$$

Step 2 : Calculate the number of moles of sodium chloride needed.

$$
n=C \times V=0.01 \times 0.5=0.005 \mathrm{~mol}
$$

Step 3 : Convert moles of KMnO_{4} to mass.

$$
m=n \times M=0.005 \times 58.45=0.29 g
$$

The mass of sodium chloride needed is 0.29 g

Exercise: Molarity and the concentration of solutions

1. 5.95 g of potassium bromide was dissolved in 400 cm 3 of water. Calculate its molarity.
2. 100 g of sodium chloride (NaCl) is dissolved in $450 \mathrm{~cm}^{3}$ of water.
(a) How many moles of NaCl are present in solution?
(b) What is the volume of water (in dm^{3})?
(c) Calculate the concentration of the solution.
(d) What mass of sodium chloride would need to be added for the concentration to become $5.7 \mathrm{~mol} . \mathrm{dm}^{-3}$?
3. What is the molarity of the solution formed by dissolving 80 g of sodium hydroxide (NaOH) in $500 \mathrm{~cm}^{3}$ of water?
4. What mass (g) of hydrogen chloride (HCl) is needed to make up $1000 \mathrm{~cm}^{3}$ of a solution of concentration $1 \mathrm{~mol} . \mathrm{dm}^{-3}$?
5. How many moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are there in $250 \mathrm{~cm}^{3}$ of a 0.8 M sulphuric acid solution? What mass of acid is in this solution?

13.8 Stoichiometric calculations

Stoichiometry is the study and calculation of relationships between reactants and products of chemical reactions. Chapter 12 showed how to write balanced chemical equations. By knowing the ratios of substances in a reaction, it is possible to use stoichiometry to calculate the amount of reactants and products that are involved in the reaction. Some examples are shown below.

Worked Example 71: Stoichiometric calculation 1

Question: What volume of oxygen at S.T.P. is needed for the complete combustion of $2 \mathrm{dm}^{3}$ of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$? (Hint: CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are the products in this reaction)

Answer

Step 1 : Write a balanced equation for the reaction.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Step 2: Determine the ratio of oxygen to propane that is needed for the reaction.
From the balanced equation, the ratio of oxygen to propane in the reactants is 5:1.

Step 3 : Determine the volume of oxygen needed for the reaction.

1 volume of propane needs 5 volumes of oxygen, therefore $2 \mathrm{dm}^{3}$ of propane will need $10 \mathrm{dm}^{3}$ of oxygen for the reaction to proceed to completion.

Worked Example 72: Stoichiometric calculation 2

Question: What mass of iron (II) sulphide is formed when 5.6 g of iron is completely reacted with sulfur?

Answer

Step 1 : Write a balanced chemical equation for the reaction.

$$
F e(s)+S(s) \rightarrow F e S(s)
$$

Step 2: Calculate the number of moles of iron that react.

$$
n=\frac{m}{M}=\frac{5.6}{55.85}=0.1 \mathrm{~mol}
$$

Step 3 : Determine the number of moles of FeS produced.
From the equation 1 mole of Fe gives 1 mole of FeS. Therefore, 0.1 moles of iron in the reactants will give 0.1 moles of iron sulfide in the product.

Step 4 : Calculate the mass of iron sulfide formed

$$
m=n \times M=0.1 \times 87.911=8.79 g
$$

The mass of iron (II) sulfide that is produced during this reaction is 8.79 g .

Important:

A closer look at the previous worked example shows that 5.6 g of iron is needed to produce 8.79 g of iron (II) sulphide. The amount of sulfur that is needed in the reactants is 3.2 g . What would happen if the amount of sulfur in the reactants was increased to 6.4 g but the amount of iron was still 5.6 g ? Would more FeS be produced? In fact, the amount of iron(II) sulfide produced remains the same. No matter how much sulfur is added to the system, the amount of iron (II) sulfide will not increase because there is not enough iron to react with the additional sulfur in the reactants to produce more FeS. When all the iron is used up the reaction stops. In this example, the iron is called the limiting reagent. Because there is more sulfur than can be used up in the reaction, it is called the excess reagent.

Worked Example 73: Industrial reaction to produce fertiliser

Question: Sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ reacts with ammonia $\left(\mathrm{NH}_{3}\right)$ to produce the fertiliser ammonium sulphate $\left(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right)$ according to the following equation:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(a q)
$$

What is the maximum mass of ammonium sulphate that can be obtained from 2.0 kg of sulfuric acid and 1.0 kg of ammonia?

