A tutorial introduction to AXIOM with TEXyacs

The AXIOM computer algebra system has been acclaimed as a milestone in its field but, to
date, has tended to be used mainly by serious mathematical researchers.

This tutorial is an attempt to demystify AXIOM and to bring its unique advantages to a wider
audience. It deliberately avoids using advanced mathematical techniques, choosing its examples
from topics normally encountered at school, or just beyond. As well as making AXIOM acces-
sible to both non-mathematicians and those at an early stage of their mathematical careers, it is
hoped that this approach will also be acceptable to those mathematicians who might otherwise
have been intimidated by the computer in computer algebra — by allowing them to learn “the
AXIOM way of doing things” in a context of totally familiar results.

The primary purpose of the tutorial is to allow new users to become at ease with the AXIOM
style of working. All of the examples in the text are provided with AXIOM and can be evalu-
ated within the AXIOM environment.

The AXIOM output in this tutorial was produced automatically by TpXyacg using the AXIOM
interface under Linux.

Because of the difficulty in drawing a dividing line between computer input and the mathemat-
ical objects to which it refers, we have tended to use the typewriter font rather than the more
usual mathematical italic for the names of variables and the like: i.e. x rather than z.

1. First steps

2. Solving some simple problems in algebra
3. Introductory calculus

4. Ordinary differential equations

5. The AXIOM browser

6. Vectors and matrices

7. A little error analysis

8. Next steps

Up

Chapter 1, First steps

AXIOM belongs to the general class of programs known as “computer algebra” or “symbolic
manipulation” packages. Such packages are generally capable of a wide range of mathematical
operations, from simple arithmetic to (in AXIOM’s case) abstract algebra. This does not mean
that the user needs to know about such a wide range of mathematical subjects — indeed, many
practicing mathematicians would be familiar with only a subset of the topics which AXIOM can
handle.

The first rule in getting familiar with AXIOM is do not be intimidated. AXIOM may provide an
unusually rich choice of features but you do not need to use them all — you will soon become
familiar with those you need by actually using them. Like any computer package, AXIOM has
its own basic rules governing how you communicate with it and, whilst these may appear
strange at first sight, they are not particularly complicated and will soon become familiar.

Finally, you may, as you progress with AXIOM, begin to feel that it is unduly fussy at times. It
is fussy, but not unduly so. AXIOM insists on performing any operation only on objects which
are (or can become) of the type for which that operation is defined; it also makes a point
of “considering all the possibilities”. AXIOM’s careful approach ensures that it avoids many pit-
falls which are present in less formal computer algebra systems and which can, at times, lead to
completely spurious results.

1.1 Beginning, ending ...

1.2 Simple arithmetic

1.3 Assignments

1.4 Setting types

1.5 Keeping track

1.6 Accessing previous results, recalling input
1.7 Continuation lines

1.8 Comments

Up
1.1. Beginning, ending ...

When you start AXIOM with TgXyacg the first thing you see is a TEXyacs window. TEXyacs
is used as an interface to the AXIOM system. Some of the commands you type in TEXyacs are
sent to AXIOM for processing, and TEXyacs is responsible for printing the results, including
any typeset mathematics.

To start an AXIOM session within TEXyacg select Session Axiom from the Text pull-down menu.
The symol — (called a prompt) appears on the right indicating that Axiom is ready for input.

_)

A command is sent to AXIOM by pressing Enter. A new AXIOM input-area appears immedi-
ately following the output.

Some commands, known as system commands, are used to perform non-mathematical opera-
tions within AXIOM. These commands are preceded by a right parenthesis). An example of a
system command is which is used to gain information about types in AXIOM. (The

system command | Yhelp | gives further information on available system commands.)

AXIOM keeps an internal record of the command history. To see the commands typed, enter
|)history)show | at any stage. What you get is a numbered list of AXIOM commands as they
were typed in. System commands are not recorded in the command history and cannot be ref-
ered to using the %% syntax. (See section 1.6 for an explanation of this syntax.) Note also that
commands which return no output do not print the command number, although they are stored
in the command history.

To end an AXIOM session simply select Close TeXmacs from the File pull-down menu.

Next

Up
1.2. Simple arithmetic

Now let us try some simple calculations.(1)

— 1+1

2 (1)
Type: Positivelnteger

_)

The user input is typed after the — symbol. If you are using TEXyacg to view this tutorial and
if you have Axiom installed, then you may try entering Axiom commands your self right now.
Just position the cursor after the promt and trying typing a command, e.g. 1+ 2.

Note that as well as the answer AXIOM gives its type, for future reference. The notion of types
of expressions is fundamental to the way AXIOM works, as will become apparent.

One of the characteristics of computer algebra systems is their ability to handle numbers of
arbitrary precision, unlike conventional programming languages which are restricted to fixed
levels of precision, such as ten or fewer digits in integers.

AXIOM is a typical computer algebra system in this respect — it does not restrict the number of
digits allowed:
— 123745

11110408185131956285910790587176451918559153212268021823629)
073199866111001242743283966127048043
Type: Positivelnteger

_)

but provides all the 95 digits necessary to express this result. (The ~ represents exponentiation
and may be read as “to the power”. As in other languages, ** may also be used to represent
exponentiation.

More complicated expressions may use parentheses to indicate the order in which they should be
evaluated:
— 27(3+4)

128 (3)
Type: Positivelnteger

_)

and, as in most languages, may sometimes be typed more simply using some built in rules of
precedence:

exponentiation (*) has higher precedence than (is done before)
multiplication (*) and division (/) which have the same precedence, higher than
addition (+) and subtraction (-) which again have the same precedence.

Operations with the same precedence are performed in the order in which they are input — that
is, from left to right.

So far, the results of our operations have all been of type PositivelInteger, however, if we use
division in our expression this is no longer the case:

— 4/3

(4)

Type: Fraction Integer

TIES

— 2/2

1 (5)
Type: Fraction Integer

_)

— although the second result is displayed as 1, AXIOM is telling us that it is really a fraction
(whose components are integers). This kind of distinction can be important, since we can do
things with fractions which are impossible if we only have integers (division being a case in
point). In this simple case we are unlikely to be misled but, in more complicated situations, we
could be.

Next Previous

Up
1.3. Assignments

So far, we have only evaluated expressions. Generally, we want to set up wariables to hold the
values of the expressions, to reuse later. The operation of giving a value to a variable is known
as assignment. The simplest type of assignment in AXIOM is immediate assignment, which has
the form wariable := expression. In this, the value of the expression is calculated immediately
and this becomes the value of the variable. For instance, if we have

— a = 2
2 (7)
Type: Positivelnteger
— b = a
2 (8)
Type: Positivelnteger
_)

both a and b now have the value 2 and each will continue to do so until its value is explicitly
changed by another assignment. Changing the value of a does not affect b:

— a =3
3 (9)
Type: Positivelnteger
— b
2 (10)
Type: Positivelnteger
_)

In some computer algebra systems, although assignments equivalent to these will have the same
effect, reversing the order of commands (6) and (7) would cause b to depend on a, so that the
final result at (9) would have been 3. This can be very confusing, even to experienced users. In
AXIOM, these two types of assignment are clearly distinguished. The second, known as deferred
assignment, uses the operator == to establish a permanent relationship between a variable and
an expression. We shall return to this in section 2.7.

Note that variable names (and other symbols) usually begin with an alphabetic character and
continue with alphabetic and numeric characters. Upper and lower case letters are distinct, so
that AB, Ab, aB and ab are four different names. The characters % and ! are also allowed in
names, with 7 allowed in non-initial positions; these three characters can, however, have a spe-
cial significance when they appear in certain positions. In AXIOM, the underline or underscore
character _ is an escape character, so that A_B is the same as AB.

Next Previous

Up
1.4. Setting types

Although AXIOM will give the variable used in an assignment a type appropriate to the value of
the expression, it is also possible for the user to fix the type of a variable.

For example:

— 1 : Integer
Type: Void
_)

— remember that the name of the type must be appropriately capitalised. (The act of assigning
a type to i does not return a value, and so the result is of type Void.)

Once the type of a variable has been fixed in this way, only expressions which can be converted
to the chosen type may be assigned to the variable:

—+ 1 :=12/3

Cannot convert right-hand side of assignment
2

3
to an object of the type Integer of the left-hand side.

— i :=4/2

2 (12)
Type: Integer

_)

(Note that the command number did not increase after the unsuccessful assignment, indicating
that nothing has been changed by it.)

It is also possible to combine a type declaration and an assignment into a single statement:

— ¢ : Positivelnteger := 3

3 (13)
Type: Positivelnteger

_)

This is exactly equivalent to giving the type declaration and assignment separately.

If several variables are to be declared to have the same type, this can be accomplished in a
single statement, by separating each pair of names with a comma and enclosing them in paren-
theses, as in

— (j, k, 1) : Integer
Type: Void
_)

— the parentheses are necessary to tell AXIOM that the type declaration applies to all of j, k
and 1, not just to 1.

Whilst discussing types, we should note the use of the word domain, which occurs widely in the
AXIOM literature. A domain may be thought of abstractly as the collection of all the possible
objects of a particular type, so that the expressions “has type Typel” and “belongs to the
domain Typel” are equivalent. It is also used to mean the collection of code in the AXIOM
system which defines an abstract domain.

Next Previous

Up

1.5. Keeping track

If an AXIOM session has run for a while, you may lose track of the names of the objects which
you have created. If this happens, try

—)display names

Names of User-Defined Objects in the Workspace:

h a b c i hi k 1

Names of System-Defined Objects in the Workspace:

he %i hinfinity JminusInfinity
%pi %plusInfinity SF

Don’t be alarmed at the first item, % — this is a variable used to hold the result of your most
recent calculation (see section 1.6). The “System-Defined Objects” are system macros (see sec-
tion 2.7) put there for you by AXIOM. To find out more about any object, say SF, type

—)display properties SF

Properties of SF :
This is a system-defined macro.
macro SF () == DoubleFloat ()

_)

You will find that it is a macro — in effect, an abbreviation — for DoubleFloat, which is an
AXIOM type used to represent real numbers approximately in “floating point” form, using
the “double precision” representation available on the type of computer on which AXIOM is run-
ning. On most computers this means a representation with about 16 decimal digits of accuracy.
SF originally stood for SmallFloat, in contrast to AXIOM’s own Floats, which can be defined
to have as many digits of accuracy as you wish; see section 2.7 for more details.

The system macros beginning with % correspond to the mathematical objects whose names
follow the % sign.

Having discovered the names of the variables in use, you may decide that some of these — say c
and i — are no longer necessary. They can be most simply removed as follows

—)clear properties c i
_)

Recall that we declared i to have type Integer and gave it the value 2. The type declaration
and value could have been cancelled separately, with |)Jclear mode i | and |)clear value i |,
respectively. The keywords properties, mode and value may be abbreviated to their initial let-
ters.

Beware of typing commands such as [)clear a| or |)clear c| if you really mean

|)clear value a | etc. In particular, is taken to mean |)clear completely | and is
quite thorough in doing so: try it once and see (then remember not to, in future).

You can return to a completely “clean slate” without having to reload AXIOM, by using the
command | Jclear all |0r |)clear a | However, code which has been loaded by AXIOM is not
removed in this process and so will not be reloaded if previously used commands are repeated.

Next Previous

Up
1.6. Accessing previous results, recalling input

Suppose that we have just calculated a value for some (possibly quite complicated) expression,
then realise that we are likely to need this value in other calculations. This is easily remedied:
the command keepit := % will assign the most recent output to the variable keepit (or to
whatever other variable you have chosen to use). % refers to the most recently calculated result.
Other features of the history mechanism are provided by the function %% — the result of instruc-
tion number n is referred to as %%(n), so:

— %h(1)

2 (15)
Type: Positivelnteger

_)

displays the result of the very first command, 1 + 1. (If it doesn’t do so for you, this is prob-
ably because you tried)clear c. Type in a few expressions and try again.) It is also possible to
count back from the present line number, by using a negative value for n; thus:

— 1+ %h(-3)

4 (16)
Type: Positivelnteger

%
adds one to the result of step (15 - 3), that is, step (12).

If you simply want to see the last few (k say) commands which you have issued, you can use the
)history command itself, in the form)history)show k. This will replay your input to the
last k distinct prompts. If you omit the k£, AXIOM uses a default value of 20.

Adding both to the end of the)history)show command causes AXIOM to display both input
and output; in this case, the default for k is reduced to 5.

Next Previous

10

Up
1.7. Continuation lines

Occasionally, you may wish to type a command which will not fit on a single line. On many
computer systems you can simply continue typing without pressing Enter or Return and the line
will “wrap around” on your screen; however, there is usually a limit to the length allowed for
such extended lines.

To continue a command within AXIOM with TEXyacg, prese Shift+Enter. For example,

— 1
+
1
2 (17)
Type: Positivelnteger
— 1
+
2
3 (18)
Type: Positivelnteger
_)

Next Previous

11

Up
1.8. Comments

AXIOM commands can be stored in input files. Until TEXyacs files, input files are simple AXII
format text files. This facility allows you to build up a complicated series of commands in a file
(or several files) and have AXIOM process them in order. To help users make sense of these
files, AXIOM has a facility for adding comments.

The basic method for a user to add comments in AXIOM is to use the character string -- to
introduce them. Anything between this flag and the end of the (possibly continued) line is
ignored. If you wish to make comments which are more than one line long, either continue the
line with _ or use -- before each individual line of the comment. Flagging each individual line
as a comment is clearer.

(You may at some point encounter AXIOM and meet a second type of comment which begins
with the string ++. This is used in the automatic generation of on-line documentation.)

Here is an example of the use of a comment:

-- Commenting alone doesn’t increment the command count.

Chapter 2 | Previous

12

Up

Chapter 2, Solving some simple problems in
algebra

2.1 Solving polynomial equations

2.2 Digression — taking things apart

2.3 More algebraic equations

2.4 Rearranging expressions

2.5 Summation of series

2.6 Developing series

2.7 Digression — introducing deferred assignment and functions

2.8 Back to series

| Chapter 1| | Chapter 3 |

13

Up
2.1. Solving polynomial equations

Elementary algebra consists mainly of solving problems which can be represented as low order
polynomial equations, perhaps with rational polynomial equations included. Let us see how
AXIOM handles some typical problems at this level.

Typing: solve(3*x=x+2) The first time that you issue a command like this within a session
there is a slight delay. This is because AXIOM contains very large amounts of code — too much
to fit into the memory of most present day computers. Furthermore, it will attempt to grow to
accommodate the size of problems which it encounters. Thus, it can potentially be too large for
any computer. For these reasons, the version which starts up provides only the central, non-
algebraic “kernel” of the system, together with a very few other facilities some of which we used
in chapter 1 First Steps; other subsystems are loaded as needed. The subsystems required
depend on the type of problem being solved: you will gradually learn which domains and pack-
ages you regularly use (a package in AXIOM is simply a collection of related functions). Next,
AXIOM reports the actual answer

—)clear all

All user variables and function definitions have been cleared.

— solve(3*x=x+2)

[z=1] (1)
Type: List Equation Fraction Polynomial Integer

4>

or, to be more precise, the list of answers. Lists in AXIOM are enclosed in square brackets ([1)
and have their components separated by commas (,), as we shall see shortly. In this case, the
list contains only one solution to the problem posed.

Note that the AXIOM variable x does not acquire a value in the solution process:

— X

@ (2)
Type: Variable x

_)

Continuing with our simple examples:

— solve(3*x - 1 = 0)

[ng] 3)

Type: List Equation Fraction Polynomial Integer

[x:§] 4

Type: List Equation Fraction Polynomial Integer

Here, AXIOM followed the common convention that, if only one side of an equation is specified
to solve, this is assumed to be completed by the addition of = 0.

