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New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

This document is a complete “re-implementation” of the original Axiom book by Jenks and
Sutor. Virtually every line has been reviewed and rewritten into the new Axiom pamphlet
format. Changes were made to reflect the new Axiom system. Additional material was added
and some previous examples were rewritten. This is intended to be a “living” document with
material referenced or gathered automatically from other parts of the system documentation.
Future plans include adding active examples (moving graphics, in-line command prompts)
using Active-DVI.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I'm looking forward to future milestones.

With that in mind I've introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))
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Foreword

You are holding in your hands an unusual book. Winston Churchill once said that the
empires of the future will be empires of the mind. This book might hold an electronic key
to such an empire.

When computers were young and slow, the emerging computer science developed dreams
of Artificial Intelligence and Automatic Theorem Proving in which theorems can be proved
by machines instead of mathematicians. Now, when computer hardware has matured and
become cheaper and faster, there is not too much talk of putting the burden of formulating
and proving theorems on the computer’s shoulders. Moreover, even in those cases when com-
puter programs do prove theorems, or establish counter-examples (for example, the solution
of the four color problem, the non-existence of projective planes of order 10, the disproof of
the Mertens conjecture), humans carry most of the burden in the form of programming and
verification.

It is the language of computer programming that has turned out to be the crucial instrument
of productivity in the evolution of scientific computing. The original Artificial Intelligence ef-
forts gave birth to the first symbolic manipulation systems based on LISP. The first complete
symbolic manipulation or, as they are called now, computer algebra packages tried to imbed
the development programming and execution of mathematical problems into a framework
of familiar symbolic notations, operations and conventions. In the third decade of symbolic
computations, a couple of these early systems—REDUCE and MACSYMA—still hold their
own among faithful users.

Axiom was born in the mid-70’s as a system called Scratchpad developed by IBM researchers.
Scratchpad/Axiom was born big—its original platform was an IBM mainframe 3081, and
later a 3090. The system was growing and learning during the decade of the 80’s, and its
development and progress influenced the field of computer algebra. During this period, the
first commercially available computer algebra packages for mini and and microcomputers
made their debut. By now, our readers are aware of Mathematica, Maple, Derive, and
Macsyma. These systems (as well as a few special purpose computer algebra packages in
academia) emphasize ease of operation and standard scientific conventions, and come with
a prepared set of mathematical solutions for typical tasks confronting an applied scientist
or an engineer. These features brought a recognition of the enormous benefits of computer
algebra to the widest circles of scientists and engineers.

The Scratchpad system took its time to blossom into the beautiful Axiom product. There is
no rival to this powerful environment in its scope and, most importantly, in its structure and
organization. Axiom contains the basis for any comprehensive and elaborate mathematical
development. It gives the user all Foundation and Algebra instruments necessary to develop
a computer realization of sophisticated mathematical objects in exactly the way a mathe-
matician would do it. Axiom is also the basis of a complete scientific cyberspace—it provides
an environment for mathematical objects used in scientific computation, and the means of
controlling and communicating between these objects. Knowledge of only a few Axiom lan-
guage features and operating principles is all that is required to make impressive progress
in a given domain of interest. The system is powerful. It is not an interactive interpretive
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environment operating only in response to one line commands—it is a complete language
with rich syntax and a full compiler. Mathematics can be developed and explored with ease
by the user of Axiom. In fact, during Axiom’s growth cycle, many detailed mathematical
domains were constructed. Some of them are a part of Axiom’s core and are described in
this book. For a bird’s eye view of the algebra hierarchy of Axiom, glance inside the book
cover.

The crucial strength of Axiom lies in its excellent structural features and unlimited expandability—
it is open, modular system designed to support an ever growing number of facilities with
minimal increase in structural complexity. Its design also supports the integration of other
computation tools such as numerical software libraries written in FORTRAN and C. While
Axiom is already a very powerful system, the prospect of scientists using the system to
develop their own fields of Science is truly exciting—the day is still young for Axiom.

Over the last several years Scratchpad/Axiom has scored many successes in theoretical math-
ematics, mathematical physics, combinatorics, digital signal processing, cryptography and
parallel processing. We have to confess that we enjoyed using Scratchpad/Axiom. It pro-
vided us with an excellent environment for our research, and allowed us to solve problems
intractable on other systems. We were able to prove new diophantine results for ; estab-
lish the Grothendieck conjecture for certain classes of linear differential equations; study
the arithmetic properties of the uniformization of hyperelliptic and other algebraic curves;
construct new factorization algorithms based on formal groups; within Scratchpad/Axiom
we were able to obtain new identities needed for quantum field theory (elliptic genus formula
and double scaling limit for quantum gravity), and classify period relations for CM varieties
in terms of hypergeometric series.

The Axiom system is now supported and distributed by NAG, the group that is well known
for its high quality software products for numerical and statistical computations. The devel-
opment of Axiom in IBM was conducted at IBM T.J. Watson Research Center at Yorktown,
New York by a symbolic computation group headed by Richard D. Jenks. Shmuel Winograd
of IBM was instrumental in the progress of symbolic research at IBM.

This book opens the wonderful world of Axiom, guiding the reader and user through Ax-
iom’s definitions, rules, applications and interfaces. A variety of fully developed areas of
mathematics are presented as packages, and the user is well advised to take advantage of the
sophisticated realization of familiar mathematics. The Axiom book is easy to read and the
Axiom system is easy to use. It possesses all the features required of a modern computer
environment (for example, windowing, integration of operating system features, and interac-
tive graphics). Axiom comes with a detailed hypertext interface (HyperDoc), an elaborate
browser, and complete on-line documentation. The HyperDoc allows novices to solve their
problems in a straightforward way, by providing menus for step-by-step interactive entry.

The appearance of Axiom in the scientific market moves symbolic computing into a higher
plane, where scientists can formulate their statements in their own language and receive com-
puter assistance in their proofs. Axiom’s performance on workstations is truly impressive,
and users of Axiom will get more from them than we, the early users, got from mainframes.
Axiom provides a powerful scientific environment for easy construction of mathematical tools
and algorithms; it is a symbolic manipulation system, and a high performance numerical sys-
tem, with full graphics capabilities. We expect every (computer) power hungry scientist will
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want to take full advantage of Axiom.

David V. Chudnovsky Gregory V. Chudnovsky
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Richard Dimick Jenks
Axiom Developer and Computer Algebra Pioneer

Richard D. Jenks was born on November 16, 1937 in Dixon, Illinois,
where he grew up. During his childhood he learned to play the organ
and sang in the church choir thereby developing a life-long passion
for music.

He received his PhD in mathematics from the University of Illinois at
Urbana-Champaign in 1966. The title of his dissertation was
‘‘Quadratic Differential Systems for Mathematical Models" and was
written under the supervision of Donald Gilles. After completing his
PhD, he was a post-doctoral fellow at Brookhaven National Laboratory
on Long Island. In 1968 he joined IBM Research where he worked until
his retirement in 2002.

At IBM he was a principal architect of the Scratchpad system, one of
the earliest computer algebra systems(1971). Dick always believed that
natural user interfaces were essential and developed a user-friendly
rule-based system for Scratchpad. Although this rule-based approach
was easy to use, as algorithms for computer algebra became more
complicated, he began to understand that an abstract data type
approach would give sophisticated algorithm development considerably
more leverage. In 1977 he began the Axiom development (originally
called Scratchpad II) with the design of MODLISP, a merger of Lisp
with types (modes). In 1980, with the help of many others, he
completed an initial prototype design based on categories and domains
that were intended to be natural for mathematically sophisticated
users.

During this period many researchers in computer algebra visited IBM
Research in Yorktown Heights and contributed to the development of the
Axiom system. All this activity made the computer algebra group at IBM
one of the leading centers for research in this area and Dick was
always there to organize the visits and provide a stimulating and
pleasant working environment for everyone. He had a good perspective
on the most important research directions and worked to attract
world-renowned experts to visit and interact with his group. He was an
ideal manager for whom to work, one who always put the project and the
needs of the group members first. It was a joy to work in such a
vibrant and stimulating environment.

After many years of development, a decision was made to rename
Scratchpad II to Axiom and to release it as a product. Dick and Robert
Sutor were the primary authors of the book Axiom: The Scientific
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Computation System. In the foreword of the book, written by David and
Gregory Chudnovsky, it is stated that ‘‘The Scratchpad system took its
time to blossom into the beautiful Axiom product. There is no rival to
this powerful environment in its scope and, most importantly, in its
structure and organization.’’ Axiom was recently made available as
free software. See http://savannah.nongnu.org/projects/axiom.

Dick was active in service to the computer algebra community as

well. Here are some highlights. He served as Chair of ACM SIGSAM
(1979-81) and Conference Co-chair (with J. A. van Hulzen) of EUROSAM
’84, a precursor of the ISSAC meetings. Dick also had a long period of
service on the editorial board of the Journal of Symbolic

Computation. At ISSAC ’95 in Montreal, Dick was elected to the initial
ISSAC Steering Committee and was elected as the second Chair of the
Committee in 1997. He, along with David Chudnovsky, organized the
highly successful meetings on Computers and Mathematics that were held
at Stanford in 1986 and MIT in 1989.

Dick had many interests outside of his professional pursuits including
reading, travel, physical fitness, and especially music. Dick was an
accomplished pianist, organist, and vocalist. At one point he was the
organist and choirmaster of the Church of the Holy Communion in
Mahopac, NY. In the 1980s and 1990s, he sang in choral groups under
the direction of Dr. Dennis Keene that performed at Lincoln Center in
New York city.

Especially important to him was his family: his eldest son Doug and
his wife Patricia, his son Daniel and his wife Mercedes, a daughter
Susan, his brother Albert and his wife Barbara, his sister Diane
Alabaster and her husband Harold, his grandchildren Douglas, Valerie,
Ryan, and Daniel Richard, and step-granddaughter Danielle. His
longtime companion, Barbara Gatje, shared his love for music,
traveling, Point 0’Woods, and life in general.

On December 30, 2003, Dick Jenks died at the age of 66, after an
extended and courageous battle with multiple system

atrophy. Personally, Dick was warm, generous, and outgoing with many
friends. He will be missed for his technical accomplishments, his
artist talents, and most of all for his positive, gentle, charming
spirit.

Prepared by Bob Caviness, Barry Trager, and Patrizia Gianni with
contributions from Barbara Gatje, James H. Griesmer, Tony Hearn,
Manuel Bronstein, and Erich Kaltofen.
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Introduction to Axiom

0.1 Introduction to Axiom

Welcome to the world of Axiom. We call Axiom a scientific computation system: a self-
contained toolbox designed to meet your scientific programming needs, from symbolics, to
numerics, to graphics.

This introduction is a quick overview of what Axiom offers.

0.1.1 Symbolic Computation

Axiom provides a wide range of simple commands for symbolic mathematical problem solv-
ing. Do you need to solve an equation, to expand a series, or to obtain an integral? If so,

just ask Axiom to do it.
1
/ 8 oN1/3y dx
(23 (a+bx)™"”)

we would enter this into Axiom as:

Given

integrate(1/(x**3 * (a+b*x)**(1/3)),x)

which would give the result:

-2 % 22 \/glog(% \B/bx+a2+\3/52 \3/bx+a+a>+

4 b% 22 \/glog(\?/&2 \3/bx+a—a)+

3 2 3/
12b2x2arctan<2\/§\/6 bx+a+a\/§>+

3a

(12bx—9a) \/5\3/5\3/bx+a2
18 a2 22 /3 ¥a

Type: Union(Expression Integer,...)

Axiom provides state-of-the-art algebraic machinery to handle your most advanced symbolic
problems. For example, Axiom’s integrator gives you the answer when an answer exists.
If one does not, it provides a proof that there is no answer. Integration is just one of a
multitude of symbolic operations that Axiom provides.
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0.1.2 Numeric Computation

Axiom has a numerical library that includes operations for linear algebra, solution of equa-
tions, and special functions. For many of these operations, you can select any number of
floating point digits to be carried out in the computation.

Solve %9 — 492* + 9 to 49 digits of accuracy. First we need to change the default output
length of numbers:

digits (49)

and then we execute the command:
solve (x**x49-49%x*x*x4+9 = 0,1.e-49)

[x = —0.6546536706904271136718122105095984761851224331556,
z = 1.086921395653859508493939035954893289009213388763,
x = 0.6546536707255271739694686066136764835361487607661]

Type: List Equation Polynomial Float

The output of a computation can be converted to FORTRAN to be used in a later numerical
computation. Besides floating point numbers, Axiom provides literally dozens of kinds of
numbers to compute with. These range from various kinds of integers, to fractions, complex
numbers, quaternions, continued fractions, and to numbers represented with an arbitrary
base.

What is 10 to the 90-th power in base 327

radix (10%*90,32)

returns:

FMM30955CSEIVOILKH820CN3I7PICQUOCQMDOFV6TPO0O0000000000000000

Type: RadixExpansion 32

The AXIOM numerical library can be enhanced with a substantial number of functions
from the NAG library of numerical and statistical algorithms. These functions will provide
coverage of a wide range of areas including roots of functions, Fourier transforms, quadra-
ture, differential equations, data approximation, non-linear optimization, linear algebra, ba-
sic statistics, step-wise regression, analysis of variance, time series analysis, mathematical
programming, and special functions. Contact the Numerical Algorithms Group Limited,
Oxford, England.
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0.1.3 Graphics

You may often want to visualize a symbolic formula or draw a graph from a set of numerical
values. To do this, you can call upon the Axiom graphics capability.

Draw Jo(1/22 + y2) for —20 < z,y < 20.

draw (5*besselJ(0,sqrt (x**2+y**2)), x=-20..20, y=-20..20)

Figure 1: Jo(v/22 + y?) for —20 < 2,y < 20

Graphs in Axiom are interactive objects you can manipulate with your mouse. Just click
on the graph, and a control panel pops up. Using this mouse and the control panel, you
can translate, rotate, zoom, change the coloring, lighting, shading, and perspective on the
picture. You can also generate a PostScript copy of your graph to produce hard-copy output.

0.1.4 HyperDoc

HyperDoc presents you windows on the world of Axiom, offering on-line help, examples,
tutorials, a browser, and reference material. HyperDoc gives you on-line access to this
document in a “hypertext” format. Words that appear in a different font (for example,
Matrix, factor, and category) are generally mouse-active; if you click on one with your
mouse, HyperDoc shows you a new window for that word.
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Solve Basic Conmand

would you 1ike? .
ot § Soluti d in terms of reots of
irreducible polynomials
8 ic Solutions Solutions expressed in terms of
approximate real or complex numbers
EIRacd¥al Solutions Solutions expressed in terms of radicals
if it is possible o

| Dfalculus Compute integrals, deri;rlq
| OMatrix  Create a matrix

O Jyaw Create 20 or 3B plots,

eries Create a power series

CLIC o Solve Solve an equation or system of
\ W

| EXIT

it do you want to solve?
e Of Linear Equations

sten of Polynonial Equations
J8 D04 Single Polynosial Equation
cu Ny ¢

@ Enter the Equation:

Figure 2: Hyperdoc opening menu

As another example of a HyperDoc facility, suppose that you want to compute the roots of
24 — 492* + 9 to 49 digits (as in our previous example) and you don’t know how to tell
Axiom to do this. The “basic command” facility of HyperDoc leads the way. Through the
series of HyperDoc windows shown in figure @ on page @ and the specified mouse clicks, you
and HyperDoc generate the correct command to issue to compute the answer.

0.1.5 Interactive Programming

Axiom’s interactive programming language lets you define your own functions. A simple
example of a user-defined function is one that computes the successive Legendre polynomials.
Axiom lets you define these polynomials in a piece-wise way.

The first Legendre polynomial.

p(0) == 1
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Type: Void
The second Legendre polynomial.
p(1) ==x

Type: Void
The n-th Legendre polynomial for (n > 1).
pm) == ((2*n-1)*x*p(n-1) - (n-1) * p(n-2))/n

Type: Void

In addition to letting you define simple functions like this, the interactive language can be
used to create entire application packages. All the graphs in the Axiom images section were
created by programs written in the interactive language.

The above definitions for p do no computation—they simply tell Axiom how to compute
p(k) for some positive integer k.

To actually get a value of a Legendre polynomial, you ask for it.

What is the tenth Legendre polynomial?

p(10)

Compiling function p with type Integer -> Polynomial Fraction
Integer
Compiling function p as a recurrence relation.

46189 10 _ 109395 4 45045 26 15015 A 3465 L2 63
256 256 128 128 256 256

Type: Polynomial Fraction Integer

Axiom applies the above pieces for p to obtain the value of p(10). But it does more: it
creates an optimized, compiled function for p. The function is formed by putting the pieces
together into a single piece of code. By compiled, we mean that the function is translated
into basic machine-code. By optimized, we mean that certain transformations are performed
on that code to make it run faster. For p, Axiom actually translates the original definition
that is recursive (one that calls itself) to one that is iterative (one that consists of a simple
loop).

What is the coefficient of 20 in p(90)?
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coefficient (p(90),x,90)

5688265542052017822223458237426581853561497449095175
77371252455336267181195264

Type: Polynomial Fraction Integer

In general, a user function is type-analyzed and compiled on first use. Later, if you use it
with a different kind of object, the function is recompiled if necessary.

0.1.6 Data Structures

A variety of data structures are available for interactive use. These include strings, lists,
vectors, sets, multisets, and hash tables. A particularly useful structure for interactive use
is the infinite stream:

Create the infinite stream of derivatives of Legendre polynomials.
[D(p(1),x) for i imn 1..]

15 3 35 15 315 105 15
1 19 o9 9 99 3 1o ~dlo , 1Uo o 1o
,3x,2x 2,2x 23:,833 4x—|—8,

@@ﬁ_gﬁ—i—%x73003336——3465334 %332—3*5
3 4 8 716 16 16 16’
6435 - 9009 5 3465 , 315
16 16 16 16
109395 o 45045 o 45045 , 3465 , 315
128 32 64 32 128’

230945 4 109395 - 135135 , 15015 4 = 3465
xr~ — T+ xr° — r° + T,...
128 32 64 32 128

Type: Stream Polynomial Fraction Integer

Streams display only a few of their initial elements. Otherwise, they are “lazy”: they only
compute elements when you ask for them.

Data structures are an important component for building application software. Advanced
users can represent data for applications in optimal fashion. In all, Axiom offers over forty
kinds of aggregate data structures, ranging from mutable structures (such as cyclic lists and
flexible arrays) to storage efficient structures (such as bit vectors). As an example, streams
are used as the internal data structure for power series.

What is the series expansion of log(cot(x)) about = = /27
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series(log(cot(x)),x = %pi/2)

10 ﬂ +1(xff>2+l<xff)4+ﬁ(xff)6+
& 2 3 2 90 2 2835 2

127 ( 7r)8+ 146 ( 7r)10+0 ( 77)11
—— |z — = — |z — = T — =
18900 2 66825 2 2
Type: GeneralUnivariatePowerSeries(Expression Integer,x,pi/2)

Series and streams make no attempt to compute all their elements! Rather, they stand ready
to deliver elements on demand.

What is the coefficient of the 50-th term of this series?
coefficient (%,50)

44590788901016030052447242300856550965644
7131469286438669111584090881309360354581359130859375

Type: Expression Integer

0.1.7 Mathematical Structures

Axiom also has many kinds of mathematical structures. These range from simple ones (like
polynomials and matrices) to more esoteric ones (like ideals and Clifford algebras). Most
structures allow the construction of arbitrarily complicated “types.”

Even a simple input expression can result in a type with several levels.

matrix [ [x + %i,0], [1,-2] 1

x+% 0
1 -2
Type: Matrix Polynomial Complex Integer

The Axiom interpreter builds types in response to user input. Often, the type of the result
is changed in order to be applicable to an operation.

The inverse operation requires that elements of the above matrices are fractions.

inverse (%)

1
x—|—1%i

- - _1
2 x + 2%i 2

Type: Union(Matrix Fraction Polynomial Complex Integer,...)
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0.1.8 Pattern Matching

A convenient facility for symbolic computation is “pattern matching.” Suppose you have a
trigonometric expression and you want to transform it to some equivalent form. Use a rule
command to describe the transformation rules you need. Then give the rules a name and
apply that name as a function to your trigonometric expression.

Introduce two rewrite rules.

sinCosExpandRules := rule
sin(x+y) == sin(x)*cos(y) + sin(y)*cos(x)
cos(x+y) == cos(x)*cos(y) - sin(x)*sin(y)
sin(2%x) == 2*sin(x)*cos(x)
cos(2%x) == cos(x)**2 - sin(x)**2

{sin(y + x) == cos(x)sin(y) + cos(y)sin(x),
cos(y + x) == - sin(x)sin(y) + cos(x)cos(y),
sin(2x) == 2cos(x)sin(x),

2 2
cos(2x) == - sin(x) + cos(x) }

Type: Ruleset(Integer,Integer,Expression Integer)

Apply the rules to a simple trigonometric expression.

sinCosExpandRules (sin(a+2*b+c))
(fcos (a) sin (b)* — 2 cos (b) sin (a) sin (b) 4 cos (a) cos (b)Q) sin (¢)—
cos (¢) sin (a) sin (b)* 4 2 cos (a) cos (b) cos (c) sin (b)+
cos (b)? cos (c) sin (a)
Type: Expression Integer

Using input files, you can create your own library of transformation rules relevant to your
applications, then selectively apply the rules you need.

0.1.9 Polymorphic Algorithms

All components of the Axiom algebra library are written in the Axiom library language. This
language is similar to the interactive language except for protocols that authors are obliged
to follow. The library language permits you to write “polymorphic algorithms,” algorithms
defined to work in their most natural settings and over a variety of types.

Define a system of polynomial equations S.
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S = [3*x**x3 + y + 1 = 0,y**2 = 4]
[y+3x3+120,y2=4]
Type: List Equation Polynomial Integer

Solve the system S using rational number arithmetic and 30 digits of accuracy.

solve(S,1/10%*30)

[y:27$:_1]

g 1757879671211184245283070414507
Y T T 535301200456458802993406410752 |

Type: List List Equation Polynomial Fraction Integer
Solve S with the solutions expressed in radicals.

radicalSolve(S)

—%%+1}
5 ,

{wzlx:—u{y:zx:

y:—27x:

R e

[y:_g ;C:\/W?’_ll [y:_Q mz_\/jl\/‘g’_lH
’ 23 | ’ 2 V3

Type: List List Equation Expression Integer

While these solutions look very different, the results were produced by the same internal
algorithm! The internal algorithm actually works with equations over any “field.” Examples
of fields are the rational numbers, floating point numbers, rational functions, power series,
and general expressions involving radicals.

0.1.10 Extensibility

Users and system developers alike can augment the Axiom library, all using one common
language. Library code, like interpreter code, is compiled into machine binary code for
run-time efficiency.

Using this language, you can create new computational types and new algorithmic packages.
All library code is polymorphic, described in terms of a database of algebraic properties.
By following the language protocols, there is an automatic, guaranteed interaction between
your code and that of colleagues and system implementers.
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A Technical Introduction

Axiom has both an interactive language for user interactions and a programming language
for building library modules. Like Modula 2, PASCAL, FORTRAN, and Ada, the program-
ming language emphasizes strict type-checking. Unlike these languages, types in Axiom are
dynamic objects: they are created at run-time in response to user commands.

Here is the idea of the Axiom programming language in a nutshell. Axiom types range
from algebraic ones (like polynomials, matrices, and power series) to data structures (like
lists, dictionaries, and input files). Types combine in any meaningful way. You can build
polynomials of matrices, matrices of polynomials of power series, hash tables with symbolic
keys and rational function entries, and so on.

Categories define algebraic properties to ensure mathematical correctness. They ensure, for
example, that matrices of polynomials are OK, but matrices of input files are not. Through
categories, programs can discover that polynomials of continued fractions have a commuta-
tive multiplication whereas polynomials of matrices do not.

Categories allow algorithms to be defined in their most natural setting. For example, an
algorithm can be defined to solve polynomial equations over any field. Likewise a great-
est common divisor can compute the “ged” of two elements from any Euclidean domain.
Categories foil attempts to compute meaningless “gcds”, for example, of two hashtables.
Categories also enable algorithms to be compiled into machine code that can be run with
arbitrary types.

The Axiom interactive language is oriented towards ease-of-use. The Axiom interpreter uses
type-inferencing to deduce the type of an object from user input. Type declarations can
generally be omitted for common types in the interactive language.

So much for the nutshell. Here are these basic ideas described by ten design principles:

0.1.11 Types are Defined by Abstract Datatype Programs

Basic types are called domains of computation, or, simply, domains. Domains are defined
by Axiom programs of the form:

Name(...): Exports == Implementation

Each domain has a capitalized Name that is used to refer to the class of its members. For ex-
ample, Integer denotes “the class of integers,” Float, “the class of floating point numbers,”
and String, “the class of strings.”

The “...” part following Name lists zero or more parameters to the constructor. Some basic
ones like Integer take no parameters. Others, like Matrix, Polynomial and List, take
a single parameter that again must be a domain. For example, Matrix(Integer) denotes
“matrices over the integers,” Polynomial (Float) denotes “polynomial with floating point
coefficients,” and List (Matrix (Polynomial (Integer))) denotes “lists of matrices of
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polynomials over the integers.” There is no restriction on the number or type of parameters
of a domain constructor.

SquareMatrix(2,Integer) is an example of a domain constructor that accepts both a particular
data value as well as an integer. In this case the number 2 specifies the number of rows and
columns the square matrix will contain. Elements of the matricies are integers.

The Exports part specifies operations for creating and manipulating objects of the domain.
For example, type Integer exports constants 0 and 1, and operations “+”, “=” and “*”.
While these operations are common, others such as odd? and bit? are not. In addition
the Exports section can contain symbols that represent properties that can be tested. For
example, the Category EntireRing has the symbol noZeroDivisors which asserts that if a
product is zero then one of the factors must be zero.

The Implementation part defines functions that implement the exported operations of the
domain. These functions are frequently described in terms of another lower-level domain
used to represent the objects of the domain. Thus the operation of adding two vectors of
real numbers can be described and implemented using the addition operation from Float.

0.1.12 The Type of Basic Objects is a Domain or Subdomain

Every Axiom object belongs to a unique domain. The domain of an object is also called its
type. Thus the integer 7 has type Integer and the string "daniel" has type String.

The type of an object, however, is not unique. The type of integer 7 is not only Integer
but NonNegativeInteger, PositiveInteger, and possibly, in general, any other “subdo-
main” of the domain Integer. A subdomain is a domain with a “membership predicate”.
PositivelInteger is a subdomain of Integer with the predicate “is the integer > 07”.

Subdomains with names are defined by abstract datatype programs similar to those for
domains. The Ezport part of a subdomain, however, must list a subset of the exports of
the domain. The Implementation part optionally gives special definitions for subdomain
objects.

0.1.13 Domains Have Types Called Categories

Domain and subdomains in Axiom are themselves objects that have types. The type of a
domain or subdomain is called a category. Categories are described by programs of the form:

Name(...): Category == Exports

The type of every category is the distinguished symbol Category. The category Name
is used to designate the class of domains of that type. For example, category Ring des-
ignates the class of all rings. Like domains, categories can take zero or more parame-
ters as indicated by the “...” part following Name. Two examples are Module(R) and
MatrixCategory(R,Row,Col).
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The Exports part defines a set of operations. For example, Ring exports the operations “0”,
“17, “47“=” "and “¥”. Many algebraic domains such as Integer and Polynomial (Float)
are rings. String and List (R) (for any domain R) are not.

Categories serve to ensure the type-correctness. The definition of matrices states Matrix (R:
Ring) requiring its single parameter R to be a ring. Thus a “matrix of polynomials” is
allowed, but “matrix of lists” is not.

Categories say nothing about representation. Domains, which are instances of category
types, specify representations.

0.1.14 Operations Can Refer To Abstract Types

All operations have prescribed source and target types. Types can be denoted by symbols
that stand for domains, called “symbolic domains.” The following lines of Axiom code use
a symbolic domain R:

R: Ring
power: (R, NonNegativeInteger): R -> R
power(x, n) == x *x n

Line 1 declares the symbol R to be a ring. Line 2 declares the type of power in terms of
R. From the definition on line 3, power(3,2) produces 9 for x = 3 and R = Integer. Also,
power(3.0,2) produces 9.0 for z = 3.0 and R = Float. power(”oxford’,2) however fails
since "oz ford” has type String which is not a ring.

Using symbolic domains, algorithms can be defined in their most natural or general setting.

0.1.15 Categories Form Hierarchies

Categories form hierarchies (technically, directed-acyclic graphs). A simplified hierarchical
world of algebraic categories is shown below. At the top of this world is SetCategory, the
class of algebraic sets. The notions of parents, ancestors, and descendants is clear. Thus
ordered sets (domains of category OrderedSet) and rings are also algebraic sets. Likewise,
fields and integral domains are rings and algebraic sets. However fields and integral domains
are not ordered sets.

SetCategory +---- Ring ---- IntegralDomain ---- Field
|
+--—- Finite -+
I \
+---- OrderedSet --———- + OrderedFinite

Figure 1. A simplified category hierarchy.
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0.1.16 Domains Belong to Categories by Assertion

A category designates a class of domains. Which domains? You might think that Ring
designates the class of all domains that export 0, 1, “+”, “=” and “x”. But this is not so.
Each domain must assert which categories it belongs to.

The Export part of the definition for Integer reads, for example:
Join(OrderedSet, IntegralDomain, ...) with ...

This definition asserts that Integer is both an ordered set and an integral domain. In fact,
Integer does not explicitly export constants 0 and 1 and operations “+”, “~” and “x” at all:
it inherits them all from Ring! Since IntegralDomain is a descendant of Ring, Integer is
therefore also a ring.

Assertions can be conditional. For example, Complex (R) defines its exports by:
Ring with ... if R has Field then Field ...

Thus Complex(Float) is a field but Complex(Integer) is not since Integer is not a field.

You may wonder: “Why not simply let the set of operations determine whether a domain
belongs to a given category?”. Axiom allows operation names (for example, norm) to have
very different meanings in different contexts. The meaning of an operation in Axiom is
determined by context. By associating operations with categories, operation names can be
reused whenever appropriate or convenient to do so. As a simple example, the operation <
might be used to denote lexicographic-comparison in an algorithm. However, it is wrong to
use the same < with this definition of absolute-value:

abs(x) ==if v <0 then — x else

Such a definition for abs in Axiom is protected by context: argument x is required to be a
member of a domain of category OrderedSet.

0.1.17 Packages Are Clusters of Polymorphic Operations

In Axiom, facilities for symbolic integration, solution of equations, and the like are placed
in “packages”. A package is a special kind of domain: one whose exported operations
depend solely on the parameters of the constructor and/or explicit domains. Packages,
unlike Domains, do not specify the representation.

If you want to use Axiom, for example, to define some algorithms for solving equations of
polynomials over an arbitrary field F', you can do so with a package of the form:

MySolve(F: Field): Exports == Implementation

where Exports specifies the solve operations you wish to export from the domain and
the Implementation defines functions for implementing your algorithms. Once Axiom has
compiled your package, your algorithms can then be used for any F: floating-point numbers,
rational numbers, complex rational functions, and power series, to name a few.
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0.1.18 The Interpreter Builds Domains Dynamically

The Axiom interpreter reads user input then builds whatever types it needs to perform the
indicated computations. For example, to create the matrix

?2+1 0
M= ( 0 x/2
using the command:

M= [ [x**2+1,0],[0,x / 2] 1::Matrix(POLY(FRAC(INT)))

2
M:[erl 0}

0 x/2

Type: Matrix Polynomial Fraction Integer

the interpreter first loads the modules Matrix, Polynomial, Fraction, and Integer from
the library, then builds the domain tower “matrices of polynomials of rational numbers (i.e.
fractions of integers)”.

You can watch the loading process by first typing

)set message autoload on

In addition to the named domains above many additional domains and categories are loaded.
Most systems are preloaded with such common types. For efficiency reasons the most com-
mon domains are preloaded but most (there are more than 1100 domains, categories, and
packages) are not. Once these domains are loaded they are immediately available to the
interpreter.

Once a domain tower is built, it contains all the operations specific to the type. Computation
proceeds by calling operations that exist in the tower. For example, suppose that the user
asks to square the above matrix. To do this, the function “*” from Matrix is passed the
matrix M to compute M x M. The function is also passed an environment containing R that,
in this case, is Polynomial (Fraction (Integer)). This results in the successive calling of
the “*” operations from Polynomial, then from Fraction, and then finally from Integer.

Categories play a policing role in the building of domains. Because the argument of Matrix
is required to be a Ring, Axiom will not build nonsensical types such as “matrices of input
files”.

0.1.19 Axiom Code is Compiled

Axiom programs are statically compiled to machine code, then placed into library modules.
Categories provide an important role in obtaining efficient object code by enabling:
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e static type-checking at compile time;
e fast linkage to operations in domain-valued parameters;

e optimization techniques to be used for partially specified types (operations for “vectors
of R”, for instance, can be open-coded even though R is unknown).

0.1.20 Axiom is Extensible

Users and system implementers alike use the Axiom language to add facilities to the Axiom
library. The entire Axiom library is in fact written in the Axiom source code and available
for user modification and/or extension.

Axiom’s use of abstract datatypes clearly separates the exports of a domain (what operations
are defined) from its implementation (how the objects are represented and operations are
defined). Users of a domain can thus only create and manipulate objects through these
exported operations. This allows implementers to “remove and replace” parts of the library
safely by newly upgraded (and, we hope, correct) implementations without consequence to
its users.

Categories protect names by context, making the same names available for use in other
contexts. Categories also provide for code-economy. Algorithms can be parameterized cat-
egorically to characterize their correct and most general context. Once compiled, the same
machine code is applicable in all such contexts.

Finally, Axiom provides an automatic, guaranteed interaction between new and old code.
For example:

e if you write a new algorithm that requires a parameter to be a field, then your algorithm
will work automatically with every field defined in the system; past, present, or future.

e if you introduce a new domain constructor that produces a field, then the objects of
that domain can be used as parameters to any algorithm using field objects defined in
the system; past, present, or future.

These are the key ideas. For further information, we particularly recommend your reading
chapters 11, 12, and 13, where these ideas are explained in greater detail.
0.2 Using Axiom as a Pocket Calculator

At the simplest level Axiom can be used as a pocket calculator where expressions involving
numbers and operators are entered directly in infix notation. In this sense the more advanced
features of the calculator can be regarded as operators (e.g sin, cos, etc).
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0.2.1 Basic Arithmetic

An example of this might be to calculate the cosine of 2.45 (in radians). To do this one
would type:

(1) -> cos 2.45

—0.7702312540473073417

Type: Float

Before proceeding any further it would be best to explain the previous three lines. Firstly
the text “(1) =>” is part of the prompt that the Axiom system provides when in interactive
mode. The full prompt has other text preceding this but it is not relevant here. The number
in parenthesis is the step number of the input which may be used to refer to the results of
previous calculations. The step number appears at the start of the second line to tell you
which step the result belongs to. Since the interpreter probably loaded numberous libraries
to calculate the result given above and listed each one in the prcess, there could easily be
several pages of text between your input and the answer.

The last line contains the type of the result. The type Float is used to represent real
numbers of arbitrary size and precision (where the user is able to define how big arbitrary
is — the default is 20 digits but can be as large as your computer system can handle). The
type of the result can help track down mistakes in your input if you don’t get the answer
you expected.

Other arithmetic operations such as addition, subtraction, and multiplication behave as
expected:
6.93 *x 4.1328

28.640304

Type: Float

6.93 / 4.1328

1.6768292682926829268
Type: Float
but integer division isn’t quite so obvious. For example, if one types:

4/6
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2
3

Type: Fraction Integer

a fractional result is obtained. The function used to display fractions attempts to produce
the most readable answer. In the example:

4/2

Type: Fraction Integer

the result is stored as the fraction 2/1 but is displayed as the integer 2. This fraction
could be converted to type Integer with no loss of information but Axiom will not do so
automatically.

0.2.2 Type Conversion
To obtain the floating point value of a fraction one must convert (conversions are applied

by the user and coercions are applied automatically by the interpreter) the result to type
Float using the “::” operator as follows:

(4.6)::Float
4.6
Type: Float

Although Axiom can convert this back to a fraction it might not be the same fraction you
started with as due to rounding errors. For example, the following conversion appears to be
without error but others might not:

%::Fraction Integer

Type: Fraction Integer

where “%” represents the previous result (not the calculation).

Although Axiom has the ability to work with floating-point numbers to a very high precision
it must be remembered that calculations with these numbers are not exact. Since Axiom is
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a computer algebra package and not a numerical solutions package this should not create too
many problems. The idea is that the user should use Axiom to do all the necessary symbolic
manipulation and only at the end should actual numerical results be extracted.

If you bear in mind that Axiom appears to store expressions just as you have typed them
and does not perform any evalutation of them unless forced to then programming in the
system will be much easier. It means that anything you ask Axiom to do (within reason)
will be carried out with complete accuracy.

In the previous examples the “::” operator was used to convert values from one type to
another. This type conversion is not possible for all values. For instance, it is not possible
to convert the number 3.4 to an integer type since it can’t be represented as an integer. The
number 4.0 can be converted to an integer type since it has no fractional part.

Conversion from floating point values to integers is performed using the functions round
and truncate. The first of these rounds a floating point number to the nearest integer while
the other truncates (i.e. removes the fractional part). Both functions return the result as
a floating point number. To extract the fractional part of a floating point number use
the function fractionPart but note that the sign of the result depends on the sign of the
argument. Axiom obtains the fractional part of x using = — truncate(z):

round (3.77623)

4.0
Type: Float
round(-3.77623)
—4.0
Type: Float
truncate(9.235)
9.0
Type: Float
truncate(-9.654)
-9.0

Type: Float
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fractionPart(-3.77623)

—0.77623

Type: Float

0.2.3 Useful Functions

To obtain the absolute value of a number the abs function can be used. This takes a single
argument which is usually an integer or a floating point value but doesn’t necessarily have
to be. The sign of a value can be obtained via the sign function which rturns —1, 0, or 1
depending on the sign of the argument.

abs(4)

Type: Positivelnteger

abs(-3)

Type: Positivelnteger

abs(-34254.12314)

34254.12314

Type: Float

sign(-49543.2345346)

Type: Integer

sign(0)
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Type: NonNegativelnteger

sign(234235.42354)

Type: Positivelnteger

Tests on values can be done using various functions which are generally more efficient than
using relational operators such as = particularly if the value is a matrix. Examples of some

of these functions are:

positive?(-234)

false
Type:
negative?(-234)
true
Type:
zero? (42)
false
Type:
one?(1)
true
Type:

0dd7(23)

Boolean

Boolean

Boolean

Boolean
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0dd?(9.435)

even?(-42)

prime?(37)

prime?(-37)

Some other functions that are quite useful for manipulating numerical values are:

sin(x)
cos(x)
tan(x)
asin(x)
acos (x)
atan(x)
ged(x,y)
lem(x,y)
max (x,y)
min(x,y)
factorial (x)
factor (x)
divide(x,y)

Sine of x

Cosine of x
Tangent of x
Arcsin of x
Arccos of x

Arctangent of x

Greatest common divisor of x and y
Lowest common multiple of x and y
Maximum of x and y

Minimum of x and y

Factorial of x

Prime factors of x

true

false

true

true

false

Quotient and remainder of x/y

Type:

Type:

Type:

Type:

Type:
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Boolean

Boolean

Boolean

Boolean

Boolean
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Some simple infix and prefix operators:

+ Addition - Subtraction

- Numerical Negation ~ Logical Negation

/\ Conjunction (AND) \/ Disjunction (OR)

and Logical AND (/\) or Logical OR (\/)

not Logical Negation *% Exponentiation

* Multiplication / Division

quo Quotient rem Remainder

< less than > greater than

<= less than or equal >= greater than or equal

Some useful Axiom macros:

hi The square root of -1

%he The base of the natural logarithm
%pi Pi

%hinfinity Infinity

%plusInfinity  Positive Infinity
JminusInfinity Negative Infinity

0.3 Using Axiom as a Symbolic Calculator

In the previous section all the examples involved numbers and simple functions. Also none of
the expressions entered were assigned to anything. In this section we will move on to simple
algebra (i.e. expressions involving symbols and other features available on more sophisticated
calculators).

0.3.1 Expressions Involving Symbols

Expressions involving symbols are entered just as they are written down, for example:

xSquared := x**2

Type: Polynomial Integer

113 2

where the assignment operator “:=" represents immediate assignment. Later it will be seen
that this form of assignment is not always desirable and the use of the delayed assignment
operator “==" will be introduced. The type of the result is Polynomial Integer which is
used to represent polynomials with integer coefficients. Some other examples along similar

lines are:
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xDummy := 3.21xx%*2
3.21 2%
Type: Polynomial Float
xDummy := x**2.5
% x
Type: Expression Float
xDummy := x**3.3
23 Wz
Type: Expression Float
xyDummy := x**2 - y**2
—y2 4 22

Type: Polynomial Integer
Given that we can define expressions involving symbols, how do we actually compute the
result when the symbols are assigned values? The answer is to use the eval function which
takes an expression as its first argument followed by a list of assignments. For example, to
evaluate the expressions xDummy and xyDummy resulting from their respective assign-
ments above we type:
eval (xDummy ,x=3)

37.540507598529552193

Type: Expression Float

eval (xyDummy, [x=3, y=2.1])

4.59

Type: Polynomial Float
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0.3.2 Complex Numbers

For many scientific calculations real numbers aren’t sufficient and support for complex num-
bers is also required. Complex numbers are handled in an intuitive manner and Axiom,
which uses the %i macro to represent the square root of —1. Thus expressions involving
complex numbers are entered just like other expressions.

(2/3 + %i)**3

Type: Complex Fraction Integer

The real and imaginary parts of a complex number can be extracted using the real and
imag functions and the complex conjugate of a number can be obtained using conjugate:

real(3 + 2x%%i)

3
Type: Positivelnteger
imag(3+ 2x%i)
2
Type: Positivelnteger
conjugate(3 + 2%}i)
3 —2%i

Type: Complex Integer

The function factor can also be applied to complex numbers but the results aren’t quite so
obvious as for factoring integer:

144 + 24%Yi

144 + 24%i
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Type: Complex Integer

factor %

%i(1+ %i)® 3(6 + %i)
Type: Factored Complex Integer
We can see that this multiplies out to the original value by expanding the factored expression:

expand %

144 4 24%i

Type: Complex Integer

0.3.3 Number Representations

By default all numerical results are displayed in decimal with real numbers shown to 20
significant figures. If the integer part of a number is longer than 20 digits then nothing after
the decimal point is shown and the integer part is given in full. To alter the number of digits
shown the function digits can be called. The result returned by this function is the previous
setting. For example, to find the value of 7 to 40 digits we type:

digits (40)

20

Type: Positivelnteger

%pi::Float

3.1415926535 8979323846 2643383279 502884197

Type: Float

As can be seen in the example above, there is a gap after every ten digits. This can be
changed using the outputSpacing function where the argument is the number of digits
to be displayed before a space is inserted. If no spaces are desired then use the value
0. Two other functions controlling the appearance of real numbers are outputFloating
and outputFixed. The former causes Axiom to display floating-point values in exponent
notation and the latter causes it to use fixed-point notation. For example:
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outputFloating(); %

0.3141592653589793238462643383279502884197 E 1

Type: Float

outputFloating(3); 0.00345

0345 E —2
Type: Float
outputFixed(); %
0.00345
Type: Float
outputFixed(3); %
0.003
Type: Float
outputGeneral(); %
0.00345

Type: Float

%))

Note that the semicolon “;” in the examples above allows several expressions to be entered
on one line. The result of the last expression is displayed. Remember also that the percent
symbol “%” is used to represent the result of a previous calculation.