Answer

Step 1 : Convert the mass of sulfuric acid and ammonia into moles

$$
\begin{gathered}
n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=\frac{m}{M}=\frac{2000 \mathrm{~g}}{98.078 \mathrm{~g} / \mathrm{mol}}=20.39 \mathrm{~mol} \\
n\left(N H_{3}\right)=\frac{1000 \mathrm{~g}}{17.03 \mathrm{~g} / \mathrm{mol}}=58.72 \mathrm{~mol}
\end{gathered}
$$

Step 2 : Use the balanced equation to determine which of the reactants is limiting.
From the balanced chemical equation, 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ reacts with 2 moles of NH_{3} to give 1 mole of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$. Therefore 20.39 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ need to react with 40.78 moles of NH_{3}. In this example, NH_{3} is in excess and $\mathrm{H}_{2} \mathrm{SO}_{4}$ is the limiting reagent.

Step 3 : Calculate the maximum amount of ammonium sulphate that can be produced
Again from the equation, the mole ratio of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the reactants to $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ in the product is $1: 1$. Therefore, 20.39 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ will produce 20.39 moles of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$.

The maximum mass of ammonium sulphate that can be produced is calculated as follows:

$$
m=n \times M=20.41 \mathrm{~mol} \times 132 \mathrm{~g} / \mathrm{mol}=2694 \mathrm{~g}
$$

The maximum amount of ammonium sulphate that can be produced is 2.694 kg .

Exercise: Stoichiometry

1. Diborane, $\mathrm{B}_{2} \mathrm{H}_{6}$, was once considered for use as a rocket fuel. The combustion reaction for diborane is:

$$
\mathrm{B}_{2} \mathrm{H}_{6}(g)+3 \mathrm{O}_{2}(l) \rightarrow 2 \mathrm{HBO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

If we react 2.37 grams of diborane, how many grams of water would we expect to produce?
2. Sodium azide is a commonly used compound in airbags. When triggered, it has the following reaction:

$$
2 \mathrm{NaN}_{3}(s) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(g)
$$

If 23.4 grams of sodium azide are reacted, how many moles of nitrogen gas would we expect to produce?
3. Photosynthesis is a chemical reaction that is vital to the existence of life on Earth. During photosynthesis, plants and bacteria convert carbon dioxide gas, liquid water, and light into glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ and oxygen gas.
(a) Write down the equation for the photosynthesis reaction.
(b) Balance the equation.
(c) If 3 moles of carbon dioxide are used up in the photosynthesis reaction, what mass of glucose will be produced?

13.9 Summary

- It is important to be able to quantify the changes that take place during a chemical reaction.
- The mole (\mathbf{n}) is a SI unit that is used to describe an amount of substance that contains the same number of particles as there are atoms in 12 g of carbon.
- The number of particles in a mole is called the Avogadro constant and its value is 6.023 $\times 10^{23}$. These particles could be atoms, molecules or other particle units, depending on the substance.
- The molar mass (\mathbf{M}) is the mass of one mole of a substance and is measured in grams per mole or $\mathrm{g} . \mathrm{mol}^{-1}$. The numerical value of an element's molar mass is the same as its relative atomic mass. For a compound, the molar mass has the same numerical value as the molecular mass of that compound.
- The relationship between moles (n), mass in grams (m) and molar mass (M) is defined by the following equation:

$$
n=\frac{m}{M}
$$

- In a balanced chemical equation, the number in front of the chemical symbols describes the mole ratio of the reactants and products.
- The empirical formula of a compound is an expression of the relative number of each type of atom in the compound.
- The molecular formula of a compound describes the actual number of atoms of each element in a molecule of the compound.
- The formula of a substance can be used to calculate the percentage by mass that each element contributes to the compound.
- The percentage composition of a substance can be used to deduce its chemical formula.
- One mole of gas occupies a volume of $22.4 \mathrm{dm}^{3}$.
- The concentration of a solution can be calculated using the following equation,

$$
C=\frac{n}{V}
$$

where C is the concentration (in mol. dm^{-3}), n is the number of moles of solute dissolved in the solution and V is the volume of the solution (in dm^{3}).

- Molarity is a measure of the concentration of a solution, and its units are mol.dm ${ }^{-3}$.
- Stoichiometry, the study of the relationships between reactants and products, can be used to determine the quantities of reactants and products that are involved in chemical reactions.
- A limiting reagent is the chemical that is used up first in a reaction, and which therefore determines how far the reaction will go before it has to stop.
- An excess reagent is a chemical that is in greater quantity than the limiting reagent in the reaction. Once the reaction is complete, there will still be some of this chemical that has not been used up.