— solve(3*x~2 - 7*x + 2)

14

[:E =2, x= H (5)
Type: List Equation Fraction Polynomial Integer
— solve(x~2 -2)

[2 —2=0] (6)
Type: List Equation Fraction Polynomial Integer

_)

The solution, in each case, is a list of equations which can be expressed in terms of ratios of
polynomials with integer coefficients. If we start from such an equation (which we did in these
cases), the solution can always be expressed in this way and this is what AXIOM does, by
default.

In the last example, the list which AXIOM returned simply contained the completed equation,
since this particular equation cannot be solved in terms of the rational numbers. We shall return
to this shortly but first let us look at some higher degree polynomial equations.

— solve(x~4 - 8%x~3 + 23*x~2 - 28*x + 12)

[z=3,z=2, z=1] (7)
Type: List Equation Fraction Polynomial Integer

_)

We have, of course, followed tradition in choosing an equation which can be solved exactly.
However, a fourth degree equation ought to have four solutions, so one of the roots must be
repeated. The usual method of solving such an equation by hand is to attempt to factor it, so

— factor(x~4 - 8*x~3 + 23%x~2 - 28%x + 12)
(¢~ 3)(z~2)*(z - 1) (8)
Type: Factored Polynomial Integer
N
— sure enough, the second factor is squared, so we have a repeated root at 2.

Returning to the solution of x~2 - 2 = 0, we can obtain solutions in terms of x if we allow
square roots to appear in them. AXIOM provides a command radicalSolve which will return
solutions in terms of radicals (or nth roots).

— radicalSolve(x~2 -2)
[z:ﬁ,m:—\/i] (9)
Type: List Equation Expression Integer

%
Note that radicalSolve only returns the solutions which can be expressed in this way and
ignores all others. For example:

— radicalSolve(x~5+x~2+1)

| (10)

Type: List Equation Expression Integer
_)
— you may, therefore, wish to use solve or factor first.

The expressions produced by radicalSolve soon become unmanageable, however: try typing
radicalSolve (x~4+x+1). For some applications, we may be satisfied with a numeric approxi-
mation of the solution. AXIOM will provide this to within a specified tolerance if that tolerance
is given as the second parameter of solve:

15

— solve(x~2 - 2, 0.00001)

[z =—1.414211273193359375, x =1.414211273193359375] (11)
Type: List Equation Polynomial Float

_)

Note that, although AXIOM has returned the results to 19 digits, only the first six figures are
reliable, given the accuracy which we requested. This may be irritating to numerical analysts
but is a fairly standard approach in computer algebra, where it is generally assumed that users,
unless they indicate otherwise, want to see precisely what they have calculated. By default,
AXIOM provides Floats to 20 digits of accuracy. If you wish to change this, to 30 say, issue the
command digits(30).

It is possible to control, independently, the number of significant digits printed, using the out-
putGeneral command:

— outputGeneral 6
Type: Void
— hh(11)

[z =—1.41421, x =1.41421] (13)
Type: List Equation Polynomial Float

_)

outputGeneral is simply another AXIOM function; although it returns nothing, it achieves
what we wanted as a side effect. In using it, we omitted the parentheses around its argument.
This is permissible when a function has a single argument and there is no ambiguity in where
that argument ends. If you are not familiar with this convention, you should note that function
application has a higher precedence than arithmetic operators, so that sin 2*a means (sin
2)*a and not sin(2*a). One effect of this is that we cannot omit the parentheses around argu-
ments which begin with a minus — for instance abs(-1) represents 1, the absolute value of -1,
but abs -1 is taken to mean the polynomial abs - 1, in which abs is the name of a variable.
This occurs because an attempt to apply the function abs before the arithmetic operator would
result in abs being applied to the minus sign alone, which is meaningless, so that AXIOM must
look for another interpretation and decides that this abs is a variable.

We can return to using AXIOM’s default setting for significant digits by issuing the command
outputGeneral(). However, for legibility, we shall retain the present setting for the rest of this
chapter. It is possible for the user to see Floats in floating (scientific) notation, e.g. 0.141421el,
or in fixed notation, e.g. 1.41421. By default, AXIOM chooses whichever representation is more
appropriate, the so-called general notation.

It is similarly possible to ask AXIOM to produce an approximate rational solution, by using a
rational tolerance:
— solve(x~2 - 2, 1/100000)

370727 370727

T T 262144’ ¥ T 262144 (14)

Type: List Equation Polynomial Fraction Integer

_)

This may be less immediately informative for the reader but can simplify later operations which
use the result — in general, AXIOM is happier with exact rationals than with floating point
approximations. We shall see an example of this in chapter 3 Calculus. Here, as before, the
exact solutions will differ from those displayed by at most the requested tolerance.

When solve is used with a tolerance parameter, if the coefficients in the equation are real, only
real solutions will be returned. To obtain complex solutions in this situation, we must use com-
plexSolve instead:

16

— solve(x~2-2%x+3,0.00001)

I (15)

Type: List Equation Polynomial Float
— complexSolve(x~2-2*x+3,0.00001)

[z =1.0—1.41421%, = = 1.0 + 1.41421¢] (16)
Type: List Equation Polynomial Complex Float

_)
~ in this case, of course, the solutions represent the complex numbers 1 +/2i.

If the coefficients in your equation are expressed as decimal fractions, as in x°2 - 1.21 = 0,
you can use the techniques of this section, after first converting the coefficients to rational frac-
tions, using :: (AXIOM'’s type conversion operator). Rather than convert each individual coeffi-
cient, we can usually save some keystrokes by converting the entire polynomial (or equation).
For example:

— solve((x"2 - 1.21) :: Polynomial Fraction Integer, 0.00001)

[t=—11, z=1.1] (17)
Type: List Equation Polynomial Float

_)

(if the coefficients were complex, we should use Complex Integer in place of Integer). We
shall return to type conversion in section 2.4 Rearranging Expressions.

AXIOM will also solve equations involving several variables, expressing the one we specify in
terms of the others. To obtain a familiar result we could use

— radicalSolve(a*x~2 + b*x + c, x)

wz—\/—4ac+b2—b wZ\/—4ac+b2—b (18)

2a ’ 2a

Type: List Equation Expression Integer

Next

17

Up
2.2. Digression — taking things apart

We might wish to manipulate the individual solutions which AXIOM has been returning to us
as components of lists. This facility is provided by the operator . which returns individual com-
ponents of lists: list.n is the nth component of list.

Continuing the previous example:
— gs := %; -- the semicolon (;) inhibits AXIOM’s output display
Type: List Equation Expression Integer

_)

— but not the type information.

— gsl :=gs.1

—V—4dac+b>—b (20)

2a

xTr=
Type: Equation Expression Integer

_)

We can use the functions 1hs and rhs to access the two sides of the equation:

— x1 :=rhs %

—V—4dac+b —b (21)

2a

Type: Expression Integer

_)

With these facilities, we could have obtained a numeric value for x directly from (9):

— numeric rhs %%(9).1

1.41421 (22)
Type: Float

_)

We can save ourselves some effort by using the map function, which applies a function to each
top level component of a structure:

— xs := map(rhs, gs)

—V—4dac+b®—b V—4ac+b>—b (23)

2a 2a

Type: List Expression Integer

_)

Top level components include the elements of a list, the entries in a matrix, the two sides of an
equation, the numerator and denominator of a fraction and many other instances: if you have an
object with, in some sense, constituent parts then there is probably a version of map which
applies to it — try it and see, or see if you can use map to help factor the fraction 15015/32768.

We can then obtain some more familiar results:

— xs.1 + xs.2

18

b (24)

a
Type: Expression Integer

— xs.1 * xs.2
i (25)

@ Type: Expression Integer

_)

You might like to try using the same method to obtain the corresponding relationships for third
and fourth degree polynomial equations. The individual solutions are very long and complicated
so you probably do not want to see these — remember to use a final semicolon to prevent

AXIOM from printing them.

Next Previous

19

Up
2.4. Rearranging expressions

One of the most basic things we learn from algebra is a facility for reorganising symbolic expres-
sions into more convenient forms. However, many computer algebra systems will either stub-
bornly refuse to express a result in the form we want or will only do so after a selection of
obscure switches has been set, which usually results in some other expression taking an unde-
sired form.

AXIOM’s type system provides a much more sensitive mechanism for converting the forms of
expressions, since it allows us to control the type of individual objects. What is more, it is much
easier to learn than an arbitrary collection of switches, having a simple, consistent and
mnemonic approach.

We saw in section 1.4 Setting Types how we could fix the type of a variable with the : operator.
It is also possible to manipulate the type of an expression with the :: operator:

— a = (x+ y)/2

1
Syt g (31)

2
Type: Polynomial Fraction Integer
_)

AXIOM has obligingly separated the coefficients of x and y for us and the type reflects this —
the object is a polynomial whose coefficients are fractions of integers; if we want to insist on the
form which we first input, this can easily be achieved — what we want is a fraction of polyno-
mials whose coefficients are integers:

— a:: Fraction Polynomial Integer

y+a
: (32)

Type: Fraction Polynomial Integer
_)

However, note that we have not changed a since our instruction did not involve an assignment:

— a
1 1
§y+§x (33)
Type: Polynomial Fraction Integer
_)

— to change the type of a by this method, we must assign the result to a:

— a := a :: Fraction Polynomial Integer
s (34)
Type: Fraction Polynomial Integer
— a
% (35)
Type: Fraction Polynomial Integer
_)

(We shall shortly see how to control the order of the variables x and y.)

We have met a more compact method of setting the type of a variable. First resetting a:

20

— a := (x+y)/2;

Type: Polynomial Fraction Integer

_)

we can assign its value to a variable of the desired type:

— b : Fraction Polynomial Integer := a

err (37)
Type: Fraction Polynomial Integer

_)

but we cannot use this to redefine the type of a:

— a : Fraction Polynomial Integer := a

You cannot declare a to be of type Fraction Polynomial Integer
because either the declared type of a or the type of the value of
a is different from Fraction Polynomial Integer .

_)

Fraction and Polynomial are examples of type constructors, which are used in AXIOM to
build new types from old. Fraction typel specifies fractions whose numerator and denominator
are of type typel; Polynomial type2 specifies polynomials whose coefficients are of type type2.
Another simple type constructor is Factored, which does exactly what its name suggests:

— y = x72 + 3%x + 2

2?2+ 37 +2 (38)
Type: Polynomial Integer

— y := 7y :: Factored Polynomial Integer

(z+1)(z+2) (39)
Type: Factored Polynomial Integer

_)

We have also met the type constructors Complex and Equation and the type Float.

As type names can become rather unwieldy, we are permitted to abbreviate their components:

INT for Integer FRAC for Fraction
NNI for NonNegativelInteger FR for Factored
PI for PositivelInteger EQ for Equation
POLY for Polynomial EXPR for Expression

(For some of the shorter type names the abbreviation is merely the same word all in upper case,
eg. FLOAT for Float.)

If our expressions involve polynomials in more than one variable (multivariate polynomials),
AXIOM will choose which to treat as the “main variable”, with the others appearing in its coeffi-
cients.

— Jclear p y -- since y has a value
— P 1= (y + 2)*%x72 + z*x + C

21

(z?+z)z+ 2%y +c (40)
Type: Polynomial Integer

_)

Here, AXIOM chose the alphabetically last variable, z, although we carefully input the expres-
sion for P as a polynomial in x.

We can control the choice of main variable by using the type UnivariatePolynomial, abbrevi-
ated to UP, which takes two parameters, the first specifying the variable of choice and the second
the type of the coefficients. To display P in the form we chose for input, we could try:

— P :: UP(x,POLY INT)

(z+y)z*+zz+c (41)
Type: UnivariatePolynomial(x,Polynomial Integer)

_)

which almost gives the form we want. We can, of course, also use UnivariatePolynomial to
control the form of the coefficients (specifying the “next most important” variable and so on):

— P :: UP(x, UP(y, POLY INT))

(y+2)z°+zz+c (42)
Type: UnivariatePolynomial (x,UnivariatePolynomial(y,Polynomial Integer))

_)

Note that in this example, P has retained its original type as provided by AXIOM; we have, so
far, merely displayed it in different forms. We could, if we wished, completely specify the
ordering of the variables in P:

— P :=P :: UP(x, UP(y, UP(z, UP(c, INT))))

(y+2)z°+zz+c (43)

Type:
UnivariatePolynomial (x,UnivariatePolynomial(y,UnivariatePolynomial(z,UnivariatePolynomial(c,Intege

_)

In practice, if we are interested in the order of the variables in a multi-variate polynomial we
would use the AXIOM type whose first argument is an ordered list of symbols, but we shall not
go in to such details here.

Various other useful forms of polynomials are discussed in section 1.9 of the AXIOM manual.

Next Previous

22

Up

2.5. Summation of series

We can use AXIOM to sum a variety of series,such as we might encounter in a basic algebra
course. For instance, to find the sum of the first n terms of the series:

1 1 1
Ixdx7 axix10 "tV G oG+ DGr+d)

—)clear p all
_)

axiom]
— sum(1/((3*r-2)*(3*xr+1)*(3*r+4)), r=1..n)

3n2+5n
72n2 +120n + 32 (44)

Type: Union(Fraction Polynomial Integer,...)
%

To find the sum to infinity of the same series:

— limit(%, n=Y%plusInfinity)

1

21 (45)

Type: Union(OrderedCompletion Fraction Polynomial Integer,...)
_)

The type returned by sum was Union(Fraction Polynomial Integer,Expression Integer) —
an object is in a Union of types if it is guaranteed to belong to one of the branches. Users may,
of course assign this to a variable of a type not involving Union. The OrderedCompletion men-
tioned in the limit’s type is the result of joining — oo and oo to the type Fraction Polyno-
mial Integer. Finally, the “failed” branch of the Union represents the circumstance where no
result may be returned, i.e. the limit does not exist.

Having encountered the notion of series summation, we may turn to some commonly encoun-
tered series, such as arithmetic progressions (APs). If the initial term of an AP is a and the
increment is b then the rth term is a + (r — 1) * b and the sum of the first n terms can be found
by:

— SA := sum(a + (r-1)*b, r = 1..n)

bn?+(—b+2a)n

. (46)

Type: Fraction Polynomial Integer

_)

This is probably not the most familiar form of this result. However, we can, if we wish, adjust
its form by using some of the methods met in the previous section:

— SA :: UP(a, Polynomial Fraction Integer)

na+%bn2—%bn (47)
Type: UnivariatePolynomial(a,Polynomial Fraction Integer)

— SA :: UP(a, UP(b, FRAC FR POLY INT))

23

na+ @b (48)

Type: UnivariatePolynomial(a,UnivariatePolynomial(b,Fraction Factored

Polynomial Integer))

—

We can also sum a geometric progression:

— SG := sum(ax*b~(r-1), r=1..n)

(n—1) _
abb a (49)

b-1
Type: Expression Integer

_)

This is of type Expression Integer. Expressions are more complicated than polynomials in
that they can involve fractions and various kinds of functions. We shall meet them again, later

on.

Next Previous

24

Up
2.6. Developing series

At a slightly more advanced level we encounter the notion of developing a series expansion of
some expression — for instance, the binomial expansion. AXIOM can generate the general bino-
mial series for us:

—)set stream calculate 5 (bgroup)(egroup)

— series((1 + x)~"n, x=0)

2 _ 3_ 9,2 4_ o3 2 _
nwono, o, N 3n +2nw3 L T 6n°+ 11n 6n$4

1 + n T + 5 6 o

n® —10n* + 35n3 — 50n2 + 24n 6
120 x® + O (z) (50)

+

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

The command)set stream calculate m determines the number of terms explicitly displayed
in the series expansion. AXIOM’s default value for n is 10.