To display rational numbers in a base other than 10 the function radix is used. The first
argument of this function is the expression to be displayed and the second is the base to be
used.

radix(10**10,32)

9A0NPO0
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Type: RadixExpansion 32

radix(3/21,5)

0.032412

Type: RadixExpansion 5

Rational numbers can be represented as a repeated decimal expansion using the decimal
function or as a continued fraction using continuedFraction. Any attempt to call these
functions with irrational values will fail.

decimal (22/7)

3.142857

Type: DecimalExpansion

continuedFraction(6543/210)

RN R
6 2 1 B

Type: ContinuedFraction Integer
Finally, partial fractions in compact and expanded form are available via the functions
partialFraction and padicFraction respectively. The former takes two arguments, the
first being the numerator of the fraction and the second being the denominator. The latter

function takes a fraction and expands it further while the function compactFraction does
the reverse:

partialFraction(234,40)

3,3
227 5

Type: PartialFraction Integer

padicFraction (%)
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Type: PartialFraction Integer

compactFraction(%)

3 3

6— — 4+ 2
22 + 5
Type: PartialFraction Integer

padicFraction(234/40)

117

20

Type: PartialFraction Fraction Integer

To extract parts of a partial fraction the function nthFractionalTerm is available and
returns a partial fraction of one term. To decompose this further the numerator can be
obtained using firstNumer and the denominator with firstDenom. The whole part of a
partial fraction can be retrieved using wholePart and the number of fractional parts can
be found using the function numberOfFractionalTerms:

t := partialFraction(234,40)

3 3
6— 5+
22 5
Type: PartialFraction Integer
wholePart (t)
6
Type: Positivelnteger
numberOfFractionalTerms (t)
2

Type: Positivelnteger
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p := nthFractionalTerm(t,1)

3
22
Type: PartialFraction Integer
firstNumer (p)
-3
Type: Integer
firstDenom(p)
22

Type: Factored Integer

0.3.4 Modular Arithmetic

By using the type constructor PrimeField it is possible to do arithmetic modulo some prime
number. For example, arithmetic module 7 can be performed as follows:

X : PrimeField 7 := 5

Type: PrimeField 7

x**x5 + 6

Type: PrimeField 7

1/x
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Type: PrimeField 7

The first example should be read as:
Let = be of type PrimeField(7) and assign to it the value 5

Note that it is only possible to invert non-zero values if the arithmetic is performed modulo
a prime number. Thus arithmetic modulo a non-prime integer is possible but the reciprocal
operation is undefined and will generate an error. Attempting to use the PrimeField type
constructor with a non-prime argument will generate an error. An example of non-prime
modulo arithmetic is:

y : IntegerMod 8 := 11

Type: IntegerMod 8

y*4 + 27

Type: IntegerMod 8

Note that polynomials can be constructed in a similar way:

(3*a**4 + 27xa - 36)::Polynomial PrimeField 7

3a*+6a+6

Type: Polynomial PrimeField 7

0.4 General Points about Axiom

0.4.1 Computation Without Output

It is sometimes desirable to enter an expression and prevent Axiom from displaying the result.
To do this the expression should be terminated with a semicolon “;”. In a previous section
it was mentioned that a set of expressions separated by semicolons would be evaluated and
the result of the last one displayed. Thus if a single expression is followed by a semicolon no

output will be produced (except for its type):

2 + 4x%5;

Type: Positivelnteger
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0.4.2 Accessing Earlier Results

The “%” macro represents the result of the previous computation. The “%%” macro is
available which takes a single integer argument. If the argument is positive then it refers to
the step number of the calculation where the numbering begins from one and can be seen
at the end of each prompt (the number in parentheses). If the argument is negative then it
refers to previous results counting backwards from the last result. That is, “%%(-1)” is the
same as “%”. The value of “%%(0)” is not defined and will generate an error if requested.

0.4.3 Splitting Expressions Over Several Lines

Although Axiom will quite happily accept expressions that are longer than the width of the
screen (just keep typing without pressing the Return key) it is often preferable to split the
expression being entered at a point where it would result in more readable input. To do
this the underscore “” symbol is placed before the break point and then the Return key
is pressed. The rest of the expression is typed on the next line, can be preceeded by any

number of whitespace chars, for example:

2

+

3

Type: Positivelnteger

The underscore symbol is an escape character and its presence alters the meaning of the
characters that follow it. As mentions above whitespace following an underscore is ignored
(the Return key generates a whitespace character). Any other character following an un-
derscore loses whatever special meaning it may have had. Thus one can create the identifier
“a+Db” by typing “a_+b” although this might lead to confusions. Also note the result of the
following example:

ThisIsAVeryLong_
VariableName

ThisIsAVeryLongV ariable Name

Type: Variable ThisIsAVeryLongVariableName

0.4.4 Comments and Descriptions

Comments and descriptions are really only of use in files of Axiom code but can be used
when the output of an interactive session is being spooled to a file (via the system command
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“ 2

)spool). A comment begins with two dashes “- -” and continues until the end of the line.
Multi-line comments are only possible if each individual line begins with two dashes.

Descriptions are the same as comments except that the Axiom compiler will include them
in the object files produced and make them availabe to the end user for documentation
purposes.

A description is placed before a calculation begins with three “4” signs (i.e. “+++") and a
description placed after a calculation begins with two plus symbols (i.e.“+4"). The so-called
“plus plus” comments are used within the algebra files and are processed by the compiler to
add to the documentation. The so-called “minus minus” comments are ignored everywhere.

0.4.5 Control of Result Types

1%}

In earlier sections the type of an expression was converted to another via the operator.
However, this is not the only method for converting between types and two other operators
need to be introduced and explained.

The first operator is “$” and is used to specify the package to be used to calculate the result.
Thus:

(2/3)$Float
0.6666666666 6666666667
Type: Float

tells Axiom to use the “/” operator from the Float package to evaluate the expression 2/3.
This does not necessarily mean that the result will be of the same type as the domain from
which the operator was taken. In the following example the sign operator is taken from the
Float package but the result is of type Integer.

sign(2.3)$Float

Type: Integer

The other operator is “@Q” which is used to tell Axiom what the desired type of the result
of the calculation is. In most situations all three operators yield the same results but the
example below should help distinguish them.

(2 + 3)::String

ll51|
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Type: String

(2 + 3)0@String

An expression involving @ String actually evaluated to one of
type Positivelnteger . Perhaps you should use :: String .

(2 + 3)$String

The function + is not implemented in String .

If an expression X is converted using one of the three operators to type T the interpretations
are:

:: means explicitly convert X to type T if possible.
$ means use the available operators for type T to compute X.

@ means choose operators to compute X so that the result is of type T.

0.5 Data Structures in Axiom

This chapter is an overview of some of the data structures provided by Axiom.

0.5.1 Lists
The Axiom List type constructor is used to create homogenous lists of finite size. The

notation for lists and the names of the functions that operate over them are similar to those
found in functional languages such as ML.

Lists can be created by placing a comma separated list of values inside square brackets or if
a list with just one element is desired then the function list is available:

[4]

Type: List Positivelnteger

list(4)
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Type: List Positivelnteger

[1’2)3,5’7,11]
[1,2,3,5,7,11]
Type: List Positivelnteger

The function append takes two lists as arguments and returns the list consisting of the
second argument appended to the first. A single element can be added to the front of a list
using cons:

append([1,2,3,5],[7,11])

1,2,3,5,7,11]

Type: List Positivelnteger

cons (23, [65,42,19])
[23,65,42,19]
Type: List Positivelnteger

Lists are accessed sequentially so if Axiom is asked for the value of the twentieth element in
the list it will move from the start of the list over nineteen elements before it reaches the
desired element. Each element of a list is stored as a node consisting of the value of the
element and a pointer to the rest of the list. As a result the two main operations on a list
are called first and rest. Both of these functions take a second optional argument which
specifies the length of the first part of the list:

first([1,5,6,2,3])

Type: Positivelnteger

first([1,5,6,2,3],2)

[1,5]
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Type: List Positivelnteger

rest([1,5,6,2,3])

[5,6,2,3]

Type: List Positivelnteger

rest([1,5,6,2,3],2)
6,2, 3]
Type: List Positivelnteger

Other functions are empty? which tests to see if a list contains no elements, member?
which tests to see if the first argument is a member of the second, reverse which reverses
the order of the list, sort which sorts a list, and removeDuplicates which removes any
duplicates. The length of a list can be obtained using the “#” operator.

empty?([7,2,-1,2])

false
Type: Boolean
member? (-1, [7,2,-1,2]1)
true
Type: Boolean
reverse([7,2,-1,2])
[2,—1,2,ﬂ

Type: List Integer

sort([7,2,-1,2])
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[_17 27 21 7]

Type: List Integer

removeDuplicates([1,5,3,5,1,1,2])

[1,5,3,2]

Type: List Positivelnteger

#[7,2,-1,2]

Type: Positivelnteger

Lists in Axiom are mutable and so their contents (the elements and the links) can be modified
in place. Functions that operate over lists in this way have names ending in the symbol “!”.
For example, concat! takes two lists as arguments and appends the second argument to
the first (except when the first argument is an empty list) and setrest! changes the link
emanating from the first argument to point to the second argument:

u := [9,2,4,7]

[9,2,4,7]
Type: List Positivelnteger
concat!(u,[1,5,42]); u
[9,2,4,7,1,5,42]
Type: List Positivelnteger
end0fu := rest(u,4)
[1,5,42]

Type: List Positivelnteger
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part0fu := rest(u,2)

[4,7,1,5,42]

Type: List Positivelnteger

setrest! (end0fu,part0fu); u

9,2,4,7,1]

Type: List Positivelnteger

From this it can be seen that the lists returned by first and rest are pointers to the original
list and not a copy. Thus great care must be taken when dealing with lists in Axiom.

Although the nth element of the list I can be obtained by applying the first function to n—1
applications of rest to I, Axiom provides a more useful access method in the form of the “.”
operator:

u.3
4
Type: Positivelnteger
u.5
1
Type: Positivelnteger
u.6
4
Type: Positivelnteger
first rest rest u -- Same as u.3
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Type: Positivelnteger

u.first

Type: Positivelnteger

u(3)

Type: Positivelnteger

The operation u.i is referred to as indexing into u or elting into u. The latter term comes
from the elt function which is used to extract elements (the first element of the list is at
index 1).

elt(u,4)

Type: Positivelnteger

If a list has no cycles then any attempt to access an element beyond the end of the list will
generate an error. However, in the example above there was a cycle starting at the third
element so the access to the sixth element wrapped around to give the third element. Since
lists are mutable it is possible to modify elements directly:
u.3 := 42; u
[9,2,42,7,1]
Type: List Positivelnteger

Other list operations are:

L := [9,3,4,7]; #L

Type: Positivelnteger
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last (L)
7
Type: Positivelnteger
L.last
7
Type: Positivelnteger
L.(#L - 1)
4

Type: Positivelnteger

Note that using the “#” operator on a list with cycles causes Axiom to enter an infinite
loop.

Note that any operation on a list L that returns a list LL will, in general, be such that any
changes to LL will have the side-effect of altering L. For example:

m := rest(L,2)

[4,7]
Type: List Positivelnteger
m.1 :=20; L
[9,3,20,7]
Type: List Positivelnteger
n:=1L
[9,3,20,7]

Type: List Positivelnteger
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[9,99,20,7]

Type: List Positivelnteger

[9,99,20,7]

Type: List Positivelnteger

Thus the only safe way of copying lists is to copy each element from one to another and not
use the assignment operator:

p := [i for i in n] -- Same as ‘p := copy(n)’
[9,99,20,7]
Type: List Positivelnteger
p-2 :=5;p
9,5,20,7]
Type: List Positivelnteger
n
[9,99,20,7]

Type: List Positivelnteger

In the previous example a new way of constructing lists was given. This is a powerful method
which gives the reader more information about the contents of the list than before and which
is extremely flexible. The example

[i for i in 1..10]

[1,2,3,4,5,6,7,8,9,10]
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Type: List Positivelnteger

should be read as

“Using the expression i, generate each element of the list by iterating the symbol i over the
range of integers [1,10]”

To generate the list of the squares of the first ten elements we just use:

[i**2 for i in 1..10]

[1,4,9,16,25,36,49, 64,81, 100]
Type: List Positivelnteger

For more complex lists we can apply a condition to the elements that are to be placed into
the list to obtain a list of even numbers between 0 and 11:

[i{ for i in 1..10 | even?(i)]

[2,4,6,8,10]
Type: List Positivelnteger
This example should be read as:

“Using the expression i, generate each element of the list by iterating the symbol i over the
range of integers [1,10] such that i is even”

The following achieves the same result:
[i for i in 2..10 by 2]

[27 47 67 8’ 10}

Type: List Positivelnteger

0.5.2 Segmented Lists

A segmented list is one in which some of the elements are ranges of values. The expand
function converts lists of this type into ordinary lists:
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[1..10]

[1..10]

Type: List Segment Positivelnteger

[1..3,5,6,8..10]

[1..3,5..5,6..6,8..10]

Type: List Segment Positivelnteger

expand (%)
[1,2,3,5,6,8,9,10
Type: List Integer

If the upper bound of a segment is omitted then a different type of segmented list is obtained
and expanding it will produce a stream (which will be considered in the next section):

[1..]

1.]

Type: List UniversalSegment PositiveInteger

expand (%)

[1,2,3,4,5,6,7,8,9,10,.. ]

Type: Stream Integer

0.5.3 Streams

Streams are infinite lists which have the ability to calculate the next element should it be
required. For example, a stream of positive integers and a list of prime numbers can be
generated by:

[i for i in 1..]
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[1,2,3,4,5,6,7,8,9,10,.. ]

Type: Stream Positivelnteger

[i for i in 1.. | prime?(i)]

[2,3,5,7,11,13,17,19,23,29,.. ]
Type: Stream Positivelnteger

In each case the first few elements of the stream are calculated for display purposes but the
rest of the stream remains unevaluated. The value of items in a stream are only calculated
when they are needed which gives rise to their alternative name of “lazy lists”.

Another method of creating streams is to use the generate(f,a) function. This applies its
first argument repeatedly onto its second to produce the stream [a, f(a), f(f(a)), f(f(f(a)))...].
Given that the function nextPrime returns the lowest prime number greater than its argu-
ment we can generate a stream of primes as follows:

generate (nextPrime,2)$Stream Integer

(2,3,5,7,11,13,17,19,23,29, .. ]

Type: Stream Integer

As a longer example a stream of Fibonacci numbers will be computed. The Fibonacci
numbers start at 1 and each following number is the addition of the two numbers that
precede it so the Fibonacci sequence is:

1,1,2,3,5,8,...

Since the generation of any Fibonacci number only relies on knowing the previous two num-
bers we can look at the series through a window of two elements. To create the series the
window is placed at the start over the values [1,1] and their sum obtained. The window
is now shifted to the right by one position and the sum placed into the empty slot of the
window; the process is then repeated. To implement this we require a function that takes
a list of two elements (the current view of the window), adds them, and outputs the new
window. The result is the function [a,b] => [b,a + b]:

win : List Integer -> List Integer

Type: Void
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win(x) == [x.2, x.1 + x.2]
Type: Void
win([1,11)
[1,2]
Type: List Integer
win(%)
[2,3]

Type: List Integer

Thus it can be seen that by repeatedly applying win to the results of the previous invocation
each element of the series is obtained. Clearly win is an ideal function to construct streams
using the generate function:

fibs := [generate(win, [1,1])]
[1,1],11,2],[2,3],[3,5], 5, 8], [8, 13], [13, 21], [21, 34], [34, 55], [55, 89], . . ]
Type: Stream List Integer

This isn’t quite what is wanted — we need to extract the first element of each list and place
that in our series:

fibs := [i.1 for i in [generate(win,[1,1]1)] ]
[1,1,2,3,5,8,13,21,34,55,.. ]
Type: Stream Integer

Obtaining the 200th Fibonacci number is trivial:

fibs.200

280571172992510140037611932413038677189525

Type: Positivelnteger

One other function of interest is complete which expands a finite stream derived from an
infinite one (and thus was still stored as an infinite stream) to form a finite stream.
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0.5.4 Arrays, Vectors, Strings, and Bits

The simplest array data structure is the one-dimensional array which can be obtained by
applying the oneDimensionalArray function to a list:

oneDimensionalArray([7,2,5,4,1,9])

[7,2,5,4,1,9]

Type: OneDimensionalArray Positivelnteger

One-dimensional arrays are homogenous (all elements must have the same type) and mutable
(elements can be changed) like lists but unlike lists they are constant in size and have uniform
access times (it is just as quick to read the last element of a one-dimensional array as it is
to read the first; this is not true for lists).

Since these arrays are mutable all the warnings that apply to lists apply to arrays. That is,
it is possible to modify an element in a copy of an array and change the original:

x := oneDimensionalArray([7,2,5,4,1,9])
[77 27 57 47 17 9]
Type: OneDimensionalArray PositiveInteger
y = x

[7,2,5,4,1,9]

Type: OneDimensionalArray Positivelnteger

[7,2,20,4,1,9]
Type: OneDimensionalArray Positivelnteger

Note that because these arrays are of fixed size the concat! function cannot be applied to
them without generating an error. If arrays of this type are required use the FlexibleArray
constructor.

One-dimensional arrays can be created using new which specifies the size of the array and
the initial value for each of the elements. Other operations that can be applied to one-
dimensional arrays are map! which applies a mapping onto each element, swap! which
swaps two elements and copyInto!(a,b,c) which copies the array b onto a starting at
position c.
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a : ARRAY1 PositiveInteger := new(10,3)
[37 37 37 37 37 37 37 37 37 3]
Type: OneDimensionalArray Positivelnteger

(note that ARRAY1 is an abbreviation for the type OneDimensionalArray.) Other types
based on one-dimensional arrays are Vector, String, and Bits.

map! (i +-> i+l,a); a
[4,4,4,4,4,4,4,4,4, 4]

Type: OneDimensionalArray PositiveIlnteger
b := oneDimensionalArray([2,3,4,5,6])

[27 3? 45 57 6]

Type: OneDimensionalArray Positivelnteger
swap! (b,2,3); b

[2,4,3,5,0]

Type: OneDimensionalArray Positivelnteger
copyInto!(a,b,3)

[4,4,2,4,3,5,6,4,4,4]

Type: OneDimensionalArray PositiveIlnteger

[47 4’ 2’ 47 37 57 6’ 4’ 47 4]

Type: OneDimensionalArray Positivelnteger

vector([1/2,1/3,1/14])
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Type: Vector Fraction Integer

"Hello, World"

"Hello, World"

Type: String

bits(8,true)

"11111111"
Type: Bits

A vector is similar to a one-dimensional array except that if its components belong to a ring
then arithmetic operations are provided.

0.5.5 Flexible Arrays

Flexible arrays are designed to provide the efficiency of one-dimensional arrays while retain-
ing the flexibility of lists. They are implemented by allocating a fixed block of storage for
the array. If the array needs to be expanded then a larger block of storage is allocated and
the contents of the old block are copied into the new one.

There are several operations that can be applied to this type, most of which modify the array
in place. As a result these functions all have names ending in “!”. The physicalLength
returns the actual length of the array as stored in memory while the physicalLength!
allows this value to be changed by the user.
f : FARRAY INT := new(6,1)

(1,1,1,1,1,1]

Type: FlexibleArray Integer

(4,3,8,1,2,1]
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insert!(42,f,3); f

insert!(28,f,8); f

removeDuplicates! (f)

delete! (f,5)

g:=f(3..5)

g.2:=7; £

4,3,42,8,1,2, 1]

[4,3,42,8,1,2,1,28]

[4,3,42,8,1,2, 28]

[4,3,42,8,2,28

42,8, 2]

[4,3,42,8,2,28

Type:

Type:

Type:

Type:

Type:

Type:

Type:

CONTENTS

FlexibleArray

FlexibleArray

FlexibleArray

FlexibleArray

FlexibleArray

FlexibleArray

FlexibleArray

Integer

Integer

Integer

Integer

Integer

Integer

Integer
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insert!(g,f,1)

[42,7,2,4,3,42,8,2,28]

Type: FlexibleArray Integer

physicallLength(f)

10

Type: Positivelnteger

physicallLength! (f,20)

[42,7,2,4,3,42,8,2, 28]

Type: FlexibleArray Integer

merge! (sort! (f),sort!(g))

[2,2,2,3,4,7,7,8,28,42, 42, 42]

Type: FlexibleArray Integer

shrinkable(false)$FlexibleArray(Integer)

true

Type: Boolean

There are several things to point out concerning these examples. First, although flexible
arrays are mutable, making copies of these arrays creates separate entities. This can be seen
by the fact that the modification of element g.2 above did not alter f. Second, the merge!
function can take an extra argument before the two arrays are merged. The argument is a
comparison function and defaults to “<=" if omitted. Lastly, shrinkable tells the system
whether or not to let flexible arrays contract when elements are deleted from them. An
explicit package reference must be given as in the example above.
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0.6 Functions, Choices, and Loops

By now the reader should be able to construct simple one-line expressions involving variables
and different data structures. This section builds on this knowledge and shows how to use
iteration, make choices, and build functions in Axiom. At the moment it is assumed that the
reader has a rough idea of how types are specified and constructed so that they can follow
the examples given.

From this point on most examples will be taken from input files.

0.6.1 Reading Code from a File

Input files contain code that will be fed to the command prompt. The primary difference
between the command line and an input file is that indentation matters. In an input file you
can specify “piles” of code by using indentation.

4

The names of all input files in Axiom should end in “.input” otherwise Axiom will refuse to

read them.

If an input file is named foo.input you can feed the contents of the file to the command
prompt (as though you typed them) by writing: )read foo.input.

It is good practice to start each input file with the )clear all command so that all functions
and variables in the current environment are erased.

0.6.2 Blocks

The Axiom constructs that provide looping, choices, and user-defined functions all rely on
the notion of blocks. A block is a sequence of expressions which are evaluated in the order
that they appear except when it is modified by control expressions such as loops. To leave a
block prematurely use an expression of the form: BoolExpr => Expr where BoolExpr is any
Axiom expression that has type Boolean. The value and type of Expr determines the value
and type returned by the block.

If blocks are entered at the keyboard (as opposed to reading them from a text file) then
there is only one way of creating them. The syntax is:

(expressionl; expression?;. . .;expressionN)

In an input file a block can be constructed as above or by placing all the statements at the
same indentation level. When indentation is used to indicate program structure the block
is called a pile. As an example of a simple block a list of three integers can be constructed
using parentheses:

( a:=4; b:=1; c:=9; L:=[a,b,c])

[4,1,9]



0.6. FUNCTIONS, CHOICES, AND LOOPS 51

Type: List Positivelnteger

Doing the same thing using piles in an input file you could type:

L :=
a:=4
b:=
c:=9
[a,b,c]

[4,1,9]
Type: List Positivelnteger

Since blocks have a type and a value they can be used as arguments to functions or as part of
other expressions. It should be pointed out that the following example is not recommended
practice but helps to illustrate the idea of blocks and their ability to return values:

sqrt(4.0 +

O o0 o e
1

2.8284271247 461900976

Type: Float

Note that indentation is extremely important. If the example above had the pile starting
at “a:=" moved left by two spaces so that the “a” was under the “(” of the first line then
the interpreter would signal an error. Furthermore if the closing parenthesis “)” is moved
up to give

sqrt (4.0 +
a:=3.0
b:=1.0
c:=a + b
c)

Line 1: sqrt(4.0 +
..A

Error A: Missing mate.

Line

Line

N

»
]

w

.0
b:=1.0

w
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Line
Line

Error
Error
Error
Error

SIS

W w =

B:

Cc:

c)

=a + b

(from A up to B) Ignored.
Improper syntax.

syntax error at top level
Possibly missing a )

5 error(s) parsing

CONTENTS

then the parser will generate errors. If the parenthesis is shifted right by several spaces so
that it is in line with the “c¢” thus:

sqrt(4.0

Line

Error
Line
Line
Line
Line
Line

Error
Error
Error
Error

+

o O WN =

= = e

A:

~ 0 0O T e

w
+ O© O

[

»

: sqrt(4.0 +
.. A

Missing mate.

a:

~ 0 0O T

=3.0

:=1.0
:=a + b

(from A up to A) Ignored.
Improper syntax.

syntax error at top level
Possibly missing a )

5 error(s) parsing

a similar error will be raised. Finally, the “)” must be indented by at least one space relative

to the sqrt thus:

sqrt (4.0

+
a
b:
c
c

w
+ O O

[y

m

2.8284271247 461900976
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Type: Float

or an error will be generated.

It can be seen that great care needs to be taken when constructing input files consisting
of piles of expressions. It would seem prudent to add one pile at a time and check if it
is acceptable before adding more, particularly if piles are nested. However, it should be
pointed out that the use of piles as values for functions is not very readable and so perhaps
the delicate nature of their interpretation should deter programmers from using them in
these situations. Using piles should really be restricted to constructing functions, etc. and
a small amount of rewriting can remove the need to use them as arguments. For example,
the previous block could easily be implemented as:

a:=3.0
b:=1.0
c:=a + Db

sqrt(4.0 + ¢)

a:=3.0
3.0
Type: Float
b:=1.0
1.0
Type: Float
c:=a + b
4.0

Type: Float

sqrt (4.0 + ¢)
2.8284271247 461900976
Type: Float

which achieves the same result and is easier to understand. Note that this is still a pile but
it is not as fragile as the previous version.
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0.6.3 Functions

Definitions of functions in Axiom are quite simple providing two things are observed. First,
the type of the function must either be completely specified or completely unspecified. Sec-
ond, the body of the function is assigned to the function identifier using the delayed assign-

ment operator “==".

@

To specify the type of something the operator is used. Thus to define a variable x to be

of type Fraction Integer we enter:

x : Fraction Integer

Type: Void

For functions the method is the same except that the arguments are placed in parentheses
and the return type is placed after the symbol “~>”. Some examples of function definitions
taking zero, one, two, or three arguments and returning a list of integers are:

f : () -> List Integer

Type: Void
g : (Integer) -> List Integer

Type: Void
h : (Integer, Integer) -> List Integer

Type: Void
k : (Integer, Integer, Integer) -> List Integer

Type: Void

Now the actual function definitions might be:

£fO =[]
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Type: Void
g(a) == [a]

Type: Void
h(a,b) == [a,b]

Type: Void
k(a,b,c) == [a,b,c]

Type: Void

with some invocations of these functions:

£O

Compiling function f with type () -> List Integer

[]

Type: List Integer

g(4)

Compiling function g with type Integer -> List Integer
[4]

Type: List Integer

h(2,9)

Compiling function h with type (Integer,Integer) -> List Integer
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[2,9]

Type: List Integer

k(-3,42,100)

Compiling function k with type (Integer,Integer,Integer) -> List
Integer

[—3,42,100]
Type: List Integer

The value returned by a function is either the value of the last expression evaluated or the
result of a return statement. For example, the following are effectively the same:

p : Integer -> Integer

Type: Void
p x == (a:=1; b:=2; atb+x)

Type: Void
p x == (a:=1; b:=2; return(atb+x))

Type: Void

Note that a block (pile) is assigned to the function identifier p and thus all the rules about
blocks apply to function definitions. Also there was only one argument so the parenthese
are not needed.

This is basically all that one needs to know about defining functions in Axiom — first specify
the complete type and then assign a block to the function name. The rest of this section
is concerned with defining more complex blocks than those in this section and as a result
function definitions will crop up continually particularly since they are a good way of testing
examples. Since the block structure is more complex we will use the pile notation and thus
have to use input files to read the piles.
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0.6.4 Choices

Apart from the “=>" operator that allows a block to exit before the end Axiom provides the
standard if-then-else construct. The general syntax is:

if BooleanExpr then Exprl else Expr2

where “else Expr2” can be omitted. If the expression BooleanExpr evaluates to true then
Exprl is executed otherwise Expr2 (if present) will be executed. An example of piles and
if-then-else is: (read from an input file)

h := 2.0
if h > 3.1 then
1.0
else

z:= cos(h)
max(x,0.5)

h := 2.0
2.0
Type: Float
if h > 3.1 then
1.0
else
z:= cos(h)
max(x,0.5)
x

Type: Polynomial Float

Note the indentation — the “else” must be indented relative to the “if” otherwise it will
generate an error (Axiom will think there are two piles, the second one beginning with
“else”).

Any expression that has type Boolean can be used as BooleanExpr and the most common
will be those involving the relational operators “>", “<”, and “=”. Usually the type of an
expression involving the equality operator “=" will be Boolean but in those situations when
it isn’t you may need to use the “@Q” operator to ensure that it is.

0.6.5 Loops

Loops in Axiom are regarded as expressions containing another expression called the loop
body. The loop body is executed zero or more times depending on the kind of loop. Loops
can be nested to any depth.
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The repeat loop

The simplest kind of loop provided by Axiom is the repeat loop. The general syntax of this
is:

repeat loopBody

This will cause Axiom to execute loopBody repeatedly until either a break or return
statement is encountered. If loopBody contains neither of these statements then it will loop
forever. The following piece of code will display the numbers from 1 to 4:

i:=1

repeat
if i > 4 then break
output (i)
i:=i+1

Type: Positivelnteger

repeat
if 1 > 4 then break
output (i)
i:=i+l

S wWw N -

Type: Void

It was mentioned that loops will only be left when either a break or return statement is
encountered so why can’t one use the “=>” operator? The reason is that the “=>" operator
tells Axiom to leave the current block whereas break leaves the current loop. The return
statement leaves the current function.

To skip the rest of a loop body and continue the next iteration of the loop use the iterate
statement (the -- starts a comment in Axiom)

i::=0
repeat
i=1+1



0.6. FUNCTIONS, CHOICES, AND LOOPS 59

if i > 6 then break

—— Return to start if i is odd
if 0dd?(i) then iterate
output (i)

Type: NonNegativelnteger

repeat
i=1i+1
if i > 6 then break
-- Return to start if i is odd
if odd?(i) then iterate
output (i)

2
4
6

Type: Void

The while loop

The while statement extends the basic repeat loop to place the control of leaving the loop
at the start rather than have it buried in the middle. Since the body of the loop is still part
of a repeat loop, break and “=>” work in the same way as in the previous section. The
general syntax of a while loop is:

while BoolExpr repeat loopBody

As before, BoolExpr must be an expression of type Boolean. Before the body of the loop is
executed BoolExpr is tested. If it evaluates to true then the loop body is entered otherwise
the loop is terminated. Multiple conditions can be applied using the logical operators such
as and or by using several while statements before the repeat.

<
1]
—

while x < 4 and y < 10 repeat
output [x,y]
x :=x +1
y =y + 2
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x:=1
y:=1

while x < 4 and y < 10 repeat
output [x,y]
x:=x+1
y =y +2

[1,1]
[2,3]
(3,5]

We could use two parallel whiles

x:=1

y:=1

while x < 4 while y < 10 repeat
output [x,y]
x:=x+1
y =y +2

the )read yields:

x:=1

Type:

Type:

Type:

CONTENTS

Positivelnteger

Positivelnteger

Type: Void

Positivelnteger
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Type: Positivelnteger

while x < 4 while y < 10 repeat
output [x,y]
x:=x+1
y =y +2

[1,1]
[2,3]
[3,5]

Type: Void

Note that the last example using two while statements is not a nested loop but the following

one is:

x:=1
y:=1
while x < 4 repeat
while y < 10 repeat
output [x,y]
x :=x +1
y =y + 2

Type: Positivelnteger

Type: Positivelnteger

while x < 4 repeat
while y < 10 repeat
output [x,y]
x=x+1
y =y + 2

[1,1]
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[2,3]
[3,5]
[4,7]
[5,9]

Type: Void

Suppose we that, given a matrix of arbitrary size, find the position and value of the first
negative element by examining the matrix in row-major order:

m := matrix [ [ 21, 37, 53, 14 ],_
[ 8, 22,-24, 16 ], _
[ 2, 10, 15, 14 1],_
[ 26, 33, 55,-13 ] ]

lastrow := nrows(m)
lastcol := ncols(m)
r :=1
while r <= lastrow repeat
c := 1 -- Index of first column

while ¢ <= lastcol repeat
if elt(m,r,c) < O then
output [r,c,elt(m,r,c)]
r := lastrow
break -- Don’t look any further
c:=c+1
r :=r +1

m :=matrix [ [ 21, 37, 53, 14 1,_
[ 8, 22,-24, 16 ], _
[ 2, 10, 15, 14 1],_
[ 26, 33, 55,-13 ] 1]

21 37 53 14
8§ 22 -24 16

2 10 15 14
26 33 55 —13

Type: Matrix Integer

lastrow := nrows(m)

Type: Positivelnteger
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lastcol := ncols(m)

while r <= lastrow repeat
c := 1 —- Index of first column
while ¢ <= lastcol repeat
if elt(m,r,c) < O then
output [r,c,elt(m,r,c)]
r := lastrow
break -- Don’t look any further
c:=c+1
r:=r +1

[2,3,- 24]

The for loop

63

Type: Positivelnteger

Type: Positivelnteger

Type: Void

The last loop statement of interest is the for loop. There are two ways of creating a for

loop. The first way uses either a list or a segment:

for var in seg repeat loopBody
for var in list repeat loopBody

where var is an index variable which is iterated over the values in seg or list. The value seg
is a segment such as 1...10 or 1... and Iist is a list of some type. For example:

for i in 1..10 repeat
“prime?(i) => iterate
output (i)

~N o w N
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Type: Void
for w in ["This", "is", "your", "life!"] repeat
output (w)
This
is

your
life!

Type: Void

The second form of the for loop syntax includes a “such that” clause which must be of
type Boolean:

for var in seg | BoolExpr repeat loopBody
for var in list | BoolExpr repeat loopBody

Some examples are:

for i in 1..10 | prime?(i) repeat

output (i)
2
3
5
7
Type: Void
for i in [1,2,3,4,5,6,7,8,9,10] | prime?(i) repeat
output (i)
2
3
5
7
Type: Void

You can also use a while clause:
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for i in 1.. while i < 7 repeat
if even?(i) then output(i)

2
4
6
Type:
Using the “such that” clause makes this appear simpler:
for i in 1.. | even?(i) while i < 7 repeat
output (1)
2
4
6
Type:
You can use multiple for clauses to iterate over several sequences in parallel:
for a in 1..4 for b in 5..8 repeat
output [a,b]
[1,5]
[2,6]
[3,7]
[4,8]
Type:

65

Void

Void

Void

As a general point it should be noted that any symbols referred to in the “such that” and
while clauses must be pre-defined. This either means that the symbols must have been
defined in an outer level (e.g. in an enclosing loop) or in a for clause appearing before the

“such that” or while. For example:

for a in 1..4 repeat
for b in 7..9 | prime?(a+b) repeat
output [a,b,a+b]

[2,9,11]
[3,8,11]
[4,7,11]
[4,9,13]
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Type: Void
Finally, the for statement has a by clause to specify the step size. This makes it possible to
iterate over the segment in reverse order:

for a in 1..4 for b in 8..5 by -1 repeat
output [a,b]

[1,8]
[2,7]
[3,6]
[4,5]

Type: Void

Note that without the “by -1” the segment 8..5 is empty so there is nothing to iterate over
and the loop exits immediately.



Chapter 1

An Overview of Axiom

When we start cataloging the gains in tools sitting on a computer, the benefits
of software are amazing. But, if the benefits of software are so great, why do
we worry about making it easier — don’t the ends pay for the means? We worry
becuase making such software is extraordinarily hard and almost no one can do it
— the detail is exhausting, the creativity required is extreme, the hours of failure
upon failure requiring patience and persistence would tax anyone claiming to be
sane. Yet we require people with such characteristics be found and employed and
employed cheaply.

— Christopher Alexander
(from Patterns of Software by Richard Gabriel)

Welcome to the Axiom environment for interactive computation and problem solving. Con-
sider this chapter a brief, whirlwind tour of the Axiom world. We introduce you to Axiom’s
graphics and the Axiom language. Then we give a sampling of the large variety of facili-
ties in the Axiom system, ranging from the various kinds of numbers, to data types (like
lists, arrays, and sets) and mathematical objects (like matrices, integrals, and differential
equations). We conclude with the discussion of system commands and an interactive “undo.”

Before embarking on the tour, we need to brief those readers working interactively with
Axiom on some details.

1.1 Starting Up and Winding Down

You need to know how to start the Axiom system and how to stop it. We assume that Axiom
has been correctly installed on your machine (as described in another Axiom document).

To begin using Axiom, issue the command axiom to the Axiom operating system shell.
There is a brief pause, some start-up messages, and then one or more windows appear.

67
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If you are not running Axiom under the X Window System, there is only one window (the
console). At the lower left of the screen there is a prompt that looks like

(1) —>

When you want to enter input to Axiom, you do so on the same line after the prompt.
The “1” in “(1)”, also called the equation number, is the computation step number and is
incremented after you enter Axiom statements. Note, however, that a system command such
as )clear all may change the step number in other ways. We talk about step numbers
more when we discuss system commands and the workspace history facility.

If you are running Axiom under the X Window System, there may be two windows: the
console window (as just described) and the HyperDoc main menu. HyperDoc is a multiple-
window hypertext system that lets you view Axiom documentation and examples on-line,
execute Axiom expressions, and generate graphics. If you are in a graphical windowing
environment, it is usually started automatically when Axiom begins. If it is not running,
issue )hd to start it. We discuss the basics of HyperDoc in section B on page [G4.

To interrupt an Axiom computation, hold down the Ctrl (control) key and press c. This
brings you back to the Axiom prompt.

To exit from Axiom, move to the console window, type )quit at the input
prompt and press the Enter key. You will probably be prompted with the
following message:

Please enter y or yes if you really want to leave the
interactive environment and return to the operating system

You should respond yes, for example, to exit Axiom.

We are purposely vague in describing exactly what your screen looks like or what messages
Axiom displays. Axiom runs on a number of different machines, operating systems and
window environments, and these differences all affect the physical look of the system. You
can also change the way that Axiom behaves via system commands described later in this
chapter and in Appendix A. System commands are special commands, like ) set, that begin
with a closing parenthesis and are used to change your environment. For example, you can
set a system variable so that you are not prompted for confirmation when you want to leave
Axiom.

1.1.1  Clef

If you are using Axiom under the X Window System, the Clef command line editor is
probably available and installed. With this editor you can recall previous lines with the up
and down arrow keys. To move forward and backward on a line, use the right and left arrows.
You can use the Insert key to toggle insert mode on or off. When you are in insert mode,
the cursor appears as a large block and if you type anything, the characters are inserted into
the line without deleting the previous ones.
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If you press the Home key, the cursor moves to the beginning of the line and if you press
the End key, the cursor moves to the end of the line. Pressing Ctrl-End deletes all the text
from the cursor to the end of the line.

Clef also provides Axiom operation name completion for a limited set of operations. If you
enter a few letters and then press the Tab key, Clef tries to use those letters as the prefix of
an Axiom operation name. If a name appears and it is not what you want, press Tab again
to see another name.

You are ready to begin your journey into the world of Axiom.

1.2 Typographic Conventions
In this document we have followed these typographical conventions:

e (Categories, domains and packages are displayed in this font: Ring, Integer, DiophantineSolutionPackage.

e Prefix operators, infix operators, and punctuation symbols in the Axiom language are
displayed in the text like this: +, §, +->.

e Axiom expressions or expression fragments are displayed in this font:
inc(x) == x + 1.

e For clarity of presentation, TEX is often used to format expressions
g(z) =2+ 1.

e Function names and HyperDoc button names are displayed in the text in this font:
factor, integrate, Lighting.

e Italics are used for emphasis and for words defined in the glossary:
category.

This document contains over 2500 examples of Axiom input and output. All examples were
run though Axiom and their output was created in TEX form by the Axiom TexFormat
package. We have deleted system messages from the example output if those messages are
not important for the discussions in which the examples appear.

1.3 The Axiom Language

The Axiom language is a rich language for performing interactive computations and for
building components of the Axiom library. Here we present only some basic aspects of
the language that you need to know for the rest of this chapter. Our discussion here is
intentionally informal, with details unveiled on an “as needed” basis. For more information
on a particular construct, we suggest you consult the index.
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1.3.1 Arithmetic Expressions

For arithmetic expressions, use the “+” and “-” operator as in mathematics. Use “*” for
multiplication, and “**” for exponentiation. To create a fraction, use “/”. When an expres-
sion contains several operators, those of highest precedence are evaluated first. For arithmetic
operators, “**” has highest precedence, “*” and “/” have the next highest precedence, and
“+” and “-” have the lowest precedence.

Axiom puts implicit parentheses around operations of higher precedence, and groups those
of equal precedence from left to right.

1 +2-3/4%3 %x2 -1

19
4
Type: Fraction Integer
The above expression is equivalent to this.
(A +2) - ((B/ 4) = (3*2))) -1
19
4

Type: Fraction Integer

If an expression contains subexpressions enclosed in parentheses, the parenthesized subex-
pressions are evaluated first (from left to right, from inside out).

1 +2-3/ (4 %3 *x (2 -1))

Type: Fraction Integer

1.3.2 Previous Results

Use the percent sign “%” to refer to the last result. Also, use “%%’ to refer to previous
results. “%%(-1)” is equivalent to “%”, “%%(-2)” returns the next to the last result, and so
on. “%%(1)” returns the result from step number 1, “%%(2)” returns the result from step
number 2, and so on. “%%(0)” is not defined.

This is ten to the tenth power.

10 **x 10



1.3. THE AXIOM LANGUAGE

This is the last result minus one.

% -1

This is the last result.

hh(=1)

This is the result from step number 1.

hh (1)

1.3.3 Some Types

10000000000

9999999999

9999999999

10000000000

Type:

Type:

Type:

Type:
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Positivelnteger

Positivelnteger

Positivelnteger

Positivelnteger

Everything in Axiom has a type. The type determines what operations you can perform on
an object and how the object can be used. The section B on page 23 is dedicated to the
interactive use of types. Several of the final chapters discuss how types are built and how
they are organized in the Axiom library.

Positive integers are given type Positivelnteger.