Exercise: Summary Exercise

1. Write only the word/term for each of the following descriptions:
(a) the mass of one mole of a substance
(b) the number of particles in one mole of a substance
2. Multiple choice: Choose the one correct answer from those given.

A 5 g of magnesium chloride is formed as the product of a chemical reaction. Select the true statement from the answers below:
i. 0.08 moles of magnesium chloride are formed in the reaction
ii. the number of atoms of Cl in the product is approximately $0.6023 \times$ 10^{23}
iii. the number of atoms of Mg is 0.05
iv. the atomic ratio of Mg atoms to Cl atoms in the product is $1: 1$

B 2 moles of oxygen gas react with hydrogen. What is the mass of oxygen in the reactants?
i. 32 g
ii. 0.125 g
iii. 64 g
iv. 0.063 g

C In the compound potassium sulphate $\left(\mathrm{K}_{2} \mathrm{SO}_{4}\right)$, oxygen makes up $\mathrm{x} \%$ of the mass of the compound. $x=\ldots$
i. 36.8
ii. 9.2
iii. 4
iv. 18.3

D The molarity of a $150 \mathrm{~cm}^{3}$ solution, containing 5 g of NaCl is...
i. 0.09 M
ii. $5.7 \times 10^{-4} \mathrm{M}$
iii. 0.57 M
iv. 0.03 M
3. $300 \mathrm{~cm}^{3}$ of a $0.1 \mathrm{~mol} . \mathrm{dm}^{-3}$ solution of sulfuric acid is added to $200 \mathrm{~cm}^{3}$ of a $0.5 \mathrm{~mol}^{\mathrm{dm}}{ }^{-3}$ solution of sodium hydroxide.
a Write down a balanced equation for the reaction which takes place when these two solutions are mixed.
b Calculate the number of moles of sulfuric acid which were added to the sodium hydroxide solution.
c Is the number of moles of sulfuric acid enough to fully neutralise the sodium hydroxide solution? Support your answer by showing all relevant calculations.
(IEB Paper 2 2004)
4. Ozone $\left(\mathrm{O}_{3}\right)$ reacts with nitrogen monoxide gas (NO) to produce NO_{2} gas. The NO gas forms largely as a result of emissions from the exhausts of motor vehicles and from certain jet planes. The NO_{2} gas also causes the brown smog (smoke and fog), which is seen over most urban areas. This gas is also harmful to humans, as it causes breathing (respiratory) problems. The following equation indicates the reaction between ozone and nitrogen monoxide:

$$
\mathrm{O}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})
$$

In one such reaction 0.74 g of O_{3} reacts with 0.67 g NO .
a Calculate the number of moles of O_{3} and of NO present at the start of the reaction.
b Identify the limiting reagent in the reaction and justify your answer.
c Calculate the mass of NO_{2} produced from the reaction.
(DoE Exemplar Paper 2, 2007)
5. A learner is asked to make $200 \mathrm{~cm}^{3}$ of sodium hydroxide (NaOH) solution of concentration $0.5 \mathrm{~mol} . \mathrm{dm}^{-3}$.
a Determine the mass of sodium hydroxide pellets he needs to use to do this.
b Using an accurate balance the learner accurately measures the correct mass of the NaOH pellets. To the pellets he now adds exactly $200 \mathrm{~cm}^{3}$ of pure water. Will his solution have the correct concentration? Explain your answer.
$300 \mathrm{~cm}^{3}$ of a $0.1 \mathrm{~mol} . \mathrm{dm}^{-3}$ solution of sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ is added to $200 \mathrm{~cm}^{3}$ of a $0.5 \mathrm{~mol} . \mathrm{dm}^{-3}$ solution of NaOH at $25^{0} \mathrm{C}$.
c Write down a balanced equation for the reaction which takes place when these two solutions are mixed.
d Calculate the number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ which were added to the NaOH solution.
e Is the number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ calculated in the previous question enough to fully neutralise the NaOH solution? Support your answer by showing all the relevant calculations.
(IEB Paper 2, 2004)
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: FrontCover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections A and A above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission
2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement
3. State on the Title page the name of the publisher of the Modified Version, as the publisher.
4. Preserve all the copyright notices of the Document.
5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
8. Include an unaltered copy of this License.
9. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
11. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
13. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
14. Do not re-title any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
15. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties-for example, statements of peer review or that the text has been approved by an organisation as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section A above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section A is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section A. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section A) to Preserve its Title (section A) will typically require changing the actual title.

TERMINATION

You may not copy, modify, sub-license, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sub-license or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:
with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