The parameter x=0 in series means that we want an expansion (valid in some region around 0)
expressed in powers of x. If we had used x=v, with some other value of v, we would have
obtained a series in terms of powers of (x - v) and valid in some region around v.

A Puiseuz series is one expressed in terms of rational powers. If, as in this case, we know that
integer powers will suffice, we may use taylor instead of series:

— taylor((1 + x)~"n, x=0)

2 _ 3_ 9,2 4_ g3 2 _
nwon.o, L I 3n +2nx3 L. n 6n°+11n 6nm4

1 + n T + 2x 6 21

n® —10n* + 3513 — 50n2 + 24n_, 6
120 x® + O (%) (51)

+

Type: UnivariateTaylorSeries(Expression Integer,x,0)

(If you would like to see AXIOM generate a Puiseux series which isn’t a Taylor series, try
expanding a root of a trigonometric or hyperbolic function.)

Only the terms displayed are initially calculated: we can, however, ask for any term we wish —
or, more precisely, for the coefficient of any particular power. The next coefficient, for instance,
is:

—%.6

nb — 15n° + 85n* — 22513 + 274n2 — 120n

720 (52)

Type: Expression Integer

Next Previous

25

Up

2.7. Digression — introducing deferred assignment and func-
tions

As mentioned in section 1.3 Assignments, a deferred assignment has the form variable == expres-
sion and has the effect of permanently linking variable to the value of expression.

The expression can be of any type: in the following example it is Boolean (that is, has possible
values true and false).

— xPositive? == (x :: Float > 0)
Type: Void

—x := 17-sqrt(300);
Type: AlgebraicNumber

— xPositive?

false (55)

Type: Boolean

—x := 18-sqrt(300);
Type: AlgebraicNumber

— xPositive?

true (57)

Type: Boolean

It is conventional, in AXIOM, to end the names of Boolean objects with 7.

When a deferred assignment (or a function) is first used in a particular domain, AXIOM it to
Lisp (or possibly to machine code) so that it may be executed more quickly. This compiled code
is kept as long as it remains appropriate, as we shall see shortly.

Note that we defined xPositive? as the value of the expression x :: Float > O which
means “turn x into a floating point number and check whether this is greater than zero” — the
conversion to Float is a precaution in case we should, at some later stage, accidentally rely on
the value of xPositive? when x is not numeric, since the symbol > is used to test the relative
order of elements of any domain where an “order” is defined. In particular, this means that,
when x is a variable, the expression x > 0 always has the value true. Conversion to Float pro-
tects us against this:

—)clear p x

Compiled code for xPositive? has been cleared.

26

— X

Type: Variable x

— xPositive?

Cannot convert from type Variable x to Float for value

T

As x’s type is no longer known, the compiled code for xPositive? is no longer applicable and is
removed.

AXIOM finds that it cannot now compile xPositive?, so attempts to interpret it without com-
pilation. A major advantage of this is that it allows the actual cause of the problem to be pin-
pointed more accurately, as we see in the message

Cannot convert from type Variable x to Float for value
X

Functions may be written in AXIOM by a method very closely related to deferred assignment,
the difference being that the left hand side is followed by a parenthesised list of variables, called
parameters, which may be used in defining the expression on the right, thus:

— halfSum(x, y) == (x + y)/2
Type: Void

— halfSum(1l, 3)

2 (60)
Type: Fraction Integer
—halfSum(1.5, 2.5)
2.0 (61)
Type: Float
— halfSum(2, 4)
3 (62)

27

Type: Fraction Integer

AXIOM first compiled a version of halfSum for PositiveIntegers and, later, one for Floats;
however, it still kept the first version and so did not need to recompile when we again applied
the function to PositiveIntegers.

It is possible to write much more complicated functions in AXIOM by using a block for the
expression on the right. A block is a sequence of expressions, separated by semicolons, the whole
being enclosed in parentheses.

Suppose we are interested in the number of digits in various numbers of the form 2°n (we shall
assume that n is a positive integer). We can proceed as follows:

— £f(n)==#((2"n) : :String)
Type: Void

— £(20)

Type: PositiveInteger
This function works by first converting 2°n to a string (of characters) and then applying the

length function # to the result.

Suppose further that we are concerned with printing such numbers with a line width of, say, 120
characters or less. In the case of longer strings we are interested only in knowing that they are
too long, not in the actual length

— f(n) == (local length; length := #((2°n)::String);
if length > 120 then "Too long!" else length)
Type: Void

— £ 100

31 (66)

Type: NonNegativeInteger

— £ 1000

"Too long!" (67)

Type: String

This time, we have made the function definition into a block, to allow it to utilise a series of
commands. In this way, we could first calculate the length, then proceed differently, according
to whether or not the length exceeds 120. The value of a block is the value of the last statement
executed — in this example, the last statement is always

28

if length > 120 then "Too long!" else length

which may return a string or a positive integer (as we saw at line (66), AXIOM refers to such
indeterminate types as being of type Any). We have declared the variable length to be local —
this means that it is distinct from any variable with the same name used elsewhere. The alter-
native to this is free, meaning a variable in the general AXIOM environment (usually referred
to as a global variable). A function’s parameters are always local — any other variable should
always be declared as local or free. AXIOM has a set of rules for determining whether unde-
clared variables are local or global — but relying on these can easily lead to mistakes.

Note that we had to keep the entire definition on a single “line” by using a final _ for continua-
tion.

When we return a string, the quotation marks (" ") appear in the output from the call, as in
"Too long!"

This is because we are looking at the object. If we wish to display it as a message we can use
the output command.

We began our discussion of the function by assuming that n was a positive integer. This can be
built into the definition:

—f(n : Positivelnteger) : Any ==
(local length; length := #((2°n)::String);
if length > 120 then "Too long!" else length)
Type: Void

—f 0
Cannot convert from type Integer to PositiveInteger for value

0

We declared the type of n where it appeared in the parameter list. In the present version of
AXIOM, if we declare any parameter’s type, we must declare them all and must also declare the
type to be returned, immediately after the parameter list; from our earlier experiment, we know
the type Any will suffice for the returned type; however, as a general rule it is good practice to
specify a more precise type than this. In our case, such a precise type could be
Union(PositivelInteger,String)., You may like to try using this type in the definition and see
how AXIOM displays the branch it has chosen in the type of the results of the function.

If a function unexpectedly fails to return anything, this usually indicates that its return type has
not been specified by the user but has been set to Void by AXIOM - for example, because the
definition ends with a call to a function (such as print) whose own return type is Void.

Finally, note that functions, like variables, may be deleted by using the system command
|)clear properties |

Depth of evaluation

At the beginning of section 2.7, we saw that == associates the wvalue of the expression on the
right with the variable or function form on the left. It is important to realise that only one eval-
uation takes place. Thus, if we say

29

—gl(x) == 2*x

Type: Void
—g2(x) ==

Type: Void
— G 1= 2%x

2z (71)
Type: Polynomial Integer

—g3(x) == G

Type: Void
—gl(1)

Type: PositiveIlnteger

we have defined three functions with quite different effects:

—g2(2)

Type: PositiveInteger

—g3(3)
2 (75)

Type: Polynomial Integer

The first evaluates 2*x with the given value of x; the second evaluates %, giving the result of the
immediately previous calculation (note that the expression % does not involve x — its walue
might, but this is irrelevant); the third evaluates G, whose value is always the polynomial 2%x
(again, we do not obtain the value of this polynomial).

As in most languages, AXIOM functions evaluate their arguments and this provides a means for
users to define functions which return the value of the value of an expression (equivalent to
g2(2) and g3(3) above returning 4 and 6, respectively): the function called function takes an
expression as its first argument and returns an equivalent function. As function is a function,
it evaluates this first argument, so that G, say, evaluates to 2*x at this stage. When the user’s
function is called, assuming that x is one of its arguments, this in turn will be evaluated giving,
say, 2*2 so that 4 is returned.

30

Readers may wonder why the simple method of defining a function using == does not behave in
this way — surely it would be friendlier if as many levels of evaluation as possible were carried
out at the time of the definition, so that, in our case, g1, g2 and g3 were all equivalent. Whilst
that might be helpful for simple cases like this, allowing an unevaluated expression to be used
by == makes this type of assignment much more versatile, adding considerable power to
AXIOM. To take a trivial example, suppose we are working with polynomials involving %i:
AXIOM normally expresses these with complex coefficients — say with the type Polynomial
Complex Integer; converting this to the type Complex Polynomial Integer causes the real
and imaginary terms to be grouped separately. Making the definition cpi == % :: Complex
Polynomial Integer allows us to to perform this conversion on any polynomial which occurs as
a result in future, simply by typing cpi.

Anonymous functions

An alternative way to define a function is to use the infix operator +->, which defines an anony-
mous function, mapping its left hand side into its right hand side: for instance x +-> x~2 is the
square function. This can be useful when calling an AXIOM function which requires a function
as one of its arguments — the argument function can be defined in situ:

—11 := [1,2,3,4,5]

[1, 2, 3, 4, 5] (76)

Type: List PositiveInteger

—12 := map(x +-> x~2,11)
[1, 4,9, 16, 25] (77)

Type: List PositiveInteger

Note that any variable names used in the function definition are local to the function — any vari-
able of the same name occurring outside the function definition is ignored.

Macros

A much broader discussion of functions can be found in the AXIOM manual. A closely related
topic is macros.

A macro in AXIOM is a rule for replacing one character string with another. It can have either
of two forms:

macro stringl == string?2
or
stringl ==> string2

and has the effect that, whenever string! is encountered as a separate token, string2is substi-
tuted for it. The phrase “as a separate token” here means that stringl does not form part of a
larger string; thus, defining sine ==> sin allows us to obtain a value for sine(0) but not for
asine(0), although AXIOM has functions sin and its inverse asin.

It is also possible to define macros with parameters, in the manner of functions. However,
beware of regarding parameterised macros as functions: as far as AXIOM is concerned they are
not and will cause an error if used where functions are required (for instance, as the first param-
eter of map).

A user defined macro with the same name as a system macro, such as %i, will effectively hide
the system macro. User defined macros can be removed by using) clear properties names.

Next Previous

31

Up
2.8. Back to series

We can now set up the binomial expansion as a function of n

—BE(n) == taylor((1+x)~n, x=0)
Type: Void

— BE(5)

1+ 5z + 1022 + 1023 + 5z* + 2° (79)

Type: UnivariateTaylorSeries(Expression Integer,x,0)

and use this to display the expansion for any power we wish, remembering that we have)set
stream calculate 5:

— BE(8)

1+ 6z + 1522 + 2023 + 152* + 625 + O (z°) (80)

Type: UnivariateTaylorSeries(Expression Integer,x,0)

AXIOM notices that the series for (1+ z)® terminates after six terms.

Chapter 3 | Previous

32

Up

Chapter 3, Introductory calculus

In introductory differential calculus, the main areas covered are techniques for obtaining the
derivatives of (real) expressions involving algebraic and transcendental functions and the use of
derivatives in locating maxima, minima, points of inflection and limits. Integral calculus is usu-
ally taught as a collection of techniques for obtaining the antiderivative of a function, with var-
ious applications of definite integrals to physical situations.

3.1 Differentiation

3.2 Digression — operators

3.3 Back to differentiation

3.4 Integration

3.5 Mathematical experimentation — an example

3.6 More about integration

3.7 Digression — rules

3.8 More integrals

3.9 Algebraic numbers in integrals

3.10 Complex integration

| Chapter 2 | | Chapter 4 |

33

Up
3.1. Differentiation

In AXIOM, the operator D is used to obtain the derivative of its first argument with respect to
its second:

—D(x~2,x%)
2x (1)

Type: Polynomial Integer

— D(sin x,x)

cos () (2)

Type: Expression Integer

—D(sin(log(x/tan(x))) ,x)

(—=tan (@) +tan (2)) cos (log (7))

xtan ()

(3)

Type: Expression Integer

Higher order derivatives may be obtained by giving the order as a third argument. For instance,
the second and third derivatives of tan z are:

— D(tan x,x,2)

2tan (z)® + 2tan (z) (4)

Type: Expression Integer

— D(tan x,x,3)

6tan ()" + 8tan (z)% + 2 (5)
Type: Expression Integer

If the expression given by the first parameter depends on more than one variable, AXIOM calcu-
lates the partial derivative with respect to the variable identified in the second parameter. Thus,
to obtain

Osin(z y)
Oz

34

— D(sin(x*y),x)

ycos (zy) (6)

Type: Expression Integer

However, for mixed partial derivatives, we must specify a list of the variables of differentiation,
in the order in which they are to be applied. For instance, to calculate

O8%sinx y
Ox20y
— D(sin(x*y), [y,x,x])
—2ysin (zy) — zy*cos (z y) (7)

Type: Expression Integer

(The call D(sin(x*y), [y,x],[1,2]) provides an alternative way of obtaining the same effect.)

We can also experiment with differentiating more complex forms, involving, for instance, the
product and quotient of functions (f(z) and g(z), say) and their composition, f(g(z)). To
explore this area in a general setting, we first need to meet AXIOM’s representation of arbitrary

functions as operators.

Next

35

Up
3.3. Back to differentiation

Now that we know the representation of arbitrary functions as operators, we can return to
demonstrating that AXIOM is able to differentiate various abstract forms. In particular, we can
ask it to display the product, quotient and chain rules:

—f := operator ’f; g := operator ’g;
Type: BasicOperator
—D(f(x)/g(x),x)
@9+ 9@ [(2) 1)
9(z)

Type: Expression Integer

—+D(f(g(x)),x)
fg(z))g (x) (15)

Type: Expression Integer

At step (12), we included two commands on one line. Multiple commands are allowed in
AXIOM, provided that a semicolon (;) separates each pair.

In displaying the results, AXIOM used a raised comma (*) to approximate the “primed” notation
for differentiation.

AXIOM can also be used for the reliable calculation of total derivatives (derivatives of functions
whose arguments are themselves functions of some parameter, with respect to that parameter),
which can quickly become very cumbersome by hand. For instance, suppose that we wish to
transform the time-dependent locus of a point from polar to Cartesian coordinates:

—1r := operator ’r; theta := operator ’theta ;
Type: BasicOperator
—x(t) == r(t)*cos theta t
Type: Void
—y(t) == r(t)*sin theta t
Type: Void

As well as omitting the parentheses in the expressions on the right of the assignments, we relied
on the fact that AXIOM groups function calls to the right, so that cos theta t means
cos(theta(t)).

We can now obtain the expressions for the transformed components of velocity, by taking the
total derivatives:

36

—+D(y(t),t)
r(t)cos (theta(t))theta (t)+sin(theta(t))r (1) (20)

Type: Expression Integer

It is, in fact, possible to carry this through without the explicit use of functions. Instead, we
shall use that technique to obtain the second derivatives, in solving a rather more interesting
problem: to find expressions for the radial and transverse accelerations, in terms of the time
derivatives of r and f. We can obtain these expressions by simply finding the second time
derivatives of our transformations from polar to Cartesian coordinates and then taking the case
0 = 0, to make the radial and transverse directions coincide with the x and y directions, respec-
tively.

—)clear all

All user variables and function definitions have been cleared.

—r := operator ’r; theta := operator ’theta;

Type: BasicOperator

—r := r(t); theta := theta(t);

Type: Expression Integer

In the second pair of definitions we are using the operators defined in the first pair. In redefining
r and theta at step (2), we lose the definitions from step (1) — but we no longer need these.
Now, when we give the transformations to Cartesian coordinates, the dependence on t is no
longer explicitly visible:

— x == r*cos theta; y == r*sin theta;
Type: Void

— in fact, as we see shortly, AXIOM regards x and y, when defined in this way, as rules rather
than functions. We shall return to the topic of rules in section 3.7.