8

Type:

Positivelnteger

Negative ones are given type Integer. This fine distinction is helpful to the Axiom inter-

preter.
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Type: Integer

Here a positive integer exponent gives a polynomial result.

X**8

Type: Polynomial Integer

Here a negative integer exponent produces a fraction.

x*% (-8)

Type: Fraction Polynomial Integer

1.3.4 Symbols, Variables, Assignments, and Declarations

A symbol is a literal used for the input of things like the “variables” in polynomials and
power series.

We use the three symbols z, y, and z in entering this polynomial.
(x = y*xz)*x*2

y? 22 =2z y 2+ a2

Type: Polynomial Integer

A symbol has a name beginning with an uppercase or lowercase alphabetic character, “%”,
or “!”. Successive characters (if any) can be any of the above, digits, or “?”. Case is
distinguished: the symbol points is different from the symbol Points.

A symbol can also be used in Axiom as a wvariable. A variable refers to a value. To assign
a value to a variable, the operator “:=" is used.! A variable initially has no restrictions on
the kinds of values to which it can refer.

This assignment gives the value 4 (an integer) to a variable named z.

LAxiom actually has two forms of assignment: immediate assignment, as discussed here, and delayed
assignment. See section Bl on page [CX3 for details.



1.3. THE AXIOM LANGUAGE 73

Type: Positivelnteger
This gives the value z 4+ 3/5 (a polynomial) to x.
x :=z + 3/5
z+ <
Type: Polynomial Fraction Integer

To restrict the types of objects that can be assigned to a variable, use a declaration

y : Integer

Type: Void

After a variable is declared to be of some type, only values of that type can be assigned to
that variable.

y := 89
89
Type: Integer

The declaration for y forces values assigned to y to be converted to integer values.

y := sin Ypi

Type: Integer

If no such conversion is possible, Axiom refuses to assign a value to y.

y = 2/3
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Cannot convert right-hand side of assignment
2

3

to an object of the type Integer of the left-hand side.

A type declaration can also be given together with an assignment. The declaration can assist
Axiom in choosing the correct operations to apply.

f : Float := 2/3
0.6666666666 6666666667
Type: Float

Any number of expressions can be given on input line. Just separate them by semicolons.
Only the result of evaluating the last expression is displayed.

These two expressions have the same effect as the previous single expression.
f : Float; f := 2/3
0.6666666666 6666666667
Type: Float

The type of a symbol is either Symbol or Variable(name) where name is the name of the
symbol.

By default, the interpreter gives this symbol the type Variable(q).

q

Type: Variable q
When multiple symbols are involved, Symbol is used.
[q, r]

q,7]

Type: List OrderedVariableList [q,r]
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What happens when you try to use a symbol that is the name of a variable?
f
0.6666666666 6666666667
Type: Float
Use a single quote “’” before the name to get the symbol.

’f

Type: Variable f

Quoting a name creates a symbol by preventing evaluation of the name as a variable. Expe-
rience will teach you when you are most likely going to need to use a quote. We try to point
out the location of such trouble spots.

1.3.5 Conversion

Objects of one type can usually be “converted” to objects of several other types. To convert
an object to a new type, use the “::” infix operator.? For example, to display an object, it
is necessary to convert the object to type OutputForm.

This produces a polynomial with rational number coefficients.

p = r**x2 + 2/3

2
2 p—
r+3

Type: Polynomial Fraction Integer

Create a quotient of polynomials with integer coefficients by using “::”.

p :: Fraction Polynomial Integer

3r242
3

Type: Fraction Polynomial Integer

Some conversions can be performed automatically when Axiom tries to evaluate your input.
Others conversions must be explicitly requested.

2Conversion is discussed in detail in section I on page [ZS.



76 CHAPTER 1. AN OVERVIEW OF AXIOM

1.3.6 Calling Functions

As we saw earlier, when you want to add or subtract two values, you place the arithmetic
operator “+” or “-” between the two arguments denoting the values. To use most other
Axiom operations, however, you use another syntax: write the name of the operation first,
then an open parenthesis, then each of the arguments separated by commas, and, finally, a
closing parenthesis. If the operation takes only one argument and the argument is a number
or a symbol, you can omit the parentheses.

This calls the operation factor with the single integer argument 120.
factor(120)
2°35
Type: Factored Integer
This is a call to divide with the two integer arguments 125 and 7.
divide(125,7)
[quotient = 17, remainder = 6]
Type: Record(quotient: Integer, remainder: Integer)

This calls quatern with four floating-point arguments.
quatern(3.4,5.6,2.9,0.1)
34456i+29;5+0.1k
Type: Quaternion Float
This is the same as factorial(10).
factorial 10
3628800

Type: Positivelnteger

An operations that returns a Boolean value (that is, true or false) frequently has a name
suffixed with a question mark (“?”). For example, the even? operation returns true if its
integer argument is an even number, false otherwise.
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An operation that can be destructive on one or more arguments usually has a name ending
in a exclamation point (“!”). This actually means that it is allowed to update its arguments
but it is not required to do so. For example, the underlying representation of a collection type
may not allow the very last element to removed and so an empty object may be returned
instead. Therefore, it is important that you use the object returned by the operation and not
rely on a physical change having occurred within the object. Usually, destructive operations
are provided for efficiency reasons.

1.3.7 Some Predefined Macros

Axiom provides several macros for your convenience.® Macros are names (or forms) that
expand to larger expressions for commonly used values.

%i The square root of -1.

%e The base of the natural logarithm.
%pi .

%infinity 00.

%plusInfinity +00.

%minusInfinity —oo.

To display all the macros (along with anything you have defined in the workspace), issue the
system command )display all.

1.3.8 Long Lines

When you enter Axiom expressions from your keyboard, there will be times when they are
too long to fit on one line. Axiom does not care how long your lines are, so you can let them
continue from the right margin to the left side of the next line.

Alternatively, you may want to enter several shorter lines and have Axiom glue them together.
To get this glue, put an underscore (_) at the end of each line you wish to continue.

is the same as if you had entered
2+3

Axiom statements in an input file (see section B on page [[73) can use indentation to indicate
the program structure. (see section 52 on page [Z9).

3See section B2 on page ZZ2 for a discussion on how to write your own macros.
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1.3.9 Comments

Comment statements begin with two consecutive hyphens or two consecutive plus signs and
continue until the end of the line.

b2

The comment beginning with “--" is ignored by Axiom.

2 + 3 —- this is rather simple, no?

Type: Positivelnteger

7

There is no way to write long multi-line comments other than starting each line with “--
or LL++77 .

1.4 Numbers

Axiom distinguishes very carefully between different kinds of numbers, how they are repre-
sented and what their properties are. Here are a sampling of some of these kinds of numbers
and some things you can do with them.

Integer arithmetic is always exact.

11%%13 * 13%x11 * 17%*%7 - 19%x5 * 23%*3
25387751112538918594666224484237298
Type: Positivelnteger
Integers can be represented in factored form.
factor 643238070748569023720594412551704344145570763243
111 131 177 19° 233 292
Type: Factored Integer

Results stay factored when you do arithmetic. Note that the 12 is automatically factored
for you.

% *x 12

22 31113 13 177 195 233 292
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Type: Factored Integer
Integers can also be displayed to bases other than 10. This is an integer in base 11.
radix (25937424601,11)
10000000000
Type: RadixExpansion 11
Roman numerals are also available for those special occasions.
roman(1992)
MCMXCII
Type: RomanNumeral
Rational number arithmetic is also exact.
r :=10 + 9/2 + 8/3 + 7/4 + 6/5 + 5/6 + 4/7 + 3/8 + 2/9

55739
2520

Type: Fraction Integer
To factor fractions, you have to map factor onto the numerator and denominator.
map (factor,r)

139 401
283257

Type: Fraction Factored Integer

SingleInteger refers to machine word-length integers.

In English, this expression means “11 as a small integer”.
11@SinglelInteger

11

Type: Singlelnteger
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Machine double-precision floating-point numbers are also available for numeric and graphical
applications.

123.21@DoubleFloat

123.21000000000001

Type: DoubleFloat

The normal floating-point type in Axiom, Float, is a software implementation of floating-
point numbers in which the exponent and the mantissa may have any number of digits. The
types Complex(Float) and Complex(DoubleFloat) are the corresponding software imple-
mentations of complex floating-point numbers.

7))

This is a floating-point approximation to about twenty digits. The is used here to
change from one kind of object (here, a rational number) to another (a floating-point num-
ber).

r :: Float
22.118650793650793651
Type: Float

Use digits to change the number of digits in the representation. This operation returns the
previous value so you can reset it later.

digits(22)
20
Type: Positivelnteger
To 22 digits of precision, the number emV163.0 appears to be an integer.
exp(%pi * sqrt 163.0)
262537412640768744.0

Type: Float

Increase the precision to forty digits and try again.

digits(40); exp(%pi * sqrt 163.0)
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26253741 2640768743.9999999999 9925007259 76
Type: Float

Here are complex numbers with rational numbers as real and imaginary parts.
(2/3 + %i)#*=3

46 1Ly
——=+ =
271 3
Type: Complex Fraction Integer

The standard operations on complex numbers are available.

conjugate %

Type: Complex Fraction Integer

You can factor complex integers.
factor(89 - 23 * %i)
—(1+1i) (2+14)* (3+24)°
Type: Factored Complex Integer
Complex numbers with floating point parts are also available.
exp(%pi/4.0 * %i)

0.7071067811 8654752440 0844362104 8490392849+
0.7071067811 8654752440 0844362104 8490392848 1

Type: Complex Float

The real and imaginary parts can be symbolic.

complex(u,v)

u+v1
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Type: Complex Polynomial Integer
Of course, you can do complex arithmetic with these also.
% *%x 2
v +ui+2uvi
Type: Complex Polynomial Integer

Every rational number has an exact representation as a repeating decimal expansion

decimal (1/352)

0.0028409

Type: DecimalExpansion
A rational number can also be expressed as a continued fraction.
continuedFraction(6543/210)

T R (R
TR

Type: ContinuedFraction Integer
Also, partial fractions can be used and can be displayed in a compact format

partialFraction(1l,factorial(10))

Type: PartialFraction Integer

or expanded format.
padicFraction(%)

1+1+1+1+1+1 2 1 2 2 2+1
2 24 25 26 2T 28 32 3 3 5 52 7

Type: PartialFraction Integer
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Like integers, bases (radices) other than ten can be used for rational numbers. Here we use
base eight.

radix(4/7, 8)

Type: RadixExpansion 8

Of course, there are complex versions of these as well. Axiom decides to make the result a
complex rational number.

%+ 2/3%%i

RIS
wl o

Type: Complex Fraction Integer

You can also use Axiom to manipulate fractional powers.

(5 + sqrt 63 + sqrt 847)**(1/3)

14V7+5

Type: AlgebraicNumber

You can also compute with integers modulo a prime.

x : PrimeField 7 := 5

Type: PrimeField 7

Arithmetic is then done modulo 7.

X*k*3

Type: PrimeField 7

Since 7 is prime, you can invert nonzero values.
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1/x

Type: PrimeField 7

You can also compute modulo an integer that is not a prime.

y : IntegerMod 6 := 5

Type: IntegerMod 6

All of the usual arithmetic operations are available.

y*k*3

Type: IntegerMod 6

Inversion is not available if the modulus is not a prime number. Modular arithmetic and
prime fields are discussed in section BT on page BF.

1/y

There are 12 exposed and 13 unexposed library operations named /
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue

)display op /
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.

Cannot find a definition or applicable library operation named /
with argument type(s)
Positivelnteger
IntegerMod 6

Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.

This defines a to be an algebraic number, that is, a root of a polynomial equation.
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a := rootOf (a**5 + a*x*x3 + a**2 + 3,a)

Type: Expression Integer

Computations with a are reduced according to the polynomial equation.
(a + 1)**10
—85 a* — 264 a® — 378 a® — 458 a — 287

Type: Expression Integer

Define b to be an algebraic number involving a.

b := root0f (b**4 + a,b)

Type: Expression Integer

Do some arithmetic.

2/(b - 1)

Type: Expression Integer

To expand and simplify this, call ratDenom to rationalize the denominator.
ratDenom (%)
(a4—a3—|—2a2—a+1) b?’—|—(a4—a3—|—2a2—a+1) b2+
(a4—a3+2a2—a+1) b+a'*—a*+2a>—a+1

Type: Expression Integer

If we do this, we should get b.

2/%+1
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a*—a®+2a>—a+1) b ( a3+2a2—a—|—1)b2—|—

b+a —a*+2d>—a+3
(a —a®+2a? —a—i—l) b2+

(
at—a*+2a>—a+1
(
(a4—a3—|—2a2—a+1
(

a4—a3+2a2—a+1)b+a —a*+2d>—a+1
Type: Expression Integer
But we need to rationalize the denominator again.

ratDenom (%)

Type: Expression Integer

Types Quaternion and Octonion are also available. Multiplication of quaternions is non-
commutative, as expected.

q:=quatern(1,2,3,4)*quatern(5,6,7,8) - quatern(5,6,7,8)*quatern(1,2,3,4)

—8i+16j—8k

Type: Quaternion Integer

1.5 Data Structures

Axiom has a large variety of data structures available. Many data structures are particularly
useful for interactive computation and others are useful for building applications. The data
structures of Axiom are organized into category hierarchies.

A list ™ is the most commonly used data structure in Axiom for holding objects all of the
same type. The name [ist is short for “linked-list of nodes.” Each node consists of a value
(first) and a link (rest) that points to the next node, or to a distinguished value denoting
the empty list. To get to, say, the third element, Axiom starts at the front of the list, then
traverses across two links to the third node.

Write a list of elements using square brackets with commas separating the elements.

u := [1,-7,11]

AList on page BEZ3
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[1,-7,11]
Type: List Integer

This is the value at the third node. Alternatively, you can say u.3.

first rest rest u

11

Type: Positivelnteger

Many operations are defined on lists, such as: empty?, to test that a list has no elements;
cons(z,1), to create a new list with first element x and rest [; reverse, to create a new list
with elements in reverse order; and sort, to arrange elements in order.

An important point about lists is that they are “mutable”: their constituent elements and
links can be changed “in place.” To do this, use any of the operations whose names end with
the character “!”.

The operation concat!(u,v) replaces the last link of the list u to point to some other list v.
Since u refers to the original list, this change is seen by wu.

concat! (u,[9,1,3,-41); u
[1,-7,11,9,1,3,—4]
Type: List Integer

A cyclic list is a list with a “cycle”: a link pointing back to an earlier node of the list. To
create a cycle, first get a node somewhere down the list.

lastnode := rest(u,3)
9,1,3,—4]
Type: List Integer

Use setrest! to change the link emanating from that node to point back to an earlier part
of the list.

setrest!(lastnode,rest(u,2)); u
[1,-7,11,9]
Type: List Integer

A stream is a structure that (potentially) has an infinite number of distinct elements. Think
of a stream as an “infinite list” where elements are computed successively. ©

5Stream ECRR on page KMl
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Create an infinite stream of factored integers. Only a certain number of initial elements are
computed and displayed.

[factor(i) for i in 2.. by 2]

2,2%,23,2%,25,223,27,2%,23%,2% 5,.. |
Type: Stream Factored Integer

Axiom represents streams by a collection of already-computed elements together with a
function to compute the next element “on demand.” Asking for the n-th element causes
elements 1 through n to be evaluated.

%.36
2% 3
Type: Factored Integer

Streams can also be finite or cyclic. They are implemented by a linked list structure similar
to lists and have many of the same operations. For example, first and rest are used to
access elements and successive nodes of a stream.

A one-dimensional array is another data structure used to hold objects of the same type 5.
Unlike lists, one-dimensional arrays are inflexible—they are implemented using a fixed block
of storage. Their advantage is that they give quick and equal access time to any element.

A simple way to create a one-dimensional array is to apply the operation oneDimension-
alArray to a list of elements.

a := oneDimensionalArray [1, -7, 3, 3/2]

3
1. — b
[, 7,3,2]

Type: OneDimensionalArray Fraction Integer

One-dimensional arrays are also mutable: you can change their constituent elements “in
place.”

a.3 := 11; a

S0neDimensionalArray BGd on page 19
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Type: OneDimensionalArray Fraction Integer

However, one-dimensional arrays are not flexible structures. You cannot destructively con-
cat! them together.

concat! (a,oneDimensionalArray [1,-2])

There are 5 exposed and O unexposed library operations named concat!
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue

)display op concat!
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.

Cannot find a definition or applicable library operation named
concat! with argument type(s)
OneDimensionalArray Fraction Integer
OneDimensionalArray Integer

Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.

Examples of datatypes similar to OneDimensionalArray are: Vector (vectors are mathe-
matical structures implemented by one-dimensional arrays), String (arrays of “characters,”
represented by byte vectors), and Bits (represented by “bit vectors”).

A vector of 32 bits, each representing the Boolean value true.

bits(32,true)

"11111111111111111111131111311111"
Type: Bits

A flexible array® is a cross between a list and a one-dimensional array. Like a one-dimensional
array, a flexible array occupies a fixed block of storage. Its block of storage, however, has
room to expand. When it gets full, it grows (a new, larger block of storage is allocated);
when it has too much room, it contracts.

Create a flexible array of three elements.

f := flexibleArray [2, 7, -5]

"FlexibleArray B30 on page
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[27 73 _5]
Type: FlexibleArray Integer

Insert some elements between the second and third elements.
insert!(flexibleArray [11, -3],f,2)
[2,11,-3,7,-5]
Type: FlexibleArray Integer

Flexible arrays are used to implement “heaps.” A heap ¥ is an example of a data struc-
ture called a priority queue, where elements are ordered with respect to one another. A
heap is organized so as to optimize insertion and extraction of maximum elements. The
extract! operation returns the maximum element of the heap, after destructively removing
that element and reorganizing the heap so that the next maximum element is ready to be
delivered.

An easy way to create a heap is to apply the operation heap to a list of values.
h := heap [-4,7,11,3,4,-7]
[11,4,7,—4,3,=7]
Type: Heap Integer

This loop extracts elements one-at-a-time from h until the heap is exhausted, returning the
elements as a list in the order they were extracted.

[extract!(h) while not empty?(h)]

[11,7,4,3,—4, 7]
Type: List Integer

A binary tree is a “tree” with at most two branches per node: it is either empty, or else
is a node consisting of a value, and a left and right subtree (again, binary trees). Ex-
amples of binary tree types are BinarySearchTree, PendantTree, TournamentTree, and
BalancedBinaryTree.

A binary search tree is a binary tree such that, for each node, the value of the node is greater
than all values (if any) in the left subtree, and less than or equal all values (if any) in the
right subtree. ®

8Heap B33 on page
9BinarySearchTree B on page EG3
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binarySearchTree [5,3,2,9,4,7,11]

[2,3,4],5,[7,9, 11]]

Type: BinarySearchTree PositiveInteger

A balanced binary tree is useful for doing modular computations. ™ Given a list Im of
moduli, modTree(a,lm) produces a balanced binary tree with the values a mod m at its
leaves.

modTree(8,[2,3,5,7])
[0,2,3,1]
Type: List Integer

A set is a collection of elements where duplication and order is irrelevant. ™ Sets are always
finite and have no corresponding structure like streams for infinite collections.

Create sets using braces “{“ and “}” rather than brackets.

fs := set [1/3,4/5,-1/3,4/5]

Type: Set Fraction Integer

A multiset is a set that keeps track of the number of duplicate values. =

For all the primes p between 2 and 1000, find the distribution of p mod 5.
multiset [x rem 5 for x in primes(2,1000)]
{0,42: 3,40: 1,38: 4,47: 2}
Type: Multiset Integer

A table is conceptually a set of “key—value” pairs and is a generalization of a multiset.
For examples of tables, see AssociationList, HashTable, KeyedAccessFile, Library,
SparseTable, StringTable, and Table. The domain Table(Key, Entry) provides a general-
purpose type for tables with values of type Entry indexed by keys of type Key.

Compute the above distribution of primes using tables. First, let ¢ denote an empty table of
keys and values, each of type Integer.

10BalamcedBinaryTree B on page EX2
11set B2 on page 93
2Multiset on page
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t : Table(Integer,Integer) := empty()

table()

Type: Table(Integer,Integer)

We define a function howMany to return the number of values of a given modulus k seen
so far. It calls search(k,t) which returns the number of values stored under the key k in
table ¢, or ‘ ‘failed’’ if no such value is yet stored in ¢ under k.

In English, this says “Define howMany(k) as follows. First, let n be the value of search(k,t).
Then, if n has the value ” failed”, return the value 1; otherwise return n + 1.”

howMany (k) == (n:=search(k,t); n case "failed" => 1; n+l1)

Type: Void

Run through the primes to create the table, then print the table. The expression t.m :=
howMany (m) updates the value in table ¢ stored under key m.

for p in primes(2,1000) repeat (m:= p rem 5; t.m:= howMany(m)); t

Compiling function howMany with type Integer -> Integer
table (2 = 47,4 = 38,1 =40,3 =42,0=1)
Type: Table(Integer,Integer)

A record is an example of an inhomogeneous collection of objects.™ A record consists of a
set of named selectors that can be used to access its components.

Declare that daniel can only be assigned a record with two prescribed fields.

daniel : Record(age : Integer, salary : Float)

Type: Void

Give daniel a value, using square brackets to enclose the values of the fields.

daniel := [28, 32005.12]

[age = 28, salary = 32005.12]

13See section 4 on page 3R for details.
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Type: Record(age: Integer,salary: Float)

Give daniel a raise.

daniel.salary := 35000; daniel

[age = 28, salary = 35000.0]

Type: Record(age: Integer,salary: Float)

A union is a data structure used when objects have multiple types.™

Let dog be either an integer or a string value.

dog: Union(licenseNumber: Integer, name: String)

Type: Void

Give dog a name.

dog := "Whisper"

"Whisper"
Type: Union(name: String,...)

All told, there are over forty different data structures in Axiom. Using the domain construc-
tors described in section 3 on page B39, you can add your own data structure or extend
an existing one. Choosing the right data structure for your application may be the key to
obtaining good performance.

1.6 Expanding to Higher Dimensions

To get higher dimensional aggregates, you can create one-dimensional aggregates with el-
ements that are themselves aggregates, for example, lists of lists, one-dimensional arrays
of lists of multisets, and so on. For applications requiring two-dimensional homogeneous
aggregates, you will likely find two-dimensional arrays and matrices most useful.

The entries in TwoDimensionalArray and Matrix objects are all the same type, except
that those for Matrix must belong to a Ring. You create and access elements in roughly
the same way. Since matrices have an understood algebraic structure, certain algebraic

14See section I3 on page IZ2A for details.
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operations are available for matrices but not for arrays. Because of this, we limit our dis-
cussion here to Matrix, that can be regarded as an extension of TwoDimensionalArray.
See TwoDimensionalArray for more information about arrays. For more information about
Axiom’s linear algebra facilities, see Matrix on page [0, Permanent U771 on page [£34,
SquareMatrix IR on page B, Vector on page Bd7, TwoDimensionalArray B94 on
page B30, section B4 on page (computation of eigenvalues and eigenvectors), and sec-
tion B on page (solution of linear and polynomial equations).

You can create a matrix from a list of lists, where each of the inner lists represents a row of
the matrix.

m := matrix([ [1,2], [3,4] 1)

IS\
[

Type: Matrix Integer

The “collections” construct (see section B33 on page PT2) is useful for creating matrices whose
entries are given by formulas.

matrix([ [1/(1 + j - x) for i in 1..4] for j in 1..4])

. 1 1 __1
r—2 r—3 r—4 r—5
- 1 1 _ 1
r—3 r—4 r—5 r—6
- 1 _ 1 1
r—4 r—5 r—6 =7
- . r _ 1 1
r—5 z—6 z—T7 z—8

Type: Matrix Fraction Polynomial Integer

Let vm denote the three by three Vandermonde matrix.

vm := matrix [ [1,1,1], [x,y,z], [x*x,y*y,z*z] ]
1 1 1
T Yy =z
2?2 22

Type: Matrix Polynomial Integer

Use this syntax to extract an entry in the matrix.

vm(3,3)
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Type: Polynomial Integer
You can also pull out a row or a column.

column(vm,2)

[1,9,9°]

Type: Vector Polynomial Integer
You can do arithmetic.
vm * vm

2?24z +1 v +y+1 224241
?2tzyta v2z+yi+ar  2ryzta
PRz 4a? 24422 A 12 st a?

Type: Matrix Polynomial Integer

You can perform operations such as transpose, trace, and determinant.

factor determinant vm

(y—=) (z-y) (z—2)

Type: Factored Polynomial Integer

1.7 Writing Your Own Functions

Axiom provides you with a very large library of predefined operations and objects to compute
with. You can use the Axiom library of constructors to create new objects dynamically of
quite arbitrary complexity. For example, you can make lists of matrices of fractions of
polynomials with complex floating point numbers as coefficients. Moreover, the library
provides a wealth of operations that allow you to create and manipulate these objects.

For many applications, you need to interact with the interpreter and write some Axiom
programs to tackle your application. Axiom allows you to write functions interactively,
thereby effectively extending the system library. Here we give a few simple examples, leaving
the details to section B on page 2Z1.

We begin by looking at several ways that you can define the “factorial” function in Axiom.
The first way is to give a piece-wise definition of the function. This method is best for a
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general recurrence relation since the pieces are gathered together and compiled into an effi-
cient iterative function. Furthermore, enough previously computed values are automatically
saved so that a subsequent call to the function can pick up from where it left off.

Define the value of fact at 0.

fact(0) ==

Type: Void
Define the value of fact(n) for general n.
fact(n) == nxfact(n-1)

Type: Void

Ask for the value at 50. The resulting function created by Axiom computes the value by
iteration.

fact (50)

Compiling function fact with type Integer -> Integer
Compiling function fact as a recurrence relation.

30414093201713378043612608166064768844377641568960512000000000000

Type: Positivelnteger

A second definition uses an if-then-else and recursion.

fac(n) == if n < 3 then n else n * fac(n - 1)

Type: Void

This function is less efficient than the previous version since each iteration involves a recursive
function call.

fac(50)

30414093201713378043612608166064768844377641568960512000000000000

Type: Positivelnteger
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A third version directly uses iteration.

fa(n) == (a := 1; for i in 2..n repeat a := axi; a)

Type: Void

This is the least space-consumptive version.

fa(50)

Compiling function fac with type Integer -> Integer

30414093201713378043612608166064768844377641568960512000000000000

Type: Positivelnteger

A final version appears to construct a large list and then reduces over it with multiplication.

f(n) == reduce(x,[i for i in 2..n])

Type: Void

In fact, the resulting computation is optimized into an efficient iteration loop equivalent to
that of the third version.

£(50)

Compiling function f with type
PositiveInteger -> Positivelnteger

30414093201713378043612608166064768844377641568960512000000000000

Type: Positivelnteger

The library version uses an algorithm that is different from the four above because it highly
optimizes the recurrence relation definition of factorial.

factorial (50)

30414093201713378043612608166064768844377641568960512000000000000



98 CHAPTER 1. AN OVERVIEW OF AXIOM

Type: Positivelnteger

You are not limited to one-line functions in Axiom. If you place your function definitions
in .input files (see section B on page ), you can have multi-line functions that use
indentation for grouping.

Given n elements, diagonalMatrix creates an n by n matrix with those elements down the
diagonal. This function uses a permutation matrix that interchanges the ith and jth rows
of a matrix by which it is right-multiplied.

This function definition shows a style of definition that can be used in .input files. Indenta-
tion is used to create blocks: sequences of expressions that are evaluated in sequence except
as modified by control statements such as if-then-else and return.

permMat(n, i, j) ==
m := diagonalMatrix
[(if i = k or j = k then 0 else 1)
for k in 1..n]

m(i,j) :=1
m(j,i) =1
m

This creates a four by four matrix that interchanges the second and third rows.

p := permMat(4,2,3)

Compiling function permMat with type (PositiveInteger,
PositivelInteger,PositiveInteger) -> Matrix Integer

1 0 00
0 010
01 00
0 0 01
Type: Matrix Integer
Create an example matrix to permute.
m := matrix [ [4*i + j for j in 1..4] for i in 0..3]
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Type: Matrix Integer
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Interchange the second and third rows of m.

permMat(4,2,3) * m

1 2 3 4
9 10 11 12
5 6 7 8
13 14 15 16

Type: Matrix Integer

A function can also be passed as an argument to another function, which then applies the
function or passes it off to some other function that does. You often have to declare the type
of a function that has functional arguments.

This declares t to be a two-argument function that returns a Float. The first argument is
a function that takes one Float argument and returns a Float.

t : (Float —> Float, Float) -> Float

Type: Void
This is the definition of t.

t(fun, x) == fun(x)**2 + sin(x)**2

Type: Void
We have not defined a cos in the workspace. The one from the Axiom library will do.
t(cos, 5.2058)

1.0

Type: Float

Here we define our own (user-defined) function.

cosinv(y) == cos(1/y)

Type: Void
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Pass this function as an argument to t.

t(cosinv, 5.2058)

1.7392237241 8005164925 4147684772 932520785

Type: Float

Axiom also has pattern matching capabilities for simplification of expressions and for defining
new functions by rules. For example, suppose that you want to apply regularly a transfor-
mation that groups together products of radicals:

Vavb s Vab, (Ya)(vb)

Note that such a transformation is not generally correct. Axiom never uses it automatically.

Give this rule the name groupSqrt.

groupSqrt := rule(sqrt(a) * sqrt(b) == sqrt(a*b))

%C va Vo== %C Va b

Type: RewriteRule(Integer,Integer,Expression Integer)

Here is a test expression.
a := (sqrt(x) + sqrt(y) + sqrt(z))*x*4

(4z4+4y+122) VJy+ (@A z+12y+4 ) Vo) Vot

(12z+4y+da) Vo Jy+22+6y+6z)2+y* +62y+a°

Type: Expression Integer

The rule groupSqrt successfully simplifies the expression.
groupSqrt a

dz+d4y+122)Vyz+ (@ z+12y+4z) Vo =+

(12z4+4y+da) Jry+22+6y+62)24+9y°+6xy+a?

Type: Expression Integer
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1.8 Polynomials

Polynomials are the commonly used algebraic types in symbolic computation. Interactive
users of Axiom generally only see one type of polynomial: Polynomial (R). This type repre-
sents polynomials in any number of unspecified variables over a particular coefficient domain
R. This type represents its coefficients sparsely: only terms with non-zero coefficients are
represented.

In building applications, many other kinds of polynomial representations are useful. Polyno-
mials may have one variable or multiple variables, the variables can be named or unnamed,
the coeflicients can be stored sparsely or densely. So-called “distributed multivariate poly-
nomials” store polynomials as coefficients paired with vectors of exponents. This type is
particularly efficient for use in algorithms for solving systems of non-linear polynomial equa-
tions.

The polynomial constructor most familiar to the interactive user is Polynomial.
(x*%2 — x*ky**3 +3%y)**2
22y —6zyt—222 3 +9 47 +6 22 y+ a2t
Type: Polynomial Integer

If you wish to restrict the variables used, UnivariatePolynomial provides polynomials in
one variable.

p: UP(x,INT) := (3*%x-1)**2 *x (2*x + 8)
18 2% 4+ 60 % — 46 z + 8
Type: UnivariatePolynomial(x,Integer)

The constructor MultivariatePolynomial provides polynomials in one or more specified
variables.

m: MPOLY([x,y],INT) := (x*k*2-x*xy**3+3%y)**2
zt =243 m3+(y6+6y) 2 -6yt +99y°
Type: MultivariatePolynomial([x,y],Integer)

You can change the way the polynomial appears by modifying the variable ordering in the
explicit list.

m :: MPOLY([y,x],INT)
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2?2 yf —6xyt =223 3+ 99y +62% y+a?
Type: MultivariatePolynomial([y,x],Integer)

The constructor DistributedMultivariatePolynomial provides polynomials in one or more
specified variables with the monomials ordered lexicographically.

m :: DMP([y,x],INT)
yG 1’276y4x—2y3 x3+9y2+6yx2+:z:4
Type: DistributedMultivariatePolynomial([y,x],Integer)

The constructor HomogeneousDistributedMultivariatePolynomial is similar except that
the monomials are ordered by total order refined by reverse lexicographic order.

m :: HDMP([y,x],INT)
Wat—2y3 et —6yta+at+6ya?+9y°
Type: HomogeneousDistributedMultivariatePolynomial([y,x],Integer)

More generally, the domain constructor GeneralDistributedMultivariatePolynomial al-
lows the user to provide an arbitrary predicate to define his own term ordering. These last
three constructors are typically used in Grobner basis applications and when a flat (that is,
non-recursive) display is wanted and the term ordering is critical for controlling the compu-
tation.

1.9 Limits

Axiom’s limit function is usually used to evaluate limits of quotients where the numerator
and denominator both tend to zero or both tend to infinity. To find the limit of an expression
f as a real variable x tends to a limit value a, enter 1imit (f, x=a). Use complexLimit if
the variable is complex. Additional information and examples of limits are in section E@ on
page BE4.

You can take limits of functions with parameters.
g := csc(a*x) / csch(b*x)

csc (a x)
csch (b x)

Type: Expression Integer
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As you can see, the limit is expressed in terms of the parameters.
limit(g,x=0)
b
a
Type: Union(OrderedCompletion Expression Integer,...)

A variable may also approach plus or minus infinity:
h := (1 + k/x)**xx

z+k”

Type: Expression Integer

Use %plusInfinity and %minusInfinity to denote co and —oo.

limit(h,x=YplusInfinity)

Type: Union(OrderedCompletion Expression Integer,...)

A function can be defined on both sides of a particular value, but may tend to different limits
as its variable approaches that value from the left and from the right.

limit (sqrt(y**2)/y,y = 0)

[leftHandLimit = —1, right HandLimit = 1]

Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression
Integer,"failed") ,rightHandLimit: Union(OrderedCompletion Expression
Integer,"failed")),...)

As x approaches 0 along the real axis, exp(-1/x**2) tends to 0.

limit (exp(-1/x**2),x = 0)

Type: Union(OrderedCompletion Expression Integer,...)
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However, if x is allowed to approach 0 along any path in the complex plane, the limiting
value of exp(-1/x**2) depends on the path taken because the function has an essential
singularity at « = 0. This is reflected in the error message returned by the function.

complexLimit (exp(-1/x**2),x = 0)

"failed"

Type: Union("failed",...)

1.10 Series

Axiom also provides power series. By default, Axiom tries to compute and display the
first ten elements of a series. Use )set streams calculate to change the default value to
something else. For the purposes of this document, we have used this system command to
display fewer than ten terms. For more information about working with series, see section B9
on page B74.

You can convert a functional expression to a power series by using the operation series. In
this example, sin(a*x) is expanded in powers of (z — 0), that is, in powers of z.

series(sin(a*x),x = 0)

a3 5 a® 5 a’? . a® 0 all
ar——2x + — ' + T =
6 120 5040 362880 39916800

2"+ 0 (m12)
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

This expression expands sin(a*x) in powers of (x - %pi/4).

series(sin(a*x),x = %pi/4)

sin(%)+acos( 47r) (xfg —
ﬁ - - )
i)zt el (.
d Sl;120 ( %)6 - CE(:SZL(O%) ($_£)7+
8 9
a 2?320 ( D +a:sc602$éz(s3()”(x_1) -

10 a m

) (o 1) o (- D))
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Type: UnivariatePuiseuxSeries(Expression Integer,x,pi/4)
Axiom provides Puiseuz series: series with rational number exponents. The first argument

to series is an in-place function that computes the n-th coeflicient. (Recall that the “+->”
is an infix operator meaning “maps to.”)

series(n +-> (-1)**x((3*%n - 4)/6)/factorial(n - 1/3),x=0,4/3..,2)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Once you have created a power series, you can perform arithmetic operations on that series.
We compute the Taylor expansion of 1/(1 — x).

f := series(1/(1-x),x = 0)
l+az+a®+2° +a' +2° + 2%+ 2" + 28+ 27 + 2%+ O (2")
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
Compute the square of the series.
£ ¥k 2
14224324422 4+52 4625 +725+82"+92%+102% +11 a:lo—l—O(xll)
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

The usual elementary functions (log, exp, trigonometric functions, and so on) are defined
for power series.

f := series(1/(1-x),x = 0)
ltz+a2>+2° +a2* +2° +2%+ 27 + 2% + 27 + 20+ O (21)
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
g := log(f)

1,2,1,3,1,4, 1,5, 1,6, 1,7
r+zx°+zgx+g+sa°+5200+5 2+

]‘ 8 ]‘9 ]‘ 10 ]' 11 12
- - - - o
gPtg T e e +0(E)
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Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

exp(g)
1+w+x2+x3+x4+x5+x6+x7+m8+x9+x10—|—0(1‘11)
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Here is a way to obtain numerical approximations of e from the Taylor series expansion of
exp(x). First create the desired Taylor expansion.

f := taylor(exp(x))
1 1 . 1 1 = 1
1 Z 2 - .3 -4 1 - .6
R e A Y R TT Ao R

1 8 1 9 1 10 11
- o)
10320 © " 362880 © * 36zmm00 £ TO )

1
5040 ©

"+

Type: UnivariateTaylorSeries(Expression Integer,x,0)

Evaluate the series at the value 1.0. As you see, you get a sequence of partial sums.
eval(f,1.0)

[1.0,2.0,2.5,2.6666666666666666667,
2.7083333333333333333, 2.7166666666666666667
2.7180555555555555556, 2.718253968253968254,
2.7182787698412698413, 2.7182815255731922399, ... |

Type: Stream Expression Float

1.11 Derivatives

Use the Axiom function D to differentiate an expression.

To find the derivative of an expression f with respect to a variable z, enter D(f, x).

f := exp exp x
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Type: Expression Integer

D(f, x)

Type: Expression Integer

An optional third argument n in D asks Axiom for the n-th derivative of f. This finds the
fourth derivative of f with respect to x.

D(f, x, 4)
(em4 +6 e +7e" + ez> e’
Type: Expression Integer
You can also compute partial derivatives by specifying the order of differentiation.
g := sin(x**2 + y)
sin (y + x2)

Type: Expression Integer

D(g, y)

COS (y + xz)

Type: Expression Integer

D(g, [y, y, x, x1)
4 z? sin (y + x2) — 2 cos (y + x2)
Type: Expression Integer

Axiom can manipulate the derivatives (partial and iterated) of expressions involving formal
operators. All the dependencies must be explicit.

This returns 0 since F (so far) does not explicitly depend on z.



108 CHAPTER 1. AN OVERVIEW OF AXIOM

D(F,x)

Type: Polynomial Integer

Suppose that we have F a function of x, y, and z, where = and y are themselves functions
of z.

Start by declaring that F', x, and y are operators.

F := operator ’F; x := operator ’x; y := operator ’y

Type: BasicOperator
You can use F, z, and y in expressions.
a :=F(x z, yz, zk¥2) + x y(z+1)
vy (z+1))+F(2(2)y(2),2%)
Type: Expression Integer

Differentiate formally with respect to z. The formal derivatives appearing in dadz are not
just formal symbols, but do represent the derivatives of z, y, and F.

dadz := D(a, z)
22 Fs(2(2),y(2),2%) +y (2) Fa(z(2),y(2),2%)+

v (2) Fa(z(2),y(2),2%) + 20 (y (2 + 1)y (2 + 1)

Type: Expression Integer

You can evaluate the above for particular functional values of F, x, and y. If z(2) is exp(z)
and y(z) is log(z+1), then evaluates dadz.

eval(eval(dadz, ’x, z +-> exp z), ’y, z +-> log(z+1))
(222 422) Fs(e®,log(z+1),2%)+
Fs (€7, 1og (2 + 1), 2%)+

(z41) e Fy(e*,log(z+1),2%) +2z+1
z+1
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Type: Expression Integer

You obtain the same result by first evaluating a and then differentiating.

eval(eval(a, ’x, z +-> exp z), 'y, z +-> log(z+1))

F(e*log(z+1),2%) +2+2

Type: Expression Integer

D(%, z)

(2 2242 z) Fg (ez,log(z + 1),22)—1—
F, (ez,log (z+ 1),22)+

(z+1) e* Fy (e*,log (2 +1),2%) + 2z +1
z+1

Type: Expression Integer

1.12 Integration

Axiom has extensive library facilities for integration.

The first example is the integration of a fraction with denominator that factors into a
quadratic and a quartic irreducible polynomial. The usual partial fraction approach used by
most other computer algebra systems either fails or introduces expensive unneeded algebraic
numbers.

We use a factorization-free algorithm.

integrate ((x**2+2*x+1) / ((x+1) **6+1) ,x)

arctan (:1:3 +3224+3z+ 1)
3

Type: Union(Expression Integer,...)

When real parameters are present, the form of the integral can depend on the signs of some
expressions.

Rather than query the user or make sign assumptions, Axiom returns all possible answers.
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integrate(1/(x**2 + a),x)

a

2v—a T Va

2?—a) vV—a+2 a z
log (( ):v2+a > arctan (x ‘/a)

Type: Union(List Expression Integer,...)

The integrate operation generally assumes that all parameters are real. The only exception
is when the integrand has complex valued quantities.

If the parameter is complex instead of real, then the notion of sign is undefined and there is
a unique answer. You can request this answer by “prepending” the word “complex” to the
command name:

complexIntegrate (1/(x**2 + a),x)

log (242252 o (=422
2v-a

Type: Expression Integer

The following two examples illustrate the limitations of table-based approaches. The two
integrands are very similar, but the answer to one of them requires the addition of two new
algebraic numbers.

This one is the easy one. The next one looks very similar but the answer is much more
complicated.

integrate (x**3 / (a+b*x)**(1/3),x)

(120 03 23 — 135 a b? 22 + 162 a® b — 243 a®) oo +a°
440 b

Type: Union(Expression Integer,...)

Only an algorithmic approach is guaranteed to find what new constants must be added in
order to find a solution.

integrate(1 / (x**3 * (a+b*x)**(1/3)),x)
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—2 b2 22 \/§log<€/a arta + a \B/bx+a+a)+
4 b% 22 \/glog(\s/c;2 \B/bx—i—a—a)—l—

3 2 3/
12b2:1:2zamctan<2\/§\/a ;x+a+a\/§>+
a

(12bx—9a)\/§\3/a\3/bx—|—a2
18 a2 22 /3 ¥a

Type: Union(Expression Integer,...)

Some computer algebra systems use heuristics or table-driven approaches to integration.
When these systems cannot determine the answer to an integration problem, they reply
“I don’t know.” Axiom uses an algorithm which is a decision procedure for integration.
If Axiom returns the original integral that conclusively proves that an integral cannot be
expressed in terms of elementary functions.

When Axiom returns an integral sign, it has proved that no answer exists as an elementary
function.

integrate(log(1l + sqrt(a*x + b)) / x,x)

d%Q

T log (m—l— 1)
[ —

Type: Union(Expression Integer,...)

Axiom can handle complicated mixed functions much beyond what you can find in tables.