Having seen the form of the first derivatives in the previous example, we may suspect that the
second derivatives are likely to be quite complicated and decide to inhibit their display:

—ax := D(x,t,2); ay := D(y,t,2);
Type: Expression Integer

We can now evaluate these expressions at § =0, as explained above:

— eval (ax,theta=0)

ro(t) —r(t)theta(t)? (5)

37

Type: Expression Integer

— eval(ay,theta=0)

r(t)theta”(t) +2r(t)theta(t) (6)
Type: Expression Integer

In a very few steps we have obtained the standard results that the radial acceleration is #* minus
the centripetal acceleration rw? (where w is 6, the time derivative of #) and the transverse accel-
eration is 7 plus the Coriolis acceleration 278. One of the most satisfying uses of computer
algebra systems such as AXIOM is to highlight the essential steps in a calculation whilst being
relieved of such mechanical tasks as keeping track of the derivatives.

One other point to observe is the notation used by AXIOM itself for partial derivatives.
Retaining the previous compact notation for r and theta we have:

— f := operator ’f
f (7)
Type: BasicOperator
— D(f(r,theta) ,t)
theta(t)fa(r(t), theta(t))+r(t) f1(r(t), theta(t)) (8)

Type: Expression Integer

in which the subscript ,: means differentiation with respect to the ith parameter so, in other
words, we have

df(r,H)_d96f+dr8f
dt — dtod dtor

The second derivative is given by

— D(f(r,theta),t,2)
theta (t)’faoo(r(t), theta(t)) +r () f11(r(t), theta(t)) + fao(r(t), theta(t))theta(t) +

falr@), theta(t)r t) +r@)theta(t)f21(r(t), thet a(i) +rt)thetal(t)fi,2r(t),
theta(t)) 9)

Type: Expression Integer
In mixed derivatives, the order of the subscripts is the same as the order in which the differenti-

ations are performed.

Next Previous

38

Up
3.5. Mathematical experimentation — an example

AXIOM can also integrate more general expressions, involving variables other than the variable
of integration. For example:

— I(x"n,x)

(nlog (z))
zTe
n+1 (17)

Type: Union(Expression Integer,List Expression Integer)

The form of the results from AXIOM’s integrations may sometimes be a little unexpected — but
they have the advantage of generality, being valid (at least in the limit) for any values of the
variables at which the result and the concept of an indefinite integral are defined.

With x restricted to well-behaved values (those not lying at the origin or on the negative real
axis) and n a real number other than -1, the last result simply reduces to the familiar
x~ (n+1)/(n+1). To investigate its behaviour when n is -1, first subtract 1/(n+1), which is per-
missible since the integral implicitly includes an arbitrary constant:

—% - 1/(n + 1)

2 e(mlog (@) _ 1

n+1 (18)

Type: Expression Integer

We cannot evaluate this if n is -1 — we can, however, take its limit at that point:

— limit (%4,n=-1)

log (z) (19)

Type: Union(OrderedCompletion Expression Integer, Record(leftHandLimit: Union
(OrderedCompletion Expression Integer,failed), right HandLimit:
Union(OrderedCompletion Expression Integer,failed)),failed)

so that the integral of 1/x, which is usually introduced as a special case, is just a limiting case
of the general result.

In the above development, we followed the usual mathematics textbook approach of pulling the
necessary transformation out of a hat, the only justification being that it worked. One of the
great advantages of computer algebra systems is that they allow us to explore and experiment
with mathematical objects relatively quickly: the following reconstruction of the steps which led
us to subtract 1/(n+1) illustrates this process.

—In := %% 17

2 e(108 (2))

n+1 (20)

39

Type: Union(Expression Integer,List Expression Integer)

— limit (%4,n=-1)

leftHandLimit=—in finity,rightHandLimit=+4in finity] (21)

Type: Union(OrderedCompletion Expression Integer, Record(leftHandLimit: Union
(OrderedCompletion Expression Integer,failed), right Hand Limit:
Union(OrderedCompletion Expression Integer,failed)),failed)

Looking at the series expansion can show where the infinity comes from:

—)set stream calculate 5
black

— series(In,n=-1) -- expand In in powers of (m+1)

zlog (:10)3@(_10g (@)

-1 (-1) -1 zlog (3?)26(tos (2))
x (108 (z))(n +1) + z log (a:)e(og(2)) 4 5 (n+1)+ 6 (n+
4o(—log (z)) 5o(—log (z))
1)2 zlog (x)2e (1)3 zlog (x)1260 (1)4 O((1)5) (22)

Type: UnivariatePuiseuxSeries(Expression Integer,n,-1)

The first term of the series is the only one involving a negative power of (n + 1) and so the
only one to become infinite at n = -1. For well-behaved values of x, the expression

- log(x)
x %e

reduces to 1 and the term depends only on n. These facts suggest that subtracting the “simpli-
fied” version of this term, 1/(n + 1), as an adjustment of the constant of integration, might be
a useful approach (and, in fact, we already saw that it works).

On the other hand, if we only noticed, initially, that the first term was the probable cause of the
infinite limit, we might try subtracting it in the form it appeared in the series:

—In2 := In - x*je~(-log(x))*(n+1)~(-1)

2 (P08 (@) _ 7 o(—108 (2))

2
n+1 (23)
Type: Expression Integer
— 1imit (In2,n=-1)
zlog (z)el~108 (2)) (24)

40

Type: Union(OrderedCompletion Expression Integer, Record(leftHandLimit: Union
(OrderedCompletion Expression Integer,failed), right HandLimit:
Union(OrderedCompletion Expression Integer,failed)),failed)

Now, of course, having seen that this subtraction has the desired effect we would be motivated
to examine its form more closely and no doubt try the effect of the simpler expression to which
it usually reduces.

Incidentally, does the same trick work with the standard result?

— 1limit(x~(n+1)/(n+1) ,n=-1)
leftHandLimit=—infinity,rightHandLimit=+in finity] (25)
Type: Union(OrderedCompletion Expression Integer, Record(leftHandLimit: Union

(OrderedCompletion Expression Integer,failed), right Hand Limit:
Union(OrderedCompletion Expression Integer,failed)),failed)

— 1imit(x~(n+1)/(n+1)-1/(n+1) ,n=-1)
log () (26)
Type: Union(OrderedCompletion Expression Integer, Record(leftHandLimit: Union

(OrderedCompletion Expression Integer,failed), rightHandLimit:
Union(OrderedCompletion Expression Integer,failed)),failed)

Yes, it does. Some texts, in fact, introduce a function Iln (on the positive reals) defined as this
limit, then show that it coincides with log.

Next Previous

41

Up

3.6. More about integration

In the last section’s example, we were fortunate enough that AXIOM could find a single expres-
sion for the integral, regardless of the value of n. However (still restricting ourselves to the real

domain), the form of the integral can sometimes depend on the values of parameters (such as n
in that example):

—I(1/(a+x~2),x%)

(zzfa)\/ia+2az ov/a
log< 2+ a > arctan(.)
2v/—a ’ Vva

(27)

Type: Union(Expression Integer,List Expression Integer)

AXIOM does not indicate the range of parameter values for which each form is applicable. How-
ever, the presence of the square root of a or -a makes it fairly obvious that the first form applies
for a <0 and the second for a > 0. The a =0 case is, again, a limit, as can be seen by taking
the series expansion of, say, the second form:

— series(second %, a=0)

T (-3) 1,1 1, (5)
z — et —a—— 2
50 w+3m3a 50 +0{a (28)

Type: UnivariatePuiseuxSeries(Expression Integer,a,0)
If the first (constant) term is subtracted from the integral, the corresponding series would begin

with the term

-1

T

and all of the remaining terms would involve positive powers of a, and so vanish in the limit at a
= 0.

Next Previous

42

Up
3.7. Digression — rules

There are many relationships among mathematical functions which allow the same expression to
be represented in a wide variety of ways. For instance, if we have an expression involving

1
cosA

we may prefer to represent this in terms of sec A. Similarly, if

%e* + %e=*

appears, we may decide to choose a representation in terms of cosh x.

AXIOM allows us to control the form of individual expressions in at least two ways — by
applying operations from those packages such as TrigonometricManipulations, which are
briefly discussed in chapter 5 The AXIOM browser, and by applying rewrite rules (henceforth
simply called rules).

A rule takes the form rule expression! == expression2 and indicates that expressions of the
form expression! should be transformed into that of expression2 Note that, if an opening paren-
thesis appears immediately after the word rule, it must be matched by a closing parenthesis at
the end of the rule.

Here again, AXIOM gives much greater control than some other packages, which apply rules
either universally or not at all: in AXIOM the user applies a rule to a specific expression; the
result remains in the transformed form thereafter. The simplest way to apply a rule to a single
expression is to use the rule, enclosed in parentheses, as if it were a function.

For instance, to convert the atan in the second component of the previous integral to acot:

— second %% 27

arctan (#)

= (29)

Type: Expression Integer

— (rule atan A == acot(1/A)) %

acot (#) (30)

Vva
Type: Expression Integer

(We can re-rationalise this, if desired, by applying the function ratDenom.)

In this example, second was used to obtain the second component of the solution list; %.2
would have had the same effect, as would % 2 and the equivalent %(2)Analogous functions
first and third exist, although, in general, it is simpler just to use whichever of the other
forms you prefer.

43

If you wish to check that your recollection of an identity is correct, before applying it as a rule,
first rewrite it in the form ezpression = 0; it can be shown that there is no general procedure
for checking the validity of such an assertion — however, a trick which usually works for checking
transcendental identities in AXIOM is to integrate the left hand side: if the identity is correct,
the integral should be a constant (possibly zero). In awkward cases, differentiating to obtain
zero can provide a way of verifying that a complicated expression is indeed constant — but this is
rarely necessary. In the case of our atan relation we obtain zero immediately on integration,
confirming the identity:

— I(atan x - acot(1/x),x)

0 (31)
Type: Union(Expression Integer,List Expression Integer)

If a rule is to be used repeatedly, it may be assigned to a variable which can then be used like a
function:

— atanRule := rule atan(A) == acot(1/4)
arctan (A)== acot(%) (32)

Type: RewriteRule(Integer,Integer Expression Integer)

— atanRule atan x

acot (%) (33)

Type: Expression Integer
Sometimes it is necessary to restrict the applicability of a rule. For example, suppose we wished

to define a rule (for real quantities) which would simplify square roots of even powers. Provided

that n itself is even, we can write V22" as z™. (If n is odd, applying this rule when z is negative
will result in a negative quantity but, for reals, 1/ is defined as the positive square root.)

A rule to accomplish this could be defined as:

— rSimp := rule(sqrt(x~(2*(nleven? n))) == x"n)

() == gn (34)
Type: RewriteRule(Integer,Integer Expression Integer)

The vertical bar may be read as “such that” and introduces a predicate.

We can now apply this rule:

— rSimp(sqrt(x~4))

44

Type: Expression Integer

— rSimp (sqrt(x~6))

Vb (36)

Type: Expression Integer

Rules in AXIOM can be surprisingly powerful: a rule applied to an expression involving an oper-
ator will be applied to the parameters of that operator and the result of the operation, as
applied to the modified parameters, will form part of the final result, even if the presence of the
operator is not apparent in the output form of the original expression.

For instance, in section 3.3 Back to differentiation we obtained the standard result for differenti-
ating a product of functions. If we wanted to apply that result to specific functions, we could do
so by means of rules; (as we long since) cleared that result, we now need to set it up again):

—f := operator ’f; g := operator ’g; dprod := D(f(x)*g(x),x)

f(2)g'(z) + g(2) f(2) (37)

Type: Expression Integer

— (rule f x == sin %)%

sin (z)g’(z) + g(x)cos () (38)

Type: Expression Integer

— (rule g x == exp x)%

e”sin () 4+ cos (z)e” (39)
Type: Expression Integer

AXIOM handled the differentiation of the substituted functions correctly, even though these
only appeared in the output form as “primed” symbols, not explicitly showing the differential
operator D.

We can make a collection of rules into a single object (called a ruleset) if we follow the word

rule by a block of rules (indicated here by enclosing them in parentheses):

— (rule (f x == sin x; g x == cos x))dprod

—sin (¢)” 4 cos (z) (40)
Type: Expression Integer

45

A rule or ruleset can, of course, be given a name; this may then be applied to an expression:

— substitutions := (rule (f x == sec x; g X == cscC X))

{f(2)== sec (z), gla)== csc ()} (41)

Type: Ruleset(Integer,Integer,Expression Integer)

— substitutions dprod

csc (z)sec (z)tan (z) — cot (x)csc (z)sec (x) (42)
Type: Expression Integer

Next Previous

Up
3.8. More integrals

With AXIOM’s integrator available, it is no longer necessary to resort to the miscellaneous
selection of tricks usually learnt for handling awkward integrals. It would, perhaps, be reas-
suring to see how well AXIOM does on some of these (classified by their possible methods of
manual solution).

Logarithmic integrals
— I(cot x, x)

2log <%) —log (m)

5 (43)

Type: Union(Expression Integer,List Expression Integer)

The generality of AXIOM’s integrator does, at times, cause it to produce rather inelegant
results, such as this. However, it does provide us with the tools to simplify the expression, if we
so desire. (For many applications, of course, the detailed form of the expression is unimportant
— what matters is that it is correct.)

As we are dealing with real integrals, we can use the familiar transformations without compunc-
tion, when simplifying this result. There are many possible routes which we could follow,
involving various logarithmic and trigonometric identities. Perhaps the most obvious starting
point is to get rid of the double angles — the function normalize will do this:

— normalize %

—log (tan () + 1) + 2log (tan (z))
2

(44)

Type: Expression Integer

46

Previous experience led to the choice of normalize in this case. The best way to find out what
operations are available is to use the browser, described in chapter 5 The AXIOM browser and
in chapter 14 of the on-line guide to AXIOM. Note that the quickest way to access the browser
is to click on the return type. This will take you to the top browser page for that type.

Noticing that this involves both tan z itself and 1 + tan%r, which is, of course, sec?z, suggests
that expressing it in terms of sin and cos may be helpful. This can be achieved with simplify:

— simplify %

2log (4262)) ;1og () (45)

Type: Expression Integer

Applying two of the standard rules for real logarithms:

— (rule N*log A + M*log B == log(A~N*B~M)) %

log (sin (:v)2)

5 (46)

Type: Expression Integer

— (rule log(A~N) == Nxlog A)%
log (sin (z)) (47)

Type: Expression Integer

we end up with the usual “book form” of this result. (Note that this, like the original result,
would require adjustment by a complex constant, such as log(-1), to produce a real form when
sin(z) is negative.)

Next Previous

Up

3.9. Algebraic numbers in integrals

The need to factor denominators of rational functions can result in expressions for integrals
which involve the roots of polynomials. For polynomials of degree greater than 4, there is no
general closed form for such algebraic numbers and, for degree greater than 2, use of the closed
form would usually result in an integral too complicated to be easily understood. AXIOM,
therefore, leaves the algebraic numbers in such cases as symbols — for instance, %%T0 in the fol-
lowing example

—I(1/(x"3 + x + 1),x)

(\/— PITATOT 12 %%TO) log ((62%%T0 +31)/ BAETCLL2 | 699%%T02 — 31%%T0+ 182 — 4) + (R

47

Type: Union(Expression Integer,List Expression Integer)

In the previous expression, %%T0 is a root of a polynomial — we can discover what polynomial as
follows:
— definingPolynomial %%TO

31%%T03 — 3%%T0 — 1
31

(49)

Type: Expression Integer

(This, of course, has three roots — however, the form of the integral is such that the particular
choice of root is immaterial.) In this case we could obtain a complicated closed form using radi-
calSolve — however, let us instead obtain a numerical estimate of the real root (there happens
to be only one):

— outputGeneral 5
Type: Void

— solve((numerator %% 49) :: POLY INT,0.00001)

[%%T0=0.41724] (51)

Type: List Equation Polynomial Float

(The solve command will not handle expressions of such a general type as Expression
Integer, so we constrained the numerator of our expression to a polynomial type. We could
equally well have used the entire expression, constrained to type Fraction Polynomial
Integer.)

We can, if we wish, plug this value back into the integral, using eval, which evaluates expres-
sions when one or more variables are replaced by, possibly constant, expressions.

Although eval can find a complex numeric value for an Expression Integer, simply applying
it to %% 48 results in the following expression:

(0.5v/=0.13517 — 0.20862) log (56.869/— 0.13517 + 18.0z — 6.1409)
+0.41724log (9.0z + 6.1409)

+ (—0.5y/=0.13517 — 0.20862)log (— 56.869+/— 0.13517 + 18.0z — 6.1409)

Type: Expression Float

whose form is not immediately obvious, involving as it does square roots of negative numbers.
We can avoid this difficulty by changing the type of %% 48 to Expression Complex Float,
which provides a form with individual complex coefficients.

—eval(%% 48 :: EXPR COMPLEX FLOAT,%%TO= rhs first %)

(— 0.20862 + 0.18383i)log (18.0z — 6.1409 + 20.908i) + (— 0.20862 — 0.18383i)log (18.0z —
6.1409 — 20.9084) + 0.41724log (9.0z + 6.1409) (52)

48

Type: Expression Complex Float

This still looks more complicated than it really is and might be thought to be an intrinsically
complex function of x. In fact, its imaginary part can be shown to be zero.

AXIOM has a function called complexForm which will separate the real and imaginary parts of
an expression — that is, turn an Expression Complex into a Complex Expression. However,
this is not applicable to an Expression Complex Float. To avoid the difficulty with the pres-
ence of Floats, we could go back to the step where they first occur and try working with ratio-
nals instead, as suggested in chapter 2:

— solve((numerator %% 49) :: POLY INT,1/100000)

109377

RRT0= oeo1ad

(53)
Type: List Equation Polynomial Fraction Integer

—eval (%% 48,%4TO=rhs first %) :: EXPR Complex Integer

74539194, /287955795165 | 6184752906242 — 210999907937
. /287955795165 yV 309237645312 + 210999907937
<z, [— 109377) log (ik + 218754log (s

34359738368 34359738368

524288
Type: Expression Complex Integer

Now we can use complexForm:

— complexForm %

95627921278110315577344x2 — 65249114691486659641344x + 140155123958925838307521 309237645312z 4 210999!
10937710g (295147905179352825856) + 21875410g < 34359738368

524288
Type: Complex Expression Integer

and, since the imaginary part has vanished, we can go straight to a (real) Expression Float:

— % :: EXPR Float

— 0.20862log (324.0:{:2 — 221.07x + 474.86) + 0.41724log (9.0z + 6.1409) — 0.36766arctan
1.1616
(w - 0.34116) (56)
Type: Expression Float

in which ...

49

e the argument of the first log is always positive,

e rewriting the second log with the coefficient halved and the argument squared gives a
form which is real wherever it is defined

and
e atan is a real-valued function of reals,

so our result is real wherever it is defined.

Next Previous

50

Up
3.10. Complex integration

If we wish to consider integration in the complex domain (so that the variables and any parame-
ters are allowed to be complex) we may use the command complexIntegrate. This has the
advantage of returning a single (complex) function, of which the various functions of the real
case are special cases (possibly differing by an arbitrary complex constant, of course). The
results tend to lean heavily on exponentials and logarithms — trigonometric and hyperbolic func-
tions and their inverses can, of course, be expressed in terms of these — which may result in
expressions for the integrals which seem unfamiliar, compared to the real forms.

Chapter 4 | Previous

51

Up

Chapter 4, Ordinary differential equations

The AXIOM command has facilities for solving individual linear ordinary differential equations
(ODEs) and certain nonlinear ODEs. For solve to be used in this way, its first parameter must
be an ODE, in which the dependent variable appears as a function of the independent variable
(and so must first be declared as an operator); the second and third parameters must name the
dependent and independent variables, respectively.

We shall examine two simple examples.

4.1 Simple harmonic motion
4.2 Damped oscillations
4.3 A simple graphical display

4.4 Manipulating parts of an expression

| Chapter 3| | Chapter 5 |

52

Up
4.1. Simple harmonic motion

The differential equation describing simple harmonic motion is

which can be written in AXIOM notation as D(s(t),t,2) = -k~2*s(t), so that the problem
can be posed to AXIOM as follows

— 8 := operator ’s

Type: BasicOperator

— solve(D(s(t),t,2) = -k~2*s(t), s, t)

[particular=0, basis=|cos (kt), sin (kt)]] (2)

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),
Expression Integer,failed)

The general solution of an ODE is the particular solution added to an arbitrary linear combina-
tion of basis solutions, in this case giving s = ¢isin(k ¢) + cacos(k t). If enough boundary condi-
tions are known, these may be substituted into the general solution to produce a set of linear
equations which can be solved by AXIOM. However, in the particular case of an initial value
problem, in which the values of the dependent variable and its derivatives (up to the order of
the equation) are known, a special form of solve allows for the complete specification of the
problem in a single command. In this, the third parameter has the form wvariable=value, speci-
fying the value of the independent variable at which the boundary conditions are known, and a
fourth parameter is required, in the form of a list of values of the dependent variable and its
derivatives at this point. In our case, suppose that, at time ¢ = 0, the displacement s is A and
the velocity § is 0; the problem may then be solved as follows:

—solve(D(s(t),t,2) = -k~2xs(t), s, t=0, [A, 0])

Acos (kt) (3)
Type: Union(Expression Integer,failed)

Next

53

Up
4.2. Damped oscillations

If a damping force, proportional to velocity, is introduced into the previous equation, it becomes

d?s ds

W:_kQS_cE, c>0

In AXIOM, an equation, like any other object, can be named by being assigned to a variable, so
we can write DE := D(s(t),t,2) = -k~2*s(t) - c*D(s(t),t) and solve with the same initial
conditions as before:

—DE := D(s(t),t,2) = -k~2*s(t) - c*xD(s(t),t)

s7(t)=—cs'(t) — k?s(t) (4)

Type: Equation Expression Integer

— 8 := solve(DE, s, t=0, [A, 0])

(A\/—4k:2+cz+Ac)e 2 +(A\/—4k2+ 2—Ac)e 2

2V —4k? + 2 5)

Type: Union(Expression Integer,failed)

Now, provided that ¢®* > 4k2, both terms in the numerator are negative exponentials — the

second obviously so, the first since v¢? —4k? is certainly less than ¢, and we have the stan-
dard “overdamped” situation of exponential decay.

Next Previous

54

Up

4.3. A simple graphical display

Given the result in the previous section, AXIOM will draw the curve of s against ¢ for us, for a
particular choice of the constants A, k and c. One approach is to first define an expression which

only depends on t, by using eval to substitute the chosen values in S, then ask AXIOM to draw
this, for a range of values of t:

— 81 == eval(S, [A=1,k=1,c=3])
Type: Void

— draw(S1, t=0..100)

"a twoDimensionalViewport" (7)

Type: TwoDimensionalViewport

This produces a window containing the graph shown in Axiom Graphics. The graph may be
translated, edited and transformed using the pull-down menus and controls provided by Axiom
Graphics.

2 AxGGraphics - [AX10M2D]

@ File Edt Mew Image “Window Help _iﬁ'i_{]

£

|

.................................

[e

3 [

=
=

transY transX| I T Zoom 4] | »|45.0 Dolly

Next Previous

55

Up
4.4. Manipulating parts of an expression

Returning to the solution of the damped ODE:

— S

VIIET @+ Ad) e T (AT Ad)e
| W arrervcli Warrervcli

2V —4k? + ¢? ®

Type: Union(Expression Integer,failed)

if ¢? — 4k? is negative, the form of the result suggests the expansions of the sine and cosine func-
tions in terms of exponentials:

] i0 _ o—if it 4 =19
sinf=——— cosf=——
21 2

so it may be worth trying to transform the expression for S into one involving sin and cos. We
first have to persuade AXIOM to factor i out of the various square roots. To do this, we begin
by finding out what AXIOM considers to be the component parts (or kernels) of the expression:

— kernels S

ty/—4ak24c2—ct —ty/—4k24c2—ct
e 2 , € 2 ,V—4k?’+c?, c, A (9)

Type: List Kernel Expression Integer
With this information we can use eval to manipulate individual components in the expression:
—k3 := %.3

V—4k? + c? (10)

Type: Kernel Expression Integer

— eval(S,k3,%i*sqrt (4¥k~2 - c~2))

(Am_iAc)e@Jr(AMHAc)e@

2v/4k? — ¢2 (11)

Type: Expression Complex Integer

The function trigs will convert from the complex exponential representation to sines and
cosines

56

— ST := trigs '

ce D (527 e acl VAo (555

4k2 — 2

(12)

Type: Expression Complex Integer

Chapter 5 | Previous

57

Up

Chapter 5, The AXIOM browser m the last chapter, we used the

function trigs to convert an expression involving exponentials to one involving sines and
cosines. AXIOM has several such functions for changing the form of expressions — but they can
be quite difficult to locate. If we assume that the function we want may involve one of the
strings sin and trig in its name, we can use the AXIOM, which forms part of the TEXy;acg
system, to track it down.

Chapter 3 of the on-line AXIOM manual provides a general introduction to TEXyacs and
chapter 14 gives a fairly extensive discussion of the Browser. We shall not repeat this material
here but simply explore this one example of the use of the Browser.

You can access the Browser from the first page that was opened when AXIOM started. Click on
the button “AXIOM Browser”. A new window will be generated which looks like this:

58

#* The AXIOM Browser

The AXIOM™ Library Browser

Enter a search string (use * for wild card unless counter-indicated):

‘Integer’ ‘
[0 Constructors Search for categories, domains, or packages.
[0 Operations Search for operations.
O Attributes Search for attributes.
[0 General Search for all three of the above.
[0 Documentation Search library documentation.
[0 Complete All of the above.

[l B3

The input box contains the word Integer by default. Click on this and clear it using the delete
key. Type *sin* or *trig# (the * means “allow any arbitrary substring here”.)

Most of the Browser’s functionality is accessed through a dynamic context menu under the
right-hand mouse button. Try clicking the right-hand mouse button and selecting Operations

with the left-hand button.

This will bring up a window which looks something like this:

49 Mames for 79 Operations

49 Names for 79 Operations
asin *c3inh removesinh3g *sinhcosh
asinh *explogs2trigs removeindg sinhlfCan
asinhIfCan htrigs setright! sirlfCan
asinIfCan *l1asin sin *specialTrigs
*ohsin *l1asinh sinZesc tan2trig
*oasinh *isin *5in? tarh2trigh
constantRight *isinh *sincos trigs
*eozBinInto rmakedin *singleFactorBound *trigs2explogs
cotZtrig minusInfinity *singRicDE *useBingleFactorBound
coth?trigh nagCosInt singular? *useBingleFactorBound?
£sc2sin nagdinint singular&tTnfinity?
csch2sinh nonSingularhodel sinh
*oBin plusInfinity sinh2esch

*=unexposed

[[Of%]

This contains a list of all function (operation) names matching the pattern which we provided.
None of those involving sin look very promising; some of those involving trig are unezposed —
that is, not available to users without some special action — and, of the remainder, only trigs is
not fairly obviously for some other purpose. If we click on the word trigs, we obtain the fol-
lowing window, containing a description of this function, which is indeed the one which we

needed.

59

2 Operations trigs

] trigsCo)

Argriments:
Heturns:
Origin:
Where:

O] trigsCe

Arguments:
Retrirns:
Origin:
Where:

Description:

Description:

2 Operations frigs

x, an element of domain &
an element of domain 7
CornplexTrigonometrichanipulations(R F)

F iz a dormain of categories AlgebraicallyClosedField, TranscendentalFunctionCategory
and FunctionSpace(Complex(R))

trigs(f) rewrites all the complex logs and exponentials appearing in fin terms of
trigonometric functions.

x, an element of domain 7
an element of domain 7
Trigonometrichfanipulations(R F)

Fis a domain of categories AlgebraicallyClosedField, TranscendentalFunctionCategory
and FunctionSpace(E)

trigsff) rewrites all the complex logs and exponentials appearing in fin tertms of
trigonometric functions.

In entering our search patterns we used * to mean “any substring” and or to search for a choice
of patterns. We could also have used and to search for names containing more than one partic-
ular substring and not to avoid names with a particular substring. Some limited use of paren-
theses is also allowed, to clarify search patterns.

| Chapter 4 | | Chapter 6 |

60

Up

Chapter 6, Vectors and matrices Continuing our tour of introduc-

tory mathematics brings us next to linear algebra, which is largely concerned with vectors and
matrices.

6.1 Simple vectors

6.2 Rings and other categories

6.3 Matrices (and more vectors)

6.4 Exploring operations on vectors and matrices

6.5 Other ways of defining vectors and matrices

6.6 Digression — introducing for loops and segments

6.7 More matrix definition

6.8 Manipulating matrices

| Chapter 5 | | Chapter 7 |

61

Up
6.1. Simple vectors

The simplest view of vectors is that they are merely linear arrays and we shall return briefly to
this view later; however, most of the interesting uses of vectors apply only when the components
are elements of a ring. (Roughly speaking, a ring is a set of objects on which operations analo-
gous to addition and multiplication are defined and behave according to certain axioms.) We say
the vector is defined over this underlying ring. Initially, we shall be dealing with vectors of
numbers but, even here, difficulties could arise: for example, the positive integers do not form a
ring, since zero is not a positive integer, breaking one of the ring axioms. When performing
vector operations, AXIOM will sometimes attempt to help by treating elements of a subdomain
— say PositiveInteger — as belonging to the full domain (Integer) but, for clarity, let us
ensure that our first examples are vectors of ring elements:

— (vecA,vecB) : Vector Integer
Type: Void

Remember that we have to use parentheses in multiple declarations — the comma (,), regarded
as an operator, has a lower precedence than the colon (:).

Vectors may be created directly in AXIOM by means of the function vector, which takes a list

as its argument:

— vecA := vector [3,0,4]

[3, 0, 4] (2)
Type: Vector Integer
We can add vectors of the same length:

— vecB := vector [2,4,-2]

[27 4a - 2] (3)
Type: Vector Integer
— vecA + vecB
[5, 4, 2] (4)
Type: Vector Integer
or subtract them:
— vecA - vecB
[17 - 45 6] (5)

Type: Vector Integer

62

multiply by a scalar (that is, a ring element):

— bxvecA

15, 0, 20] (6)
Type: Vector Integer
— vecB*7
[14, 28, —14] (7)
Type: Vector Integer
but not divide by one:

— vecB/2

Cannot find a definition or applicable library operation named / with argument type(s) Vector
Integer PositiveIlnteger

However, if division is defined in the ring (making it a “division ring”) we can multiply by the
inverse of a scalar:

—1/2 * vecB

(1,2, —1] (8)

Type: Vector Fraction Integer

—vecA * (1/2)
3
Type: Vector Fraction Integer
We may not, however, write this as vecA*1/2, since this would be interpreted as (vecAx*1)/2

which is vecA/2.

We can also form the inner product (“dot product”) of two such vectors:
— dot (vecA,vecB)

Type: Integer

63

The length of a vector is the square root of its inner product with itself:

— sqrt dot(vecA,vech)

Type: AlgebraicNumber

but AXIOM provides a built in magnitude function to do this:

— magnitude vecA

Type: AlgebraicNumber

Note that the type here is AlgebraicNumber, since AXIOM had to compute a root to find this
value.