Whenever possible, Axiom tries to express the answer using the functions present in the
integrand.

integrate ((sinh(1+sqrt (x+b))+2*sqrt (x+b)) / (sqrt(x+b) * (x + cosh(l+sqrt(x
+ b)), x

—2cosh (Ve +b+1) -2
2 log —2vVx+b
sinh (\/a:—i-b—l—l) — cosh (vx—i—b—l—l)

Type: Union(Expression Integer,...)

A strong structure-checking algorithm in Axiom finds hidden algebraic relationships between
functions.
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integrate(tan(atan(x)/3),x)
2 2
arctan(z) arctan(z)
8 log <3 tan <73 ) — 1> — 3 tan (73 ) +

18 2 tan <arctan (J:))

3

18

Type: Union(Expression Integer,...)

The discovery of this algebraic relationship is necessary for correct integration of this func-
tion. Here are the details:

1. If x = tant and g = tan(¢/3) then the following algebraic relation is true:
¢>—3xg*> —3g+1x=0

2. Integrate g using this algebraic relation; this produces:

(24g% — 8)log(3g% — 1) + (8122 + 24)g? + 7229 — 2722 — 16
542 — 18

3. Rationalize the denominator, producing:
8log(3g% — 1) — 3¢9 + 18zg + 16
18
Replace g by the initial definition g = tan(arctan(z)/3) to produce the final result.

This is an example of a mixed function where the algebraic layer is over the transcendental
one.

integrate((x + 1) / (xx(x + log x) ** (3/2)), x)

2 y/log (z) +x

log () + «

Type: Union(Expression Integer,...)

While incomplete for non-elementary functions, Axiom can handle some of them.

integrate(exp(~x**2) * erf(x) / (erf(x)**3 - erf(x)**2 - erf(x) + 1),x)

(exf (z) — 1) /7 log (ggg;;) 2T
8 erf (z) — 8

Type: Union(Expression Integer,...)

More examples of Axiom’s integration capabilities are discussed in section B8 on page B72.
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1.13 Differential Equations

The general approach used in integration also carries over to the solution of linear differential
equations.

Let’s solve some differential equations. Let y be the unknown function in terms of x.

y := operator ’y

Type: BasicOperator

Here we solve a third order equation with polynomial coefficients.

deq := x**3 * D(y x, x, 3) + x*x*2 *x D(y x, x, 2) - 2 * x * D(y x, x) + 2 * y
X = 2 % x¥x4

oy (@) + oty (@)~ 20y (@) + 2y (a) = 200

Type: Equation Expression Integer

solve(deq, y, x)

articular = £=102°420 2”44
b 15z ;
_ 223 322 +1 22 -1 23 -32%2-1
basis = , ,
x x x

Type: Union(Record(particular: Expression Integer,basis: List Expression
Integer),...)

Here we find all the algebraic function solutions of the equation.

deq := (x**¥2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) +yx =0

(2 +1) y () +3zy (z)+y(x) =0

Type: Equation Expression Integer

solve(deq, y, x)
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1 log (Va2 +1—z)
V2 +1’ 2 +1

Type: Union(Record(particular: Expression Integer,basis: List Expression
Integer),...)

particular = 0, basis =

Coefficients of differential equations can come from arbitrary constant fields. For example,
coefficients can contain algebraic numbers.

This example has solutions whose logarithmic derivative is an algebraic function of degree
two.

eq := 2*x**3 * D(y x,x,2) + 3*x**2 * D(y x,x) - 2 * y X
22y (2) +3 2 y () — 2y (2)

Type: Expression Integer

solve(eq,y,x) .basis

Type: List Expression Integer
Here’s another differential equation to solve.
deq := D(y %, x) =y&x) / (x + y(x) * log y x)

y (v)
log (y () +

v (@)= y(z)

Type: Equation Expression Integer

solve(deq, y, x)

Type: Union(Expression Integer,...)

Rather than attempting to get a closed form solution of a differential equation, you instead
might want to find an approximate solution in the form of a series.

Let’s solve a system of nonlinear first order equations and get a solution in power series. Tell
Axiom that x is also an operator.
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X := operator ’x

Type: BasicOperator

Here are the two equations forming our system.

D(x(t), t)

eql : 1 + x(t)**2
) =z(t)?+1

Type: Equation Expression Integer

eq2 := D(y(t), t) = x(t) * y(t)

y () =z () y(t)
Type: Equation Expression Integer
We can solve the system around ¢ = 0 with the initial conditions z(0) = 0 and y(0) = 1.
Notice that since we give the unknowns in the order [z, y], the answer is a list of two series

in the order [series for z(t), series for y(t)].

seriesSolve([eq2, eqll, [x, yl, t = 0, [y(0) =1, x(0) = 0])

1 2 17 62
t - B+ =t — T+ —— 24 O (t"!
3T T Tyt T ().
1 5 61 277 50521
LS 4t 10+ s '+ 0 (1)

2 24 720 8064 3628800

Type: List UnivariateTaylorSeries(Expression Integer,t,0)

1.14 Solution of Equations

Axiom also has state-of-the-art algorithms for the solution of systems of polynomial equa-
tions. When the number of equations and unknowns is the same, and you have no symbolic
coefficients, you can use solve for real roots and complexSolve for complex roots. In each
case, you tell Axiom how accurate you want your result to be. All operations in the solve
family return answers in the form of a list of solution sets, where each solution set is a list
of equations.

A system of two equations involving a symbolic parameter ¢.
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S(t) == [x**2-2%y**2 - t,x*y-y-5*x + 5]
Type: Void

Find the real roots of S(19) with rational arithmetic, correct to within 1/102°.

solve(S(19),1/10%*x20)

Hy e 2451682632253093442511]
’ 205147905179352825856 |’
 2451682632253093442511

{y ~ 7 T 295147905179352825856 ”

Type: List List Equation Polynomial Fraction Integer

Find the complex roots of S(19) with floating point coefficients to 20 digits accuracy in the
mantissa.

complexSolve(S(19),10.e-20)

[y = 5.0,z = 8.3066238629180748526],
5.0,z = —8.3066238629180748526],
=—304,2=10],[y =304z =10]

[

y
ly

Type: List List Equation Polynomial Complex Float

If a system of equations has symbolic coefficients and you want a solution in radicals, try
radicalSolve.

radicalSolve(S(a), [x,y])

[[x=—Va+50,y=5], [z =+Va+50,y =5],

—a+1
2

—a+1
2

r=19y=—

)

[m =1ly=
Type: List List Equation Expression Integer

For systems of equations with symbolic coefficients, you can apply solve, listing the variables
that you want Axiom to solve for. For polynomial equations, a solution cannot usually
be expressed solely in terms of the other variables. Instead, the solution is presented as
a “triangular” system of equations, where each polynomial has coefficients involving only
the succeeding variables. This is analogous to converting a linear system of equations to
“triangular form”.

A system of three equations in five variables.
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eqns := [x*x*2 — y + z,x**2xz + xx*4 — by, y**2 xz - a - b*x]
[z—y+x2,x22—by+x4,y2 z—bx—a]
Type: List Polynomial Integer

Solve the system for unknowns [z, y, 2|, reducing the solution to triangular form.

solve(eqns, [x,y,z])

a a
|:|:x:_b7y:O’Z:_b2 ,

|:JU: z3+2bz;+b2 Zﬁa,y:Z—Fb,
26+4bz5+6b224+(4b3—2a) 23+(b4—4ab) 22—
2ab2z—b3+a2:O]

Type: List List Equation Fraction Polynomial Integer

1.15 System Commands

We conclude our tour of Axiom with a brief discussion of system commands. System com-
mands are special statements that start with a closing parenthesis ()). They are used to
control or display your Axiom environment, start the HyperDoc system, issue operating sys-
tem commands and leave Axiom. For example, )system is used to issue commands to the
operating system from Axiom. Here is a brief description of some of these commands. For
more information on specific commands, see Appendix A on page HI.

Perhaps the most important user command is the ) clear all command that initializes your
environment. Every section and subsection in this document has an invisible )clear all
that is read prior to the examples given in the section. ) clear all gives you a fresh, empty
environment with no user variables defined and the step number reset to 1. The )clear
command can also be used to selectively clear values and properties of system variables.

Another useful system command is Jread. A preferred way to develop an application in
Axiom is to put your interactive commands into a file, say my.input file. To get Axiom to
read this file, you use the system command )read my.input. If you need to make changes
to your approach or definitions, go into your favorite editor, change my.input, then )read
my . input again.

Other system commands include: )history, to display previous input and/or output lines;
)display, to display properties and values of workspace variables; and )what.

Issue )what to get a list of Axiom objects that contain a given substring in their name.
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Jwhat operations integrate

Operations whose names satisfy the above pattern(s):

HermiteIntegrate algintegrate complexIntegrate
expintegrate extendedIntegrate fintegrate
infieldIntegrate integrate internalIntegrate
internalIntegrateO lazyGintegrate lazyIntegrate
lfintegrate limitedIntegrate monomialIntegrate
nagPolygonIntegrate palgintegrate pmComplexintegrate
pmintegrate primintegrate tanintegrate

To get more information about an operation such as
limitedIntegrate , issue the command )display op limitedIntegrate

1.15.1 Undo

A useful system command is )undo. Sometimes while computing interactively with Axiom,
you make a mistake and enter an incorrect definition or assignment. Or perhaps you need to
try one of several alternative approaches, one after another, to find the best way to approach
an application. For this, you will find the undo facility of Axiom helpful.

System command )undo n means “undo back to step n”; it restores the values of user
variables to those that existed immediately after input expression n was evaluated. Similarly,
Jundo -n undoes changes caused by the last n input expressions. Once you have done an
)undo, you can continue on from there, or make a change and redo all your input expressions
from the point of the )undo forward. The )undo is completely general: it changes the
environment like any user expression. Thus you can )undo any previous undo.

Here is a sample dialogue between user and Axiom.

“Let me define two mutually dependent functions f and g piece-wise.”

£(0) == 1; g(0) == 1

Type: Void

“Here is the general term for f.”

f(n) == e/2*%f(n-1) - x*g(n-1)

Type: Void
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)

“And here is the general term for g.’

g(n) == -x*xf(n-1) + d/3xg(n-1)

Type: Void

“What is value of f(3)?”

£(3)

1 1 1 1 1
—x3+(e+3d) x2+<—462—6de—9d2>m+8e3

Type: Polynomial Fraction Integer

“Hmm, I think I want to define f differently. Undo to the environment right after I defined
f-”

Jundo 2

“Here is how I think I want f to be defined instead.”

f(n) == d/3*f(n-1) - x*g(n-1)

1 o0ld definition(s) deleted for function or rule f

Type: Void
Redo the computation from expression 3 forward.
Jundo )redo
g(n) == -x*xf(n-1) + d/3*g(n-1)
Type: Void
£(3)

Compiling function g with type Integer -> Polynomial Fraction
Integer
Compiling function g as a recurrence relation.

+++ [*1;g;1;G82322;AUX| redefined
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+++ |*1;g;1;G82322| redefined
Compiling function g with type Integer -> Polynomial Fraction
Integer
Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined
+++ |*1;g;1;G82322| redefined
Compiling function f with type Integer -> Polynomial Fraction

Integer
Compiling function f as a recurrence relation.

+++ |*1;f;1;G82322;AUX| redefined

+++ |*1;f;1;G82322| redefined

1 1
_ .3 2_ - 52 =73

Type: Polynomial Fraction Integer

“I want my old definition of f after all. Undo the undo and restore the environment to that
immediately after (4).”

Jundo 4

“Check that the value of f(3) is restored.”
£(3)
Compiling function g with type Integer -> Polynomial Fraction
Integer
Compiling function g as a recurrence relation.
+++ |*1;g;1;G82322;AUX| redefined
+++ |*1;g;1;G82322| redefined
Compiling function g with type Integer -> Polynomial Fraction
Integer
Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined
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Compiling function f with type Integer -> Polynomial Fraction
Integer
Compiling function f as a recurrence relation.

+++ |*1;f;1;G82322;AUX| redefined

+++ |*1;f;1;G82322| redefined

1 1 1 1 1
| 1 2 R I Lo 13
x+(e+3d)x+<4e 6de 9d>:1:—|—8e

Type: Polynomial Fraction Integer

After you have gone off on several tangents, then backtracked to previous points in your
conversation using )undo, you might want to save all the “correct” input commands you
issued, disregarding those undone. The system command )history )write mynew.input
writes a clean straight-line program onto the file mynew.input on your disk.

1.16 Graphics

Axiom has a two- and three-dimensional drawing and rendering package that allows you to
draw, shade, color, rotate, translate, map, clip, scale and combine graphic output of Axiom
computations. The graphics interface is capable of plotting functions of one or more variables
and plotting parametric surfaces. Once the graphics figure appears in a window, move your
mouse to the window and click. A control panel appears immediately and allows you to
interactively transform the object.

This is an example of Axiom’s two-dimensional plotting. From the 2D Control Panel you
can rescale the plot, turn axes and units on and off and save the image, among other things.
This PostScript image was produced by clicking on the PS 2D Control Panel button.

draw(cos(5*t/8), t=0..16%%pi, coordinates==polar)

This is an example of Axiom’s three-dimensional plotting. It is a monochrome graph of
the complex arctangent function. The image displayed was rotated and had the “shade”
and “outline” display options set from the 3D Control Panel. The PostScript output was
produced by clicking on the save 3D Control Panel button and then clicking on the PS
button. See section Bl on page for more details and examples of Axiom’s numeric and
graphics capabilities.

draw((x,y) +-> real atan complex(x,y), -%pi..%pi, -%pi..%pi, colorFunction
== (x,y) +-> argument atan complex(x,y))

An exhibit of Axiom images is given later. For a description of the commands and programs
that produced these figures, see section E on page ITI3. PostScript output is available so
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Figure 1.2: atan

that Axiom images can be printed.™ See section @ on page for more examples and
details about using Axiom’s graphics facilities.

This concludes your tour of Axiom. To disembark, issue the system command )quit to leave
Axiom and return to the operating system.

15PostScript is a trademark of Adobe Systems Incorporated, registered in the United States.



Chapter 2

Using Types and Modes

Only recently have I begun to realize that the problem is not merely one of
technical mastery or the competent application of the rules ...but that there is
actually something else which is guiding these rules. It actually involves a differ-
ent level of mastery. It’s quite a different process to do it right; and every single
act that you do can be done in that sense well or badly. But even assuming that
you have got the technical part clear, the creation of this quality is a much more
complicated process of the most utterly absorbing and fascinating dimensions. It
is in fact a major creative or artistic act — every single little thing you do — ...

— Christopher Alexander
(from Patterns of Software by Richard Gabriel)

In this chapter we look at the key notion of type and its generalization mode. We show
that every Axiom object has a type that determines what you can do with the object. In
particular, we explain how to use types to call specific functions from particular parts of the
library and how types and modes can be used to create new objects from old. We also look
at Record and Union types and the special type Any. Finally, we give you an idea of how
Axiom manipulates types and modes internally to resolve ambiguities.

2.1 The Basic Idea

The Axiom world deals with many kinds of objects. There are mathematical objects such
as numbers and polynomials, data structure objects such as lists and arrays, and graphics
objects such as points and graphic images. Functions are objects too.

Axiom organizes objects using the notion of domain of computation, or simply domain.
Each domain denotes a class of objects. The class of objects it denotes is usually given by
the name of the domain: Integer for the integers, Float for floating-point numbers, and
so on. The convention is that the first letter of a domain name is capitalized. Similarly,

123
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the domain Polynomial (Integer) denotes “polynomials with integer coefficients.” Also,
Matrix(Float) denotes “matrices with floating-point entries.”

Every basic Axiom object belongs to a unique domain. The integer 3 belongs to the domain
Integer and the polynomial x + 3 belongs to the domain Polynomial (Integer). The
domain of an object is also called its type. Thus we speak of “the type Integer” and “the
type Polynomial (Integer).”

After an Axiom computation, the type is displayed toward the right-hand side of the page
(or screen).

-3

Type: Integer

Here we create a rational number but it looks like the last result. The type however tells you
it is different. You cannot identify the type of an object by how Axiom displays the object.

-3/1

Type: Fraction Integer

When a computation produces a result of a simpler type, Axiom leaves the type unsimplified.
Thus no information is lost.

X+ 3 -x

Type: Polynomial Integer

This seldom matters since Axiom retracts the answer to the simpler type if it is necessary.

factorial(¥%)

Type: Expression Integer

When you issue a positive number, the type PositiveInteger is printed. Surely, 3 also has
type Integer! The curious reader may now have two questions. First, is the type of an
object not unique? Second, how is PositiveInteger related to Integer?
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Type: Positivelnteger

Any domain can be refined to a subdomain by a membership predicate. A predicate is a
function that, when applied to an object of the domain, returns either true or false. For
example, the domain Integer can be refined to the subdomain PositiveInteger, the set of
integers x such that x > 0, by giving the Axiom predicate x +-> x > 0. Similarly, Axiom
can define subdomains such as “the subdomain of diagonal matrices,” “the subdomain of
lists of length two,” “the subdomain of monic irreducible polynomials in z,” and so on.
Trivially, any domain is a subdomain of itself.

While an object belongs to a unique domain, it can belong to any number of subdomains.
Any subdomain of the domain of an object can be used as the type of that object. The type
of 3 is indeed both Integer and PositiveInteger as well as any other subdomain of integer
whose predicate is satisfied, such as “the prime integers,” “the odd positive integers between
3 and 17,” and so on.

2.1.1 Domain Constructors

In Axiom, domains are objects. You can create them, pass them to functions, and, as we’ll
see later, test them for certain properties.

In Axiom, you ask for a value of a function by applying its name to a set of arguments.

To ask for “the factorial of 7” you enter this expression to Axiom. This applies the function
factorial to the value 7 to compute the result.

factorial(7)

5040

Type: Positivelnteger

Enter the type Polynomial (Integer) as an expression to Axiom. This looks much like a
function call as well. It is! The result is appropriately stated to be of type Domain, which
according to our usual convention, denotes the class of all domains.

Polynomial (Integer)

Polynomial Integer

Type: Domain
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The most basic operation involving domains is that of building a new domain from a given
one. To create the domain of “polynomials over the integers,” Axiom applies the function
Polynomial to the domain Integer. A function like Polynomial is called a domain con-
structor or, more simply, a constructor. A domain constructor is a function that creates a
domain. An argument to a domain constructor can be another domain or, in general, an
arbitrary kind of object. Polynomial takes a single domain argument while SquareMatrix
takes a positive integer as an argument to give its dimension and a domain argument to give
the type of its components.

What kinds of domains can you use as the argument to Polynomial or SquareMatrix or
List? Well, the first two are mathematical in nature. You want to be able to perform
algebraic operations like “+” and “*” on polynomials and square matrices, and operations
such as determinant on square matrices. So you want to allow polynomials of integers and
polynomials of square matrices with complex number coefficients and, in general, anything
that “makes sense.” At the same time, you don’t want Axiom to be able to build nonsense
domains such as “polynomials of strings!”

In contrast to algebraic structures, data structures can hold any kind of object. Operations
on lists such as insert, delete, and concat just manipulate the list itself without changing
or operating on its elements. Thus you can build List over almost any datatype, including
itself.

Create a complicated algebraic domain.

List (List (Matrix (Polynomial (Complex (Fraction (Integer))))))

List List Matrix Polynomial Complex Fraction Integer

Type: Domain

Try to create a meaningless domain.

Polynomial (String)

Polynomial String is not a valid type.

Evidently from our last example, Axiom has some mechanism that tells what a constructor
can use as an argument. This brings us to the notion of category. As domains are objects,
they too have a domain. The domain of a domain is a category. A category is simply a type
whose members are domains.

A common algebraic category is Ring, the class of all domains that are “rings.” A ring
is an algebraic structure with constants 0 and 1 and operations “+”, “~” and “*”. These
operations are assumed “closed” with respect to the domain, meaning that they take two
objects of the domain and produce a result object also in the domain. The operations
are understood to satisfy certain “axioms,” certain mathematical principles providing the
algebraic foundation for rings. For example, the additive inverse axiom for rings states:
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Every element = has an additive inverse y such that x +y = 0.

The prototypical example of a domain that is a ring is the integers. Keep them in mind
whenever we mention Ring.

Many algebraic domain constructors such as Complex, Polynomial, Fraction, take rings as
arguments and return rings as values. You can use the infix operator “has” to ask a domain
if it belongs to a particular category.

All numerical types are rings. Domain constructor Polynomial builds “the ring of polyno-
mials over any other ring.”

Polynomial (Integer) has Ring
true
Type: Boolean
Constructor List never produces a ring.
List(Integer) has Ring
false

Type: Boolean

The constructor Matrix (R) builds “the domain of all matrices over the ring R.” This domain
is never a ring since the operations “+”, “=” and “*” on matrices of arbitrary shapes are

undefined.

Matrix(Integer) has Ring

false

Type: Boolean

Thus you can never build polynomials over matrices.

Polynomial (Matrix(Integer))

Polynomial Matrix Integer is not a valid type.

Use SquareMatrix(n,R) instead. For any positive integer n, it builds “the ring of n by n
matrices over R.”
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Polynomial (SquareMatrix(7,Complex (Integer)))

Polynomial SquareMatrix(7,Complex Integer)

Type: Domain

Another common category is Field, the class of all fields. A field is a ring with additional
operations. For example, a field has commutative multiplication and a closed operation
“/” for the division of two elements. Integer is not a field since, for example, 3/2 does
not have an integer result. The prototypical example of a field is the rational numbers,
that is, the domain Fraction(Integer). In general, the constructor Fraction takes an
IntegralDomain, which is a ring with additional properties, as an argument and returns a
field. ® Other domain constructors, such as Complex, build fields only if their argument
domain is a field.

The complex integers (often called the “Gaussian integers”) do not form a field.

Complex(Integer) has Field

false

Type: Boolean

But fractions of complex integers do.

Fraction(Complex(Integer)) has Field

true

Type: Boolean

The algebraically equivalent domain of complex rational numbers is a field since domain
constructor Complex produces a field whenever its argument is a field.

Complex(Fraction(Integer)) has Field
true

Type: Boolean

The most basic category is Type. It denotes the class of all domains and subdomains. Note
carefully that Type does not denote the class of all types. The type of all categories is
Category. The type of Type itself is undefined. Domain constructor List is able to build

L Actually, the argument domain must have some additional so as to belong to the category IntegralDomain
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“lists of elements from domain D” for arbitrary D simply by requiring that D belong to
category Type.

Now, you may ask, what exactly is a category? Like domains, categories can be defined in
the Axiom language. A category is defined by three components:

1. a name (for example, Ring), used to refer to the class of domains that the category
represents;

2. aset of operations, used to refer to the operations that the domains of this class support
(for example, “+”, “=” and “¥” for rings); and

3. an optional list of other categories that this category extends.

This last component is a new idea. And it is key to the design of Axiom! Because categories
can extend one another, they form hierarchies. Detailed charts showing the category hier-
archies in Axiom are displayed in Appendix (TPDHERE). There you see that all categories
are extensions of Type and that Field is an extension of Ring.

The operations supported by the domains of a category are called the exports of that category
because these are the operations made available for system-wide use. The exports of a
domain of a given category are not only the ones explicitly mentioned by the category.
Since a category extends other categories, the operations of these other categories—and all
categories these other categories extend—are also exported by the domains.

For example, polynomial domains belong to PolynomialCategory. This category explicitly
mentions some twenty-nine operations on polynomials, but it extends eleven other cate-
gories (including Ring). As a result, the current system has over one hundred operations on
polynomials.

If a domain belongs to a category that extends, say, Ring, it is convenient to say that the
domain exports Ring. The name of the category thus provides a convenient shorthand for
the list of operations exported by the category. Rather than listing operations such as “+”
and “*” of Ring each time they are needed, the definition of a type simply asserts that it
exports category Ring.

The category name, however, is more than a shorthand. The name Ring, in fact, implies that
the operations exported by rings are required to satisfy a set of “axioms” associated with
the name Ring. This subtle but important feature distinguishes Axiom from other abstract
datatype designs.

Why is it not correct to assume that some type is a ring if it exports all of the operations
of Ring? Here is why. Some languages such as APL denote the Boolean constants true
and false by the integers 1 and 0 respectively, then use “+” and “*” to denote the logical
operators or and and. But with these definitions Boolean is not a ring since the additive
inverse axiom is violated. That is, there is no inverse element a such that 1 +a = 0, or,
in the usual terms: true or a = false. This alternative definition of Boolean can be
easily and correctly implemented in Axiom, since Boolean simply does not assert that it
is of category Ring. This prevents the system from building meaningless domains such as
Polynomial (Boolean) and then wrongfully applying algorithms that presume that the ring
axioms hold.
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Enough on categories. To learn more about them, see section I on page BZ4. We now return
to our discussion of domains.

Domains ezport a set of operations to make them available for system-wide use. Integer, for
example, exports the operations “+” and “=” given by the signatures “+”: (Integer,Integer)
— Integer and “=": (Integer,Integer) — Boolean, respectively. Each of these operations takes
two Integer arguments. The “+” operation also returns an Integer but “=" returns a
Boolean: true or false. The operations exported by a domain usually manipulate objects
of the domain—but not always.

The operations of a domain may actually take as arguments, and return as values, objects
from any domain. For example, Fraction (Integer) exports the operations “/”: (Inte-
ger,Integer) — Fraction(Integer) and characteristic: — NonNegativelnteger.

Suppose all operations of a domain take as arguments and return as values, only objects
from other domains. This kind of domain is what Axiom calls a package.

A package does not designate a class of objects at all. Rather, a package is just a collection
of operations. Actually the bulk of the Axiom library of algorithms consists of packages.
The facilities for factorization; integration; solution of linear, polynomial, and differential
equations; computation of limits; and so on, are all defined in packages. Domains needed
by algorithms can be passed to a package as arguments or used by name if they are not
“variable.” Packages are useful for defining operations that convert objects of one type to
another, particularly when these types have different parameterizations. As an example,
the package PolynomialFunction2(R,S) defines operations that convert polynomials over
a domain R to polynomials over S. To convert an object from Polynomial(Integer) to
Polynomial (Float), Axiom builds the package PolynomialFunctions2(Integer,Float)
in order to create the required conversion function. (This happens “behind the scenes” for
you: see section B4 on page 28 for details on how to convert objects.)

Axiom categories, domains and packages and all their contained functions are written in
the Axiom programming language and have been compiled into machine code. This is what
comprises the Axiom library. We will show you how to use these domains and their functions
and how to write your own functions.

2.2 Writing Types and Modes

We have already seen in the last section section E70l on page I2Z3 several examples of types.
Most of these examples had either no arguments (for example, Integer) or one argument (for
example, Polynomial (Integer)). In this section we give details about writing arbitrary
types. We then define modes and discuss how to write them. We conclude the section with
a discussion on constructor abbreviations.

When might you need to write a type or mode? You need to do so when you declare variables.

a : Positivelnteger

Type: Void
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You need to do so when you declare functions (See section EZ3 on page [35)

f : Integer -> String

Type: Void

You need to do so when you convert an object from one type to another (See section P70 on
page [@R).

factor(2 :: Complex(Integer))
—i (1+4)°

Type: Factored Complex Integer

(2 = 3)$Integer

false

Type: Boolean

You need to do so when you give computation target type information (See section EZ9 on
page [53)

(2 = 3)@Boolean
false

Type: Boolean

2.2.1 Types with No Arguments

A constructor with no arguments can be written either with or without trailing opening and
closing parentheses “()”.

Boolean() is the same as Boolean
Integer () is the same as Integer
String() is the same as String
Void() is the same as Void

It is customary to omit the parentheses.
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2.2.2 Types with One Argument

A constructor with one argument can frequently be written with no parentheses. Types nest
from right to left so that Complex Fraction Polynomial Integer is the same as Complex
(Fraction (Polynomial (Integer))). You need to use parentheses to force the appli-
cation of a constructor to the correct argument, but you need not use any more than is
necessary to remove ambiguities.

Here are some guidelines for using parentheses (they are possibly slightly more restrictive
than they need to be).

If the argument is an expression like 243 then you must enclose the argument in parentheses.

e : PrimeField(2 + 3)

Type: Void

If the type is to be used with package calling then you must enclose the argument in paren-
theses.

content (2) $Polynomial (Integer)

Type: Integer

Alternatively, you can write the type without parentheses then enclose the whole type ex-
pression with parentheses.

content (2)$(Polynomial Complex Fraction Integer)

Type: Complex Fraction Integer

If you supply computation target type information (See section EZ9 on page I5H) then you
should enclose the argument in parentheses.

(2/3)@Fraction(Polynomial (Integer))

Type: Fraction Polynomial Integer



2.2. WRITING TYPES AND MODES 133

If the type itself has parentheses around it and we are not in the case of the first example
above, then the parentheses can usually be omitted.

(2/3)@Fraction(Polynomial Integer)

[SVRN )

Type: Fraction Polynomial Integer

If the type is used in a declaration and the argument is a single-word type, integer or symbol,
then the parentheses can usually be omitted.

(d,f,g) : Complex Polynomial Integer

Type: Void

2.2.3 Types with More Than One Argument

If a constructor has more than one argument, you must use parentheses. Some examples are

UnivariatePolynomial(x, Float)
MultivariatePolynomial ([z,w,r], Complex Float)
SquareMatrix (3, Integer)
FactoredFunctions2(Integer,Fraction Integer)

2.2.4 Modes

A mode is a type that possibly is a question mark (7) or contains one in an argument posi-
tion. For example, the following are all modes.

-
Polynomial 7

Matrix Polynomial 7
SquareMatrix(3,7)

Integer
OneDimensionalArray(Float)

As is evident from these examples, a mode is a type with a part that is not specified (indicated
by a question mark). Only one “?” is allowed per mode and it must appear in the most
deeply nested argument that is a type. Thus 7(Integer), Matrix(? (Polynomial)),
SquareMatrix(?, Integer) (it requires a numeric argument) and SquareMatrix(?, ?)
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are all invalid. The question mark must take the place of a domain, not data. This rules
out, for example, the two SquareMatrix expressions.

Modes can be used for declarations (See section 23 on page [[35) and conversions (section P24
on page [@R). However, you cannot use a mode for package calling or giving target type
information.

2.2.5 Abbreviations

Every constructor has an abbreviation that you can freely substitute for the constructor
name. In some cases, the abbreviation is nothing more than the capitalized version of the
constructor name.

Aside from allowing types to be written more concisely, abbreviations are
used by Axiom to name various system files for constructors (such as library
filenames, test input files and example files). Here are some common abbre-
viations.

COMPLEX abbreviates Complex DFLOAT abbreviates DoubleFloat

EXPR abbreviates Expression FLOAT abbreviates Float

FRAC abbreviates Fraction INT abbreviates Integer

MATRIX abbreviates Matrix NNI abbreviates NonNegativeInteger

PI abbreviates PositiveInteger POLY abbreviates Polynomial

STRING abbreviates String UP abbreviates UnivariatePolynomial

You can combine both full constructor names and abbreviations in a type expression. Here
are some types using abbreviations.

POLY INT is the same as Polynomial (INT)
POLY(Integer) is the same as Polynomial(Integer)
POLY(Integer) is the same as Polynomial (INT)

FRAC(COMPLEX(INT)) is the same as Fraction Complex Integer
FRAC(COMPLEX(INT)) is the same as FRAC(Complex Integer)

There are several ways of finding the names of constructors and their abbreviations. For a
specific constructor, use )abbreviation query. You can also use the )what system com-
mand to see the names and abbreviations of constructors. For more information about
)what, see section B=3T on page M3

)abbreviation query can be abbreviated (no pun intended) to )abb q.

)abb q Integer

INT abbreviates domain Integer
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The )abbreviation query command lists the constructor name if you give the abbreviation.
Issue )abb q if you want to see the names and abbreviations of all Axiom constructors.

)abb q DMP

DMP abbreviates domain DistributedMultivariatePolynomial

Issue this to see all packages whose names contain the string “ode”.

Jwhat packages ode

Packages with names matching patterns:
ode

EXPRODE ExpressionSpaceODESolver
FCPAK1  FortranCodePackagel

GRAY GrayCode

LODEEF  ElementaryFunctionLODESolver
NODE1 NonLinearFirstOrderODESolver
ODECONST ConstantLODE

ODEEF ElementaryFunctionODESolver
ODEINT ODEIntegration

ODEPAL  PureAlgebraicLODE

ODERAT RationalLODE

ODERED  ReduceLODE

ODESYS  SystemODESolver

ODETOOLS ODETools

UTSODE  UnivariateTaylorSeriesODESolver
UTSODETL UTSodetools

2.3 Declarations

A declaration is an expression used to restrict the type of values that can be assigned to
variables. A colon “:” is always used after a variable or list of variables to be declared.

For a single variable, the syntax for declaration is
variableName : typeOrMode
For multiple variables, the syntax is

(variableName; , variableNames, ...variableNamey): typeOrMode
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You can always combine a declaration with an assignment. When you do, it is equivalent
to first giving a declaration statement, then giving an assignment. For more information on
assignment, see section 234 on page 2 and section B on page IX3. To see how to declare
your own functions, see section B2 on page ZZ1.

This declares one variable to have a type.

a : Integer

Type: Void

This declares several variables to have a type.

(b,c) : Integer

Type: Void
a, b and ¢ can only hold integer values.
a := 45
45
Type: Integer

If a value cannot be converted to a declared type, an error message is displayed.

b := 4/5

Cannot convert right-hand side of assignment
4

5
to an object of the type Integer of the left-hand side.

This declares a variable with a mode.

n : Complex 7

Type: Void
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This declares several variables with a mode.

(p,q,r) : Matrix Polynomial ?

Type: Void
This complex object has integer real and imaginary parts.
n:=-36+9 % Ji
—36+91
Type: Complex Integer
This complex object has fractional symbolic real and imaginary parts.
n := complex(4/(x + y),y/x)

4 Y.

+
yt+xr x

Type: Complex Fraction Polynomial Integer

This matrix has entries that are polynomials with integer coefficients.

p := [ [1,2],[3,4],[5,6] ]

ot W —
O =N

Type: Matrix Polynomial Integer

This matrix has a single entry that is a polynomial with rational number coefficients.

q:=[[x-2/3]1

Type: Matrix Polynomial Fraction Integer
This matrix has entries that are polynomials with complex integer coefficients.

r = [ [1-%ixx,7*y+4*%i] ]
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[ —iz+1 Ty+4i]
Type: Matrix Polynomial Complex Integer

Note the difference between this and the next example. This is a complex object with
polynomial real and imaginary parts.

f : COMPLEX POLY 7 := (x + y*Ji)*x*2
—yP 242z yi
Type: Complex Polynomial Integer

This is a polynomial with complex integer coefficients. The objects are convertible from one
to the other. See section P74 on page @Y for more information.

g : POLY COMPLEX 7 := (x + y*%i)**2
—2+2izy+a®

Type: Polynomial Complex Integer

2.4 Records

A Record is an object composed of one or more other objects, each of which is referenced
with a selector. Components can all belong to the same type or each can have a different

type.

The syntax for writing a Record type is
Record(selector; : type, , selectors:typey, ..., selectory:typey)

You must be careful if a selector has the same name as a variable in the
workspace. If this occurs, precede the selector name by a single quote.

Record components are implicitly ordered. All the components of a record can be set at
once by assigning the record a bracketed tuple of values of the proper length. For example:

r : Record(a:Integer, b: String) := [1, "two"]

[a=1,b="two"]
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Type: Record(a: Integer,b: String)

To access a component of a record r, write the name r, followed by a period, followed by a
selector.

The object returned by this computation is a record with two components: a quotient part
and a remainder part.

u := divide(5,2)
[quotient = 2, remainder = 1]
Type: Record(quotient: Integer,remainder: Integer)
This is the quotient part.

u.quotient

Type: Positivelnteger

This is the remainder part.

u.remainder

Type: Positivelnteger

You can use selector expressions on the left-hand side of an assignment to change destruc-
tively the components of a record.

u.quotient := 8978
8978

Type: Positivelnteger

The selected component quotient has the value 8978, which is what is returned by the
assignment. Check that the value of u was modified.

u

[quotient = 8978, remainder = 1]
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Type: Record(quotient: Integer,remainder: Integer)

Selectors are evaluated. Thus you can use variables that evaluate to selectors instead of the
selectors themselves.

s := ’quotient

quotient

Type: Variable quotient

Be careful! A selector could have the same name as a variable in the workspace. If this
occurs, precede the selector name by a single quote, as in u.'quotient.

divide(5,2).s

Type: Positivelnteger

Here we declare that the value of bd has two components: a string, to be accessed via name,
and an integer, to be accessed via birthdayMonth.

bd : Record(name : String, birthdayMonth : Integer)

Type: Void
You must initially set the value of the entire Record at once.
bd := ["Judith", 3]
[name = "Judith", birthdayMonth = 3]
Type: Record(name: String,birthdayMonth: Integer)
Once set, you can change any of the individual components.
bd.name := "Katie"

"Katie"

Type: String
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Records may be nested and the selector names can be shared at different levels.

r : Record(a : Record(b: Integer, c: Integer), b: Integer)

Type: Void
The record r has a b selector at two different levels. Here is an initial value for r.
r:=[[1,2], 3]
[a=[b=1c=2],b=3]
Type: Record(a: Record(b: Integer,c: Integer),b: Integer)

This extracts the b component from the a component of 7.

r.a.b

Type: Positivelnteger

This extracts the b component from r.

r.b

Type: Positivelnteger

You can also use spaces or parentheses to refer to Record components. This is the same as
r.a.

r(a)

Type: Record(b: Integer,c: Integer)

This is the same as r.b.

rb
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Type: Positivelnteger

This is the same as r.b := 10.
r(b) := 10
10

Type: Positivelnteger

Look at r to make sure it was modified.

[a=[b=1,c=2],b=10]

Type: Record(a: Record(b: Integer,c: Integer),b: Integer)

2.5 Unions

Type Union is used for objects that can be of any of a specific finite set of types. Two
versions of unions are available, one with selectors (like records) and one without.

2.5.1 Unions Without Selectors

The declaration z : Union(Integer, String, Float) states that x can have values that are
integers, strings or “big” floats. If, for example, the Union object is an integer, the object is
said to belong to the Integer branch of the Union. Note that we are being a bit careless with
the language here. Technically, the type of x is always Union(Integer, String, Float).
If it belongs to the Integer branch, x may be converted to an object of type Integer.

The syntax for writing a Union type without selectors is
Union(type,, types, ..., typey)

The types in a union without selectors must be distinct.

It is possible to create unions like Union(Integer, PositiveInteger) but they are difficult
to work with because of the overlap in the branch types. See below for the rules Axiom uses
for converting something into a union object.
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The case infix operator returns a Boolean and can be used to determine the branch in which

an object lies.

This function displays a message stating in which branch of the Union the object (defined

as x above) lies.

sayBranch(x : Union(Integer,String,Float)) : Void ==
output
x case Integer => "Integer branch"
X case String => "String branch"
"Float branch"

This tries sayBranch with an integer.

sayBranch 1

Compiling function sayBranch with type Union(Integer,String,Float)
-> Void
Integer branch

Type:
This tries sayBranch with a string.
sayBranch "hello"
String branch
Type:
This tries sayBranch with a floating-point number.
sayBranch 2.718281828
Float branch
Type:

Void

Void

Void

There are two things of interest about this particular example to which we would like to

draw your attention.
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1. Axiom normally converts a result to the target value before passing it to the function. If

we left the declaration information out of this function definition then the sayBranch
call would have been attempted with an Integer rather than a Union, and an error
would have resulted.

2. The types in a Union are searched in the order given. So if the type were given as

sayBranch(x: Union(String,Integer,Float,Any)): Void

then the result would have been “String branch” because there is a conversion from
Integer to String.

Sometimes Union types can have extremely long names. Axiom therefore abbreviates the
names of unions by printing the type of the branch first within the Union and then eliding

the

Here the Integer branch is displayed first. Use

remaining types with an ellipsis (.. .).

e o

to create a Union object from an

object.

78 ::

Union(Integer,String)

78

Type: Union(Integer,...)

Here the String branch is displayed first.

S

:= "string" :: Union(Integer,String)

"string"

Type: Union(String,...)

Use typeOf to see the full and actual Union type.

typeOf s

Union(Integer, String)

Type: Domain

A common operation that returns a union is exquo which returns the “exact quotient” if

the

quotient is exact,

three := exquo(6,2)
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Type: Union(Integer,...)
and "failed" if the quotient is not exact.
exquo(5,2)
"failed"
Type: Union("failed",...)
A union with a "failed" is frequently used to indicate the failure or lack of applicability

of an object. As another example, assign an integer a variable r declared to be a rational
number.

r: FRAC INT := 3

Type: Fraction Integer

The operation retractIfCan tries to retract the fraction to the underlying domain Integer.
It produces a union object. Here it succeeds.

retractIfCan(r)
3
Type: Union(Integer,...)
Assign it a rational number.
r := 3/2
3
2
Type: Fraction Integer
Here the retraction fails.
retractIfCan(r)
"failed"

Type: Union("failed",...)
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2.5.2 Unions With Selectors

Like records (section P4 on page [338), you can write Union types with selectors.

The syntax for writing a Union type with selectors is
Union(selector; : type;, selectors:typey, ..., selectorn :typey)

You must be careful if a selector has the same name as a variable in the
workspace. If this occurs, precede the selector name by a single quote. It
is an error to use a selector that does not correspond to the branch of the
Union in which the element actually lies.

Be sure to understand the difference between records and unions with selectors. Records
can have more than one component and the selectors are used to refer to the components.
Unions always have one component but the type of that one component can vary. An object
of type Record(a: Integer, b: Float, c: String) contains an integer and a float
and a string. An object of type Union(a: Integer, b: Float, c: String) contains
an integer or a float or a string.

Here is a version of the sayBranch function (cf. section 23 on page [Z2) that works with
a union with selectors. It displays a message stating in which branch of the Union the object
lies.

sayBranch(x:Union(i:Integer,s:String,f:Float)):Void==
output
x case i => "Integer branch"

X case s => "String branch"
"Float branch"

Note that case uses the selector name as its right-hand argument. If you accidentally use
the branch type on the right-hand side of case, false will be returned.

Declare variable u to have a union type with selectors.

u : Union(i : Integer, s : String)

Type: Void
Give an initial value to w.
u := "good morning"

"good morning"

Type: Union(s: String,...)
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Use case to determine in which branch of a Union an object lies.

u case i
false
Type:
u case s
true
Type:
To access the element in a particular branch, use the selector.
u.s
"good morning"
Type:

2.6 The “Any” Domain
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Boolean

Boolean

String

With the exception of objects of type Record, all Axiom data structures are homogenous,
that is, they hold objects all of the same type. If you need to get around this, you can use
type Any. Using Any, for example, you can create lists whose elements are integers, rational

numbers, strings, and even other lists.