The direction of a vector is conventionally defined by its “direction cosines”, formed when its
components are divided by its magnitude. Provided that we have a division ring, we can form
the set of direction cosines as a vector:

—direction x == 1/magnitude x * x
Type: Void

— direction vecA
3 4
Type: Vector AlgebraicNumber
The magnitude of a direction vector is always one:

— magnitude direction vecB

1 (15)
Type: AlgebraicNumber

We can form vectors of expressions; for example, the position of a particle moving freely under
gravity could be described by:

—p := vector [ul*t,u2*t,uld*t-1/2xgxt~2]

tul, tu2, tu3—%gt2 (16)

Type: Vector Polynomial Fraction Integer

64

AXIOM does not provide a derivative function for vectors:

—D(p,t)

black

Cannot find a definition or applicable library operation named D with argument type(s) Vector
Polynomial Fraction Integer Variable t

but we can easily define one by mapping D onto each component:

—DV(s,t) == map(x+->D(x,t),s)
Type: Void

—v := DV(p,t) -- the velocity,
[ul, u2, u3 — gt] (18)
Type: Vector Polynomial Fraction Integer
—a := DV(v,t) -- acceleration
[0, 0, —g] (19)
Type: Vector Polynomial Fraction Integer
—j := DV(a,t) -- and jerk

[0, 0, 0] (20)

Type: Vector Polynomial Fraction Integer

While we are working abstractly, AXIOM does not generally need to know that a particular
symbol represents a vector valued quantity. In the following, the symbols s (position), v
(velocity), u (initial velocity), aF (acceleration due to a constant field, such as gravity) and a
(total acceleration) will all represent vectors — but this will not be apparent to AXIOM until we
assign vector values to them. In addition to the above, let m be the mass of our particle and sup-
pose that the frictional force on it is -r v, so that (switching briefly to mathematical notation)
we have a=ap — (r/m)v, which we can rewrite as a —ap + (r/m)v =0.

Since a is § and v is § our equation of motion is § —ar + (r/m)s =0.
As usual, t will represent time; we shall assume that s=0 at t=0.

Just to avoid any possible confusion, let us remove any existing definitions:

—)clear properties all

Compiled code for DV has been cleared.

Compiled code for direction has been cleared.

65

Now we can use the techniques of chapter 4 to integrate our equation:

— 8 := operator ’s;
Type: BasicOperator

— 880l := solve(D(s(t),t,2) - aF + r/m*xD(s(t),t),s,t=0,[0,ul)

rt

(—mru+aFm2)e() +mru+aFmrt—aFm?
2

(22)

Type: Union(Expression Integer,failed)

(In what follows, we shall not be concerned with v, the velocity, but we could, if we wished
obtain it by applying D, the derivative operator, to this result, since the expression does not
explicitly refer to vectors.)

Using a two-dimensional coordinate system for simplicity, we can now let:

—u := vector [ux,uy]

[uz, uy] (23)

Type: Vector OrderedVariableList (ux,uy)

—aF := vector [0,-g]

[0, —g] (24)
Type: Vector Polynomial Integer

and try to turn our expression for s into a vector-valued function:

— function(sSol ,’s,’t)

Type: Symbol

AXIOM accepted that, but what has it made of it? Let us look at this function:

—s t

Cannot find a definition or applicable library operation named / with argument type(s) Vector
Expression Integer Polynomial Integer

66

The numerator of our expression has become vector valued and, as we already discovered, we
cannot divide vectors in AXIOM — but we can multiply by the inverse of a scalar, so perhaps we
should handle the numerator and denominator separately. Let us try making the numerator into
a function then multiplying that by the inverse of the denominator:

— function(numerator sSol,’n,’t)

n (26)

Type: Symbol

— function(1l/denominator sSol*n(t),’s,’t)

s (27)

Type: Symbol

—s t

rt

—mua:e(’")+mum (—mruy—ng)e(’”)+m1"uy—gmrt—%gm2

rt

r ’ 7.2 (28)

Type: Vector Expression Integer

(We cannot simply use 1/denominator sSol * numerator sSol in the function definition, as
AXIOM simplifies this back to the original expression).

We might, perhaps, like to see the trajectory of our particle (for particular values of the con-
stants m, ux, uy, r and g). By way of illustration, let us assume that m = 1, ux = 20, uy =
10, r = 0.1 and g = 9.8 and, as in chapter 2, improve legibility with

— outputGeneral 6
Type: Void

— map (x+->eval(x, [m=1,ux=20,uy=10,r=0.1,g=9.8]),s t)

[—200.0e(=%1%) 4 200.0, —1080.0e(~%1) — 98.0¢ + 1080.0] (30)

Type: Vector Expression Float

AXIOM provides the function curve as an aid to plotting parametric curves. We can use it as
follows:

— draw(curve(%.1,%.2),t=0..2)

"a twoDimensionalViewport" (31)

Type: TwoDimensionalViewport

67

E.'Axﬁlaphics - [AXI0M2D]

@ File Edit Miew Image Window Help = 51_?_(_!

transY trans¥ | [T 0 T Zoom 4] | ¥|[45.0 | Delly

We can compare this with the case where there is no friction:

— map (x+->eval(x, [m=1,ux=20,uy=10,r=0,g=9.8]) ,s t)
black

>> Error detected within library code:
catdef: division by zero

We forgot the rs in the denominators. If we take the limit, we can get rid of those, then try
again:
—map (x+->1imit (x,r=0),s t)

2tuy — gt
it A

tuzx 5

(32)

Type: Vector Union(OrderedCompletion Expression Integer, Record(leftHandLimit:
Union(OrderedCompletion Expression Integer,failed), rightHandLimit:
Union(OrderedCompletion Expression Integer,failed)),failed)

With such a complicated type, AXIOM may not be able to find the operations we want; as the
limits did not fail, we can simplify it considerably:

— map (x+->eval(x, [m=1,ux=20,uy=10,g=9.8]) ,%: : Vector Expression Integer)

[20.0¢, — 4.9¢%+ 10.0¢] (33)

68

Type: Vector Expression Float

— draw(curve(%.1,%.2),t=0..2)

"a twoDimensionalViewport" (34)

Type: TwoDimensionalViewport

P2 AxGGraphics - [AXI0M2D]

@ Eile Edit Mew Image ‘window Help I e |

transY trans¥ | [T Zoom 4| | |450 Dolly

Next

69

Up
6.3. Matrices (and more vectors)

The components of a vector may be of any Type (Type is the simplest category, and all domains
belong to it):

— vecC := vector [0,x +-> x,[a,b,c]]

[0, (z—z),[a,b,]] (42)
Type: Vector Any

However, the elements of a matrix must come from a Ring. The function matrix, analogous to
vector, may be used to create matrices directly. It takes a list of lists as its argument:

—matA := matrix [[x,0],[7.3,%il]

] ()

Type: Matrix Polynomial Complex Float

In forming vectors and matrices, AXIOM looks for a common type for the elements. For the
vector vecC, the components we used were so varied that the only common type was Any, a spe-
cial type to which any AXIOM object may belong, whilst also retaining its own, individual type.

To see this:
— vecC(1)
0 (44)
Type: NonNegativeIlnteger
— vecC.2
T T (45)
Type: AnonymousFunction
— vecC 3

[a,b,c] (46)

Type: List OrderedVariableList a,b,c

70

(Like lists and other linear structures, vectors can be applied to an index to yield one of their
elements.)

AXIOM vectors can, in fact, serve as general data structures as well as being analogues of math-
ematical vectors.

If a variable has a vector or matrix type, AXIOM will convert a list or list of lists, respectively,

to an object of that type, on assignment to the variable:

—vecD : Vector Integer := [1,2,3,4,5,6]

[1,2,3,4,5,6] (47)

Type: Vector Integer

—matB : Matrix Integer := [[1,2,3],[4,5,6]]
123
[4 5 6] (48)
Type: Matrix Integer

In AXIOM, the same representation is used for row and column vectors. Which of these is
intended is usually discovered from the context, as we shall see shortly; where the context does
not provide the necessary information (and a decision is necessary) a column vector is assumed.
For example, we can coerce a vector into a matrix:

— vector [1,2,3] :: Matrix Integer

E)

3

Type: Matrix Integer

Turning to our original matrix, the common type of the elements was Polynomial Complex
Float, that is, polynomials whose coeflicients are complex floating point numbers. If we look at
of one of its elements, we shall see that it has been converted to this type:

—matA(1,2)

0.0 (50)
Type: Polynomial Complex Float

As matrices are two-dimensional structures, their elements are selected by applying the matrix
to a pair of indices. The simplest notation for this is M(i, j) which returns the element located
in the ith row and jth column of the matrix M.

71

For the moment, the elements of our matrices will usually be numbers of some description or
variables (in the guise of polynomials) — but they could also be, for example, algebraic expres-
sions, equations, series or some classes of operators, as well as square matrices (of a fixed size)
whose elements are any of these.

Since our matrix matA is square, we might expect to be able to define another matrix with matA
as its only element:

—matrix [[matA]]

matrix[[7%3 0;0]] (51)

Type: Symbol

Instead, we obtained a symbol consisting of the word matrix with a list, containing the matrix
matA, as a subscript. As described in section 3.2, we have supplied the function matrix with the
wrong kind of list and obtained a subscripted symbol. We needed a list of lists of ring elements
but the type of matA is Matrix Polynomial Complex Float — and arbitrary matrices do not
form a ring, since they cannot, in general, be multiplied: square matrices of a fixed size are
required. To obtain the desired effect, we can tell AXIOM that matA should be considered as a
square matrix by specifying a SquareMatrix type for it or by applying the function squareMa-
trix.

The SquareMatrix type constructor takes two arguments, the first specifying the size of the
matrices and the second the underlying ring. Thus we can obtain our desired effect by:

—matrix [[matA::SquareMatrix(2,Polynomial Complex Float)]]

l Ea] (52

Type: Matrix SquareMatrix(2,Polynomial Complex Float)

The squareMatrix function takes a single argument (the name of the matrix), so its use
requires rather less effort:

—matrix [[squareMatrix matA]]

[A] (59

Type: Matrix SquareMatrix(2,Polynomial Complex Float)

although it takes AXIOM a little longer to process, since it has to work out what kind of
SquareMatrix you want.

Next Previous

72

Up

6.4. Exploring operations on vectors and matrices

What else can we do with AXIOM vectors and matrices? One way to find out is to make use of
the Browser.

Now, try typing either vector or matrix in the Browser’s input box and click on domains. The
new window which appears in the matrix case looks like this:

#- Domain Matrix(R]

Domain Matrix(R)

O Matriz(R)
Argrments: R, a dormain of category Ring
Returns: a domain of category MatrizCategory(E, Vector(R), Vector(E.)) with

explicit exports

Description: Matrix 1s a matrix domain where 1-based indexing 15 used for both rows
and colurmns.

Abbreviation: MWATRTK
Beamples: “946 Matrix”

Source File: matrix.spad

|Optiona1 argument value :|

= |

73

We could specialise to matrices with elements from a particular ring (say Integer) by typing
the name of the ring in the input box of this window; however, for the moment, let us find out
about all kinds of matrices.

To discover the names of all functions which come from the matrix domain (are ezported by it),
click on Operations in the right-hand mouse button menu.

The meanings of some of these functions are obvious, others less so — detailed descriptions can
be obtained by clicking on the particular function name.

In the descriptions of the functions, you will find frequent references to “an element of domain
%” and “an element of domain R” — what are these? % is the standard AXIOM syntax for “the
type being defined”; when this appears in the Browser it may be thought of as shorthand
for “the present domain”, so “an element of domain %” is just a matrix (of whatever specific type
we may be considering). One clue to R is in the title bar of the Browser window, which men-
tions “Matriz(R)”: any matrix is a matrix of ring elements and R is simply the underlying ring.
Thus, if we are considering, say, objects of type Matrix Polynomial Integer — which could

also be written Matrix(Polynomial Integer) — the R in Matriz(R) means Polynomial
Integer.
70 Names for 90 Operations from Domain Matrix(R)

70 Names for 90 Operations from Domain Matrix(R)
empty mernber? scalarhfatriz
* empty? members setColumn!
hk eq? minCollndex setEowl
+ eval minRowlndex setelt
- every? minordet setsubMatriz!
! eXqUO more? size?
= Eilll ncols square?
antisymmetric? hash new squareTop
any? horizConcat Orows subldatrix
Coerce inverse null3pace swapColumns!
colurmnn latex rullity swapRows|
convert less? parts syrmetric?
Copy listOfLists gelt transpose
count map qsetelt! vertConcat
determinant map! rank Zerc
diagonal? matrix oW =
diagonalbatriz maxCollndex rowEchelon
elt maxFowlndex sample

We should, however, note that for some operations the R is not necessarily just a ring — to find
out exactly what it is, we may need to look more carefully at the description of the operation.
For example, the second argument of the operation exquo is “an element of domain R” and the
description includes the line

Conditions: R has IntegralDomain

74

so that the divisor must belong to an integral domain — that is, a ring in which the product of
non-zero elements is never zero.

To take a more commonplace example of matrix functions, clicking on * reveals that six dif-
ferent product operations are defined:

matrix multiplication of pairs of matrices (with compatible dimensions),

left and right scalar multiplication (multiplication on the left or right of every element of
the matrix by a scalar — that is, a member of the underlying ring),

left multiplication by an integer,

and
left and right multiplication by an appropriate vector.

Multiplication by an integer may differ from multiplication by a scalar, since the scalars may not
be numbers — they could, for example, be 2 x 2 matrices. Multiplication by the integer n may be
thought of as equivalent to addition of n copies of the matrix. Addition, of course, is defined by
application of the + operation of the underlying ring to corresponding elements of two matrices.

Looking at vector-matrix multiplication provides an example of AXIOM using context to decide
whether a vector is a column- or row-vector,
—matC := matrix [[a,b,c],[d,e,f]]

i3] o0

Type: Matrix Polynomial Integer

— lvec := vector [2,3]

(2, 3] (55)

Type: Vector PositiveIlnteger

—rvec := vector [4,5,6]

[4, 5, 6] (56)

Type: Vector PositiveIlnteger

— lvec * matC

[3d+2a, 3e+2b, 3f + 2] (57)

Type: Vector Polynomial Integer

75

— matC * rvec

[6¢+5b+4a, 6 f + 5e +4d) (58)
Type: Vector Polynomial Integer
so 1lvec was taken to be a row vector and rvec a column vector.

In fact, it is even possible for the same vector to be treated as a column- and a row-vector in
different parts of the same expression:

— lrvec := vector [1,2]
[1, 2] (59)
Type: Vector Positivelnteger
—1rvec * ((matrix [[a,b],[c,d]] * lrvec) :: Matrix Polynomial Integer)
[4d+2c+2b+a] (60)

Type: Vector Polynomial Integer

We coerced the result of the right hand multiplication to be a (column) matrix because AXIOM
does not apply matrix multiplication to a product of vectors since, in that case, it would have no
means of deciding which of the vectors was a row and which a column.

The Matrix domain is by no means the only source of functions applicable to matrices in
AXIOM. A Browser search with the search string *matrix* reveals thirteen packages and eight
other domains concerned with some aspect of matrices; several other packages may be discov-
ered by using the string *eigenx.

Next Previous

76

Up
6.5. Other ways of defining vectors and matrices

(Although this section refers to vectors and matrices, the same techniques may be used to define
other structures such as lists and arrays.)

Using new

The AXIOM function is a useful way of defining structures where most of the elements have the
same value. It has the form new(size,value) for one-dimensional structures and new(column-
size ,rowsize , value) for two-dimensional structures.

When we use new, AXIOM needs to know what kind of object we are trying to create, otherwise
it will, justifiably, complain. The most direct way of doing this is to declare the type of the new
object before assigning to it. As vecD has already been declared to be of type Vector Integer,
we can, for example, define a vector of five zeros using:

— vecD := new(5,0)

[0, 0, 0, 0, 0] (61)
Type: Vector Integer

Suppose, however, that we wanted to use a structure defined by new without assigning it to a
variable. (It might, for example, be part of a larger expression of a totally different type.)