Declare u to have type Any.

u: Any

Type: Void

Assign a list of mixed type values to u

u = [1, 7.2, 3/2, x*x2, "wally"]

3
1,7.2, o 22, "wally"
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Type: List Any

When we ask for the elements, Axiom displays these types.

u.l1

Type: Positivelnteger

Actually, these objects belong to Any but Axiom automatically converts them to their natural
types for you.

u.3

| W

Type: Fraction Integer

Since type Any can be anything, it can only belong to type Type. Therefore it cannot be
used in algebraic domains.

v : Matrix(Any)

Matrix Any is not a valid type.

Perhaps you are wondering how Axiom internally represents objects of type Any. An object
of type Any consists not only a data part representing its normal value, but also a type part
(a badge) giving its type. For example, the value 1 of type PositiveInteger as an object
of type Any internally looks like [1,PositiveInteger()].

When should you use Any instead of a Union type? For a Union, you must know in advance
exactly which types you are going to allow. For Any, anything that comes along can be
accommodated.

2.7 Conversion

Conversion is the process of changing an object of one type into an object of
another type. The syntax for conversion is:

object::newType

By default, 3 has the type PositivelInteger.
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Type: Positivelnteger

We can change this into an object of type Fraction Integer by using “::”.

3 :: Fraction Integer

Type: Fraction Integer

A coercion is a special kind of conversion that Axiom is allowed to do automatically when
you enter an expression. Coercions are usually somewhat safer than more general conver-
sions. The Axiom library contains operations called coerce and convert. Only the coerce
operations can be used by the interpreter to change an object into an object of another type
unless you explicitly use a : :.

By now you will be quite familiar with what types and modes look like. It is useful to think
of a type or mode as a pattern for what you want the result to be.

Let’s start with a square matrix of polynomials with complex rational number coefficients.

m : SquareMatrix(2,POLY COMPLEX FRAC INT)
Type: Void

m := matrix [ [x-3/4*%i,zxy*x2+1/2],[3/7*)i*y**4 - x,12-%i*9/5] ]

Type: SquareMatrix(2,Polynomial Complex Fraction Integer)

We first want to interchange the Complex and Fraction layers. We do the conversion by
doing the interchange in the type expression.

ml :=m :: SquareMatrix(2,POLY FRAC COMPLEX INT)

i 2 1
LA S
3¢ ,4 60—9 ¢
5
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Type: SquareMatrix(2,Polynomial Fraction Complex Integer)

Interchange the Polynomial and the Fraction levels.

m2 :=ml :: SquareMatrix(2,FRAC POLY COMPLEX INT)
4 -3 1 2 y2 z+1
7 2
3iy" —Tx 60—9 ¢
7 5

Type: SquareMatrix(2,Fraction Polynomial Complex Integer)

Interchange the Polynomial and the Complex levels.

m3 := m2 :: SquareMatrix(2,FRAC COMPLEX POLY INT)
4z-3i 2 y2% z+1
1 2
—7 x+3 y* i 60—9 i
7 5

Type: SquareMatrix(2,Fraction Complex Polynomial Integer)

All the entries have changed types, although in comparing the last two results only the entry
in the lower left corner looks different. We did all the intermediate steps to show you what
Axiom can do.

In fact, we could have combined all these into one conversion.

m :: SquareMatrix(2,FRAC COMPLEX POLY INT)

4 z-3i 2 y% z+1
1 2

—7 x+3 y* i 60—9 i
7 5

Type: SquareMatrix(2,Fraction Complex Polynomial Integer)

There are times when Axiom is not be able to do the conversion in one step. You may
need to break up the transformation into several conversions in order to get an object of the
desired type.

We cannot move either Fraction or Complex above (or to the left of, depending on how you
look at it) SquareMatrix because each of these levels requires that its argument type have
commutative multiplication, whereas SquareMatrix does not. That is because Fraction
requires that its argument belong to the category IntegralDomain and Complex requires
that its argument belong to CommutativeRing. See section EI on page IZ3 for a brief
discussion of categories. The Integer level did not move anywhere because it does not allow
any arguments. We also did not move the SquareMatrix part anywhere, but we could have.

Recall that m looks like this.



2.8. SUBDOMAINS AGAIN 151

Type: SquareMatrix(2,Polynomial Complex Fraction Integer)

If we want a polynomial with matrix coefficients rather than a matrix with polynomial
entries, we can just do the conversion.

m :: POLY SquareMatrix(2,COMPLEX FRAC INT)

0122+004+10x+—g¢%
00| 307 -1 0 0 12—

Type: Polynomial SquareMatrix(2,Complex Fraction Integer)

9 .
52

We have not yet used modes for any conversions. Modes are a great shorthand for indicating
the type of the object you want. Instead of using the long type expression in the last example,
we could have simply said this.

m :: POLY 7
0 1] » 0 0] 4 1 0 —-34 1
[0 o]y Z*{ii o}y +{—1 0]3”{ 0 12-2
Type: Polynomial SquareMatrix(2,Complex Fraction Integer)

We can also indicate more structure if we want the entries of the matrices to be fractions.

m :: POLY SquareMatrix(2,FRAC 7)

0 17 5 0 01 4 1 0 34 1
RIET Eaad E s Eid I RS i ¢

Type: Polynomial SquareMatrix(2,Fraction Complex Integer)

2.8 Subdomains Again

A subdomain S of a domain D is a domain consisting of

1. those elements of D that satisfy some predicate (that is, a test that returns true or
false) and
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2. a subset of the operations of D.

Every domain is a subdomain of itself, trivially satisfying the membership test: true.

Currently, there are only two system-defined subdomains in Axiom that receive substantial
use. PositiveInteger and NonNegativeInteger are subdomains of Integer. An element
2 of NonNegativeInteger is an integer that is greater than or equal to zero, that is, satisfies
x >=0. An element x of PositivelInteger is a nonnegative integer that is, in fact, greater
than zero, that is, satisfies > 0. Not all operations from Integer are available for these
subdomains. For example, negation and subtraction are not provided since the subdomains
are not closed under those operations. When you use an integer in an expression, Axiom
assigns to it the type that is the most specific subdomain whose predicate is satisfied.

This is a positive integer.

5
5
Type: Positivelnteger
This is a nonnegative integer.
0
0
Type: NonNegativelnteger
This is neither of the above.
-5
-5

Type: Integer

Furthermore, unless you are assigning an integer to a declared variable or using a conversion,
any integer result has as type the most specific subdomain.

(-2) - (-3)

Type: Positivelnteger
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0 :: Integer

Type: Integer

x : NonNegativelnteger := 5

Type: NonNegativelnteger

When necessary, Axiom converts an integer object into one belonging to a less specific sub-
domain. For example, in 3 —2, the arguments to “~” are both elements of PositiveInteger,
but this type does not provide a subtraction operation. Neither does NonNegativeInteger,
so 3 and 2 are viewed as elements of Integer, where their difference can be calculated. The
result is 1, which Axiom then automatically assigns the type PositiveInteger.

Certain operations are very sensitive to the subdomains to which their arguments belong.
This is an element of PositiveInteger.

2 *x 2
4
Type: Positivelnteger
This is an element of Fraction Integer.
2 **x (-2)
1
4

Type: Fraction Integer

It makes sense then that this is a list of elements of PositiveInteger.

[10*x*xi for i in 2..5]

[100, 1000, 10000, 100000]

Type: List Positivelnteger
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What should the type of [10%*(i-1) for i in 2..5] be? On one hand, i — 1 is always
an integer greater than zero as i ranges from 2 to 5 and so 10 * i is also always a positive
integer. On the other, ¢ — 1 is a very simple function of i. Axiom does not try to analyze
every such function over the index’s range of values to determine whether it is always positive
or nowhere negative. For an arbitrary Axiom function, this analysis is not possible.

So, to be consistent no such analysis is done and we get this.
[10**(i-1) for i in 2..5]
[10, 100, 1000, 10000]

Type: List Fraction Integer

To get a list of elements of PositiveInteger instead, you have two choices. You can use a
conversion.

[10%x((i-1) :: PI) for i imn 2..5]
Compiling function G82696 with type Integer -> Boolean

Compiling function G82708 with type NonNegativeInteger -> Boolean

10, 100, 1000, 10000]

Type: List Positivelnteger

Or you can use pretend.

[10*x((i-1) pretend PI) for i in 2..5]

[10, 100, 1000, 10000]

Type: List Positivelnteger

The operation pretend is used to defeat the Axiom type system. The expression object
pretend D means “make a new object (without copying) of type D from object.” If object
were an integer and you told Axiom to pretend it was a list, you would probably see a
message about a fatal error being caught and memory possibly being damaged. Lists do not
have the same internal representation as integers!

You use pretend at your peril.

Use pretend with great care! Axiom trusts you that the value is of the specified type.
(2/3) pretend Complex Integer

2+31

Type: Complex Integer
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2.9 Package Calling and Target Types

Axiom works hard to figure out what you mean by an expression without your having to
qualify it with type information. Nevertheless, there are times when you need to help it
along by providing hints (or even orders!) to get Axiom to do what you want.

We saw in section 223 on page [[33 that declarations using types and modes control the type of
the results produced. For example, we can either produce a complex object with polynomial
real and imaginary parts or a polynomial with complex integer coefficients, depending on
the declaration.

Package calling is how you tell Axiom to use a particular function from a particular part of
the library.

Use the “/” from Fraction Integer to create a fraction of two integers.

2/3

[SCRN V)

Type: Fraction Integer

If we wanted a floating point number, we can say “use the “/” in Float.”

(2/3)$Float

0.66666666666666666667

Type: Float

Perhaps we actually wanted a fraction of complex integers.

(2/3)$Fraction(Complex Integer)

Type: Fraction Complex Integer

In each case, AXIOM used the indicated operations, sometimes first needing to convert the
two integers into objects of the appropriate type. In these examples, “/” is written as an
infix operator.

To use package calling with an infix operator, use the following syntax:

(argy op args )$type
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We used, for example, (2/3)$Float. The expression 2 4+ 3 + 4 is equivalent to (2 + 3) + 4.
Therefore in the expression (2 + 3 4+ 4)$Float the second “+” comes from the Float domain.
The first “4+” comes from Float because the package call causes AXIOM to convert (2 + 3)
and 4 to type Float. Before the sum is converted, it is given a target type of Float by AXIOM
and then evaluated. The target type causes the “+” from Float to be used.

For an operator written before its arguments, you must use parentheses
around the arguments (even if there is only one), and follow the closing
parenthesis by a “$” and then the type.

fun (argi,args, ... argy )Stype

For example, to call the “minimum” function from DoubleFloat on two integers, you could
write min(4,89)DoubleFloat. Another use of package calling is to tell AXIOM to use a
library function rather than a function you defined. We discuss this in section 659 on page 234.

Sometimes rather than specifying where an operation comes from, you just want to say what
type the result should be. We say that you provide a target type for the expression. Instead
of using a “$”, use a “@Q” to specify the requested target type. Otherwise, the syntax is the
same. Note that giving a target type is not the same as explicitly doing a conversion. The
first says “try to pick operations so that the result has such-and-such a type.” The second
says “compute the result and then convert to an object of such-and-such a type.”

Sometimes it makes sense, as in this expression, to say “choose the operations in this ex-
pression so that the final result is Float.

(2/3)@Float

0.66666666666666666667

Type: Float

Here we used “@” to say that the target type of the left-hand side was Float. In this simple
case, there was no real difference between using “$” and “@”. You can see the difference if
you try the following.

This says to try to choose “+” so that the result is a string. Axiom cannot do this.

(2 + 3)0@String

An expression involving @ String actually evaluated to one of
type Positivelnteger . Perhaps you should use :: String .

This says to get the + from String and apply it to the two integers. Axiom also cannot do
this because there is no + exported by String.

(2 + 3)$String
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The function + is not implemented in String .

(By the way, the operation concat or juxtaposition is used to concatenate two strings.)

When we have more than one operation in an expression, the difference is even more evident.
The following two expressions show that Axiom uses the target type to create different
objects. The “+”7  “x” and “**” operations are all chosen so that an object of the correct
final type is created.

This says that the operations should be chosen so that the result is a Complex object.
((x + y * %i)**2)@(Complex Polynomial Integer)
2+t +2zyi
Type: Complex Polynomial Integer
This says that the operations should be chosen so that the result is a Polynomial object.
((x + y * %i)**2)@(Polynomial Complex Integer)
— 2+ 20z y+a?
Type: Polynomial Complex Integer

What do you think might happen if we left off all target type and package call information
in this last example?

(x + g * %i)**2
—y? +2ixy+a?
Type: Polynomial Complex Integer

We can convert it to Complex as an afterthought. But this is more work than just saying
making what we want in the first place.

% :: Complex 7
2+t 422y
Type: Complex Polynomial Integer

Finally, another use of package calling is to qualify fully an operation that is passed as an
argument to a function.

Start with a small matrix of integers.
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h := matrix [ [8,6],[-4,9] ]

Type: Matrix Integer

We want to produce a new matrix that has for entries the multiplicative inverses of the
entries of h. One way to do this is by calling map with the inv function from Fraction
(Integer).

map (inv$Fraction(Integer) ,h)

L —
| =
=
O]
| I

Type: Matrix Fraction Integer

We could have been a bit less verbose and used abbreviations.

map (inv$FRAC(INT) ,h)

| —
| =
=
O]
—_

Type: Matrix Fraction Integer

As it turns out, Axiom is smart enough to know what we mean anyway. We can just say
this.

map (inv,h)

L —
| oo
=
O]
| I

Type: Matrix Fraction Integer

2.10 Resolving Types

In this section we briefly describe an internal process by which Axiom determines a type
to which two objects of possibly different types can be converted. We do this to give you
further insight into how Axiom takes your input, analyzes it, and produces a result.

What happens when you enter x + 1 to Axiom? Let’s look at what you get from the two
terms of this expression.

This is a symbolic object whose type indicates the name.
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Type: Variable x

This is a positive integer.

Type: Positivelnteger

There are no operations in PositiveInteger that add positive integers to objects of type
Variable(x) nor are there any in Variable(x). Before it can add the two parts, Axiom
must come up with a common type to which both z and 1 can be converted. We say that
Axiom must resolve the two types into a common type. In this example, the common type
is Polynomial (Integer).

Once this is determined, both parts are converted into polynomials, and the addition oper-
ation from Polynomial (Integer) is used to get the answer.

x+1
z+1
Type: Polynomial Integer

Axiom can always resolve two types: if nothing resembling the original types can be found,
then Any is be used. This is fine and useful in some cases.

["string",3.14159]
["string", 3.14159]
Type: List Any
In other cases objects of type Any can’t be used by the operations you specified.

"string" + 3.14159
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There are 11 exposed and 5 unexposed library operations named +
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue

)display op +
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the
arguments will allow you to apply the operation.

Cannot find a definition or applicable library operation named +
with argument type(s)
String
Float

Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.

Although this example was contrived, your expressions may need to be qualified slightly to
help Axiom resolve the types involved. You may need to declare a few variables, do some
package calling, provide some target type information or do some explicit conversions.

We suggest that you just enter the expression you want evaluated and see what Axiom does.
We think you will be impressed with its ability to “do what I mean.” If Axiom is still being
obtuse, give it some hints. As you work with Axiom, you will learn where it needs a little
help to analyze quickly and perform your computations.

2.11 Exposing Domains and Packages

In this section we discuss how Axiom makes some operations available to you while hiding
others that are meant to be used by developers or only in rare cases. If you are a new user
of Axiom, it is likely that everything you need is available by default and you may want to
skip over this section on first reading.

Every domain and package in the Axiom library is either exposed (meaning that you can
use its operations without doing anything special) or it is hidden (meaning you have to
either package call (see section Z9 on page IBH) the operations it contains or explicitly
expose it to use the operations). The initial exposure status for a constructor is set in the
file exposed.lsp (see the Installer’s Note for Axiom if you need to know the location of
this file). Constructors are collected together in exposure groups. Categories are all in the
exposure group “categories” and the bulk of the basic set of packages and domains that are
exposed are in the exposure group “basic.” Here is an abbreviated sample of the file (without
the Lisp parentheses):

basic
AlgebraicNumber AN
AlgebraGivenByStructuralConstants ALGSC
Any ANY
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AnyFunctionsl ANY1
BinaryExpansion BINARY
Boolean BOOLEAN
CardinalNumber CARD
CartesianTensor CARTEN
Character CHAR
CharacterClass CCLASS
CliffordAlgebra CLIF
Color COLOR
Complex COMPLEX
ContinuedFraction CONTFRAC
DecimalExpansion DECIMAL
categories
AbelianGroup ABELGRP
AbelianMonoid ABELMON
AbelianMonoidRing AMR
AbelianSemiGroup ABELSG
Aggregate AGG
Algebra ALGEBRA
AlgebraicallyClosedField ACF
AlgebraicallyClosedFunctionSpace ACFS
ArcHyperbolicFunctionCategory AHYP

For each constructor in a group, the full name and the abbreviation is given. There are
other groups in exposed.lsp but initially only the constructors in exposure groups “basic”
“categories” ‘“naglink” and “anna” are exposed.

As an interactive user of Axiom, you do not need to modify this file. Instead, use )set
expose to expose, hide or query the exposure status of an individual constructor or expo-
sure group. The reason for having exposure groups is to be able to expose or hide multiple
constructors with a single command. For example, you might group together into exposure
group “quantum” a number of domains and packages useful for quantum mechanical com-
putations. These probably should not be available to every user, but you want an easy way
to make the whole collection visible to Axiom when it is looking for operations to apply.

If you wanted to hide all the basic constructors available by default, you would issue )set
expose drop group basic. We do not recommend that you do this. If, however, you
discover that you have hidden all the basic constructors, you should issue ) set expose add
group basic to restore your default environment.

It is more likely that you would want to expose or hide individual constructors. In section 519
on page E71 we use several operations from OutputForm, a domain usually hidden. To avoid
package calling every operation from OutputForm, we expose the domain and let Axiom
conclude that those operations should be used. Use )set expose add constructor and
)set expose drop constructor to expose and hide a constructor, respectively. You should
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use the constructor name, not the abbreviation. The )set expose command guides you
through these options.

If you expose a previously hidden constructor, Axiom exhibits new behavior (that was your
intention) though you might not expect the results that you get. OQutputForm is, in fact, one
of the worst offenders in this regard. This domain is meant to be used by other domains for
creating a structure that Axiom knows how to display. It has functions like “+” that form
output representations rather than do mathematical calculations. Because of the order in
which Axiom looks at constructors when it is deciding what operation to apply, OutputForm
might be used instead of what you expect.

This is a polynomial.

X + X

Type: Polynomial Integer

Expose OutputForm.

)set expose add constructor OutputForm

OutputForm is now explicitly exposed in frame G82322

This is what we get when OutputForm is automatically available.

X + X

r+x

Type: OutputForm

Hide OutputForm so we don’t run into problems with any later examples!

)set expose drop constructor OutputForm

OutputForm is now explicitly hidden in frame G82322

Finally, exposure is done on a frame-by-frame basis. A frame (see section BT on page [MT)
is one of possibly several logical Axiom workspaces within a physical one, each having its
own environment (for example, variables and function definitions). If you have several Axiom
workspace windows on your screen, they are all different frames, automatically created for
you by HyperDoc. Frames can be manually created, made active and destroyed by the
) frame system command. They do not share exposure information, so you need to use ) set
expose in each one to add or drop constructors from view.
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2.12 Commands for Snooping

To conclude this chapter, we introduce you to some system commands that you can use for
getting more information about domains, packages, categories, and operations. The most
powerful Axiom facility for getting information about constructors and operations is the
Browse component of HyperDoc. This is discussed in section @ on page H34.

Use the ) what system command to see lists of system objects whose name contain a particular
substring (uppercase or lowercase is not significant).

Issue this to see a list of all operations with “complex” in their names.

Jwhat operation complex

Operations whose names satisfy the above pattern(s):

complex complex?
complexEigenvalues complexEigenvectors
complexElementary complexExpand
complexForm complexIntegrate
complexLimit complexNormalize
complexNumeric complexNumericIfCan
complexRoots complexSolve
complexZeros createlLowComplexityNormalBasis
createLowComplexityTable doubleComplex?
drawComplex drawComplexVectorField
fortranComplex fortranDoubleComplex
pmComplexintegrate

To get more information about an operation such as
complexZeros, issue the command )display op complexZeros

)

If you want to see all domains with “matrix” in their names, issue this.

)Jwhat domain matrix

Domains with names matching patterns:
matrix

DHMATRIX DenavitHartenbergMatrix
DPMM DirectProductMatrixModule
IMATRIX IndexedMatrix
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LSQM LieSquareMatrix

M3D ThreeDimensionalMatrix
MATCAT- MatrixCategory&

MATRIX  Matrix

RMATCAT- RectangularMatrixCategory&
RMATRIX RectangularMatrix

SMATCAT- SquareMatrixCategory&
SQMATRIX SquareMatrix

Similarly, if you wish to see all packages whose names contain “gauss”, enter this.

Jwhat package gauss

Packages with names matching patterns:
gauss

GAUSSFAC GaussianFactorizationPackage

This command shows all the operations that Any provides. Wherever $ appears, it means
“Any”.

)show Any

Any 1is a domain constructor

Abbreviation for Any is ANY

This constructor is exposed in this frame.

Issue )edit /usr/local/axiom/mnt/algebra/any.spad
to see algebra source code for ANY

————————————————————— Operations ---—-—-————————————————-
?=? : (%,%) —-> Boolean

any : (SExpression,None) -> %

coerce : % —-> OutputForm

dom : % -> SExpression

domain0f : % -> OutputForm

hash : % -> Singlelnteger

latex : % —-> String

obj : % —> None

object0f : % -> OutputForm

?7=? : (%,%) -> Boolean
showTypeInOutput : Boolean -> String
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This displays all operations with the name complex.

)display operation complex

There is one exposed function called complex :
[1] (D1,D1) -> D from D if D has COMPCAT D1 and D1 has COMRING

Let’s analyze this output.

First we find out what some of the abbreviations mean.

)abbreviation query COMPCAT

COMPCAT abbreviates category ComplexCategory

)abbreviation query COMRING

COMRING abbreviates category CommutativeRing

So if D1 is a commutative ring (such as the integers or floats) and D belongs to ComplexCategory
D1, then there is an operation called complex that takes two elements of D1 and creates
an element of D. The primary example of a constructor implementing domains belonging to
ComplexCategory is Complex. See Complex B3 on page B3 for more information on that
and see section B4 on page 27 for more information on function types.
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Chapter 3

Using HyperDoc

HyperDoc

Axiom HyperDoc Top Level
. T
»

What would you like to do?
BBasic Commands  Solve problems by £filling in templates.

AReference Scan on—line documentation for Axiom.
ETopics Learn how to uge Axiom, by topic.

B Browse Browsge through the 2Axiom library.
ElExamples See examples of uge of the library.

B Settings Display and change the systemenvironment.
A About Axiom See gome basgic information about Axiom.
BAwWhat's Hew Enhancements in this vergion of Axiom.

Figure 3.1: The HyperDoc root window page.

HyperDoc is the gateway to Axiom. It’s both an on-line tutorial and an on-line reference
manual. It also enables you to use Axiom simply by using the mouse and filling in templates.
HyperDoc is available to you if you are running Axiom under the X Window System.

Pages usually have active areas, marked in this font (bold face). As you move the mouse

167
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pointer to an active area, the pointer changes from a filled dot to an open circle. The active
areas are usually linked to other pages. When you click on an active area, you move to the
linked page.

3.1 Headings

Most pages have a standard set of buttons at the top of the page. This is what they mean:

1ck on this to get help. e button only appears if there is specific help for the

1IN Click on thi help. The b 1 if there i ific help for th
page you are viewing. You can get general help for HyperDoc by clicking the help
button on the home page.

ﬂ Click here to go back one page. By clicking on this button repeatedly, you can go
back several pages and then take off in a new direction.

EEIE Go back to the home page, that is, the page on which you started. Use HyperDoc to
explore, to make forays into new topics. Don’t worry about how to get back. HyperDoc
remembers where you came from. Just click on this button to return.

From the root window (the one that is displayed when you start the system) this
button leaves the HyperDoc program, and it must be restarted if you want to use it
again. From any other HyperDoc window, it just makes that one window go away. You
must use this button to get rid of a window. If you use the window manager “Close”
button, then all of HyperDoc goes away.

The buttons are not displayed if they are not applicable to the page you are viewing. For
example, there is no EmIEbutton on the top-level menu.

3.2 Key Definitions

The following keyboard definitions are in effect throughout HyperDoc. See section B33 on
page and section B4 on page for some contextual key definitions.

F1 Display the main help page.

F3 Same as 140N , makes the window go away if you are not at the top-level window or
quits the HyperDoc facility if you are at the top-level.

F5 Rereads the HyperDoc database, if necessary (for system developers).
F9 Displays this information about key definitions.

F12 Same as F3.
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Up Arrow Scroll up one line.
Down Arrow Scroll down one line.
Page Up Scroll up one page.

Page Down Scroll down one page.

3.3 Scroll Bars

Whenever there is too much text to fit on a page, a scroll bar automatically appears along
the right side.

With a scroll bar, your page becomes an aperture, that is, a window into a larger amount
of text than can be displayed at one time. The scroll bar lets you move up and down in the
text to see different parts. It also shows where the aperture is relative to the whole text.
The aperture is indicated by a strip on the scroll bar.

Move the cursor with the mouse to the “down-arrow” at the bottom of the scroll bar and
click. See that the aperture moves down one line. Do it several times. Each time you click,
the aperture moves down one line. Move the mouse to the “up-arrow” at the top of the
scroll bar and click. The aperture moves up one line each time you click.

Next move the mouse to any position along the middle of the scroll bar and click. HyperDoc
attempts to move the top of the aperture to this point in the text.

You cannot make the aperture go off the bottom edge. When the aperture is about half the
size of text, the lowest you can move the aperture is halfway down.

To move up or down one screen at a time, use the ’PageUp‘ and ’PageDown‘ keys on

your keyboard. They move the visible part of the region up and down one page each time
you press them.

If the HyperDoc page does not contain an input area (see section B4 on page IGY, you can

also use the and and arrow keys to navigate. When you press the
key, the screen is positioned at the very top of the page. Use the and arrow keys to
move the screen up and down one line at a time, respectively.

3.4 Input Areas

Input areas are boxes where you can put data.

To enter characters, first move your mouse cursor to somewhere within the HyperDoc page.
Characters that you type are inserted in front of the underscore. This means that when you
type characters at your keyboard, they go into this first input area.

The input area grows to accommodate as many characters as you type. Use the

key to erase characters to the left. To modify what you type, use the right-arrow and
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left-arrow keys and the keys ’Insert , | Delete |, Home‘ and ’End ‘ These keys are
found immediately on the right of the standard IBM keyboard.

If you press the key, the cursor moves to the beginning of the line and if you press

the key, the cursor moves to the end of the line. Pressing deletes all
the text from the cursor to the end of the line.

A page may have more than one input area. Only one input area has an underscore cursor.
When you first see apage, the top-most input area contains the cursor. To type information
into another input area, use the ’Enter‘ or ’Tab‘ key to move from one input area to

xanother. To move in the reverse order, use | Shift .

You can also move from one input area to another using your mouse. Notice that each input
area is active. Click on one of the areas. As you can see, the underscore cursor moves to
that window.

3.5 Radio Buttons and Toggles

Some pages have radio buttons and toggles. Radio buttons are a group of buttons like those
on car radios: you can select only one at a time.

Once you have selected a button, it appears to be inverted and contains a checkmark. To
change the selection, move the cursor with the mouse to a different radio button and click.

A toggle is an independent button that displays some on/off state. When “on”, the button
appears to be inverted and contains a checkmark. When “off”, the button is raised.

Unlike radio buttons, you can set a group of them any way you like. To change toggle the
selection, move the cursor with the mouse to the button and click.

3.6 Search Strings

A search string is used for searching some database. To learn about search strings, we suggest
that you bring up the HyperDoc glossary. To do this from the top-level page of HyperDoc:

1. Click on Reference, bringing up the Axiom Reference page.

2. Click on Glossary, bringing up the glossary.

The glossary has an input area at its bottom. We review the various kinds of search strings
you can enter to search the glossary.

The simplest search string is a word, for example, operation. A word only matches an entry
having exactly that spelling. Enter the word operation into the input area above then click
on Search. As you can see, operation matches only one entry, namely with operation
itself.

Normally matching is insensitive to whether the alphabetic characters of your search string
are in uppercase or lowercase. Thus operation and OperAtion both have the same effect.
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You will very often want to use the wildcard “*” in your search string so as to match multiple
entries in the list. The search key “*” matches every entry in the list. You can also use “*”
anywhere within a search string to match an arbitrary substring. Try “cat*” for example:
enter “cat*” into the input area and click on Search. This matches several entries.

You use any number of wildcards in a search string as long as they are not adjacent. Try
search strings such as “x*dom*”. As you see, this search string matches “domain”, “domain
constructor”, “subdomain”, and so on.

3.6.1 Logical Searches

For more complicated searches, you can use “and”, “or”, and “not” with basic search strings;
write logical expressions using these three operators just as in the Axiom language. For ex-
ample, domain or package matches the two entries domain and package. Similarly, “dom*
and *con*” matches “domain constructor” and others. Also “not *a*” matches every

[13%3)

entry that does not contain the letter “a” somewhere.

Use parentheses for grouping. For example, “dom* and (not *con*)” matches “domain”
but not “domain constructor”.

There is no limit to how complex your logical expression can be. For example,
a* or bx or c* or d* or ex and (not *ax)

is a valid expression.

3.7 Example Pages

Many pages have Axiom example commands.

Each command has an active “button” along the left margin. When you click on this button,
the output for the command is “pasted-in.” Click again on the button and you see that the
pasted-in output disappears.

Maybe you would like to run an example? To do so, just click on any part of its text! When
you do, the example line is copied into a new interactive Axiom buffer for this HyperDoc
page.

Sometimes one example line cannot be run before you run an earlier one. Don’t worry—
HyperDoc automatically runs all the necessary lines in the right order!

The new interactive Axiom buffer disappears when you leave HyperDoc. If you want to get
rid of it beforehand, use the Cancel button of the X Window manager or issue the Axiom
system command )close.
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3.8 X Window Resources for HyperDoc

You can control the appearance of HyperDoc while running under Version 11 of the X
Window System by placing the following resources in the file .Xdefaults in your home
directory. In what follows, font is any valid X11 font name (for example, Rom14) and color
is any valid X11 color specification (for example, NavyBlue). For more information about
fonts and colors, refer to the X Window documentation for your system.

Axiom.hyperdoc.RmFont: font
This is the standard text font. The default value is Rom14

Axiom.hyperdoc.RmColor: color
This is the standard text color. The default value is black

Axiom.hyperdoc.ActiveFont: font
This is the font used for HyperDoc link buttons. The default value is B1d14

Axiom.hyperdoc.ActiveColor: color
This is the color used for HyperDoc link buttons. The default value is black

Axiom.hyperdoc.AxiomFont: font
This is the font used for active Axiom commands. The default value is B1d14

Axiom.hyperdoc.AxiomColor: color
This is the color used for active Axiom commands. The default value is black

Axiom.hyperdoc.BoldFont: font
This is the font used for bold face. The default value is B1d14

Axiom.hyperdoc.BoldColor: color
This is the color used for bold face. The default value is black

Axiom.hyperdoc.TtFont: font
This is the font used for Axiom output in HyperDoc. This font must be fixed-width.
The default value is Rom14

Axiom.hyperdoc.TtColor: color
This is the color used for Axiom output in HyperDoc. The default value is black

Axiom.hyperdoc.EmphasizeFont: font
This is the font used for italics. The default value is I1t114

Axiom.hyperdoc.EmphasizeColor: color
This is the color used for italics. The default value is black

Axiom.hyperdoc. InputBackground: color
This is the color used as the background for input areas. The default value is black

Axiom.hyperdoc.InputForeground: color
This is the color used as the foreground for input areas. The default value is white
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Axiom.hyperdoc.BorderColor: color
This is the color used for drawing border lines. The default value is black

Axiom.hyperdoc.Background: color
This is the color used for the background of all windows. The default value is white



174 CHAPTER 3. USING HYPERDOC



Chapter 4

Input Files and Output Styles

In this chapter we discuss how to collect Axiom statements and commands into files and
then read the contents into the workspace. We also show how to display the results of
your computations in several different styles including TEX, FORTRAN and monospace
two-dimensional format.®

The printed version of this book uses the Axiom TEX output formatter. When we demon-
strate a particular output style, we will need to turn TEX formatting off and the output style
on so that the correct output is shown in the text.

4.1 Input Files

In this section we explain what an input file is and why you would want to know about it.
We discuss where Axiom looks for input files and how you can direct it to look elsewhere.
We also show how to read the contents of an input file into the workspace and how to use
the history facility to generate an input file from the statements you have entered directly
into the workspace.

An input file contains Axiom expressions and system commands. Anything that you can
enter directly to Axiom can be put into an input file. This is how you save input functions
and expressions that you wish to read into Axiom more than one time.

To read an input file into Axiom, use the )read system command. For example, you can
read a file in a particular directory by issuing

Jread /spad/src/input/matrix.input
The “.input” is optional; this also works:

Jread /spad/src/input/matrix

ITEX is a trademark of the American Mathematical Society.
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What happens if you just enter )read matrix.input or even )read matrix? Axiom looks
in your current working directory for input files that are not qualified by a directory name.
Typically, this directory is the directory from which you invoked Axiom.

To change the current working directory, use the )cd system command. The command )cd
by itself shows the current working directory. To change it to the src/input subdirectory
for user “babar”, issue

)cd /u/babar/src/input

Axiom looks first in this directory for an input file. If it is not found, it looks in the system’s
directories, assuming you meant some input file that was provided with Axiom.

If you have the Axiom history facility turned on (which it is by default), you
can save all the lines you have entered into the workspace by entering
)history )write

Axiom tells you what input file to edit to see your statements. The file is in
your home directory or in the directory you specified with )cd.

In section B2 on page we discuss using indentation in input files to group statements
into blocks.

4.2 The .axiom.input File

When Axiom starts up, it tries to read the input file .axiom.input? from your home direc-
tory. It there is no .axiom.input in your home directory, it reads the copy located in its
own src/input directory. The file usually contains system commands to personalize your
Axiom environment. In the remainder of this section we mention a few things that users
frequently place in their .axiom.input files.

In order to have FORTRAN output always produced from your computations, place the
system command )set output fortran on in .axiom.input. If you do not want to be
prompted for confirmation when you issue the )quit system command, place )set quit
unprotected in .axiom.input. If you then decide that you do want to be prompted, issue
)set quit protected. This is the default setting so that new users do not leave Axiom
inadvertently.®

To see the other system variables you can set, issue )set or use the HyperDoc Settings
facility to view and change Axiom system variables.

2 axiom.input used to be called axiom.input in the NAG version

3The system command )pquit always prompts you for confirmation.
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4.3 Common Features of Using Output Formats

In this section we discuss how to start and stop the display of the different output formats
and how to send the output to the screen or to a file. To fix ideas, we use FORTRAN output
format for most of the examples.

You can use the )set output system command to toggle or redirect the different kinds of
output. The name of the kind of output follows “output” in the command. The names are

fortran for FORTRAN output.

algebra for monospace two-dimensional mathematical output.
tex for TEX output.

script for IBM Script Formula Format output.

For example, issue )set output fortran on to turn on FORTRAN format and issue )set
output fortran off to turn it off. By default, algebra is on and all others are off. When
output is started, it is sent to the screen. To send the output to a file, give the file name
without directory or extension. Axiom appends a file extension depending on the kind of
output being produced.

Issue this to redirect FORTRAN output to, for example, the file linalg.sfort.

)set output fortran linalg

FORTRAN output will be written to file linalg.sfort .

You must also turn on the creation of FORTRAN output. The above just says where it goes
if it is created.

)set output fortran on

In what directory is this output placed? It goes into the directory from which you started
Axiom, or if you have used the )cd system command, the one that you specified with )cd.
You should use )cd before you send the output to the file.

You can always direct output back to the screen by issuing this.

)set output fortran console

Let’s make sure FORTRAN formatting is off so that nothing we do from now on produces
FORTRAN output.

)set output fortran off

We also delete the demonstrated output file we created.

)system rm linalg.sfort
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You can abbreviate the words “on,” “off,” and “console” to the minimal number of char-
acters needed to distinguish them. Because of this, you cannot send output to files called
on.sfort, off.sfort, of.sfort, console.sfort, consol.sfort and so on.

The width of the output on the page is set by )set output length for all formats except
FORTRAN. Use )set fortran fortlength to change the FORTRAN line length from its
default value of 72.

4.4 Monospace Two-Dimensional Mathematical Format
This is the default output format for Axiom. It is usually on when you start the system.
If it is not, issue this.

)set output algebra on

Since the printed version of this book (as opposed to the HyperDoc version) shows output
produced by the TEX output formatter, let us temporarily turn off TgX output.

)set output tex off

Here is an example of what it looks like.

matrix [ [i*x**i + j*Ji*yx*j for i in 1..2] for j in 3..4]

+ 3 3 2+
[3%iy +x 3%iy + 2x |
W | |
| 4 4 2|
+4%iy +x 4kiy + 2x +

Type: Matrix Polynomial Complex Integer

Issue this to turn off this kind of formatting.

)set output algebra off

Turn TEX output on again.

)set output tex on

The characters used for the matrix brackets above are rather ugly. You get this character set
when you issue )set output characters plain. This character set should be used when
you are running on a machine that does not support the IBM extended ASCII character set.
If you are running on an IBM workstation, for example, issue )set output characters
default to get better looking output.
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4.5 TeX Format

Axiom can produce TEX output for your expressions. The output is produced using macros
from the BTEX document preparation system by Leslie Lamport[l]. The printed version of
this book was produced using this formatter.

To turn on TEX output formatting, issue this.

)set output tex on

Here is an example of its output.

matrix [ [i*x**i + j*\)i*y**j for i in 1..2] for j in 3..4]

$$

\left[

\begin{array}{cc}

{3\ i\ Ay \sp 3}}+x} &

{3\ i\ {y \sp 3}r+{2 \ {x \sp 2}}} \\
{4\ i\ {y \sp 4}}+x} &

{4\ i\ {y \sp 43}+{2 \ {x \sp 2}}}
\end{array}

\right]

$$

This formats as ) )
3iyd4+ax 3iyd+2a?
4iyt+a 4iyt+2a?

To turn TEX output formatting off, issue )set output tex off. The ETEXmacros in the
output generated by Axiom are all standard except for the following definitions:

\def\csch{\mathop{\rm csch}\nolimits}
\def\erf{\mathop{\rm erf}\nolimits}

\def\zag#1#2{
{\frac{\hfill \left. {#1} \right|}{\left| {#2} \right. \hfill}
}

}

4.6 IBM Script Formula Format

Axiom can produce IBM Script Formula Format output for your expressions.

To turn IBM Script Formula Format on, issue this.
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)set output script on

Here is an example of its output.
matrix [ [ikx*k*i + j*)ixy**j for i in 1..2] for j in 3..4]

.eq set blank @

:df.

<left 1b < < < <3 @@ %i @@ <y sup 3> >+x> here < <3 Q@@ %i @@
<y sup 3> >+<2 @@ <x sup 2> > > > habove < < <4 @@ %i @@

<y sup 4> >+x> here < <4 0@ i 0@ <y sup 4> >+<2 @@

<x up 2> > > > > right rb>

:edf.

To turn IBM Script Formula Format output formatting off, issue this.

)set output script off

4.7 FORTRAN Format

In addition to turning FORTRAN output on and off and stating where the output should
be placed, there are many options that control the appearance of the generated code. In
this section we describe some of the basic options. Issue )set fortran to see a full list with
their current settings.

The output FORTRAN expression usually begins in column 7. If the expression needs
more than one line, the ampersand character & is used in column 6. Since some versions
of FORTRAN have restrictions on the number of lines per statement, Axiom breaks long
expressions into segments with a maximum of 1320 characters (20 lines of 66 characters)
per segment. If you want to change this, say, to 660 characters, issue the system command
)set fortran explength 660. You can turn off the line breaking by issuing )set fortran
segment off. Various code optimization levels are available.

FORTRAN output is produced after you issue this.
)set output fortran on
For the initial examples, we set the optimization level to 0, which is the lowest level.

)set fortran optlevel O

The output is usually in columns 7 through 72, although fewer columns are used in the
following examples so that the output fits nicely on the page.

)set fortran fortlength 60
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By default, the output goes to the screen and is displayed before the standard Axiom two-
dimensional output. In this example, an assignment to the variable R1 was generated because
this is the result of step 1.

(x+y) **3

R1=y#k3+3%xkyky+3k Xk ky+x%%3
v 43z’ +322 y+a3
Type: Polynomial Integer
Here is an example that illustrates the line breaking.
(x+y+z) **3

R2=z%x3+ (3*y+3%*x) *z*z+ (3*y*y+6*xky+3*x*X ) *Z+y**3+3*x*y
&xy+3*kXKy+X**3

P2+ By+32) 2+ By +6ry+32%) z+y*+32y° +32% y+2a?®
Type: Polynomial Integer

Note in the above examples that integers are generally converted to floating point numbers,
except in exponents. This is the default behavior but can be turned off by issuing )set
fortran ints2floats off. The rules governing when the conversion is done are:

1. If an integer is an exponent, convert it to a floating point number if it is greater than
32767 in absolute value, otherwise leave it as an integer.

2. Convert all other integers in an expression to floating point numbers.

These rules only govern integers in expressions. Numbers generated by Axiom for DIM ENSION
statements are also integers.

To set the type of generated FORTRAN data, use one of the following;:

)set fortran defaulttype REAL

)set fortran defaulttype INTEGER
)set fortran defaulttype COMPLEX
)set fortran defaulttype LOGICAL
)set fortran defaulttype CHARACTER

When temporaries are created, they are given a default type of REAL. Also, the REAL versions
of functions are used by default.
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sin(x)

R3=DSIN(x)
sin ()
Type: Expression Integer

At optimization level 1, Axiom removes common subexpressions.

)set fortran optlevel 1
(x+y+z) **3

T2=yx*y
T3=x*x
R4=z*x3+ (3*y+3%*x) *z*2z+ (3*xT2+6*x*y+3*T3) *z+y**3+3*x* T2+
&3*xT3xy+x**3
P+ By+32) 2+ By +6ry+32°) z+y*+32 9y +32% y+a?®
Type: Polynomial Integer

This changes the precision to DOUBLE. Substitute single for double to return to single
precision.

)set fortran precision double

Complex constants display the precision.

2.3 + 5.6%)1i

R5=(2.3D0,5.6D0)

23+561

Type: Complex Float

The function names that Axiom generates depend on the chosen precision.

sin %e
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R6=DSIN(DEXP(1))
sin (e)
Type: Expression Integer

Reset the precision to single and look at these two examples again.

)set fortran precision single

2.3 + 5.6%)1i

R7=(2.3,5.6)
23+561

Type: Complex Float

sin %e

R8=SIN(EXP (1))
sin (e)
Type: Expression Integer

Expressions that look like lists, streams, sets or matrices cause array code to be generated.