When functions of the same name exist for different domains, AXIOM provides a means to dis-
tinguish the one we want: we simply have to add a dollar sign ($) followed by the name of the
appropriate domain, after the function call.

Thus, we could set up a 3 x 3 zero matrix, considered to be a matrix of integers, by specifying
that we want to use the version of new which comes from the domain Matrix Integer:

—new(3,3,0)$Matrix Integer

000 ©

LoooJ

Type: Matrix Integer

This technique is called a package call. The effect of the $ is to specify the source of the func-
tion, not the type of the result.

Why “package”™ Recall that a package in AXIOM is a collection of related functions; another
way of thinking of it is as a domain which does not define any types. Thus, package calling is a
way of specifying the domain or package which we wish to provide the function.

Suppose, now, that we want to define a unit matrix of order 3 (that is, a 3 x 3 matrix with 1s on
the principal diagonal, Os elsewhere). One approach is to modify the elements of the previous
matrix, one by one:

—Z3 = %;
Type: Matrix Integer

7

— I3 := Z3; I3(1,1) :=1; I13(2,2) :=1; I3(3,3) :=1;
Type: PositiveIlnteger

— I3

SO =
o = O
= O O
~—~
(=]
Ot
=

Type: Matrix Integer
That works, but soon becomes tiresome. Does AXIOM provide a loop mechanism for cases like

this?

Next Previous

78

Up
6.6. Digression — introducing for loops and segments

AXIOM has a variety of looping constructs, which are extensively described in the AXIOM
manual; perhaps the simplest to use in defining our unit matrix is a for loop:

— 13 := Z3; for k in [1,2,3] repeat I3(k,k)

]
-

Type: Void

— I3

OO =
o = O
_ o O
—
(=]
\]
—

Type: Matrix Integer

Note that the loop variable (k here), as in most modern computer languages, is local to the loop
— it is distinct from any variable of the same name occurring outside the loop and only has a
value within the loop.

As an alternative to the list [1,2,3] we could have used a segment, written as verb+1..3+, to
control the loop:

— I3 := Z3; for k in 1..3 repeat I3(k,k) :=1
Type: Void
— I3
100
010 (69)
001

Type: Matrix Integer

In this case, that was only slightly easier — but it is obviously much less work to use a segment
when a long sequence of numbers is required.

Segments do not always consist of finite sequences of consecutive positive integers — they may be
generalised in several ways:

either endpoint may be negative;

a step other than 1 between (real) elements may be specified by adding the clause by n
(where n is an integer); for example, 1..9 by 2 consists of the odd, single digit integers;

omitting the second endpoint produces an open-ended sequence, called a UniversalSeg-
ment.

For example: 1.. are the natural numbers.

79

finally, it is possible to define segments of any AXIOM type; however, only segments of
integers may be used in loop controls.

Note that the by n clause may be applied to any kind of segment. It may be regarded as a
filter, whose effect is to take every nth element of the segment, starting at the first.

It is possible to convert a finite segment (of a real numeric type) into a list, using the expand
function:

— expand(-7/2..7/3)

13
Type: List Fraction Integer

Segments with by 0 generate an error.

Experimenting with expand will reveal that final element produced from a segment is the largest
number which is less than or equal to the second endpoint and which can be formed by adding
zero or more copies of the step to the first endpoint (and so, of course, the final element is not
always equal to the second endpoint, as in the above example).

Applying expand to a UniversalSegment produces a stream, the open-ended analogue of a list.

AXIOM provides two function, 1o and hi, which deliver the endpoints of segments; 1o returns
the first endpoint of any segment and hi the second endpoint of a finite segment (even if the
first endpoint is larger than the second).

In the above examples, the loop body, which follows repeat, consisted of a single instruction; it
could equally well have been a block:

— for i in 11..20 repeat
(print i;
if prime? i then messagePrint(" (That was prime.)")$0utputForm)

11

(That was prime.)
12
13

(That was prime.)
14
15
16
17

(That was prime.)
18
19

(That was prime.)
20

80

Type: Void

Using messagePrint, rather than print, allows us to avoid printing the annoying quotation
marks (" ") enclosing the string; previously, in the example in section 2.7, we could not achieve
this. The messagePrint function comes from the domain OutputForm which is normally unex-
posed — that is, its functions are not immediately available to users. It is possible to explicitly
)expose domains but this can have undesirable side-effects: for example, in the present case, we
do not want the rules which govern the printing of output objects to be generally applicable,
since they are not appropriate for manipulating algebraic expressions. Package calling function
avoids the need to expose the domain. (For a fuller discussion of exposure see the AXIOM
manual.)

It is possible to nest loops, by using a second loop as the body of the first; more unusual is
AXIOM’s ability to loop over two (or more) structures in parallel, by using several iterators (in
our case, for clauses) before repeat and the loop body:

— poly := 0;
Type: NonNegativeInteger

—for i in [1,2,3,4] for ¢ in [’a,’b,’c,’d] repeat poly := poly + ix*c
Type: Void

— poly

4d+3c+2b+a (74)

Type: Polynomial Integer

The iterators do not need to produce the same number of items: the loop will terminate when
any one of them is exhausted.

This construct provides one motivation for the presence of the repeat keyword in the for loop
— it shows where a set of parallel iterators ends, distinguishing parallel from nested iteration.

In defining a for loop, alternatives to a list or a finite segment after the in keyword are an
open-ended segment and a stream. Loops using these constructs are potentially non-termi-
nating.

Next Previous

81

Up

6.7. More matrix definition

Direct iteration

Lists, including those from which vectors and matrices are normally defined, may be created by
enclosing an expression, followed by iterators defining its variables, within list brackets. For
example:

— vecC := vector [n"2 for n in 1..3]

[1, 4, 9] (75)
Type: Vector PositiveInteger

A notorious matrix in numerical analysis is the Hilbert matrix, a slight variant of which has ele-
ments defined by the reciprocal of the sum of their row and column indices. This provides an
example of an iterator occurring outside of an inner list, so that it defines a list of lists:

—hilbert3 := matrix [[1/(i+j) for i in 1..3] for j in 1..3]

(76)

N U R
G =i =W =
D RO = =

Type: Matrix Fraction Integer

We can now define our unit matrix by combining this style of direct iteration with, say, an
anonymous function:

— I3 := matrix [[((m,n)+->if m=n then 1 else 0)(i,j) _
for i in 1..3] for j in 1..3]

(77)

Type: Matrix Integer

For clarity, the variables used in the iterators were different to the local, dummy variables in the
anonymous function. As the variables in the iterators, like those in loops, are also local, we
could, if we wished, have used the same pair of variables in both contexts. A single equals sign
(=) is used in tests for equality.

The diagonalMatrix function

We have used unit matrices as a way of exploring various AXIOM features; however, it is worth
pointing out that there is a much simpler way of defining them, with the diagonalMatrix func-
tion:

82

— diagonalMatrix [1,1,1]

(78)

SO =
o = O
—_ o O

Type: Matrix Integer

Next Previous

83

Up
6.8. Manipulating matrices
As we have already seen, there are many matrix functions in AXIOM. These include the stan-

dard operations encountered in any basic course on matrices, which are described in chapter 9 of
the AXIOM manual. We shall explore only a few of these here.

The inverse

Many square matrices have an inverse — that is, a matrix which, multiplied on either side by the
original, results in a unit matrix with the same dimensions. When the underlying ring is a field
— that is, if division by non-zero elements is defined and multiplication is commutative —
AXIOM provides an inverse operation. For instance, considering the Hilbert-like matrix of
order three, which we defined earlier, we can obtain its inverse by:

— inverse hilbert3

72 —240 180
—240 900 —720 (79)
180 —720 600

Type: Union(Matrix Fraction Integer,failed)

and multiplying this by its inverse does, indeed, give a unit matrix:

— % * hilbert3

(80)

SO =
o = O
—_ o O

Type: Matrix Fraction Integer

AXIOM can also find the inverse of a symbolic matrix. To take a very simple example:
—matC := matrix [[a,b], [c,d]]
a b
[« b } (81)

Type: Matrix Polynomial Integer

— inverse matC
d—b d—>b
l _a . C a " C J (82)
ad—bc ad-bc

Type: Union(Matrix Fraction Polynomial Integer,failed)

84

Clearly, the elements of this inverse exist only if (a d - b ¢) is non-zero. This quantity, of
course, is the determinant of the original matrix, so, for the 2 x 2 case, we have verified that the
inverse of a matrix exists precisely when its determinant is non-zero; in other words, when the
matrix is non-singular.

The determinant

AXIOM provides a determinant function:

— determinant matC

ad—bc (83)
Type: Polynomial Integer

which we shall use extensively in the next chapter to investigate the accuracy of some floating
point calculations.

Here, we shall explore the use of the determinant in determining the equation of known form
which passes through a set of points. If we can write the general equation in a form which is
linear in a set of unknown coefficients, the form we require is obtained by equating to zero the
determinant of the matrix formed as follows: 1

the first row consists of a list of the new coefficients obtained by considering the unknown
coefficients in the equation as the variables; thus, its elements are generally functions of

the actual variables in the equation;

the other rows of the matrix are formed by substituting the values of the coordinates at
the known points into the expressions forming the first row.

A simple example may make this clearer: suppose we wish to determine the equation of a circle

which passes through the three points (1,0), (0,1) and (— 1, — 1). If we write the equation of a
circle in its general form

—(x-a)"2 + (y-b)°2 - r*2 =0

v —2by+a?—2ax—r?+b*+a?=0 (84)
Type: Equation Polynomial Integer

we find that AXIOM has conveniently expanded it for us into a form which is linear in a set of
unknown coefficients, since, collecting terms, we could rewrite this as

A+Bz+Cy+ (22 +y?) =0

For simplicity in referencing its rows, we will build up our matrix as a list of lists.

—rowl := [1,x,y,x"2+y"2]

(1,2, y, y*+27] (85)

Type: List Polynomial Integer

1. For more detail see L E Fuller, Linear Algebra with applications, Dickenson, 1966.

85

and the others are formed by substituting the appropriate values in this:

—row2 := [eval(rowl.i,[x,y],[0,1]) for i in 1..4]

[1,0,1,1] (86)

Type: List Polynomial Integer

—row3 := [eval(rowl.i,[x,y],[1,0]) for i in 1..4];
Type: List Polynomial Integer

—rowd := [eval(rowl.i,[x,y],[-1,-1]) for i in 1..4];
Type: List Polynomial Integer

We can now build up our matrix and obtain the desired equation from its determinant:

— determinant [rowl,row2,row3,row4d] = 0

3y’ +y+32x2+x—4=0 (89)
Type: Equation Polynomial Integer

A new form of eval was used in instructions (86) to (88); this has a list of variables as its
second parameter and a list of values to be substituted for these as its third.

Solving matrix equations

If A is a matrix of coefficients, x is a vector of variables and c is a vector of constants, the equa-
tion Ax = c is equivalent to a set of linear equations of the form

E Qi3T5 =C4
J

Can AXIOM solve the equations in matrix form?

Not all forms of solve work for matrices, although if we write the equation as Ax - ¢ = 0 and
use the “left hand side” form of solve, as in solve(Ax - c¢), it will produce a solution.

However, it is not necessary to mention x to obtain the solution of such a set of equations:
solve has another form, solve(A,c), designed specifically for matrix equations. In using this, it
is not even necessary to explicitly give matrices and vectors as the parameters — appropriate
lists will suffice. Thus, for example, we could solve an equation using our matrix hilbert3, say

[:U yz]=[357]

N
W=
| =
| =
| =
| =
[

11
2 3
as follows:

—solve([[1/(i+j) for i in 1..3] for j imn 1..3],[3,5,71)

[particular=[276, — 1260, 1140], basis=][[0, 0, O]]] (90)

86

Type: Record(particular: Union(Vector Fraction Integer,failed), basis: List Vector
Fraction Integer)

The result is provided as a particular solution and a basis, in case the set of linear equations is
deficient — that is, has fewer independent equations than the number of variables: in this case,
any linear combination of the basis vectors (represented here as lists) may be added to the par-
ticular solution to give a valid solution. An example of such a system is provided by the matrix

—matD := matrix [[1,2,3,4]1,[2,3,4,5]1,[3,4,5,6]1,[4,5,6,71]

1234
2345
3456 (91)
4567
Type: Matrix Integer
and the right hand side vector
—c¢ := vector [5,6,7,8]
[5, 6, 7, 8] (92)
Type: Vector Positivelnteger
— solve(matD,c)
[particular=[-3,4,0,0], basis=][[1, —2,1,0], [2, —3,0, 1]]] (93)

Type: Record(particular: Union(Vector Fraction Integer,failed), basis: List Vector
Fraction Integer)

A set of equations is dependent if one of them can be formed from a linear combination of the
others. In matrix terms, this means that the rows of the augmented matriz, formed by horizon-
tally concatenating the coefficient matrix and the right hand side vector, are dependent. The
augmented matrix may be formed using the horizConcat function, which operates on two
matrices or equivalent structures:

— horizConcat (matD, c)

12345
23456
34567 (94)
45678

Type: Matrix Integer

(There is also a vertConcat.)

The number of rows which are independent is the rank of the matrix:

87

— rank %

Type: PositiveInteger

and in this case, this is the same as the rank of matD:

— rank matD

Type: PositiveInteger

The matrices used in solve do not need to be square. For instance, the set of equations in the
last example would be essentially the same if one or two of them were omitted:

—solve([[2,3,4,5]1,[3,4,5,61,[4,5,6,711,[5,6,71)

[particular=[-2,3,0,0], basis=][[1, —2,1,0], [2, —3,0, 1]]] (97)

Type: Record(particular: Union(Vector Fraction Integer,failed), basis: List Vector
Fraction Integer)

(The submatrix used in the above command could also have been formed from matD, using the
subMatrix function:

— subMatrix(matD,1,3,1,4)

(98)

W N =
>~ W N
U W
S O

Type: Matrix Integer

whose parameters are the name of the original matrix, the first and last row indices and the first
and last column indices required, in that order. The subvector, of course, can be constructed
using the form [c.i for i in 1..3].)

If there are more independent rows than the number of variables, the system is said to be
overdetermined and has no solution. Overdetermination is an example of inconsistency. If the
coefficient vector of one of the equations can be formed from a linear combination of some of the
others, for consistency the right hand sides must stand in the same relationship. If they do not,
the rank of the augmented matrix will be greater than that of the coefficient matrix (in fact, it
will be one greater).

For example, if we change one of the elements of c, the rank of the augmented matrix becomes
3:

— rank horizConcat (matD,vector [5,6,7,9])

3 (99)

88

Type: PositiveIlnteger

— solve(matD, [5,6,7,9])

[particular="failed", basis=|[[1, —2,1,0], [2, —3, 0, 1]]] (100)

Type: Record(particular: Union(Vector Fraction Integer,failed), basis: List Vector
Fraction Integer)

With inconsistent equations, this form of solve returns "failed" for the particular solution.
The solve(Ax - ¢) form would return an empty list.

Chapter 7 | Previous

89

Up

Chapter 7, A little error analysis

Why were the Hilbert-like matrices described in the previous chapter as “notorious in numerical
analysis”? Let us explore what happens if we represent them using floating point numbers. In
fact, we can simulate the most common situation in numerical analysis and use the double preci-
sion floating point numbers provided by the computer hardware.

This representation of floating point numbers is obtained in AXIOM by means of the Double-
Float type. Note that AXIOM displays these numbers with 16 decimal digits, the last of which
is unreliable. (As is the case with any other computer program using hardware floating-point
numbers.)

— hilbert3 :: Matrix DoubleFloat -- continuing the previous session
0.5 0.3333333333333333 0.25
0.3333333333333333 0.25 0.2 (101)
0.25 0.2 0.1666666666666666

Type: Matrix DoubleFloat

— % * inverse %

0.9999999999999928 — 2.8421709430404e — 014 0.0
—1.4210854715202e¢ — 014 1.000000000000028 — 2.8421709430404e — 014 (102)
—7.105427357601001e — 015 —1.4210854715202¢ — 014 1.0

Type: Matrix DoubleFloat

Instead of being 0, the off-diagonal elements are numbers of order of magnitude 10~'4; the diag-
onal elements approximate 1 with an accuracy of only 14 digits. This does not indicate an error
in AXIOM’s working; it is a consequence of the inherent inaccuracy of floating point computa-
tion, which is rapidly compounded in this calculation.

As the dimension of our matrix increases, the situation gets worse: for a 7 x 7 matrix only about
half of the digits in the diagonal elements of the final product are accurate, for the 11 x 11 case,
none of these digits is reliable. (As a space saving measure in this chapter, the displays of a
number of results are inhibited by using a final semicolon (;) to terminate the input.)

—matrix [[1/(i+j) for i in 1..11] for j in 1..11]::Matrix DoubleFloat;
Type: Matrix DoubleFloat

— badUnit := % * inverse %;

Type: Matrix DoubleFloat

—diagEls := set [}(i,i) for i in 1..11];

Type: Set DoubleFloat

90

—min diagEls

0.822265625 (106)

Type: DoubleFloat

— max diagEls

1.152587890625 (107)
Type: DoubleFloat

The min functions operate on sets so, to determine the range of values in the diagonal, we col-
lected these in a list and then converted it to a set, using the function set.

The off-diagonal elements are no longer closer to zero:

— offDiags := empty()$Set DoubleFloat

{ (108)

Type: Set DoubleFloat

—for i in 1..11 repeat _
for jin 1..11 | 1 "= j repeat _
offDiags := union(offDiags,badUnit(i,j))
Type: Void

—min offDiags

— 0.35546875 (110)

Type: DoubleFloat

—max offDiags

0.291015625 (111)
Type: DoubleFloat

Here, nested iteration was required so we used a for loop.

In constructing the set of off-diagonal elements we used a new form of for loop control, for j
in 1..11 | i = j, in which the vertical bar (|) serves to introduce a filter to be applied to
the preceding for iterator; in other words, it selects only those elements produced by the iter-
ator which satisfy the condition following the |, which, in this case, is the condition that i is
not equal (“=) to j. As in rules, the vertical bar is usually read as “such that”.

91

The normal approach in computer algebra, of course, is to use exact representations — in this
case rational numbers. Returning to this form, we can verify that AXIOM still computes the
solution exactly:

—hilbertll := matrix [[1/(i+j) for i in 1..11] for j in 1..11];
Type: Matrix Fraction Integer

— % * inverse %

10000000000
01000000000
00100000000
00010000000
00001000000
00000100000 (113)
00000010000
00000001000
00000000100
00000000010
(00000000001

Type: Matrix Fraction Integer

7.1 The effect of the determinant

7.2 Perturbation analysis

| Chapter 6 | | Chapter 8 |

92

Up
7.1. The effect of the determinant

Recalling that the determinant of a matrix appears in the denominators of the elements of its
inverse, it may be informative to look more closely at this. The determinant of our matrix
hilbert3 is:

— detHilbert3 := determinant hilbert3

1
43200 (114)

Type: Fraction Integer

which is rather small. The inverse of a matrix only exists when the determinant is non-zero; in
numerical analysis, calculations involving matrices whose determinants are close to zero tend to
be inherently inaccurate — the matrices are said to be ill-conditioned.

The size of the determinant of Hilbert-like matrices shrinks very rapidly with increasing dimen-
sion. For the 11 x 11 case:

— detHilbert1ll := determinant hilbertiil

1
2336567487454523809227262'7703110594203896316624245449356738560000000000

(115)

Type: Fraction Integer

If we convert this to a DoubleFloat, we can compare it with the determinant of the Double-
Float representation of the matrix:

— % :: DoubleFloat

4.279782224862714e — 071 (116)
Type: DoubleFloat
— determinant (hilbert11::Matrix DoubleFloat)
4.262628689674844¢e — 071 (117)
Type: DoubleFloat

so working with DoubleFloats throughout gives a determinant with only two significant figures
of accuracy. As the determinant is intimately involved in the calculation of the inverse, it is not
surprising that using DoubleFloats gave such a poor result for the inverse.

Next

93

Up

7.2. Perturbation analysis

If we convert our matrix hilbert3 to a matrix of polynomials we can add a symbolic perturba-
tion to one of the elements and see how it affects the determinant.

Let us use a relative perturbation of eps:

— test3 := hilbert3 :: Matrix Polynomial Fraction Integer;
Type: Matrix Polynomial Fraction Integer

— test3(1,1) := (1 + eps)/2;
Type: Polynomial Fraction Integer

— determinant test3

L1
1200°P° T 13200

(120)

Type: Polynomial Fraction Integer

— (% - detHilbert3)/detHilbert3
36eps (121)

Type: Polynomial Fraction Integer

so the relative change in the determinant is 36 times that in the first element of the matrix.
Inaccuracies in representing elements of the matrix can be multiplied many times over in the
determinant; additional errors may be introduced by rounding at subsequent steps of a floating
point computation.

As there are eight other elements in the matrix, we can expect the total effect of inaccuracies in
representing the elements to be rather more than 36eps. However, the element we perturbed
was the largest — does this have a disproportionately large effect on the determinant? In fact, if
we instead perturb the smallest element by eps, the relative change in the determinant is
100eps, so it appears not. We could investigate this in more detail but it is perhaps more inter-
esting to consider the total effect of all of the inaccuracies in the matrix elements. In a typical
situation, roughly half of elements would be in error by a positive amount, the rest by a nega-
tive amount, so we might expect them, to some extent, to cancel each other. Depending on the
pattern of “missing” bits and whether the last bit present is rounded or not, the magnitude of
the errors could range from zero to 27", where n is the number of bits in the representation.

Rather than worry about the exact error structure in individual elements, let us carry out an
initial investigation, making the simplifying assumption that all elements are subject to an error
of +eps, with the sign of the error being assigned at random among the elements. AXIOM pro-
vides a function randnum(n), which generates pseudo-random integers in the range [0, ...,n — 1]
with a rectangular distribution, i.e., all of the numbers in the range are equally likely to occur.
Do not be concerned about the “pseudo” — for almost all purposes we can use them as random
numbers. However, it is worth noting that the sequence of numbers generated is repeatable —
that is, the same sequence will be generated on different runs of AXIOM. This is important
since otherwise, behaviour of algorithms using random numbers could not be reproduced, so
bugs could not be detected or fixed. It is possible to force varying behaviour using the reseed
function to reset the random-number generator.

94

—for i in 1..3 repeat for j in 1..3 repeat _
test3(i,j) := hilbert3(i,j) + (2*randnum(2) - 1)*eps
Type: Void

— test3
e s—i—l —e s—i—l —e s—f—l
’ 21 ’ ? ’ 14
—epst+g —epst epstg (123)
e s+l e s—i—l e s-i—l
p 7 p 5 p 6

Type: Matrix Polynomial Fraction Integer

— (determinant test3 - detHilbert3)/detHilbert3

— 172800e p 5% — 46080e p s> — 1188¢e p s (124)
Type: Polynomial Fraction Integer

As we are assuming that eps is already very small, its higher powers may be disregarded in this
expression and we see that the magnitude of the proportional error in the determinant is 741
times that in the individual elements. It looks rather as if the effects of the errors in individual
elements are adding, since the effects we saw for the extreme elements were 36eps and 100eps.
As we have only carried out one run, we have no measure of how typical this is. (In fact, it is
fairly near the end of the range of values which occur — repeating the experiment 100 times gave
a mean absolute error in the determinant of about 300eps.) However, we do not need to resort
to statistical methods to see how the errors interact; we can investigate this analytically by
adding an “error matrix” to the original Hilbert-like matrix.

—error3 := matrix [[eps[i,j] for i in 1..3] for j in 1..3]

€pPSi1,1 €PS2,1 €PS31
epsi,2 €ps2 2 €pSs 2 (125)
€pSs1,3 €PS2 3 €PS3.3

Type: Matrix Polynomial Integer

— test3 := hilbert3 + t*error3;
Type: Matrix Polynomial Fraction Integer

— detErr := (determinant test3 - detHilbert3)/detHilbert3;
Type: Polynomial Fraction Integer

Perturbing hilbert3 by t*error3 rather than by error3 provides us with a simple means of
eliminating the products of error components which, as before, we shall regard as negligible:

95

— detErrReduced := coefficient(%,’t,1)

600e p s3,3 — 720e p 53,2 + 180e p 53,1 — 720e p s2,3 + 900e p s2,2 — 240e p 52,1 + 180e p s1,3 —
240eps1,2+T72epsi 1 (128)

Type: Polynomial Fraction Integer

where we used coefficient(%,’t,1) to produce the coeflicient of the variable t to the power 1
in the polynomial % (or detErr); since each eps was multiplied by t, this gives the expression
which we required with eps-products eliminated. We can verify that there is no constant term
in detErr:

— coefficient (detErr,’t,0)

0 (129)
Type: Polynomial Fraction Integer

The quantity detErrReduced is symmetrical in the eps-subscripts, since hilbert3 itself was
symmetrical: if we had used the transpose of test3 instead of test3 itself in the calculation, we
would have interchanged the indices but kept the same coefficients in the final result.

The epss in detErrReduced can all be varied independently, so any cancelling of their effects is
purely fortuitous. As our initial experiments suggested, the error in the (1, 1) position has the
least effect; however, the error with the most effect is in the (2,2) position, not as we might have
guessed the (3, 3) position.

This approach, of considering the effects of perturbing various components in an expression, can
be useful in analysing a calculation or experiment to find where increased accuracy will have the
greatest benefit on the accuracy of the final result. However, if we had a larger problem, we
would not wish to look for the largest effect by eye; instead we could use sort to find this.

Applying this approach to the determinant of hilbert3, as a demonstration, we can use the two
functions variables and coefficients to produce lists of the epss and their coefficients (in
the same order, since detErrReduced consists entirely of first degree terms), sort a list of indices
[1,...,9] according to the absolute sizes of the coefficients and, finally, use the index of the
largest coefficient to pick the corresponding element of the list of epss.

Simply applying sort to a list returns a sorted version of the list; more useful to us is the ver-
sion of sort which takes an additional (first) parameter, a function which indicates whether two
elements are in the correct order. Such a function, in our case, is ((i,j)+->abs coefs.i > abs
coefs.j), where abs is the absolute value function; this returns true (indicating that i and j
are in the correct order) when abs(coefs.i) > abs(coefs.j) is true.

— epses := variables detErrReduced
l[epss, 3, epss 2, €PS3 1, €PS2, 3, €PSy 2, EPS2, 1, EPS1, 3, €PS1, 2, €PS1, 1] (130)
Type: List Symbol
— coefs := coefficients detErrReduced
[600, — 720, 180, — 720, 900, — 240, 180, — 240, 72] (131)

96

Type: List Fraction Integer

— index := first sort((i,j)+->abs coefs.i > abs coefs.j, expand(1..9))

5 (132)

Type: PositiveInteger

— epses.b

epsz,2 (133)
Type: Symbol

— coefs.b
900 (134)

Type: Fraction Integer

We can check whether the coefficient of largest magnitude is unique by sorting the coeflicients
themselves and inspecting the second element:

—sort((i,j)+->abs i > abs j, coefs).2

— 720 (135)

Type: Fraction Integer

Chapter 8 | Previous

97

Up

Chapter 8, Next steps

The purpose of this tutorial was to familiarise users with the AXIOM approach to mathematics.
We have covered the basics of elementary mathematics and how AXIOM can be used to tackle
these areas. To make full use of all of AXIOM’s functionality we recommend that the user reads
the accompanying on-line documentation via TEXyacs-

The most useful part of the manual to read next is probably chapter 5, “Introduction to the
AXIOM Interactive Language”.

98

B 18, 25 manipulation!type 17, 20
@ L e e e e e e e e e e 17, 20 map@mapo e e e 18
e 18 0210 <N 6
@ v v ot e 6 normalize@normalize 46
algebraic number 33, 47, 47 numberlalgebraic L 0oL 47
assignmento Lo e . 2,6,6 numeric@numeric 0. 18
assignment!deferred00 6 orderedcompletion@OrderedCompletion 23
assignment!immediate 6 ordering variables00, 22
atan@atanl e e e 41 output inhibition 000, 18
binomial series o000 25 outputGeneral@outputGeneral 16
block 28, 45 partial derivative 34
Boolean@Boolean v 4 v v ... 4. 26 partial derivativeloutput notation 38
Browser, 58 plusInfinity@¥%plusInfinity 23
CASE v v v v v e e e e e e e e e e e e e e e e e e 6 Polynomial equations!approximate decimal solution
centripetal acceleration 38 e e e e e e e e e e 15
chainrule 36 Polynomial equations!approximate rational solution
command!multiple 51 16
comment00 e e e 2,12, 12 precedence u i e e e e e e e e e e e 4
complexForm@complexForm 49 Precision . . v v v v v v v v e e e e e e e e e e e 4
complexSolve@complexSolve 16 product rule 0000 36
component!list 18 Puiseux series 25
component!structure 18 quotient rule 36
continuation 2,11, 11 radicalSolve@radicalSolve 15
conversionltype 17, 20 ratDenom@ratDenom 43
coriolis acceleration@Coriolis acceleration 38 rewriteruleo oo 43
D@D e 34 rhs@rhs o oo 18
deferred assignment 6 right handside 18
defining functions 27 rule L. e 33, 43, 43
definingPolynomial@definingPolynomial 49 rulelnamed Lo oo 44
deleting!functions 0L 29 ruleset ... Lo oo oo 45
derivative e 34 second@second 45, 45
derivativelpartial 34 semicolono e e e e e 18
derivative!partialloutput notation 38 series!binomial 25
differentiation 33, 34, 34 series!limiting displayed length 25
digitlsignificant 0 0oL 16 series!Puiseux o 0oL, 25
domaino 8 serieslsummation00, 23
equation!left hand side 18 series!Taylor 25
equation!right handside 18 significant digits 000 16
escape character 0000 6 simplify@simplify 47
eval@evalo 48 solution tolerance 15
factor@factor 15 sum@sum e e e e e e e 23
false@false v v v v v v v vt 26 sum to infinity 23
first@first 43 summation of series 13, 23, 23
Float@QFloat 26 taylor@taylor 25
function@function 30 Taylor series v v v v v v e v e e e e e 25
functionlanonymous 31 Techexplorer, 58
function!defining 27 third@third 43
functionldeleting 29 tolerance Lo 15
function!grouping 36 transformation!type 17, 20
Hilbert matrix 82 TrigonometricManipula-

history@)historylshow@)show 10 tions@QTrigonometricManipulations 43
immediate assignment 6 true@trueo e 26
infinitylsumto 23 tYPe « v o e e e e e e e e e e e e e e e e e 4
inhibiting output o0 0L 18 typelabbreviated names 21
integralllogarithmic 46 typelclearing Lo oL 9
integrationo e e 33 typelconversion 17, 20
left handside 18 typelunion@Union 29
length function (#) 28 underline oo 6
Ihs@lhs oo i i i i 18 underscore v e u e e e e e e e e e e e e 6
limit@limit e 23 union@Union00 23
lists . . v v v e 14 union@Uniono 29
listslcomponents 43 UnivariatePolynomial@UnivariatePolynomial . . 22
MACTO + v v ¢+ 4 v e v v e e e e e e e e e e e e 31 variablelordering oL 22

99