[x+1,y+1,z+1]

T1(1)=x+1
T1(2)=y+1
T1(3)=z+1
R9=T1

[z+Ly+12+1]

Type: List Polynomial Integer

A temporary variable is generated to be the name of the array. This may have to be changed
in your particular application.
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set[2,3,4,3,5]

T1(1)=2
T1(2)=3
T1(3)=4
T1(4)=5
R10=T1

{27 37 4’ 5}

Type: Set Positivelnteger

By default, the starting index for generated FORTRAN arrays is 0.

matrix [ [2.3,9.7],[0.0,18.778] ]

T1(0,0)=2.3
T1(0,1)=9.7
T1(1,0)=0.0
T1(1,1)=18.778
T1

23 97
0.0 18.778
Type: Matrix Float

To change the starting index for generated FORTRAN arrays to be 1, issue this. This value
can only be 0 or 1.

)set fortran startindex 1

Look at the code generated for the matrix again.

matrix [ [2.3,9.7],[0.0,18.778] 1

T1(1,1)=2.3
T1(1,2)=9.7
T1(2,1)=0.0
T1(2,2)=18.778
T1

23 9.7
0.0 18.778

Type: Matrix Float



Chapter 5

Overview of Interactive
Language

In this chapter we look at some of the basic components of the Axiom language that you can
use interactively. We show how to create a block of expressions, how to form loops and list
iterations, how to modify the sequential evaluation of a block and how to use if-then-else
to evaluate parts of your program conditionally. We suggest you first read the boxed material
in each section and then proceed to a more thorough reading of the chapter.

5.1 Immediate and Delayed Assignments

A wvariable in Axiom refers to a value. A variable has a name beginning with an uppercase or
lowercase alphabetic character, “%”, or “1”. Successive characters (if any) can be any of the
above, digits, or “?”. Case is distinguished. The following are all examples of valid, distinct
variable names:

a tooBig? alB2c3%!7

A %J numberOfPoints

betab YA numberofpoints

The “:=" operator is the immediate assignment operator. Use it to associate a value with a
variable.

The syntax for immediate assignment for a single variable is
variable := expression

The value returned by an immediate assignment is the value of expression.

185
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The right-hand side of the expression is evaluated, yielding 1. This value is then assigned to

Type: Positivelnteger

The right-hand side of the expression is evaluated, yielding 1. This value is then assigned to
b. Thus a and b both have the value 1 after the sequence of assignments.

b :=a

Type: Positivelnteger

What is the value of b if a is assigned the value 27

a =2
2
Type: Positivelnteger
As you see, the value of b is left unchanged.
b
1

Type: Positivelnteger

This is what we mean when we say this kind of assignment is immediate; b has no depen-
dency on a after the initial assignment. This is the usual notion of assignment found in
programming languages such as C, PASCAL and FORTRAN.

Axiom provides delayed assignment with “==". This implements a delayed evaluation of the
right-hand side and dependency checking.

The syntax for delayed assignment is
variable == expression

The value returned by a delayed assignment is the unique value of Void.
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Using a and b as above, these are the corresponding delayed assignments.

a =1

Type: Void

Type: Void

The right-hand side of each delayed assignment is left unevaluated until the variables on the
left-hand sides are evaluated. Therefore this evaluation and ...

Compiling body of rule a to compute value of type Positivelnteger

Type: Positivelnteger

this evaluation seem the same as before.

b

Compiling body of rule b to compute value of type Positivelnteger

Type: Positivelnteger

If we change a to 2

a ==

Compiled code for a has been cleared.
Compiled code for b has been cleared.
1 old definition(s) deleted for function or rule a

Type: Void
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then a evaluates to 2, as expected, but

Compiling body of rule a to compute value of type Positivelnteger

+++ |*0;a;1;G82322| redefined

Type: Positivelnteger

the value of b reflects the change to a.

b

Compiling body of rule b to compute value of type Positivelnteger

+++ |*0;b;1;G82322| redefined

Type: Positivelnteger

It is possible to set several variables at the same time by using a tuple of variables and a
tuple of expressions. Note that a tuple is a collection of things separated by commas, often
surrounded by parentheses.

The syntax for multiple immediate assignments is
C vary, vary, ..., vary ) := ( expry, €xpry, ..., €TPry )

The value returned by an immediate assignment is the value of expry.

This sets x to 1 and y to 2.

(x,y) = (1,2)

Type: Positivelnteger
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Multiple immediate assigments are parallel in the sense that the expressions on the right are
all evaluated before any assignments on the left are made. However, the order of evaluation
of these expressions is undefined.

You can use multiple immediate assignment to swap the values held by variables.

x,y) := (y,%x)

1
Type: Positivelnteger
x has the previous value of y.
X
2
Type: Positivelnteger
y has the previous value of x.
y
1

Type: Positivelnteger

There is no syntactic form for multiple delayed assignments. See the discussion in section B8
on page P33 about how Axiom differentiates between delayed assignments and user functions
of no arguments.

5.2 Blocks

A block is a sequence of expressions evaluated in the order that they appear, except as modi-
fied by control expressions such as break, return, iterate and if-then-else constructions.
The value of a block is the value of the expression last evaluated in the block.

To leave a block early, use “=>". For example, i < 0 => x. The expression before the “=>"
must evaluate to true or false. The expression following the “=>" is the return value for
the block.

A block can be constructed in two ways:

1. the expressions can be separated by semicolons and the resulting expression surrounded
by parentheses, and
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2. the expressions can be written on succeeding lines with each line indented the same
number of spaces (which must be greater than zero). A block entered in this form is
called a pile.

Only the first form is available if you are entering expressions directly to Axiom. Both forms
are available in .input files.

The syntax for a simple block of expressions entered interactively is
( expression,; expressiony; ...; exTPressiony )

The value returned by a block is the value of an => expression, or ezpressiony
if no => is encountered.

In .input files, blocks can also be written using piles. The examples throughout this book
are assumed to come from .input files.

In this example, we assign a rational number to a using a block consisting of three expressions.
This block is written as a pile. Each expression in the pile has the same indentation, in this
case two spaces to the right of the first line.

gcd(234,672)
3*ix*x5 - i + 1

He e ee
U

1/1

23323

Type: Fraction Integer

Here is the same block written on one line. This is how you are required to enter it at the
input prompt.

a := (i := gcd(234,672); i := 3*ix*5 - i + 1; 1 / 1)

L
23323

Type: Fraction Integer

Blocks can be used to put several expressions on one line. The value returned is that of the
last expression.

(a :=1; b :=2; ¢ :=3; [a,b,c])

[1,2,3]
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Type: List Positivelnteger

Axiom gives you two ways of writing a block and the preferred way in an .input file is to
use a pile. Roughly speaking, a pile is a block whose constituent expressions are indented
the same amount. You begin a pile by starting a new line for the first expression, indenting
it to the right of the previous line. You then enter the second expression on a new line,
vertically aligning it with the first line. And so on. If you need to enter an inner pile, further
indent its lines to the right of the outer pile. Axiom knows where a pile ends. It ends when
a subsequent line is indented to the left of the pile or the end of the file.

Blocks can be used to perform several steps before an assignment (immediate or delayed) is
made.

d :=
C = ax*x2 + b¥*2
sqrt(c * 1.3)
2.549509756796392415

Type: Float

Blocks can be used in the arguments to functions. (Here h is assigned 2.1 + 3.5.)

h : 10+

W~ |l
o ON

5.6

Type: Float

Here the second argument to eval is x = z, where the value of z is computed in the first line
of the block starting on the second line.

eval (x**2 — xxy*%x2,
z := %pi/2.0 - exp(4.1)
X =z
58.769491270567072878 4% + 3453.853104201259382
Type: Polynomial Float

Blocks can be used in the clauses of if-then-else expressions (see section B3 on page T9I3).

if h > 3.1 then 1.0 else (z := cos(h); max(z,0.5))
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1.0
This is the pile version of the last block.
if h > 3.1 then
1.0
else
z := cos(h)
max(z,0.5)
1.0

Blocks can be nested.

Type: Float

Type: Float

a := (b := factorial(12); c := (d := eulerPhi(22); factorial(d)) ;b+c)

482630400
This is the pile version of the last block.
a :=
b := factorial(12)
c :=
d := eulerPhi(22)
factorial(d)
b+c
482630400

Type: Positivelnteger

Type: Positivelnteger

Since ¢ + d does equal 3628855, a has the value of ¢ and the last line is never evaluated.

a :=
¢ := factorial 10
d := fibonacci 10
c + d = 3628855 => ¢
d

3628800

Type: Positivelnteger
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5.3 if-then-else

Like many other programming languages, Axiom uses the three keywords if, then and
else to form conditional expressions. The else part of the conditional is optional. The
expression between the if and then keywords is a predicate: an expression that evaluates to
or is convertible to either true or false, that is, a Boolean.

The syntax for conditional expressions is
if predicate then expression; else expression,

where the else expression, part is optional. The value returned from a
conditional expression is expression, if the predicate evaluates to true and
expressiony otherwise. If no else clause is given, the value is always the
unique value of Void.

An if-then-else expression always returns a value. If the else clause is missing then the
entire expression returns the unique value of Void. If both clauses are present, the type of
the value returned by if is obtained by resolving the types of the values of the two clauses.
See section P11 on page for more information.

The predicate must evaluate to, or be convertible to, an object of type Boolean: true or
false. By default, the equal sign “=” creates an equation.

This is an equation. In particular, it is an object of type Equation Polynomial Integer.

x+1=y

r+1l=y

Type: Equation Polynomial Integer

However, for predicates in if expressions, Axiom places a default target type of Boolean
on the predicate and equality testing is performed. Thus you need not qualify the “=" in
any way. In other contexts you may need to tell Axiom that you want to test for equality
rather than create an equation. In those cases, use “@” and a target type of Boolean. See
section 29 on page IB3 for more information.

“

The compound symbol meaning “not equal” in Axiom is “~=". This can be used directly
without a package call or a target specification. The expression a ~= b is directly translated
into not(a = b).

Many other functions have return values of type Boolean. These include “<”, “<=7  “>”,

“>=7 “~=" and “member?”. By convention, operations with names ending in “?” return
Boolean values.

The usual rules for piles are suspended for conditional expressions. In .input files, the then
and else keywords can begin in the same column as the corresponding if but may also
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appear to the right. Each of the following styles of writing if-then-else expressions is
acceptable:

if i>0 then output("positive") else output("nonpositive")

if i > O then output("positive")
else output("nonpositive")

if i > O then output("positive")
else output("nonpositive")

if i >0
then output("positive")
else output("nonpositive")

if i >0
then output ("positive")
else output("nonpositive")

A block can follow the then or else keywords. In the following two assignments to a, the
then and else clauses each are followed by two-line piles. The value returned in each is the
value of the second line.

a :=
if i > 0 then
j = sin(i * pi())
exp(j + 1/9)
else
j = cos(i * 0.5 x pi())
log(abs(j)**5 + 1)

a :=
if i >0

then
j = sin(i * pi(Q))
exp(j + 1/3)

else
j = cos(i * 0.5 x pi())
log(abs(j)**5 + 1)

These are both equivalent to the following:
a :=

if i > 0 then (j := sin(i * pi()); exp(j + 1/3))
else (j := cos(i * 0.5 * pi()); log(abs(j)**5 + 1))
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5.4 Loops

A loop is an expression that contains another expression, called the loop body, which is to be
evaluated zero or more times. All loops contain the repeat keyword and return the unique
value of Void. Loops can contain inner loops to any depth.

The most basic loop is of the form
repeat loopBody

Unless loopBody contains a break or return expression, the loop repeats
forever. The value returned by the loop is the unique value of Void.

5.4.1 Compiling vs. Interpreting Loops

Axiom tries to determine completely the type of every object in a loop and then to translate
the loop body to LISP or even to machine code. This translation is called compilation.

If Axiom decides that it cannot compile the loop, it issues a message stating the problem
and then the following message:

We will attempt to step through and interpret the code.

It is still possible that Axiom can evaluate the loop but in interpret-code mode. See sec-
tion B0 on page P34 where this is discussed in terms of compiling versus interpreting
functions.

5.4.2 return in Loops

A return expression is used to exit a function with a particular value. In particular, if
a return is in a loop within the function, the loop is terminated whenever the return is
evaluated.

Suppose we start with this.

£O ==
i:=1
repeat
if factorial(i) > 1000 then return i
i=1i+1

Type: Void

When factorial(i) is big enough, control passes from inside the loop all the way outside
the function, returning the value of ¢ (or so we think).
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£0O
Type: Void

What went wrong? Isn’t it obvious that this function should return an integer? Well, Axiom
makes no attempt to analyze the structure of a loop to determine if it always returns a value
because, in general, this is impossible. So Axiom has this simple rule: the type of the
function is determined by the type of its body, in this case a block. The normal value of a
block is the value of its last expression, in this case, a loop. And the value of every loop is
the unique value of Void! So the return type of f is Void.

There are two ways to fix this. The best way is for you to tell Axiom what the return type
of f is. You do this by giving f a declaration £: () -> Integer prior to calling for its value.
This tells Axiom: “trust me—an integer is returned.” We’ll explain more about this in the
next chapter. Another clumsy way is to add a dummy expression as follows.

Since we want an integer, let’s stick in a dummy final expression that is an integer and will
never be evaluated.

O ==

i:=1

repeat
if factorial(i) > 1000 then return i
i=1+1

Type: Void

When we try f again we get what we wanted. See section BI3 on page for more infor-
mation.

£0

Compiling function f with type () -> NonNegativeInteger
7

Type: Positivelnteger

5.4.3 break in Loops

The break keyword is often more useful in terminating a loop. A break causes control to
transfer to the expression immediately following the loop. As loops always return the unique
value of Void, you cannot return a value with break. That is, break takes no argument.

This example is a modification of the last example in the previous section on page [UA.
Instead of using return, we’ll use break.
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£fO ==
i::=1
repeat
if factorial(i) > 1000 then break
i=1i+1

Compiled code for f has been cleared.
1 0ld definition(s) deleted for function or rule f

Type: Void
The loop terminates when factorial(i) gets big enough, the last line of the function

evaluates to the corresponding “good” value of i, and the function terminates, returning
that value.

£O

Compiling function f with type () -> Positivelnteger

+++ |*0;f;1;G82322| redefined

Type: Positivelnteger

You can only use break to terminate the evaluation of one loop. Let’s consider a loop within
a loop, that is, a loop with a nested loop. First, we initialize two counter variables.

(1,50 = (1, D

Type: Positivelnteger

Nested loops must have multiple break expressions at the appropriate nesting level. How
would you rewrite this so (i + j) > 10 is only evaluated once?

repeat
repeat
if (i + j) > 10 then break
ji=3+1
if (i + j) > 10 then break
i=1i+1

Type: Void
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5.4.4 Dbreak vs. => in Loop Bodies

Compare the following two loops:

i=1 ic=1

repeat repeat
i::=1+1 i::=1+1
i>3=>1i if i > 3 then break
output (1) output (i)

In the example on the left, the values 2 and 3 for i are displayed but then the “=>" does
not allow control to reach the call to output again. The loop will not terminate until you
run out of space or interrupt the execution. The variable ¢ will continue to be incremented
because the “=>” only means to leave the block, not the loop.

In the example on the right, upon reaching 4, the break will be executed, and both the
block and the loop will terminate. This is one of the reasons why both “=>” and break are
provided. Using a while clause (see below) with the “=>” lets you simulate the action of
break.

5.4.5 More Examples of break

Here we give four examples of repeat loops that terminate when a value exceeds a given
bound.

First, initialize ¢ as the loop counter.

i:=0

Type: NonNegativelnteger

Here is the first loop. When the square of i exceeds 100, the loop terminates.

repeat
i=1i+1
if i**2 > 100 then break

Type: Void

Upon completion, ¢ should have the value 11.

11
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Type:

Do the same thing except use “=>" instead an if-then expression.

i:=0
0
Type:
repeat
i=1+1
ix*2 > 100 => break
i
11
Type:
As a third example, we use a simple loop to compute n!.
(n, i, £) := (100, 1, 1)
1

Type:

Use i as the iteration variable and f to compute the factorial.

repeat
if i > n then break
= f x i
i+1

Look at the value of f.

f

199

NonNegativeInteger

NonNegativeInteger

Type: Void

NonNegativelnteger

Positivelnteger

Type: Void
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93326215443944152681699238856266700490715968264381621468_
59296389521759999322991560894146397615651828625369792082_
7223758251185210916864000000000000000000000000

Type: Positivelnteger

Finally, we show an example of nested loops. First define a four by four matrix.
m := matrix [ [21,37,53,14], [8,-24,22,-16], [2,10,15,14], [26,33,55,-13] 1]

21 37 53 14
8 —24 22 -16
2 10 15 14

26 33 55 -—13

Type: Matrix Integer

Next, set row counter r and column counter ¢ to 1. Note: if we were writing a function,
these would all be local variables rather than global workspace variables.

(r, ) := (1, 1)

Type: Positivelnteger
Also, let lastrow and lastcol be the final row and column index.

(lastrow, lastcol) := (nrows(m), ncols(m))

Type: Positivelnteger

Scan the rows looking for the first negative element. We remark that you can reformulate this
example in a better, more concise form by using a for clause with repeat. See section b43
on page for more information.

repeat
if r > lastrow then break
c =1
repeat
if ¢ > lastcol then break
if elt(m,r,c) < O then
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output [r, c, elt(m,r,c)]
r := lastrow
break -- don’t look any further
c:=c+1
r :=r +1

[2,2,- 24]

5.4.6 iterate in Loops

201

Type: Void

Axiom provides an iterate expression that skips over the remainder of a loop body and

starts the next loop iteration.

We first initialize a counter.

Type:

Display the even integers from 2 to 5.

repeat
i=1i+1
if i > 5 then break
if odd?(i) then iterate
output (1)

2
4

5.4.7 while Loops

NonNegativeInteger

Type: Void

The repeat in a loop can be modified by adding one or more while clauses. Fach clause
contains a predicate immediately following the while keyword. The predicate is tested before
the evaluation of the body of the loop. The loop body is evaluated whenever the predicates

in a while clause are all true.
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The syntax for a simple loop using while is
while predicate repeat loopBody

The predicate is evaluated before loopBody is evaluated. A while loop
terminates immediately when predicate evaluates to false or when a break
or return expression is evaluated in loopBody. The value returned by the
loop is the unique value of Void.

Here is a simple example of using while in a loop. We first initialize the counter.

i:=1

Type: Positivelnteger

The steps involved in computing this example are

(1) set i to 1,

(2) test the condition ¢ < 1 and determine that it is not true, and

(3) do not evaluate the loop body and therefore do not display ”hello”.

while i < 1 repeat
output "hello"
i=1i+1

Type: Void

If you have multiple predicates to be tested use the logical and operation to separate them.
Axiom evaluates these predicates from left to right.

(x, y) = (1, 1)

Type: Positivelnteger

while x < 4 and y < 10 repeat
output [x,y]
x :=x +1
y =y + 2

[1,1]
[2,3]
(3,5]
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Type: Void

A break expression can be included in a loop body to terminate a loop even if the predicate
in any while clauses are not false.

(x, y) := (1, D

Type: Positivelnteger

This loop has multiple while clauses and the loop terminates before any one of their condi-
tions evaluates to false.

while x < 4 while y < 10 repeat
if x + y > 7 then break
output [x,y]
x:=x+1

yi=y+2

[1,1]
[2,3]

Type: Void
Here’s a different version of the nested loops that looked for the first negative element in a
matrix.

m := matrix [ [21,37,53,14], [8,-24,22,-16], [2,10,15,14], [26,33,55,-13] ]

21 37 53 14
8§ =24 22 -16
2 10 15 14

26 33 55 -—13

Type: Matrix Integer

Initialized the row index to 1 and get the number of rows and columns. If we were writing
a function, these would all be local variables.
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Type:

(lastrow, lastcol) := (nrows(m), ncols(m))

Type:

Scan the rows looking for the first negative element.

while r <= lastrow repeat
c := 1 -- index of first column
while ¢ <= lastcol repeat
if elt(m,r,c) < O then
output [r, c, elt(m,r,c)]
r := lastrow
break -- don’t look any further
c:=c+1
r :=r +1

[2,2,- 24]

5.4.8 for Loops

Positivelnteger

Positivelnteger

Type: Void

Axiom provides the for and in keywords in repeat loops, allowing you to iterate across
all elements of a list, or to have a variable take on integral values from a lower bound to
an upper bound. We shall refer to these modifying clauses of repeat loops as for clauses.
These clauses can be present in addition to while clauses. As with all other types of repeat
loops, break can be used to prematurely terminate the evaluation of the loop.

The syntax for a simple loop using for is

for iterator repeat loopBody

of Void.

The iterator has several forms. Each form has an end test which is evaluated
before loopBody is evaluated. A for loop terminates immediately when the
end test succeeds (evaluates to true) or when a break or return expression
is evaluated in loopBody. The value returned by the loop is the unique value
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5.4.9 for iin n..m repeat

If for is followed by a variable name, the in keyword and then an integer segment of the form
n..m, the end test for this loop is the predicate ¢+ > m. The body of the loop is evaluated
m —n + 1 times if this number is greater than 0. If this number is less than or equal to 0,
the loop body is not evaluated at all.

The variable ¢ has the value n,n+1, ..., m for successive iterations of the loop body.The loop
variable is a local variable within the loop body: its value is not available outside the loop
body and its value and type within the loop body completely mask any outer definition of a
variable with the same name.

This loop prints the values of 103, 113, and 123:

for i in 10..12 repeat output (i**3)

1000
1331
1728

Type: Void
Here is a sample list.
a := [1,2,3]
[1,2,3]
Type: List Positivelnteger

Iterate across this list, using “.” to access the elements of a list and the “#” operation to
count its elements.

for i in 1..#a repeat output(a.i)

N

Type: Void

This type of iteration is applicable to anything that uses “.”. You can also use it with

functions that use indices to extract elements.

Define m to be a matrix.
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m := matrix [ [1,2],[4,3],[9,0] ]

O =~ =
S W N

Type: Matrix Integer

Display the rows of m.

for i in 1..nrows(m) repeat output row(m,i)

[1,2]
[4,3]
[9,0]
Type: Void
You can use iterate with for-loops.
Display the even integers in a segment.
for i in 1..5 repeat
if 0dd?(i) then iterate
output (i)
2
4
Type: Void

See Segment OR0 on page [59.

5.4.10 for i in n..m by s repeat

By default, the difference between values taken on by a variable in loops such as for i in
n..m repeat ... is 1. It is possible to supply another, possibly negative, step value by
using the by keyword along with for and in. Like the upper and lower bounds, the step
value following the by keyword must be an integer. Note that the loop for i in 1..2 by 0
repeat output(i) will not terminate by itself, as the step value does not change the index
from its initial value of 1.

This expression displays the odd integers between two bounds.

for i in 1..5 by 2 repeat output(i)
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1
3
5
Type: Void
Use this to display the numbers in reverse order.
for i in 5..1 by -2 repeat output(i)
5
3
1
Type: Void
5.4.11 for i in n.. repeat
If the value after the “..” is omitted, the loop has no end test. A potentially infinite loop

is thus created. The variable is given the successive values n,n 4+ 1,n + 2, ... and the loop is
terminated only if a break or return expression is evaluated in the loop body. However you
may also add some other modifying clause on the repeat (for example, a while clause) to
stop the loop.

This loop displays the integers greater than or equal to 15 and less than the first prime
greater than 15.

for i in 15.. while not prime?(i) repeat output(i)

15
16

Type: Void

5.4.12 for x in | repeat

Another variant of the for loop has the form:

for z in list repeat loopBody
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This form is used when you want to iterate directly over the elements of a list. In this form
of the for loop, the variable x takes on the value of each successive element in 1. The end
test is most simply stated in English: “are there no more x in 17”

If 1 is this list,
1 := [0,-5,3]
[0, -5, 3]
Type: List Integer
display all elements of 1, one per line.

for x in 1 repeat output(x)

Type: Void

Since the list constructing expression expand[n..m] creates the list [n,n + 1,...,m]. Note
that this list is empty if n > m. You might be tempted to think that the loops

for i in n..m repeat output(i)
and
for x in expand [n..m] repeat output(x)

are equivalent. The second form first creates the list expand [n. .m] (no matter how large it
might be) and then does the iteration. The first form potentially runs in much less space, as
the index variable ¢ is simply incremented once per loop and the list is not actually created.
Using the first form is much more efficient.

Of course, sometimes you really want to iterate across a specific list. This displays each of
the factors of 2400000.

for f in factors(factor(2400000)) repeat output(f)

[factor= 2,exponent= 8]
[factor= 3,exponent= 1]
[factor= 5,exponent= 5]

Type: Void
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5.4.13 “Such that” Predicates

((l”

and then a predicate. The predicate qualifies the use of
“]” as the phrase

A for loop can be followed by a
the values from the iterator following the for. Think of the vertical bar
“such that.”

This loop expression prints out the integers n in the given segment such that n is odd.

for n in 0..4 | odd? n repeat output n

Type: Void

A for loop can also be written
for iterator | predicate repeat loopBody

which is equivalent to:

for iterator repeat if predicate then loopBody else iterate

The predicate need not refer only to the variable in the for clause: any variable in an outer
scope can be part of the predicate.

In this example, the predicate on the inner for loop uses ¢ from the outer loop and the j
from the for clause that it directly modifies.

for i in 1..50 repeat
for j in 1..50 | factorial(i+j) < 25 repeat
output [i,j]

[1,1]
[1,2]
[1,3]
[2,1]
[2,2]
[3,1]

Type: Void

5.4.14 Parallel Iteration

The last example of the previous section BZT3 on page gives an example of nested
iteration: a loop is contained in another loop. Sometimes you want to iterate across two lists
in parallel, or perhaps you want to traverse a list while incrementing a variable.
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The general syntax of a repeat loop is
iteratory iterators ... iteratory repeat loopBody

where each iterator is either a for or a while clause. The loop terminates
immediately when the end test of any iterator succeeds or when a break or
return expression is evaluated in loopBody. The value returned by the loop
is the unique value of Void.

Here we write a loop to iterate across two lists, computing the sum of the pairwise product
of elements. Here is the first list.

1 := [1:3:5y7]

[1,3,5,7]
Type: List Positivelnteger
And the second.
m := [100,200]
[100, 200]
Type: List Positivelnteger
The initial value of the sum counter.
sum := 0
0

Type: NonNegativelnteger

The last two elements of | are not used in the calculation because m has two fewer elements
than [.

for x in 1 for y in m repeat
sum := sum + X*y

Type: Void

Display the “dot product.”
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sum

700

Type: NonNegativelnteger

Next, we write a loop to compute the sum of the products of the loop elements with their
positions in the loop.

1 := [2,3,5,7,11,13,17,19,23,29,31,37]
[2,3,5,7,11,13,17, 19,23, 29, 31, 37]
Type: List Positivelnteger

The initial sum.

sum := 0

Type: NonNegativelnteger

Here looping stops when the list [ is exhausted, even though the for i in 0.. specifies no
terminating condition.

for i in 0.. for x in 1 repeat sum := i * x

Type: Void

Display this weighted sum.

sum

407

Type: NonNegativelnteger

When “|” is used to qualify any of the for clauses in a parallel iteration, the variables in
the predicates can be from an outer scope or from a for clause in or to the left of a modified
clause.

This is correct:
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for i in 1..10 repeat
for j in 200..300 | o0dd? (i+j) repeat
output [i,j]

This is not correct since the variable j has not been defined outside the inner loop.

for i in 1..10 | odd? (i+j) repeat -- wrong, j not defined
for j in 200..300 repeat
output [i,j]

5.4.15 Mixing Loop Modifiers

This example shows that it is possible to mix several of the forms of repeat modifying
clauses on a loop.

for i in 1..10
for j in 151..160 | o0dd? j
while i + j < 160 repeat
output [i,j]

[1,151]
[3,153]

Type: Void

Here are useful rules for composing loop expressions:

1. while predicates can only refer to variables that are global (or in an outer scope) or
that are defined in for clauses to the left of the predicate.

2. A “such that” predicate (something following “|”) must directly follow a for clause
and can only refer to variables that are global (or in an outer scope) or defined in the
modified for clause or any for clause to the left.

5.5 Creating Lists and Streams with Iterators

All of what we did for loops in section B4 on page [J3 can be transformed into expressions
that create lists and streams. The repeat, break or iterate words are not used but all the
other ideas carry over. Before we give you the general rule, here are some examples which
give you the idea.

This creates a simple list of the integers from 1 to 10.

list := [i for i in 1..10]
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[1,2,3,4,5,6,7,8,9,10]
Type: List Positivelnteger

Create a stream of the integers greater than or equal to 1.
stream := [i for i in 1..]
[1,2,3,4,5,6,7,8,9,10,..]
Type: Stream Positivelnteger
This is a list of the prime integers between 1 and 10, inclusive.
[i for 1 in 1..10 | prime? i]
[2,3,5,7]
Type: List Positivelnteger
This is a stream of the prime integers greater than or equal to 1.
[i for 1 in 1.. | prime? i]
[2,3,5,7,11,13,17,19,23,29,.. ]
Type: Stream Positivelnteger

This is a list of the integers between 1 and 10, inclusive, whose squares are less than 700.

[i for i in 1..10 while i*i < 700]
[1,2,3,4,5,6,7,8,9,10]
Type: List Positivelnteger

This is a stream of the integers greater than or equal to 1 whose squares are less than 700.

[i for 1 in 1.. while i*i < 700]
[1,2,3,4,5,6,7,8,9,10,.. ]

Type: Stream Positivelnteger
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Here is the general rule.

The general syntax of a collection is
[ collectExpression iterator, iterators . ..iteratory ]

where each iterator; is either a for or a while clause. The loop terminates
immediately when the end test of any iterator; succeeds or when a return
expression is evaluated in collectExzpression. The value returned by the
collection is either a list or a stream of elements, one for each iteration of
the collectFExpression.

Be careful when you use while to create a stream. By default, Axiom tries to compute and
display the first ten elements of a stream. If the while condition is not satisfied quickly,
Axiom can spend a long (possibly infinite) time trying to compute the elements. Use )set
streams calculate to change the default to something else. This also affects the number
of terms computed and displayed for power series. For the purposes of this book, we have
used this system command to display fewer than ten terms.

Use nested iterators to create lists of lists which can then be given as an argument to matrix.

matrix [ [x**i+j for i in 1..3] for j in 10..12]

z4+10 22410 z®+10

r+11 z2+11 22+ 11
x+12 22412 22412

Type: Matrix Polynomial Integer

You can also create lists of streams, streams of lists and streams of streams. Here is a stream
of streams.

[ [i/j for i in j+1..] for j in 1..]
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[4

,’572)Z7§73’E7E74’§’. ’ §7§’z72,2,§72737§7z7. ’
133 33 373 3 4°2°4° "4°2° 4 472
6789, 111213 14 4 r43511, 13758
_575a5a5775>5,5757, ’6’3’273’67’673’2’3, ’

10 11413 145 16 17 , 19
_9797379797379797797"’

11 6 13 7 3 8 17 9 19 ] }

Type: Stream Stream Fraction Integer
You can use parallel iteration across lists and streams to create new lists.
[i/j for i in 3.. by 10 for j in 2..]

3 13 23 33 43 53 63 73 83 93

273747576 778797107117
Type: Stream Fraction Integer
Iteration stops if the end of a list or stream is reached.
[i**j for i in 1..7 for j in 2.. ]
[1,8,81,1024, 15625, 279936, 5764801]
Type: Stream Integer
As with loops, you can combine these modifiers to make very complicated conditions.

[ [ [i,j] for i in 10..15 | prime? i] for j in 17..22 | j = squareFreePart
il

[[[11,17], [13, 17]], [[11,19], [13, 19]], [[11, 21], [13, 21]], [[11, 22], [13, 22]]]
Type: List List List Positivelnteger

See List on page B3 and Stream on page BID for more information on creating
and manipulating lists and streams, respectively.
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5.6 An Example: Streams of Primes

We conclude this chapter with an example of the creation and manipulation of infinite
streams of prime integers. This might be useful for experiments with numbers or other
applications where you are using sequences of primes over and over again. As for all streams,
the stream of primes is only computed as far out as you need. Once computed, however, all
the primes up to that point are saved for future reference.

Two useful operations provided by the Axiom library are prime? and nextPrime. A
straight-forward way to create a stream of prime numbers is to start with the stream of
positive integers [2,..] and filter out those that are prime.

Create a stream of primes.
primes : Stream Integer := [i for i in 2.. | prime? i]
2,3,5,7,11,13,17,19,23,29, .. ]
Type: Stream Integer

A more elegant way, however, is to use the generate operation from Stream. Given an
initial value a and a function f, generate constructs the stream [a, f(a), f(f(a)),...]. This
function gives you the quickest method of getting the stream of primes.

This is how you use generate to generate an infinite stream of primes.
primes := generate(nextPrime,2)
(2,3,5,7,11,13,17,19,23,29,.. ]
Type: Stream Integer

Once the stream is generated, you might only be interested in primes starting at a particular
value.

smallPrimes := [p for p in primes | p > 1000]
[1009,1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, . . .]

Type: Stream Integer

Here are the first 11 primes greater than 1000.

[p for p in smallPrimes for i in 1..11]

[1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, . .
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Type: Stream Integer

Here is a stream of primes between 1000 and 1200.

[p for p in smallPrimes while p < 1200]

[1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, . .

Type: Stream Integer

To get these expanded into a finite stream, you call complete on the stream.

complete %

[1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, . .

Type: Stream Integer

Twin primes are consecutive odd number pairs which are prime. Here is the stream of twin
primes.

twinPrimes := [ [p,p+2] for p in primes | prime?(p + 2)]
[[3,5],[5, 7], [11, 13], [17,19],[29, 31], [41, 43], [59, 61], [71, 73],
[101,103],[107,109],...]

Type: Stream List Integer

Since we already have the primes computed we can avoid the call to prime? by using a
double iteration. This time we’ll just generate a stream of the first of the twin primes.

firstOfTwins:= [p for p in primes for q in rest primes | g=p+2]
[3,5,11,17,29,41,59,71,101, 107,. . .]
Type: Stream Integer

Let’s try to compute the infinite stream of triplet primes, the set of primes p such that
[p,p + 2,p + 4] are primes. For example, [3,5,7] is a triple prime. We could do this by a
triple for iteration. A more economical way is to use firstOfTwins. This time however,
put a semicolon at the end of the line.

Create the stream of firstTriplets. Put a semicolon at the end so that no elements are
computed.
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firstTriplets := [p for p in firstOfTwins for q in rest firstOfTwins | q =
p+21;

Type: Stream Integer

What happened? As you know, by default Axiom displays the first ten elements of a stream
when you first display it. And, therefore, it needs to compute them! If you want no elements
computed, just terminate the expression by a semicolon (“;”). The semi-colon prevents the
display of the result of evaluating the expression. Since no stream elements are needed for
display (or anything else, so far), none are computed.

Compute the first triplet prime.

firstTriplets.1

Type: Positivelnteger

If you want to compute another, just ask for it. But wait a second! Given three consecutive
odd integers, one of them must be divisible by 3. Thus there is only one triplet prime. But
suppose that you did not know this and wanted to know what was the tenth triplet prime.

firstTriples.10

To compute the tenth triplet prime, Axiom first must compute the second, the third, and so
on. But since there isn’t even a second triplet prime, Axiom will compute forever. Nonethe-
less, this effort can produce a useful result. After waiting a bit, hit . The system

responds as follows.

>> System error:

Console interrupt.

You are being returned to the top level of

the interpreter.
If you want to know how many primes have been computed, type:
number0fComputedEntries primes

and, for this discussion, let’s say that the result is 2045. How big is the 2045-th prime?

primes.2045

17837
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Type: Positivelnteger

What you have learned is that there are no triplet primes between 5 and 17837. Although
this result is well known (some might even say trivial), there are many experiments you
could make where the result is not known. What you see here is a paradigm for testing of
hypotheses. Here our hypothesis could have been: “there is more than one triplet prime.”
We have tested this hypothesis for 17837 cases. With streams, you can let your machine
run, interrupt it to see how far it has progressed, then start it up and let it continue from
where it left off.
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Chapter 6

User-Defined Functions, Macros
and Rules

In this chapter we show you how to write functions and macros, and we explain how Axiom
looks for and applies them. We show some simple one-line examples of functions, together
with larger ones that are defined piece-by-piece or through the use of piles.

6.1 Functions vs. Macros

A function is a program to perform some computation. Most functions have names so that
it is easy to refer to them. A simple example of a function is one named abs which computes
the absolute value of an integer.

This is a use of the “absolute value” library function for integers.

abs(-8)

Type: Positivelnteger

This is an unnamed function that does the same thing, using the “maps-to” syntax +-> that
we discuss in section BT4 on page PG4.

(x +-> if x < 0 then -x else x)(-8)

Type: Positivelnteger

221
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Functions can be used alone or serve as the building blocks for larger programs. Usually
they return a value that you might want to use in the next stage of a computation, but not
always (for example, see Exit on page and Void 100 on page BEhY. They may also
read data from your keyboard, move information from one place to another, or format and
display results on your screen.

In Axiom, as in mathematics, functions are usually parameterized. Each time you call (some
people say apply or invoke) a function, you give values to the parameters (variables). Such a
value is called an argument of the function. Axiom uses the arguments for the computation.
In this way you get different results depending on what you “feed” the function.

Functions can have local variables or refer to global variables in the workspace. Axiom can
often compile functions so that they execute very efficiently. Functions can be passed as
arguments to other functions.

Macros are textual substitutions. They are used to clarify the meaning of constants or ex-
pressions and to be templates for frequently used expressions. Macros can be parameterized
but they are not objects that can be passed as arguments to functions. In effect, macros are
extensions to the Axiom expression parser.

6.2 Macros

A macro provides general textual substitution of an Axiom expression for a name. You can
think of a macro as being a generalized abbreviation. You can only have one macro in your
workspace with a given name, no matter how many arguments it has.

The two general forms for macros are

macro name == body
macro name(argl,...) == body

where the body of the macro can be any Axiom expression.

For example, suppose you decided that you like to use df for D. You define the macro df like
this.

macro df ==

Type: Void
Whenever you type df, the system expands it to D.
df (x**2 + x + 1,x)

2x+1
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Type: Polynomial Integer

Macros can be parameterized and so can be used for many different kinds of objects.

macro ff(x) == x**2 + 1

Type: Void

Apply it to a number, a symbol, or an expression.

ff z

Type: Polynomial Integer

Macros can also be nested, but you get an error message if you run out of space because of
an infinite nesting loop.

macro gg(x) == ff(2%x - 2/3)

Type: Void

This new macro is fine as it does not produce a loop.
gg(1/w)

13 w2 — 24 w+ 36
9 w2

Type: Fraction Polynomial Integer
This, however, loops since gg is defined in terms of ££.
macro ff(x) == gg(-x)
Type: Void

The body of a macro can be a block.

macro next == (past := present; present := future; future := past + present)
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Before entering next, we need values for present and future.

present : Integer := 0

future : Integer :=1

Repeatedly evaluating next produces the next Fibonacci number.

next

And the next one.

next

Here is the infinite stream of the rest of the Fibonacci numbers.

[next for i in 1..]
[3,5,8,13,21,34,55,89,144, 233, . . .]
Type:

Bundle all the above lines into a single macro.

Type: Void
Type: Integer
Type: Integer
Type: Integer
Type: Integer

Stream Integer
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macro fibStream ==
present : Integer :=1
future : Integer :=1
[next for i in 1..] where
macro next ==

past := present
present := future
future := past + present

Type: Void

Use concat to start with the first two Fibonacci numbers.

concat([1,1],fibStream)

[1,1,2,3,5,8,13,21,34,55,.. ]

Type: Stream Integer
The library operation fibonacci is an easier way to compute these numbers.

[fibonacci i for i in 1..]

[1,1,2,3,5,8,13,21,34,55,.. ]

Type: Stream Integer

6.3 Introduction to Functions

Each name in your workspace can refer to a single object. This may be any kind of object
including a function. You can use interactively any function from the library or any that
you define in the workspace. In the library the same name can have very many functions,
but you can have only one function with a given name, although it can have any number of
arguments that you choose.

If you define a function in the workspace that has the same name and number of arguments as
one in the library, then your definition takes precedence. In fact, to get the library function
you must package-call it (see section B9 on page [53).

To use a function in Axiom, you apply it to its arguments. Most functions are applied by
entering the name of the function followed by its argument or arguments.

factor(12)
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2°3
Type: Factored Integer

Some functions like “+” have infix operators as names.

3 +4

Type: Positivelnteger

The function “+” has two arguments. When you give it more than two arguments, Axiom
groups the arguments to the left. This expression is equivalent to (1 + 2) + 7.

1+2+7

10

Type: Positivelnteger

All operations, including infix operators, can be written in prefix form, that is, with the op-
eration name followed by the arguments in parentheses. For example, 2+ 3 can alternatively
be written as +(2,3). But +(2, 3,4) is an error since + takes only two arguments.

Prefix operations are generally applied before the infix operation. Thus the form factorial 3+
1 means factorial(3) + 1 producing 7, and —2 + 5 means (—2) + 5 producing 3. An example
of a prefix operator is prefix “~”. For example, —2 4+ 5 converts to (—2) + 5 producing the
value 3. Any prefix function taking two arguments can be written in an infix manner by
putting an ampersand “&” before the name. Thus D(2 x z,z) can be written as 2 x &D =
returning 2.

Every function in Axiom is identified by a name and type. (An exception is an “anonymous
function” discussed in section B2 on page E64.) The type of a function is always a mapping
of the form Source — Target where Source and Target are types. To enter a type from the
keyboard, enter the arrow by using a hyphen “-” followed by a greater-than sign “>”, e.g.
Integer -> Integer.

Let’s go back to “+”. There are many “+” functions in the Axiom library: one for integers,
one for floats, another for rational numbers, and so on. These “+” functions have different
types and thus are different functions. You've seen examples of this overloading before—using
the same name for different functions. Overloading is the rule rather than the exception.
You can add two integers, two polynomials, two matrices or two power series. These are all
done with the same function name but with different functions.
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6.4 Declaring the Type of Functions

In section E23 on page 33 we discussed how to declare a variable to restrict the kind of
values that can be assigned to it. In this section we show how to declare a variable that
refers to function objects.

A function is an object of type
Source — Type

where Source and Target can be any type. A common type for Source is
Tuple(Th, ..., Ty), usually written (T4, ..., Ty,), to indicate a function of
n arguments.

If g takes an Integer, a Float and another Integer, and returns a String, the declaration
is written:

g: (Integer,Float,Integer) -> String

Type: Void

The types need not be written fully; using abbreviations, the above declaration is:

g: (INT,FLOAT,INT) -> STRING

Type: Void

It is possible for a function to take no arguments. If h takes no arguments but returns a
Polynomial Integer, any of the following declarations is acceptable.

h: () -> POLY INT

Type: Void

h: () -> Polynomial INT

Type: Void

h: () -> POLY Integer
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Type: Void

Functions can also be declared when they are being defined. The syntax for
combined declaration/definition is:

functionName(parm, : parmType,, ..., parmpy: parmTypey) :
functionReturn Type

The following definition fragments show how this can be done for the functions g and h
above.

g(argl: INT, arg2: FLOAT, arg3: INT): STRING == ...
h(): POLY INT == ...
A current restriction on function declarations is that they must involve fully specified types

(that is, cannot include modes involving explicit or implicit “?”). For more information on
declaring things in general, see section 223 on page [C33.

6.5 Omne-Line Functions

As you use Axiom, you will find that you will write many short functions to codify sequences
of operations that you often perform. In this section we write some simple one-line functions.

This is a simple recursive factorial function for positive integers.

fac n == if n < 3 then n else n * fac(n-1)

Type: Void

fac 10
3628800
Type: Positivelnteger

This function computes 1 +1/24+1/3+ ...+ 1/n.

s n == reduce(+,[1/i for i in 1..n])
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Type: Void

s 50

13943237577224054960759
3099044504245996706400

Type: Fraction Integer

This function computes a Mersenne number, several of which are prime.

mersenne i == 2*x*xi - 1

Type: Void
If you type mersenne, Axiom shows you the function definition.
mersenne
mersenne i == 2'—1
Type: FunctionCalled mersenne

Generate a stream of Mersenne numbers.
[mersenne i for i in 1..]
[1,3,7,15,31,63,127,255,511,1023, .. .]
Type: Stream Integer

Create a stream of those values of 7 such that mersenne (i) is prime.

mersennelndex := [n for n in 1.. | prime?(mersenne(n))]

Compiling function mersenne with type Positivelnteger -> Integer
[2,3,5,7,13,17,19,31,61,89,.. ]
Type: Stream Positivelnteger

Finally, write a function that returns the n-th Mersenne prime.
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mersennePrime n == mersenne mersennelndex(n)

Type: Void

mersennePrime 5

8191

Type: Positivelnteger

6.6 Declared vs. Undeclared Functions

If you declare the type of a function, you can apply it to any data that can be converted to
the source type of the function.

Define f with type Integer — Integer.

f(x: Integer): Integer == x + 1

Function declaration f : Integer -> Integer has been added to
workspace.

Type: Void
The function f can be applied to integers, ...

£f9

Compiling function f with type Integer -> Integer
10

Type: Positivelnteger

and to values that convert to integers, ...

£(-2.0)
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Type: Integer
but not to values that cannot be converted to integers.

£(2/3)

Conversion failed in the compiled user function f

Cannot convert from type Fraction Integer to Integer for value
2

3

To make the function over a wide range of types, do not declare its type. Give the same
definition with no declaration.

gx=x+1

Type: Void
If x + 1 makes sense, you can apply g to x.

g 9

Compiling function g with type Positivelnteger -> Positivelnteger

10

Type: Positivelnteger

A version of g with different argument types get compiled for each new kind of argument
used.

g(2/3)

Compiling function g with type Fraction Integer -> Fraction Integer

Type: Fraction Integer
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Here 2 + 1 for x = "axiom” makes no sense.

g("axiom")

There are 11 exposed and 5 unexposed library operations named +
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue

)display op +
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.

Cannot find a definition or applicable library operation named +
with argument type(s)

String
Positivelnteger

Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.

AXIOM will attempt to step through and interpret the code.

There are 11 exposed and 5 unexposed library operations named +
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue

)display op +
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.

Cannot find a definition or applicable library operation named +
with argument type(s)
String
Positivelnteger

Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.

As you will see in section [ on page 824, Axiom has a formal idea of categories for what
“makes sense.”

6.7 Functions vs. Operations

A function is an object that you can create, manipulate, pass to, and return from func-
tions (for some interesting examples of library functions that manipulate functions, see
MappingPackagel on page BUA. Yet, we often seem to use the term operation and
function interchangeably in Axiom. What is the distinction?
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First consider values and types associated with some variable n in your workspace. You can
make the declaration n : Integer, then assign n an integer value. You then speak of the
integer n. However, note that the integer is not the name n itself, but the value that you
assign to n.

Similarly, you can declare a variable f in your workspace to have type Integer — Integer,
then assign f, through a definition or an assignment of an anonymous function. You then
speak of the function f. However, the function is not f, but the value that you assign to f.

A function is a value, in fact, some machine code for doing something. Doing what? Well,
performing some operation. Formally, an operation consists of the constituent parts of f in
your workspace, excluding the value; thus an operation has a name and a type. An operation
is what domains and packages export. Thus Ring exports one operation “+”. Every ring
also exports this operation. Also, the author of every ring in the system is obliged under
contract (see section T3 on page HIA to provide an implementation for this operation.

This chapter is all about functions—how you create them interactively and how you apply
them to meet your needs. In section [ on page BI3 you will learn how to create them for the
Axiom library. Then in section [ on page B2, you will learn about categories and exported
operations.

6.8 Delayed Assignments vs. Functions with No Argu-
ments

In section B on page I3 we discussed the difference between immediate and delayed as-
signments. In this section we show the difference between delayed assignments and functions
of no arguments.

A function of no arguments is sometimes called a nullary function.

sin24() == sin(24.0)

Type: Void

You must use the parentheses “()” to evaluate it. Like a delayed assignment, the right-
hand-side of a function evaluation is not evaluated until the left-hand-side is used.

sin24()

Compiling function sin24 with type () -> Float

—0.9055783620 0662384514

Type: Float
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If you omit the parentheses, you just get the function definition.
sin24
sin24 () == sin(24.0)
Type: FunctionCalled sin24
You do not use the parentheses “()” in a delayed assignment. . .

cos24 == cos(24.0)

Type: Void
nor in the evaluation.

cos24

Compiling body of rule cos24 to compute value of type Float

0.4241790073 3699697594

Type: Float

The only syntactic difference between delayed assignments and nullary functions is that you
use “()” in the latter case.

6.9 How Axiom Determines What Function to Use

What happens if you define a function that has the same name as a library function? Well,
if your function has the same name and number of arguments (we sometimes say arity) as
another function in the library, then your function covers up the library function. If you
want then to call the library function, you will have to package-call it. Axiom can use both
the functions you write and those that come from the library. Let’s do a simple example to
illustrate this.

Suppose you (wrongly!) define sin in this way.

sin x == 1.0

Type: Void
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The value 1.0 is returned for any argument.

sin 4.3

Compiling function sin with type Float -> Float

1.0

Type: Float

If you want the library operation, we have to package-call it (see section 229 on page 53 for
more information).

sin(4.3)$Float

—0.91616593674945498404

Type: Float

sin(34.6)$Float
—0.042468034716950101543
Type: Float

Even worse, say we accidentally used the same name as a library function in the function.

sin x == sin x

Compiled code for sin has been cleared.
1 old definition(s) deleted for function or rule sin

Type: Void
Then Axiom definitely does not understand us.
sin 4.3
AXIOM cannot determine the type of sin because it cannot analyze

the non-recursive part, if that exists. This may be remedied
by declaring the function.
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Again, we could package-call the inside function.

sin x == sin(x)$Float

1 o0ld definition(s) deleted for function or rule sin

Type: Void

sin 4.3

Compiling function sin with type Float -> Float

+++ |*1;sin;1;G82322| redefined

—0.91616593674945498404

Type: Float

Of course, you are unlikely to make such obvious errors. It is more probable that you would
write a function and in the body use a function that you think is a library function. If you
had also written a function by that same name, the library function would be invisible.

How does Axiom determine what library function to call? It very much depends on the
particular example, but the simple case of creating the polynomial x + 2/3 will give you an

idea.

1.

o

10.

The z is analyzed and its default type is Variable(x).

2. The 2 is analyzed and its default type is PositiveInteger.
3.
4

The 3 is analyzed and its default type is PositiveInteger.

. Because the arguments to “/” are integers, Axiom gives the expression 2/3 a default

target type of Fraction(Integer).
Axiom looks in PositiveInteger for “/”. It is not found.
Axiom looks in Fraction(Integer) for “/”. It is found for arguments of type Integer.

The 2 and 3 are converted to objects of type Integer (this is trivial) and “/” is applied,
creating an object of type Fraction(Integer).

No “+” for arguments of types Variable(x) and Fraction(Integer) are found in
either domain.

Axiom resolves (see section 210 on page [58) the types and gets Polynomial (Fraction
(Integer)).

The z and the 2/3 are converted to objects of this type and + is applied, yielding the
answer, an object of type Polynomial (Fraction (Integer)).
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6.10 Compiling vs. Interpreting

When possible, Axiom completely determines the type of every object in a function, then
translates the function definition to Common Lisp or to machine code (see the next section).
This translation, called compilation, happens the first time you call the function and results
in a computational delay. Subsequent function calls with the same argument types use the
compiled version of the code without delay.

If Axiom cannot determine the type of everything, the function may still be executed but in
interpret-code mode: each statement in the function is analyzed and executed as the control
flow indicates. This process is slower than executing a compiled function, but it allows the
execution of code that may involve objects whose types change.

If Axiom decides that it cannot compile the code, it issues a message stating
the problem and then the following message:

We will attempt to step through and interpret the code.

This is not a time to panic. Rather, it just means that what you gave to
Axiom is somehow ambiguous: either it is not specific enough to be analyzed
completely, or it is beyond Axiom’s present interactive compilation abilities.

This function runs in interpret-code mode, but it does not compile.

varPolys(vars) ==
for var in vars repeat

output(l :: UnivariatePolynomial(var,Integer))
Type: Void
For vars equal to [z, y,’ 2], this function displays 1 three times.
varPolys [’x,’y,’z]
Cannot compile conversion for types involving local variables.
In particular, could not compile the expression involving ::
UnivariatePolynomial (var, Integer)
AXIOM will attempt to step through and interpret the code.
1
1
1
Type: Void

The type of the argument to output changes in each iteration, so Axiom cannot compile
the function. In this case, even the inner loop by itself would have a problem:
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for var in [’x,’y,’z] repeat
output(l :: UnivariatePolynomial(var,Integer))

Cannot compile conversion for types involving local variables.
In particular, could not compile the expression involving ::
UnivariatePolynomial (var, Integer)

AXIOM will attempt to step through and interpret the code.
1
1
1

Type: Void

Sometimes you can help a function to compile by using an extra conversion or by using
pretend. See section 228 on page [ for details.

When a function is compilable, you have the choice of whether it is compiled to Common Lisp
and then interpreted by the Common Lisp interpreter or then further compiled from Common
Lisp to machine code. The option is controlled via )set functions compile. Issue )set
functions compile on to compile all the way to machine code. With the default setting
)set functions compile off, Axiom has its Common Lisp code interpreted because the
overhead of further compilation is larger than the run-time of most of the functions our users
have defined. You may find that selectively turning this option on and off will give you the
best performance in your particular application. For example, if you are writing functions
for graphics applications where hundreds of points are being computed, it is almost certainly
true that you will get the best performance by issuing )set functions compile on.

6.11 Piece-Wise Function Definitions

To move beyond functions defined in one line, we introduce in this section functions that are
defined piece-by-piece. That is, we say “use this definition when the argument is such-and-
such and use this other definition when the argument is that-and-that.”

6.11.1 A Basic Example
There are many other ways to define a factorial function for nonnegative integers. You might

say factorial of 0 is 1, otherwise factorial of n is n times factorial of n — 1. Here is one way
to do this in Axiom.

Here is the value for n = 0.

fact(0) ==

Type: Void
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Here is the value for n > 0. The vertical bar means “such that”.

LLl”

fact(n | n > 0) == n * fact(n - 1)

Type:

What is the value for n = 77

fact(7)

Compiling function fact with type Integer -> Integer
Compiling function fact as a recurrence relation.

5040

239

Void

Type: Positivelnteger

What is the value for n = —37

fact(-3)

You did not define fact for argument -3 .

Now for a second definition. Here is the value for n = 0.

facto(0) == 1

Type:
Give an error message if n < 0.
facto(n | n < 0) == error "arguments to facto must be non-negative"
Type:

Here is the value otherwise.

facto(n) == n * facto(n - 1)

Type:

Void

Void

Void
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What is the value for n = 77

facto(3)

Compiling function facto with type Integer -> Integer

Type: Positivelnteger

What is the value for n = —77

facto(-7)

Error signalled from user code in function facto:
arguments to facto must be non-negative

Type: Positivelnteger

To see the current piece-wise definition of a function, use )display value.

)display value facto

Definition:
facto 0 ==
facto (n | n < 0) ==
error (arguments to facto must be non-negative)
facto n == n facto(n - 1)

In general a piece-wise definition of a function consists of two or more parts. Each part
gives a “piece” of the entire definition. Axiom collects the pieces of a function as you enter
them. When you ask for a value of the function, it then “glues” the pieces together to form
a function.

The two piece-wise definitions for the factorial function are examples of recursive functions,
that is, functions that are defined in terms of themselves. Here is an interesting doubly-
recursive function. This function returns the value 11 for all positive integer arguments.

Here is the first of two pieces.

eleven(n | n < 1) ==n + 11

Type: Void



6.11. PIECE-WISE FUNCTION DEFINITIONS

And the general case.

eleven(m) == eleven(eleven(m - 12))

Compute elevens, the infinite stream of values of eleven.

elevens := [eleven(i) for i in 0..]

[11,11,11,11,11,11,11,11,11,11,.. ]

What is the value at n = 2007

elevens 200

11
What is the Axiom’s definition of eleven?
)display value eleven
Definition:
eleven (m | m < 1) ==m + 11
eleven m == eleven(eleven(m - 12))

6.11.2 Picking Up the Pieces

Type:

Type:
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Type: Void

Stream Integer

Positivelnteger

Here are the details about how Axiom creates a function from its pieces. Axiom converts the
i-th piece of a function definition into a conditional expression of the form: if pred; then
expression;. If any new piece has a pred; that is identical (after all variables are uniformly
named) to an earlier pred;, the earlier piece is removed. Otherwise, the new piece is always

added at the end.

if pred; then expression, else

if pred, then expression,, else
error "You did not define f for argument <arg>."

If there are n pieces to a function definition for f, the function defined f is:
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You can give definitions of any number of mutually recursive function definitions, piece-wise
or otherwise. No computation is done until you ask for a value. When you do ask for a value,
all the relevant definitions are gathered, analyzed, and translated into separate functions and
compiled.

Let’s recall the definition of eleven from the previous section.

eleven(n | n < 1) ==n + 11

Type: Void

eleven(m) == eleven(eleven(m - 12))

Type: Void

A similar doubly-recursive function below produces —11 for all negative positive integers. If
you haven’t worked out why or how eleven works, the structure of this definition gives a
clue.

This definition we write as a block.

minusEleven(n) ==
n>0-=>n- 11
minusEleven (5 + minusEleven(n + 7))

Type: Void

Define s(n) to be the sum of plus and minus “eleven” functions divided by n. Since 11—11 =
0, we define s(0) to be 1.

s(0) ==

Type: Void
And the general term.
s(n) == (eleven(n) + minusEleven(n))/n

Type: Void

What are the first ten values of s?
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[s(n) for n in 0..]
1,1,1,1,1,1,1,1,1,1,.. ]

Type: Stream Fraction Integer

Axiom can create infinite streams in the positive direction (for example, for index values
0,1,...) or negative direction (for example, for 0, —1,—2,...). Here we would like a stream
of values of s(n) that is infinite in both directions. The function ¢(n) below returns the n-th
term of the infinite stream

[8(0)? 8(1)7 S(_1)7 5(2)7 S(_2)7 .- ]
Its definition has three pieces.

Define the initial term.

t(1) == s(0)
Type: Void

The even numbered terms are the s() for positive i. We use “quo” rather than “/” since we
want the result to be an integer.

t(n | even?(n)) == s(n quo 2)

Type: Void

Finally, the odd numbered terms are the s(i) for negative i. In piece-wise definitions, you
can use different variables to define different pieces. Axiom will not get confused.

t(p) == s(- p quo 2)
Type: Void

Look at the definition of ¢. In the first piece, the variable n was used; in the second piece,
p. Axiom always uses your last variable to display your definitions back to you.

)display value t

Definition:
t 1 == s(0)
t (p | even?(p)) == s(p quo 2)
t p==s(-p quo 2)
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Create a series of values of s applied to alternating positive and negative arguments.

[t(i) for i in 1..]

Compiling function s with type Integer -> Fraction Integer
Compiling function t with type Positivelnteger -> Fraction Integer

1,1,1,1,1,1,1,1,1,1,.. ]
Type: Stream Fraction Integer
Evidently t(n) =1 for all i. Check it at n = 100.

+(100)

Type: Fraction Integer

6.11.3 Predicates

We have already seen some examples of predicates (section BT on page E38. Predicates
are Boolean-valued expressions and Axiom uses them for filtering collections (see section b3
on page P2 and for placing constraints on function arguments. In this section we discuss
their latter usage.

The simplest use of a predicate is one you don’t see at all.

opposite ’right == ’left

Type: Void
Here is a longer way to give the “opposite definition.”
opposite (x | x = ’left) == ’right

Type: Void
Try it out.

for x in [’right,’left,’inbetween] repeat output opposite x
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Compiling function opposite with type
OrderedVariablelList [right, left,inbetween] -> Symbol
left
right

The function opposite is not defined for the given argument(s).

Explicit predicates tell Axiom that the given function definition piece is to be applied if the
predicate evaluates to true for the arguments to the function. You can use such “constant”
arguments for integers, strings, and quoted symbols. The Boolean values true and false
can also be used if qualified with “@Q” or “$” and Boolean. The following are all valid
function definition fragments using constant arguments.

a(l) == ...

b("unramified") == ...

c(’untested) == ...

d(true@Boolean) == ...

If a function has more than one argument, each argument can have its own predicate. How-
ever, if a predicate involves two or more arguments, it must be given after all the arguments

mentioned in the predicate have been given. You are always safe to give a single predicate
at the end of the argument list.

A function involving predicates on two arguments.
inFirstHalfQuadrant(x | x > 0,y | y < x) == true

Type: Void
This is incorrect as it gives a predicate on y before the argument y is given.

inFirstHalfQuadrant(x | x > 0 and y < x,y) == true

1 o0ld definition(s) deleted for function or rule inFirstHalfQuadrant
Type: Void
It is always correct to write the predicate at the end.

inFirstHalfQuadrant(x,y | x > 0 and y < x) == true

1 o0ld definition(s) deleted for function or rule inFirstHalfQuadrant
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Type: Void
Here is the rest of the definition.
inFirstHalfQuadrant(x,y) == false

Type: Void
Try it out.

[inFirstHalfQuadrant(i,3) for i in 1..5]

Compiling function inFirstHalfQuadrant with type (Positivelnteger,
PositivelInteger) -> Boolean

[false, false,false, true,true]

Type: List Boolean

6.12 Caching Previously Computed Results

By default, Axiom does not save the values of any function. You can cause it to save values
and not to recompute unnecessarily by using )set functions cache. This should be used
before the functions are defined or, at least, before they are executed. The word following
“cache” should be 0 to turn off caching, a positive integer n to save the last n computed
values or “all” to save all computed values. If you then give a list of names of functions,
the caching only affects those functions. Use no list of names or “all” when you want to
define the default behavior for functions not specifically mentioned in other )set functions
cache statements. If you give no list of names, all functions will have the caching behavior.
If you explicitly turn on caching for one or more names, you must explicitly turn off caching
for those names when you want to stop saving their values.

This causes the functions f and g to have the last three computed values saved.

)set functions cache 3 f g

function f will cache the last 3 values.
function g will cache the last 3 values.

This is a sample definition for f.

f x == factorial (2*x*x)
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Type: Void

A message is displayed stating what f will cache.

£(4)

Compiling function f with type Positivelnteger -> Integer
f will cache 3 most recently computed value(s).

+++ |*1;f;1;G82322| redefined
20922789888000

Type: Positivelnteger

This causes all other functions to have all computed values saved by default.

)set functions cache all

In general, interpreter functions will cache all values.

This causes all functions that have not been specifically cached in some way to have no
computed values saved.

)set functions cache 0

In general, functions will cache no returned values.

We also make f and g uncached.

)set functions cache O f g

Caching for function f is turned off
Caching for function g is turned off

Be careful about caching functions that have side effects. Such a function
might destructively modify the elements of an array or issue a draw
command, for example. A function that you expect to execute every time
it is called should not be cached. Also, it is highly unlikely that a function
with no arguments should be cached.

You should also be careful about caching functions that depend on free variables. See
section 618 on page for an example.
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6.13 Recurrence Relations

One of the most useful classes of function are those defined via a “recurrence relation.” A
recurrence relation makes each successive value depend on some or all of the previous values.
A simple example is the ordinary “factorial” function:

fact(0) ==
fact(n | n > 0) == n * fact(n-1)

The value of fact(10) depends on the value of fact(9), fact(9) on fact(8), and so on.
Because it depends on only one previous value, it is usually called a first order recurrence
relation. You can easily imagine a function based on two, three or more previous values.
The Fibonacci numbers are probably the most famous function defined by a second order
recurrence relation.

The library function fibonacci computes Fibonacci numbers. It is obviously optimized for
speed.

[fibonacci(i) for i in 0..]
[0,1,1,2,3,5,8,13,21,34,...]
Type: Stream Integer

Define the Fibonacci numbers ourselves using a piece-wise definition.

fib(1) == 1

Type: Void
fib(2) == 1

Type: Void
fib(n) == fib(n-1) + fib(n-2)

Type: Void

As defined, this recurrence relation is obviously doubly-recursive. To compute fib(10), we
need to compute fib(9) and fib(8). And to fib(9), we need to compute fib(8) and fib(7).
And so on. It seems that to compute fib(10) we need to compute fib(9) once, fib(8) twice,
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fib(7) three times. Look familiar? The number of function calls needed to compute any
second order recurrence relation in the obvious way is exactly fib(n). These numbers grow!
For example, if Axiom actually did this, then fib(500) requires more than 10'°* function
calls. And, given all this, our definition of fib obviously could not be used to calculate the
five-hundredth Fibonacci number.

Let’s try it anyway.

£ib(500)

Compiling function fib with type Integer -> Positivelnteger
Compiling function fib as a recurrence relation.

13942322456169788013972438287040728395007025658769730726410_
8962948325571622863290691557658876222521294125

Type: Positivelnteger

Since this takes a short time to compute, it obviously didn’t do as many as 10'%* opera-

tions! By default, Axiom transforms any recurrence relation it recognizes into an iteration.
Iterations are efficient. To compute the value of the n-th term of a recurrence relation us-
ing an iteration requires only n function calls. Note that if you compare the speed of our
fib function to the library function, our version is still slower. This is because the library
fibonacci uses a “powering algorithm” with a computing time proportional to log®(n) to
compute fibonacci(n).

To turn off this special recurrence relation compilation, issue
)set functions recurrence off

To turn it back on, substitute “on” for “off”.

The transformations that Axiom uses for fib caches the last two values. For a more general
k-th order recurrence relation, Axiom caches the last k values. If, after computing a value
for fib, you ask for some larger value, Axiom picks up the cached values and continues
computing from there. See section EI@ on page for an example of a function definition
that has this same behavior. Also see section B2 on page for a more general discussion
of how you can cache function values.

Recurrence relations can be used for defining recurrence relations involving polynomials,
rational functions, or anything you like. Here we compute the infinite stream of Legendre
polynomials.

The Legendre polynomial of degree 0.

p(0) == 1

Type: Void
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The Legendre polynomial of degree 1.

p(1) ==

Type: Void
The Legendre polynomial of degree n.
p@) == ((2*n-1)*x*p(n-1) - (n-D*p(n-2))/n

Type: Void

Compute the Legendre polynomial of degree 6.

p(6)

Compiling function p with type Integer -> Polynomial Fraction
Integer
Compiling function p as a recurrence relation.

281 ¢ 315 4 105 , 5

— — —
16 16 16 16

Type: Polynomial Fraction Integer

6.14 Making Functions from Objects

There are many times when you compute a complicated expression and then wish to use that
expression as the body of a function. Axiom provides an operation called function to do
this. It creates a function object and places it into the workspace. There are several versions,
depending on how many arguments the function has. The first argument to function is
always the expression to be converted into the function body, and the second is always the
name to be used for the function. For more information, see MakeFunction B on page GI3.

Start with a simple example of a polynomial in three variables.
P = X + y*%2 - z*x*x3
Y N

Type: Polynomial Integer
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To make this into a function of no arguments that simply returns the polynomial, use the
two argument form of function.

function(p, ’£0)
f0
Type: Symbol
To avoid possible conflicts (see below), it is a good idea to quote always this second argument.
fo
f0) == —2+y2—a
Type: FunctionCalled fO

This is what you get when you evaluate the function.

£f00)

. B

Type: Polynomial Integer

To make a function in x, use a version of function that takes three arguments. The last
argument is the name of the variable to use as the parameter. Typically, this variable occurs
in the expression and, like the function name, you should quote it to avoid possible confusion.
function(p,’f1,’x)
f1

Type: Symbol
This is what the new function looks like.
f1

flz == 22 4+4*—2

Type: FunctionCalled f1

This is the value of f1 at x = 3. Notice that the return type of the function is Polynomial
(Integer), the same as p.
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£1(3)

Compiling function f1 with type Positivelnteger -> Polynomial
Integer

_23 + y2 -3
Type: Polynomial Integer
To use x and y as parameters, use the four argument form of function.

function(p,’£2,’x,’y)
f2
Type: Symbol
£2
f2 (zy) == 2 +y* -2
Type: FunctionCalled £f2

Evaluate f2 at x = 3 and y = 0. The return type of f2 is still Polynomial (Integer) because
the variable z is still present and not one of the parameters.

£2(3,0)
-4 -3
Type: Polynomial Integer

Finally, use all three variables as parameters. There is no five argument form of function,
so use the one with three arguments, the third argument being a list of the parameters.

function(p,’£3,[’x,’y,’z])
f3
Type: Symbol

Evaluate this using the same values for x and y as above, but let z be —6. The result type
of f3 is Integer.
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£3

f3 (x,y,z) == —23+y2—1’

Type: FunctionCalled £3
£3(3,0,-6)

Compiling function f3 with type (PositiveInteger,NonNegativelnteger,
Integer) -> Integer

213

Type: Positivelnteger

The four functions we have defined via p have been undeclared. To declare a function whose
body is to be generated by function, issue the declaration before the function is created.

g: (Integer, Integer) -> Float
Type: Void

D(sin(x-y)/cos(x+y) ,x)

—sin (y — «) sin (y + ) + cos (y — ) cos (y + )

cos (y + z)°

Type: Expression Integer

function(%,’g,’x,’y)

Type: Symbol

—sin (y — z) sin (y + z) + cos (y — ) cos (y + x)
cos (y + x)°

g (v,y) ==
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Type: FunctionCalled g

It is an error to use g without the quote in the penultimate expression since g had been
declared but did not have a value. Similarly, since it is common to overuse variable names
like x, y, and so on, you avoid problems if you always quote the variable names for function.
In general, if x has a value and you use z without a quote in a call to function, then Axiom
does not know what you are trying to do.

What kind of object is allowable as the first argument to function? Let’s use the Browse
facility of HyperDoc to find out. At the main Browse menu, enter the string function and
then click on Operations. The exposed operations called function all take an object whose
type belongs to category ConvertibleTo InputForm. What domains are those? Go back to
the main Browse menu, erase function, enter ConvertibleTo in the input area, and click
on categories on the Constructors line. At the bottom of the page, enter InputForm in
the input area following S =. Click on Cross Reference and then on Domains. The list
you see contains over forty domains that belong to the category ConvertibleTo InputForm.
Thus you can use function for Integer, Float, Symbol, Complex, Expression, and so on.

6.15 Functions Defined with Blocks

You need not restrict yourself to functions that only fit on one line or are written in a
piece-wise manner. The body of the function can be a block, as discussed in section B2 on
page I[X9.

Here is a short function that swaps two elements of a list, array or vector.

swap(m,i,j) ==

temp := m.i
m.i :=m.j
m.j := temp

Type: Void

The significance of swap is that it has a destructive effect on its first argument.

k := [1,2,3,4,5]

[1,2,3,4,5]

Type: List Positivelnteger

swap(k,2,4)
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Compiling function swap with type (List PositivelInteger,
PositivelInteger,PositivelInteger) -> PositiveInteger

2

Type: Positivelnteger

You see that the second and fourth elements are interchanged.
k
[1,4,3,2,5]
Type: List Positivelnteger

Using this, we write a couple of different sort functions. First, a simple bubble sort. The
operation “#” returns the number of elements in an aggregate.

bubbleSort(m) ==
n := #n
for i in 1..(n-1) repeat

for j in n..(i+1) by -1 repeat
if m.j < m.(j-1) then swap(m,j,j-1)

Type: Void
Let this be the list we want to sort.
m := [8,4,-3,9]
[8,4,—3,9]
Type: List Integer

This is the result of sorting.

bubbleSort (m)

Compiling function swap with type (List Integer,Integer,Integer) ->
Integer

+++ |*3;swap;1;G82322| redefined
Compiling function bubbleSort with type List Integer -> List Integer
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[—3,4,8,9]
Type: List Integer
Moreover, m is destructively changed to be the sorted version.
m
[—3,4,8,9]
Type: List Integer

This function implements an insertion sort. The basic idea is to traverse the list and insert
the i-th element in its correct position among the i — 1 previous elements. Since we start at
the beginning of the list, the list elements before the i-th element have already been placed
in ascending order.
insertionSort(m) ==
for i in 2..#m repeat
j =1
while j > 1 and m.j < m.(j-1) repeat
swap(m,j,j-1)
ji=3-1

Type: Void
As with our bubble sort, this is a destructive function.
m = [8:4’_3:9]

[8,4,—3,9]

Type: List Integer

insertionSort (m)

Compiling function insertionSort with type List Integer -> List
Integer

[_37 47 83 9]

Type: List Integer
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[—3,4,8,9]
Type: List Integer

Neither of the above functions is efficient for sorting large lists since they reference elements
by asking for the j-th element of the structure m.

Here is a more efficient bubble sort for lists.

bubbleSort2(m: List Integer): List Integer ==
null m => m

1l :=m
while not null (r := l.rest) repeat
r := bubbleSort2 r
x := 1l.first
if x < r.first then
1.first := r.first
r.first := x
l.rest :=r
1 := l.rest
m

Function declaration bubbleSort2 : List Integer -> List Integer has
been added to workspace.

Type: Void

Try it out.

bubbleSort2 [3,7,2]

[7,3,2]
Type: List Integer

This definition is both recursive and iterative, and is tricky! Unless you are really curious
about this definition, we suggest you skip immediately to the next section.

Here are the key points in the definition. First notice that if you are sorting a list with
less than two elements, there is nothing to do: just return the list. This definition returns
immediately if there are zero elements, and skips the entire while loop if there is just one
element.
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The second point to realize is that on each outer iteration, the bubble sort ensures that the
minimum element is propagated leftmost. Each iteration of the while loop calls bubble-
Sort2 recursively to sort all but the first element. When finished, the minimum element is
either in the first or second position. The conditional expression ensures that it comes first.
If it is in the second, then a swap occurs. In any case, the rest of the original list must be

updated to hold the result of the recursive call.

6.16 Free and Local Variables

When you want to refer to a variable that is not local to your function, use a “free” decla-
ration. Variables declared to be free are assumed to be defined globally in the workspace.

This is a global workspace variable.

counter := 0

Type:

This function refers to the global counter.

£f() ==
free counter
counter := counter + 1

The global counter is incremented by 1.

£O

Compiling function f with type () -> NonNegativeInteger

+++ |*0;f;1;G82322| redefined

Type:

counter

NonNegativeInteger

Type: Void

Positivelnteger
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Type: NonNegativelnteger

Usually Axiom can tell that you mean to refer to a global variable and so free isn’t always
necessary. However, for clarity and the sake of self-documentation, we encourage you to use
it.

Declare a variable to be “local” when you do not want to refer to a global variable by the
same name.

This function uses counter as a local variable.

g( ==
local counter
counter := 7

Type: Void

Apply the function.

g0

Type: Positivelnteger

Check that the global value of counter is unchanged.

counter

Type: NonNegativelnteger

Parameters to a function are local variables in the function. FEven if you issue a free
declaration for a parameter, it is still local.

What happens if you do not declare that a variable z in the body of your function is local
or free? Well, Axiom decides on this basis:

1. Axiom scans your function line-by-line, from top-to-bottom. The right-hand side of an
assignment is looked at before the left-hand side.

2. If x is referenced before it is assigned a value, it is a free (global) variable.

3. If x is assigned a value before it is referenced, it is a local variable.
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Set two global variables to 1.

Type: Positivelnteger

Refer to a before it is assigned a value, but assign a value to b before it is referenced.

h() ==
b:=a+1
a :=b+ a

Type: Void

Can you predict this result?

h(Q)

Compiling function h with type () -> Positivelnteger

+++ |*0;h;1;G82322| redefined

Type: Positivelnteger

How about this one?

[a, D]

Type: List Positivelnteger

What happened? In the first line of the function body for &, a is referenced on the right-hand
side of the assignment. Thus a is a free variable. The variable b is not referenced in that
line, but it is assigned a value. Thus b is a local variable and is given the value a +1 = 2. In
the second line, the free variable a is assigned the value b + a which equals 2 4+ 1 = 3. This
is the value returned by the function. Since a was free in h, the global variable a has value
3. Since b was local in h, the global variable b is unchanged—it still has the value 1.
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It is good programming practice always to declare global variables. However, by far the most
common situation is to have local variables in your functions. No declaration is needed for
this situation, but be sure to initialize their values.

Be careful if you use free variables and you cache the value of your function (see section 612
on page P48). Caching only checks if the values of the function arguments are the same as
in a function call previously seen. It does not check if any of the free variables on which the
function depends have changed between function calls.

Turn on caching for p.

)set fun cache all p

function p will cache all values.

Define p to depend on the free variable N.

p(i,x) == ( free N; reduce( + , [ (x-i)**n for n in 1..N ] ) )

Type: Void

Set the value of .

N :=1
1
Type: Positivelnteger
Evaluate p the first time.
p(0, x)
z
Type: Polynomial Integer
Change the value of N.
N :=2
2

Type: Positivelnteger
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Evaluate p the second time.

p(0, x)

Polynomial Integer

If caching had been turned off, the second evaluation would have reflected the changed value

of N.
Turn off caching for p.

)set fun cache O p

Caching for function p is turned off

Axiom does not allow fluid variables, that is, variables bound by a function f that can be

referenced by functions called by f.

Values are passed to functions by reference: a pointer to the value is passed rather than a

copy of the value or a pointer to a copy.

This is a global variable that is bound to a record object.

r : Record(i : Integer) := [1]

Record(i: Integer)

This function first modifies the one component of its record argument and then rebinds the

parameter to another record.
resetRecord rr ==

rr.i := 2
rr := [10]

Pass r as an argument to resetRecord.

resetRecord r

Type: Void
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Type: Record(i: Integer)

The value of r was changed by the expression rr.i := 2 but not by rr := [10].

r

Type: Record(i: Integer)

To conclude this section, we give an iterative definition of a function that computes Fi-
bonacci numbers. This definition approximates the definition into which Axiom transforms
the recurrence relation definition of fib in section B13 on page PZ3.

Global variables past and present are used to hold the last computed Fibonacci numbers.

past := present :=1

Type: Positivelnteger

Global variable index gives the current index of present.

index := 2

Type: Positivelnteger

Here is a recurrence relation defined in terms of these three global variables.

fib(n) ==
free past, present, index
n<3=>1

n = index - 1 => past
if n < index-1 then

(past,present) := (1,1)
index := 2
while (index < n) repeat
(past,present) := (present, past+present)
index := index + 1
present

Type: Void
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Compute the infinite stream of Fibonacci numbers.
fibs := [fib(n) for n in 1..]
[1,1,2,3,5,8,13,21,34,55,.. ]
Type: Stream Positivelnteger

What is the 1000th Fibonacci number?

fibs 1000

434665576869374564356885276750406258025646605173717804024 _
8172908953655541794905189040387984007925516929592259308_
0322634775209689623239873322471161642996440906533187938_
298969649928516003704476137795166849228875

Type: Positivelnteger

As an exercise, we suggest you write a function in an iterative style that computes the
value of the recurrence relation p(n) = p(n — 1) — 2p(n — 2) + 4p(n — 3) having the initial
values p(1) =1, p(2) = 3 and p(3) = 9. How would you write the function using an element
OneDimensionalArray or Vector to hold the previously computed values?

6.17 Anonymous Functions

An anonymous function is a function that is defined by giving a list of pa-
rameters, the “maps-to” compound symbol “+->" (from the mathematical
symbol ), and by an expression involving the parameters, the evaluation
of which determines the return value of the function.

( parmy, parmsg, ..., parmy ) +=> expression

You can apply an anonymous function in several ways.

1. Place the anonymous function definition in parentheses directly followed by a list of
arguments.

2. Assign the anonymous function to a variable and then use the variable name when you
would normally use a function name.

3. Use “==" to use the anonymous function definition as the arguments and body of a
regular function definition.

4. Have a named function contain a declared anonymous function and use the result
returned by the named function.
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6.17.1 Some Examples

Anonymous functions are particularly useful for defining functions “on the fly.” That is, they
are handy for simple functions that are used only in one place. In the following examples,
we show how to write some simple anonymous functions.

This is a simple absolute value function.

x +-> if x < 0 then -x else x

. th —
r—if x <0 en
else x
Type: AnonymousFunction
absl := Y
x—=ifx<0 then —
else z

Type: AnonymousFunction

This function returns true if the absolute value of the first argument is greater than the
absolute value of the second, false otherwise.

(x,y) +-> abs1(x) > absi(y)

(x,y) — absl (y) < absl (z)

Type: AnonymousFunction
We use the above function to “sort” a list of integers.
sort (%, [3,9,-4,10,-3,-1,-9,5]1)
[10,-9,9,5,—4,-3,3,—1]
Type: List Integer
This function returns 1 if ¢ + j is even, —1 otherwise.
ev := ( (i,j) +-> if even?(i+j) then 1 else -1)

then 1

. ‘ o (i1 s
(i,5) = if even? (i + j) clse — 1
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Type: AnonymousFunction

We create a four-by-four matrix containing 1 or —1 depending on whether the row plus the
column index is even or not.

matrix([ [ev(row,col) for row in 1..4] for col in 1..4])

Type: Matrix Integer

This function returns true if a polynomial in x has multiple roots, false otherwise. It is
defined and applied in the same expression.

( p +=> not one?(gcd(p,D(p,x))) ) (x**2+4*x+4)

true

Type: Boolean

This and the next expression are equivalent.

g(x,y,z) == cos(x + sin(y + tan(z)))

Type: Void
The one you use is a matter of taste.
g == (x,y,z) +-> cos(x + sin(y + tan(z)))
1 0ld definition(s) deleted for function or rule g
Type: Void

6.17.2 Declaring Anonymous Functions
If you declare any of the arguments you must declare all of them. Thus,

(x: INT,y): FRAC INT +-> (x + 2*%y)/(y - 1)
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is not legal.

This is an example of a fully declared anonymous function. The output shown just indicates
that the object you created is a particular kind of map, that is, function.

(x: INT,y: INT): FRAC INT +-> (x + 2xy)/(y - 1)
theMap(...)
Type: ((Integer,Integer) -> Fraction Integer)
Axiom allows you to declare the arguments and not declare the return type.
(x: INT,y: INT) +-> (x + 2*y)/(y - 1)
theMap(...)
Type: ((Integer,Integer) -> Fraction Integer)

The return type is computed from the types of the arguments and the body of the function.
You cannot declare the return type if you do not declare the arguments. Therefore,

(x,y): FRAC INT +-> (x + 2%y)/(y - 1)
is not legal. This and the next expression are equivalent.

h(x: INT,y: INT): FRAC INT == (x + 2%y)/(y - 1)

Function declaration h : (Integer,Integer) -> Fraction Integer
has been added to workspace.

Type: Void
The one you use is a matter of taste.

h == (x: INT,y: INT): FRAC INT +-> (x + 2xy)/(y - 1)

Function declaration h : (Integer,Integer) -> Fraction Integer
has been added to workspace.
1 0l1d definition(s) deleted for function or rule h

Type: Void

When should you declare an anonymous function?
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. If you use an anonymous function and Axiom can’t figure out what you are trying to

do, declare the function.

. If the function has nontrivial argument types or a nontrivial return type that Axiom

may be able to determine eventually, but you are not willing to wait that long, declare
the function.

. If the function will only be used for arguments of specific types and it is not too much

trouble to declare the function, do so.

. If you are using the anonymous function as an argument to another function (such as

map or sort), consider declaring the function.

. If you define an anonymous function inside a named function, you must declare the

anonymous function.

is an example of a named function for integers that returns a function.

addx x == ((y: Integer): Integer +-> x + y)

Type: Void

We define g to be a function that adds 10 to its argument.

g := addx 10
Compiling function addx with type
PositiveInteger -> (Integer -> Integer)
theMap(...)
Type: (Integer -> Integer)
Try it out.
g 3
13
Type: Positivelnteger
g(-4)
6

Type: Positivelnteger

An anonymous function cannot be recursive: since it does not have a name, you cannot
even call it within itself! If you place an anonymous function inside a named function, the
anonymous function must be declared.
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6.18 Example: A Database
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This example shows how you can use Axiom to organize a database of lineage data and then

query the database for relationships.

The database is entered as “assertions” that are really pieces of a function definition.

children("albert") == ["albertJr","richard","diane"]

Type:
Each piece children(z) == y means “the children of x are y”.
children("richard") == ["douglas","daniel","susan"]

Type:
This family tree thus spans four generations.
children("douglas") == ["dougie","valerie"]

Type:
Say “no one else has children.”
children(x) == []

Type:
We need some functions for computing lineage. Start with childOf.
child0f (x,y) == member?(x,children(y))

Type:

Void

Void

Void

Void

Void

To find the parent0f someone, you have to scan the database of people applying children.

parentOf (x) ==
for y in people repeat
(if childOf(x,y) then return y)
"unknown"
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Type: Void
And a grandparent of x is just a parent of a parent of x.
grandParent0f (x) == parentOf parentOf x

Type: Void
The grandchildren of x are the people y such that x is a grandparent of y.
grandchildren(x) == [y for y in people | grandParentOf(y) = x]

Type: Void

Suppose you want to make a list of all great-grandparents. Well, a great-grandparent is a
grandparent of a person who has children.

greatGrandParents == [x for x in people |
reduce (_or,
[not empty? children(y) for y in grandchildren(x)],false)]

Type: Void

Define descendants to include the parent as well.

descendants(x) ==
kids := children(x)
null kids => [x]
concat (x,reduce(concat, [descendants (y)
for y in kids],[1))

Type: Void
Finally, we need a list of people. Since all people are descendants of “albert”, let’s say so.

people == descendants "albert"
Type: Void

We have used “==" to define the database and some functions to query the database. But no
computation is done until we ask for some information. Then, once and for all, the functions
are analyzed and compiled to machine code for run-time efficiency. Notice that no types are
given anywhere in this example. They are not needed.

Who are the grandchildren of “richard”?
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grandchildren "richard"

Compiling function children with type String -> List String
Compiling function descendants with type String -> List String
Compiling body of rule people to compute value of type List String
Compiling function childOf with type (String,String) -> Boolean
Compiling function parent0Of with type String -> String

Compiling function grandParentOf with type String -> String
Compiling function grandchildren with type String -> List String

["dougie", "valerie"]
Type: List String
Who are the great-grandparents?

greatGrandParents

Compiling body of rule greatGrandParents to compute value of
type List String

["albert"]

Type: List String

6.19 Example: A Famous Triangle

In this example we write some functions that display Pascal’s triangle. It demonstrates the
use of piece-wise definitions and some output operations you probably haven’t seen before.

To make these output operations available, we have to ezpose the domain OutputForm. See
section 27T on page for more information about exposing domains and packages.

)set expose add constructor OutputForm

OutputForm is now explicitly exposed in frame G82322

Define the values along the first row and any column 3.

pascal(1l,i) == 1
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Type: Void

Define the values for when the row and column index ¢ are equal. Repeating the argument
name indicates that the two index values are equal.

pascal(n,n) == 1

Type: Void

pascal(i,j | 1 < i and i < j) ==

pascal(i-1,j-1)+pascal(i,j-1)

Type: Void

Now that we have defined the coefficients in Pascal’s triangle, let’s write a couple of one-liners
to display it.
First, define a function that gives the n-th row.

pascalRow(n) == [pascal(i,n) for i in 1..n]

Type: Void

Next, we write the function displayRow to display the row, separating entries by blanks
and centering.

displayRow(n) == output center blankSeparate pascalRow(n)

Type: Void

Here we have used three output operations. Operation output displays the printable form
of objects on the screen, center centers a printable form in the width of the screen, and
blankSeparate takes a list of n printable forms and inserts a blank between successive
elements.

Look at the result.

for i in 1..7 repeat displayRow i
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Compiling function pascal with type (Integer,Integer) ->
Positivelnteger

Compiling function pascalRow with type PositiveInteger -> List
Positivelnteger

Compiling function displayRow with type PositiveInteger -> Void

1464
1510 10

1
161520 1561

Type: Void

Being purists, we find this less than satisfactory. Traditionally, elements of Pascal’s triangle
are centered between the left and right elements on the line above.

To fix this misalignment, we go back and redefine pascalRow to right adjust the entries
within the triangle within a width of four characters.

pascalRow(n) == [right(pascal(i,n),4) for i in 1..n]

Compiled code for pascalRow has been cleared.
Compiled code for displayRow has been cleared.
1 old definition(s) deleted for function or rule pascalRow

Type: Void

Finally let’s look at our purely reformatted triangle.
for i in 1..7 repeat displayRow i
Compiling function pascalRow with type Positivelnteger -> List
OutputForm

+++ |*1;pascalRow;1;G82322| redefined
Compiling function displayRow with type PositiveInteger -> Void

+++ |*1;displayRow;1;G82322| redefined
1
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Type: Void

Unexpose OutputForm so we don’t get unexpected results later.

)set expose drop constructor OutputForm

OutputForm is now explicitly hidden in frame G82322

6.20 Example: Testing for Palindromes

In this section we define a function pal? that tests whether its argument is a palindrome,
that is, something that reads the same backwards and forwards. For example, the string
“Madam I'm Adam” is a palindrome (excluding blanks and punctuation) and so is the
number 123454321. The definition works for any datatype that has n components that are
accessed by the indices 1...n.

Here is the definition for pal?. It is simply a call to an auxiliary function called palAux?.
We are following the convention of ending a function’s name with ? if the function returns
a Boolean value.

pal? s == palAux?(s,1,#s)

Type: Void

Here is palAux?. It works by comparing elements that are equidistant from the start and
end of the object.

palAux?(s,i,j) ==
j>i=>
(s.i = s.j) and palAux?(s,i+1,i-1)
true

Type: Void

Try pal? on some examples. First, a string.
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pal? "Oxford"

Compiling function palAux? with type (String,Integer,Integer) ->
Boolean
Compiling function pal? with type String -> Boolean

false

Type: Boolean

A list of polynomials.

pal? [4,a,x-1,0,x-1,a,4]

Compiling function palAux? with type (List Polynomial Integer,
Integer,Integer) -> Boolean
Compiling function pal? with type List Polynomial Integer -> Boolean

true
Type: Boolean

A list of integers from the example in the last section.

pal? [1,6,15,20,15,6,1]

Compiling function palAux? with type (List PositivelInteger,Integer,
Integer) -> Boolean
Compiling function pal? with type List PositiveInteger -> Boolean

true
Type: Boolean
To use pal? on an integer, first convert it to a string.
pal?(1441::String)

true

Type: Boolean
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Compute an infinite stream of decimal numbers, each of which is an obvious palindrome.

ones := [reduce(+,[10**j for j in 0..i]) for i in 1..]
[11,111,1111,11111,111111,1111111,

11111111,111111111, 1111111111, 11111111111, .. ]

Type: Stream Positivelnteger

)set streams calculate 9

How about their squares?

squares := [x**2 for x in ones]
[121,12321,1234321, 123454321, 12345654321, 1234567654321,
123456787654321, 12345678987654321, 1234567900987654321,

123456790120987654321, . . ]

Type: Stream PositiveIlnteger

Well, let’s test them all.

[pal?(x::String) for x in squares]

[true, true, true, true, true, true, true, true, true, true,.. |

Type: Stream Boolean

)set streams calculate 7

6.21 Rules and Pattern Matching

A common mathematical formula is
log(z) + log(y) = log(xy) Vax and y

The presence of “V” indicates that x and y can stand for arbitrary mathematical expressions
in the above formula. You can use such mathematical formulas in Axiom to specify “rewrite
rules”. Rewrite rules are objects in Axiom that can be assigned to variables for later use,
often for the purpose of simplification. Rewrite rules look like ordinary function definitions
except that they are preceded by the reserved word rule. For example, a rewrite rule for the
above formula is:
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rule log(x) + log(y) == log(x * y)

Like function definitions, no action is taken when a rewrite rule is issued. Think of rewrite
rules as functions that take one argument. When a rewrite rule A = B is applied to an
argument f, its meaning is: “rewrite every subexpression of f that matches A by B.” The
left-hand side of a rewrite rule is called a pattern; its right-hand side is called its substitution.

Create a rewrite rule named logrule. The generated symbol beginning with a “%” is a
place-holder for any other terms that might occur in the sum.

logrule := rule log(x) + log(y) == log(x * y)

log (y) + log (z) + %C== log (z y) + %C

Type: RewriteRule(Integer,Integer,Expression Integer)

Create an expression with logarithms.

f := log sin x + log x

log (sin (z)) + log (z)

Type: Expression Integer

Apply logrule to f.

logrule f

log (z sin (x))
Type: Expression Integer

The meaning of our example rewrite rule is: “for all expressions = and y, rewrite log(z) +
log(y) by log(x = y).” Patterns generally have both operation names (here, log and “+”)
and variables (here, x and y). By default, every operation name stands for itself. Thus log
matches only “log” and not any other operation such as sin. On the other hand, variables
do not stand for themselves. Rather, a variable denotes a pattern variable that is free to
match any expression whatsoever.

When a rewrite rule is applied, a process called pattern matching goes to work by system-
atically scanning the subexpressions of the argument. When a subexpression is found that
“matches” the pattern, the subexpression is replaced by the right-hand side of the rule. The
details of what happens will be covered later.

The customary Axiom notation for patterns is actually a shorthand for a longer, more general
notation. Pattern variables can be made explicit by using a percent “%” as the first character
of the variable name. To say that a name stands for itself, you can prefix that name with a
quote operator “’”. Although the current Axiom parser does not let you quote an operation
name, this more general notation gives you an alternate way of giving the same rewrite rule:
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rule log(%x) + log(hy) == log(x * y)

This longer notation gives you patterns that the standard notation won’t handle. For exam-
ple, the rule

rule %f(c * ’x) == cx*%f(x)

means “for all f and ¢, replace f(y) by ¢ f(x) when y is the product of ¢ and the explicit
variable x.”

Thus the pattern can have several adornments on the names that appear there. Normally,
all these adornments are dropped in the substitution on the right-hand side.

To summarize:

To enter a single rule in Axiom, use the following syntax:
rule leftHandSide == rightHandSide

The leftHandSide is a pattern to be matched and the rightHandSide is
its substitution. The rule is an object of type RewriteRule that can be
assigned to a variable and applied to expressions to transform them.

Rewrite rules can be collected into rulesets so that a set of rules can be applied at once.
Here is another simplification rule for logarithms.

ylog(z) =log(z¥) Va and y

If instead of giving a single rule following the reserved word rule you give a “pile” of rules,
you create what is called a ruleset. Like rules, rulesets are objects in Axiom and can be
assigned to variables. You will find it useful to group commonly used rules into input files,
and read them in as needed.

Create a ruleset named logrules.

logrules := rule
log(x) + log(y) == log(x * y)
y * log x == log(x ** y)

{log (y) + log (z) + %B==log (z y) + %B, y log (x)== log (z¥)}

Type: Ruleset(Integer,Integer,Expression Integer)

Again, create an expression f containing logarithms.

f := a * log(sin x) - 2 * log x

a log (sin (z)) — 2 log (x)
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Type: Expression Integer

Apply the ruleset logrules to f.

logrules f

log (sinm(;s)“)

We have allowed pattern variables to match arbitrary expressions in the above examples.
Often you want a variable only to match expressions satisfying some predicate. For example,
we may want to apply the transformation

Type: Expression Integer

ylog(z) = log(z¥)
only when y is an integer.

((|77
)

The way to restrict a pattern variable y by a predicate f(y) is by using a vertical bar
which means “such that,” in much the same way it is used in function definitions. You do
this only once, but at the earliest (meaning deepest and leftmost) part of the pattern.

This restricts the logarithmic rule to create integer exponents only.
logrules2 := rule

log(x) + log(y) == log(x * y)

(y | integer? y) * log x == log(x ** y)

{log (y) + log (z) + % D== log (z y) + %D,y log (x)== log (z¥)}
Type: Ruleset(Integer,Integer,Expression Integer)
Compare this with the result of applying the previous set of rules.
£
a log (sin (z)) — 2 log (x)

Type: Expression Integer

logrules2 £

x2

a log (sin (z)) + log ( ! )
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Type: Expression Integer

You should be aware that you might need to apply a function like integer within your
predicate expression to actually apply the test function.

Here we use integer because n has type Expression Integer but even? is an operation
defined on integers.

evenRule := rule cos(x)**(n | integer? n and even? integer
n)==(1-sin(x) **2) **(n/2)

N3

cos (x)"'== (—sin (z)® + 1)
Type: RewriteRule(Integer,Integer,Expression Integer)
Here is the application of the rule.
evenRule( cos(x)**2 )
. 2
—sin (x)” 4+ 1
Type: Expression Integer
This is an example of some of the usual identities involving products of sines and cosines.
sinCosProducts == rule
sin(x) * sin(y) == (cos(x-y) - cos(x + y))/2
cos(x) * cos(y) == (cos(x-y) + cos(x+y))/2

sin(x) * cos(y) == (sin(x-y) + sin(x + y))/2

Type: Void

g := sin(a)*sin(b) + cos(b)*cos(a) + sin(2xa)*cos(2xa)

sin (a) sin (b) 4 cos (2 a) sin (2 a) 4 cos (a) cos (b)

Type: Expression Integer
sinCosProducts g

Compiling body of rule sinCosProducts to compute value of type
Ruleset(Integer,Integer,Expression Integer)
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sin (4 a) + 2 cos (b — a)
2

Type: Expression Integer

Another qualification you will often want to use is to allow a pattern to match an identity
element. Using the pattern x 4 y, for example, neither x nor y matches the expression 0.
Similarly, if a pattern contains a product x % y or an exponentiation x * xy, then neither x
or y matches 1.

If identical elements were matched, pattern matching would generally loop. Here is an
expansion rule for exponentials.

exprule := rule exp(a + b) == exp(a) * exp(b)
e(b+a):: % eb
Type: RewriteRule(Integer,Integer,Expression Integer)

This rule would cause infinite rewriting on this if either a or b were allowed to match 0.

exprule exp x

Type: Expression Integer

There are occasions when you do want a pattern variable in a sum or product to match 0
or 1. If so, prefix its name with a “?” whenever it appears in a left-hand side of a rule. For
example, consider the following rule for the exponential integral:

/(y—;e )dmz/idm—&—Ei(x) Va and y

This rule is valid for y = 0. One solution is to create a Ruleset with two rules, one with
and one without y. A better solution is to use an “optional” pattern variable.

Define rule eirule with a pattern variable 7y to indicate that an expression may or may not
occur.

eirule := rule integral((?y + exp x)/x,x) == integral(y/x,x) + Ei x
/ e%iM—w d%M=="integral (%,x) +'Ei ()

Type: RewriteRule(Integer,Integer,Expression Integer)
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Apply rule eirule to an integral without this term.
eirule integral(exp u/u, u)

Type: Expression Integer
Apply rule eirule to an integral with this term.

eirule integral(sin u + exp u/u, u)

(7
/ sin (% M) d%M + Ei (u)
Type: Expression Integer

Here is one final adornment you will find useful. When matching a pattern of the form x +y
to an expression containing a long sum of the form a + ... + b, there is no way to predict
in advance which subset of the sum matches x and which matches y. Aside from efficiency,
this is generally unimportant since the rule holds for any possible combination of matches
for x and y. In some situations, however, you may want to say which pattern variable is a
sum (or product) of several terms, and which should match only a single term. To do this,
put a prefix colon “:” before the pattern variable that you want to match multiple terms.

The remaining rules involve operators u and v.

u := operator ’u

Type: BasicOperator

These definitions tell Axiom that v and v are formal operators to be used in expressions.

v := operator ’v

Type: BasicOperator

First define myRule with no restrictions on the pattern variables z and y.

myRule := rule u(x +y) ==ux + vy
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u(y +z)=="v(y) + u(x)
Type: RewriteRule(Integer,Integer,Expression Integer)
Apply myRule to an expression.
myRule u(a + b + ¢ + d)
v(d+c+b)+u(a)
Type: Expression Integer
Define myOtherRule to match several terms so that the rule gets applied recursively.
myOtherRule := rule u(:ix +y) ==ux + vy
wly+x)=="0 () +"u(x)
Type: RewriteRule(Integer,Integer,Expression Integer)
Apply myOtherRule to the same expression.
myOtherRule u(a + b + ¢ + d)
v(c)+v(b)+v(a)+ u(d)

Type: Expression Integer

Summary of pattern variable adornments:

(x | predicate?(x)) means that the substutution s for x
must satisfy predicate(s) = true.

7x means that £ can match an identity
element (0 or 1).

'X means that z can match several terms
in a sum.

Here are some final remarks on pattern matching. Pattern matching provides a very useful
paradigm for solving certain classes of problems, namely, those that involve transformations
of one form to another and back. However, it is important to recognize its limitations.

First, pattern matching slows down as the number of rules you have to apply increases. Thus
it is good practice to organize the sets of rules you use optimally so that irrelevant rules are
never included.
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Second, careless use of pattern matching can lead to wrong answers. You should avoid using
pattern matching to handle hidden algebraic relationships that can go undetected by other
programs. As a simple example, a symbol such as “J” can easily be used to represent the
square root of —1 or some other important algebraic quantity. Many algorithms branch on
whether an expression is zero or not, then divide by that expression if it is not. If you fail to
simplify an expression involving powers of J to —1, algorithms may incorrectly assume an
expression is non-zero, take a wrong branch, and produce a meaningless result.

Pattern matching should also not be used as a substitute for a domain. In Axiom, objects
of one domain are transformed to objects of other domains using well-defined coerce oper-
ations. Pattern matching should be used on objects that are all the same type. Thus if your
application can be handled by type Expression in Axiom and you think you need pattern
matching, consider this choice carefully. You may well be better served by extending an
existing domain or by building a new domain of objects for your application.



Chapter 7

Graphics

Figure 7.1: Torus knot of type (15,17).

This chapter shows how to use the Axiom graphics facilities under the X Window System.
Axiom has two-dimensional and three-dimensional drawing and rendering packages that al-
low the drawing, coloring, transforming, mapping, clipping, and combining of graphic output
from Axiom computations. This facility is particularly useful for investigating problems in
areas such as topology. The graphics package is capable of plotting functions of one or more
variables or plotting parametric surfaces and curves. Various coordinate systems are also
available, such as polar and spherical.

A graph is displayed in a viewport window and it has a control-panel that uses interactive

285
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mouse commands. PostScript and other output forms are available so that Axiom images
can be printed or used by other programs.

7.1 Two-Dimensional Graphics

The Axiom two-dimensional graphics package provides the ability to display

e curves defined by functions of a single real variable
e curves defined by parametric equations
e implicit non-singular curves defined by polynomial equations

e planar graphs generated from lists of point components.

These graphs can be modified by specifying various options, such as calculating points in
the polar coordinate system or changing the size of the graph viewport window.

7.1.1 Plotting Two-Dimensional Functions of One Variable

The first kind of two-dimensional graph is that of a curve defined by a function y = f(x)
over a finite interval of the z axis.

The general format for drawing a function defined by a formula f(z) is:
draw(f(x), x = a..b, options)

where a..b defines the range of x, and where options prescribes zero or more
options as described in section T4 on page EZ84. An example of an option
is curveColor == bright red(). An alternative format involving functions f
and g is also available.

A simple way to plot a function is to use a formula. The first argument is the formula. For
the second argument, write the name of the independent variable (here, ), followed by an
“="_and the range of values.

Display this formula over the range 0 < x < 6. Axiom converts your formula to a compiled
function so that the results can be computed quickly and efficiently.

draw(sin(tan(x)) - tan(sin(x)),x = 0..6)

Once again the formula is converted to a compiled function before any points were computed.
If you want to graph the same function on several intervals, it is a good idea to define the
function first so that the function has to be compiled only once.

This time we first define the function.
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f(x) == (x-1)*(x-2)*(x-3)

Type: Void

To draw the function, the first argument is its name and the second is just the range with
no independent variable.

draw(f, 0..4)

7.1.2 Plotting Two-Dimensional Parametric Plane Curves

The second kind of two-dimensional graph is that of curves produced by parametric equa-
tions. Let = f(t) and y = g¢(¢) be formulas or two functions f and g as the parameter
t ranges over an interval [a,b]. The function curve takes the two functions f and g as its
parameters.

The general format for drawing a two-dimensional plane curve defined by
parametric formulas x = f(t) and y = g(¢) is:

draw(curve(f(t), g(t)), t = a..b, options)

where a..b defines the range of the independent variable ¢, and where options
prescribes zero or more options as described in section 23 on page BIq.
An example of an option is curveColor == bright red().

Here’s an example:

Define a parametric curve using a range involving %pi, Axiom’s way of saying w. For
parametric curves, Axiom compiles two functions, one for each of the functions f and g.

draw(curve(sin(t)*sin(2*t)*sin(3*t), sin(4*t)*sin(5*t)*sin(6*t)), t =
0..2%Ypi)

The title may be an arbitrary string and is an optional argument to the draw command.

draw(curve(cos(t), sin(t)), t = 0..2*}pi)

If you plan on plotting = f(t), y = g(t) as t ranges over several intervals, you may want
to define functions f and g first, so that they need not be recompiled every time you create
a new graph. Here’s an example:

As before, you can first define the functions you wish to draw.

f (t:DFLOAT) :DFLOAT == sin(3*t/4)
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Function declaration f : DoubleFloat -> DoubleFloat has been
added to workspace.

Type: Void

Axiom compiles them to map DoubleFloat values to DoubleFloat values.

g(t:DFLOAT) :DFLOAT == sin(t)

Function declaration f : DoubleFloat -> DoubleFloat has been added
to workspace.

Type: Void

Give to curve the names of the functions, then write the range without the name of the
independent variable.

draw(curve(f,g),0..%pi)

Here is another look at the same curve but over a different range. Notice that f and g are
not recompiled. Also note that Axiom provides a default title based on the first function
specified in curve.

draw(curve(f,g) ,-4*Ypi..4*)pi)

7.1.3 Plotting Plane Algebraic Curves

A third kind of two-dimensional graph is a non-singular “solution curve” in a rectangular
region of the plane. A solution curve is a curve defined by a polynomial equation p(z,y) = 0.
Non-singular means that the curve is “smooth” in that it does not cross itself or come to
a point (cusp). Algebraically, this means that for any point (z,y) on the curve, that is, a
point such that p(z,y) = 0, the partial derivatives %(x, y) and g—i(x, y) are not both zero.

The general format for drawing a non-singular solution curve given by a
polynomial of the form p(z,y) = 0 is:

draw(p(x,y) = 0, x, y, range == [a..b, c..d], options)

where the second and third arguments name the first and second independent
variables of p. A range option is always given to designate a bounding
rectangular region of the plane a < x < b,¢ < y < d. Zero or more additional
options as described in section [I4 on page may be given.
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We require that the polynomial has rational or integral coefficients. Here is an algebraic
curve example (“Cartesian ovals”):

P = ((x**2 + yx*2 + 1) — 8*x)**2 — (8 (x**2 + y**2 + 1)-4*x-1)
y'+(22°-162—-6) y* + 2" —162° +58 2 — 122 -6
Type: Polynomial Integer

The first argument is always expressed as an equation of the form p = 0 where p is a
polynomial.

draw(p = 0, x, y, range == [-1..11, -7..7])

7.1.4 Two-Dimensional Options

The draw commands take an optional list of options, such as title shown above. Each
option is given by the syntax: name == value. Here is a list of the available options in the
order that they are described below.

adaptive clip unit
clip curveColor range
toScale pointColor  coordinates

The adaptive option turns adaptive plotting on or off. Adaptive plotting uses an algorithm
that traverses a graph and computes more points for those parts of the graph with high
curvature. The higher the curvature of a region is, the more points the algorithm computes.

The adaptive option is normally on. Here we turn it off.
draw(sin(1/x) ,x=-2*%pi..2*}pi, adaptive == false)

The clip option turns clipping on or off. If on, large values are cut off according to clip-
PointsDefault.

draw(tan(x) ,x=-2%Ypi..2x)pi, clip == true)

Option toScale does plotting to scale if true or uses the entire viewport if false. The
default can be determined using drawToScale.

draw(sin(x) ,x=-%pi..%pi, toScale == true, unit == [1.0,1.0])

Option clip with a range sets point clipping of a graph within the ranges specified in the
list [zrange, yrange]. If only one range is specified, clipping applies to the y-axis.
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draw(sec(x) ,x=-2*Ypi..2*%pi, clip == [-2%Ypi..2*Ypi,-Ypi..%pil, unit ==
[1.0,1.0])

Option curveColor sets the color of the graph curves or lines to be the indicated palette
color (see section IH on page and section [CTH on page 2ZI).

draw(sin(x) ,x=-Ypi..%pi, curveColor == bright red())

Option pointColor sets the color of the graph points to the indicated palette color (see
section [T-3 on page and section [T on page Z9I).

draw(sin(x) ,x=-Y%pi..%pi, pointColor == pastel yellow())

Option unit sets the intervals at which the axis units are plotted according to the indicated
steps [z interval, y interval].

draw(curve (9*sin(3*t/4) ,8*sin(t)), t = -4x*)pi..4*pi, unit == [2.0,1.0])

Option range sets the range of variables in a graph to be within the ranges for solving plane
algebraic curve plots.

draw(y**2 + y - (x**3 - x) = 0, x, y, range == [-2..2,-2..1],
unit==[1.0,1.0])

A second example of a solution plot.

draw(x**2 + y*x2 = 1, x, y, range == [-3/2..3/2,-3/2..3/2], unit==[0.5,0.5])

Option coordinates indicates the coordinate system in which the graph is plotted. The
default is to use the Cartesian coordinate system. For more details, see section 28 on
page or CoordinateSystems.

draw(curve(sin(5*t),t),t=0..2%*Ypi, coordinates == polar)

7.1.5 Color

The domain Color provides operations for manipulating colors in two-dimensional graphs.
Colors are objects of Color. Each color has a hue and a weight. Hues are represented by
integers that range from 1 to the numberOfHues(), normally 27. Weights are floats and
have the value 1.0 by default.

color (integer)
creates a color of hue integer and weight 1.0.



7.1. TWO-DIMENSIONAL GRAPHICS 291

hue (color)
returns the hue of color as an integer.

red O
blue(), green(), and yellow () create colors of that hue with weight 1.0.

color; + colory returns the color that results from additively combining the indicated color;
and colors. Color addition is not commutative: changing the order of the arguments
produces different results.

integer * color changes the weight of color by integer without affecting its hue. For example,
red() + 3 * yellow() produces a color closer to yellow than to red. Color multiplication
is not associative: changing the order of grouping produces different results.

These functions can be used to change the point and curve colors for two- and three-dimen-
sional graphs. Use the pointColor option for points.

draw(x**2,x=-1..1,pointColor == green())

Use the curveColor option for curves.

draw(x**2,x=-1..1,curveColor == color(13) + 2xblue())

7.1.6 Palette

Domain Palette is the domain of shades of colors: dark, dim, bright, pastel, and light,
designated by the integers 1 through 5, respectively.

Colors are normally “bright.”

shade red()

Type: Positivelnteger
To change the shade of a color, apply the name of a shade to it.

myFavoriteColor := dark blue()

[Hue: 22Weight: 1.0] from the Darkpalette

Type: Palette
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The expression shade(color) returns the value of a shade of color.

shade myFavoriteColor

Type: Positivelnteger
The expression hue(color) returns its hue.

hue myFavoriteColor

Hue: 22Weight: 1.0

Type: Color
Palettes can be used in specifying colors in two-dimensional graphs.

draw(x**2,x=-1..1,curveColor == dark blue())

7.1.7 Two-Dimensional Control-Panel

Once you have created a viewport, move your mouse to the viewport and click with your left
mouse button to display a control-panel. The panel is displayed on the side of the viewport
closest to where you clicked. Each of the buttons which toggle on and off show the current
state of the graph.

Figure 7.2: Two-dimensional control-panel.

Transformations

Object transformations are executed from the control-panel by mouse-activated potentiome-
ter windows.

Scale: To scale a graph, click on a mouse button within the Scale window in the upper left
corner of the control-panel. The axes along which the scaling is to occur are indicated
by setting the toggles above the arrow. With X On and Y On appearing, both axes are
selected and scaling is uniform. If either is not selected, for example, if X Off appears,
scaling is non-uniform.
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Translate: To translate a graph, click the mouse in the Translate window in the direction
you wish the graph to move. This window is located in the upper right corner of the
control-panel. Along the top of the Translate window are two buttons for selecting
the direction of translation. Translation along both coordinate axes results when X
On and Y On appear or along one axis when one is on, for example, X On and Y Off
appear.

Messages

The window directly below the transformation potentiometer windows is used to display
system messages relating to the viewport and the control-panel. The following format is
displayed:

[scaleX, scaleY] >graph< [translateX, translateY]

The two values to the left show the scale factor along the X and Y coordinate axes. The
two values to the right show the distance of translation from the center in the X and Y
directions. The number in the center shows which graph in the viewport this data pertains
to. When multiple graphs exist in the same viewport, the graph must be selected (see
“Multiple Graphs,” below) in order for its transformation data to be shown, otherwise the
number is 1.

Multiple Graphs

The Graphs window contains buttons that allow the placement of two-dimensional graphs
into one of nine available slots in any other two-dimensional viewport. In the center of the
window are numeral buttons from one to nine that show whether a graph is displayed in the
viewport. Below each number button is a button showing whether a graph that is present is
selected for application of some transformation. When the caret symbol is displayed, then
the graph in that slot will be manipulated. Initially, the graph for which the viewport is
created occupies the first slot, is displayed, and is selected.

Clear: The Clear button deselects every viewport graph slot. A graph slot is reselected by
selecting the button below its number.

Query: The Query button is used to display the scale and translate data for the indicated
graph. When this button is selected the message “Click on the graph to query” ap-
pears. Select a slot number button from the Graphs window. The scaling factor and
translation offset of the graph are then displayed in the message window.

Pick: The Pick button is used to select a graph to be placed or dropped into the indicated
viewport. When this button is selected, the message “Click on the graph to pick”
appears. Click on the slot with the graph number of the desired graph. The graph
information is held waiting for you to execute a Drop in some other graph.
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Drop: Once a graph has been picked up using the Pick button, the Drop button places
it into a new viewport slot. The message “Click on the graph to drop” appears in
the message window when the Drop button is selected. By selecting one of the slot
number buttons in the Graphs window, the graph currently being held is dropped
into this slot and displayed.

Buttons
Axes turns the coordinate axes on or off.

Units turns the units along the x and y axis on or off.

Box encloses the area of the viewport graph in a bounding box, or removes the box if already
enclosed.

Pts turns on or off the display of points.
Lines turns on or off the display of lines connecting points.

PS writes the current viewport contents to a file axiom2d.ps or to a name specified in the
user’s .Xdefaults file. The file is placed in the directory from which Axiom or the
viewalone program was invoked.

Reset resets the object transformation characteristics and attributes back to their initial
states.

Hide makes the control-panel disappear.

Quit queries whether the current viewport session should be terminated.

7.1.8 Operations for Two-Dimensional Graphics

Here is a summary of useful Axiom operations for two-dimensional graphics. Each operation
name is followed by a list of arguments. Each argument is written as a variable informally
named according to the type of the argument (for example, integer). If appropriate, a default
value for an argument is given in parentheses immediately following the name.

adaptive ([boolean(true)])
sets or indicates whether graphs are plotted according to the adaptive refinement al-
gorithm.

axesColorDefault ([color(dark blue())])
sets or indicates the default color of the axes in a two-dimensional graph viewport.

clipPointsDefault ([boolean(false)])
sets or indicates whether point clipping is to be applied as the default for graph plots.
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drawToScale ([boolean(false)])
sets or indicates whether the plot of a graph is “to scale” or uses the entire viewport
space as the default.

lineColorDefault ([color(pastel yellow())])
sets or indicates the default color of the lines or curves in a two-dimensional graph
viewport.

maxPoints ([integer(500)1)
sets or indicates the default maximum number of possible points to be used when
constructing a two-dimensional graph.

minPoints ([integer(21)1)
sets or indicates the default minimum number of possible points to be used when
constructing a two-dimensional graph.

pointColorDefault ([color(bright red())1)
sets or indicates the default color of the points in a two-dimensional graph viewport.

pointSizeDefault ([integer(5)1)
sets or indicates the default size of the dot used to plot points in a two-dimensional
graph.

screenResolution ([integer(600)])
sets or indicates the default screen resolution constant used in setting the computation
limit of adaptively generated curve plots.

unitsColorDefault ([color(dim green())]1)
sets or indicates the default color of the unit labels in a two-dimensional graph viewport.

viewDefaults ()
resets the default settings for the following attributes: point color, line color, axes color,
units color, point size, viewport upper left-hand corner position, and the viewport size.

viewPosDefault ([list([100,100]1)1)
sets or indicates the default position of the upper left-hand corner of a two-dimension-
al viewport, relative to the display root window. The upper left-hand corner of the
display is considered to be at the (0, 0) position.

viewSizeDefault ([list([200,2001)1)
sets or indicates the default size in which two dimensional viewport windows are shown.
It is defined by a width and then a height.

viewWriteAvailable ([list(["pixmap","bitmap", "postscript", "image"])])
indicates the possible file types that can be created with the write function.

viewWriteDefault ([list([1)1)
sets or indicates the default types of files, in addition to the data file, that are created
when a write function is executed on a viewport.
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units (viewport, integer(1), string("off"))
turns the units on or off for the graph with index integer.

axes (viewport, integer(1), string("on"))
turns the axes on or off for the graph with index integer.

close (wiewport)
closes viewport.

connect (viewport, integer(1), string("on"))
declares whether lines connecting the points are displayed or not.

controlPanel (viewport, string("off"))
declares whether the two-dimensional control-panel is automatically displayed or not.

graphs (viewport)
returns a list describing the state of each graph. If the graph state is not being used
this is shown by "undefined", otherwise a description of the graph’s contents is shown.

graphStates (viewport)
displays a list of all the graph states available for viewport, giving the values for every

property.

key (viewport)
returns the process ID number for viewport.

move (viewport, integery (viewPosDefault), integer, (viewPosDefault))
moves viewport on the screen so that the upper left-hand corner of viewport is at the
position (z,y).

options (viewport)
returns a list of all the DrawOptions used by wviewport.

points (viewport, integer(1), string("on"))
specifies whether the graph points for graph integer are to be displayed or not.

region (viewport, integer(1), string("off"))
declares whether graph integer is or is not to be displayed with a bounding rectangle.

reset (viewport)
resets all the properties of viewport.

resize (viewport, integerwidth,integerheigm)
resizes viewport with a new width and height.

scale (viewport, integer, (1), integer;(0.9), integer,(0.9))
scales values for the x and y coordinates of graph n.

show (viewport, integer, (1), string("on"))
indicates if graph n is shown or not.
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title (viewport, string("Axiom 2D"))
designates the title for viewport.

translate (viewport, integer, (1), float,(0.0), float,(0.0))
causes graph n to be moved x and y units in the respective directions.

write (viewport, stringdgirectory, Lstringsl)
if no third argument is given, writes the data file onto the directory with extension
data. The third argument can be a single string or a list of strings with some or all
the entries "pixmap", "bitmap", "postscript"”, and "image".

7.1.9 Addendum: Building Two-Dimensional Graphs

In this section we demonstrate how to create two-dimensional graphs from lists of points and
give an example showing how to read the lists of points from a file.

Creating a Two-Dimensional Viewport from a List of Points

Axiom creates lists of points in a two-dimensional viewport by utilizing the GraphImage
and TwoDimensionalViewport domains. In this example, the makeGraphImage function
takes a list of lists of points parameter, a list of colors for each point in the graph, a list of
colors for each line in the graph, and a list of sizes for each point in the graph.

The following expressions create a list of lists of points which will be read by Axiom and
made into a two-dimensional viewport.

pl := point [1,1]$(Point DFLOAT)
[1.0,1.0]
Type: Point DoubleFloat
p2 := point [0,1]$(Point DFLOAT)
[0.0,1.0]
Type: Point DoubleFloat
p3 := point [0,0]$(Point DFLOAT)
[0.0,0.0]

Type: Point DoubleFloat
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p4 := point [1,0]$(Point DFLOAT)

[1.0,0.0]
p5 := point [1,.5]1$(Point DFLOAT)

[1.0,0.5]
p6 := point [.5,0]$(Point DFLOAT)

[0.5,0.0]
p7 := point [0,0.5]$(Point DFLOAT)

[0.0,0.5]
p8 := point [.5,1]1$(Point DFLOAT)

[0.5,1.0]
p9 := point [.25,.25]1$(Point DFLOAT)

[0.25,0.25]

pl0 := point [.25,.75]$(Point DFLOAT)

[0.25,0.75]
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Type:

Type:

Type:

Type:

Type:

Type:

Point

Point

Point

Point

Point

Point

DoubleFloat

DoubleFloat

DoubleFloat

DoubleFloat

DoubleFloat

DoubleFloat
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Type: Point DoubleFloat

pll := point [.75,.75]$(Point DFLOAT)

[0.75,0.75]

Type: Point DoubleFloat

pl2 := point [.75,.25]$(Point DFLOAT)

[0.75,0.25]
Type: Point DoubleFloat

Finally, here is the list.

11p := [ [p1,p2], [p2,p3], [p3,p4l, [p4,p1l, [p5,p6], [p6,p7], [p7,p8],
[p8,p5], [p9,p10], [p10,pi1]l, [pi1,p12], [p12,p9] 1]

[[[1.0, 1.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 0.0]], [[0.0, 0.0], [1.0, 0.0]], [[1.0, 0.0], [1.0, 1.0]], [[1.0, 0.5], [0.5, 0.0]], [[0.5, 0.0], [0.0, 0.5

Type: List List Point DoubleFloat

Now we set the point sizes for all components of the graph.

sizel := 6::Positivelnteger
6
Type: Positivelnteger
size2 := 8::Positivelnteger
8
Type: Positivelnteger
size3d := 10::Positivelnteger
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lsize := [sizel, sizel, sizel, sizel, size2, size2, size2, size2, size3,
size3, size3, size3]

[6,6,6,6,8,8,8,8, size3, size3, size3, size3]
Type: List Polynomial Integer

Here are the colors for the points.

pcl := pastel red()

[Hue: 1Weight: 1.0] from the Pastelpalette

Type: Palette

pc2 := dim green()

[Hue: 14Weight: 1.0] from the Dimpalette

Type: Palette

pc3 := pastel yellow()

[Hue: 11Weight: 1.0] from the Pastelpalette

Type: Palette

lpc := [pcl, pcl, pcl, pcl, pc2, pc2, pc2, pc2, pc3, pc3, pc3, pc3]

[[Hue: 1Weight: 1.0] from the Pastelpalette, [Hue: 1Weight: 1.0] from the Pastelpalette, [Hue: 1Weight
Type: List Palette
Here are the colors for the lines.

lc := [pastel blue(), light yellow(), dim green(), bright red(), light
green(), dim yellow(), bright blue(), dark red(), pastel red(), light
blue(), dim green(), light yellow()]

[[Hue: 22Weight: 1.0] from the Pastelpalette, [Hue: 11Weight: 1.0] from the Lightpalette, [Hue: 14Weig
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Type: List Palette
Now the GraphImage is created according to the component specifications indicated above.

g := makeGraphImage(llp,lpc,lc,lsize)$GRIMAGE

The makeViewport2D function now creates a TwoDimensionalViewport for this graph
according to the list of options specified within the brackets.

makeViewport2D(g, [title("Lines")])$VIEW2D

This example demonstrates the use of the GraphImage functions component and append-
Point in adding points to an empty GraphImage.

)Jclear all

g := graphImage () $GRIMAGE

Graph with Opoint lists

Type: GraphImage

pl := point [0,0]$(Point DFLOAT)
[0.0,0.0]
Type: Point DoubleFloat
p2 := point [.25,.25]1$(Point DFLOAT)
[0.25,0.25]
Type: Point DoubleFloat
p3 := point [.5,.5]$(Point DFLOAT)
[0.5,0.5]

Type: Point DoubleFloat
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p4 := point [.75,.75]$(Point DFLOAT)

[0.75,0.75]

Type: Point

p5 := point [1,1]1$(Point DFLOAT)

[1.0,1.0]

Type: Point

component (g,pl) $GRIMAGE

component (g,p2) $GRIMAGE

appendPoint (g, p3) $GRIMAGE

appendPoint (g, p4) $GRIMAGE

appendPoint (g, p5) $GRIMAGE

gl := makeGraphImage (g) $GRIMAGE

DoubleFloat

DoubleFloat

Type:

Type:

Type:

Type:

Type:

Void

Void

Void

Void

Void
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Here is the graph.

makeViewport2D(gl, [title("Graph Points")])$VIEW2D

A list of points can also be made into a GraphImage by using the operation coerce. It is
equivalent to adding each point to g2 using component.

g2 := coerce([ [p1],[p2], [p3], [p4], [p5] 1)$GRIMAGE

Now, create an empty TwoDimensionalViewport.

v := viewport2D()$VIEW2D

options(v, [title("Just Points")])$VIEW2D

Place the graph into the viewport.

putGraph(v,g2,1) $VIEW2D

Take a look.

makeViewport2D (v)$VIEW2D

Creating a Two-Dimensional Viewport of a List of Points from a File

The following three functions read a list of points from a file and then draw the points and
the connecting lines. The points are stored in the file in readable form as floating point
numbers (specifically, DoubleFloat values) as an alternating stream of z- and y-values. For
example,
0.0 0.0 1.01.0 2.0 4.0
3.0 9.0 4.0 16.0 5.0 25.0

drawPoints(1lp:List Point DoubleFloat):VIEW2D ==
g := graphImage () $GRIMAGE
for p in 1lp repeat
component (g,p,pointColorDefault () ,lineColorDefault(),
pointSizeDefault())
gi := makeGraphImage (g)$GRIMAGE
makeViewport2D(gi, [title("Points")])$VIEW2D
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drawLines(lp:List Point DoubleFloat) :VIEW2D ==
g := graphImage () $GRIMAGE
component (g, lp, pointColorDefault(), lineColorDefault(),
pointSizeDefault ())$GRIMAGE
gi := makeGraphImage (g)$GRIMAGE
makeViewport2D(gi, [title("Points")])$VIEW2D

plotData2D(name, title) ==
f:File(DFLOAT) := open(name,"input")
1p:LIST(Point DFLOAT) := empty()
while ((x := readIfCan!(f)) case DFLOAT) repeat
y : DFLOAT := read!(f)
lp := cons(point [x,y]$(Point DFLOAT), 1lp)

ip
close! (£)
drawPoints(1p)
drawLines (1p)

This command will actually create the viewport and the graph if the point data is in the file
” file.data” .

plotData2D("file.data", "2D Data Plot")

7.1.10 Addendum: Appending a Graph to a Viewport Window
Containing a Graph

This section demonstrates how to append a two-dimensional graph to a viewport already con-
taining other graphs. The default draw command places a graph into the first GraphImage
slot position of the TwoDimensionalViewport.

This graph is in the first slot in its viewport.

vl := draw(sin(x),x=0..2x%pi)

So is this graph.

v2 := draw(cos(x),x=0..2%Jpi, curveColor==light red())

The operation getGraph retrieves the GraphImage gl from the first slot position in the
viewport vl.

gl := getGraph(vl,1)

Now putGraph places g1 into the the second slot position of v2.
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putGraph(v2,g1,2)

Display the new TwoDimensionalViewport containing both graphs.

makeViewport2D(v2)

7.2 Three-Dimensional Graphics

The Axiom three-dimensional graphics package provides the ability to

e generate surfaces defined by a function of two real variables
e generate space curves and tubes defined by parametric equations

e generate surfaces defined by parametric equations

These graphs can be modified by using various options, such as calculating points in the
spherical coordinate system or changing the polygon grid size of a surface.

7.2.1 Plotting Three-Dimensional Functions of Two Variables

The simplest three-dimensional graph is that of a surface defined by a function of two vari-
ables, z = f(z,vy).

The general format for drawing a surface defined by a formula f(x,y) of two
variables x and y is:

draw(f(x,y), x = a..b, y = c..d, options)

where a..b and c..d define the range of x and y, and where options prescribes
zero or more options as described in section 28 on page BI. An example
of an option is title == "Title of Graph”. An alternative format involving
a function f is also available.

The simplest way to plot a function of two variables is to use a formula. With formulas you
always precede the range specifications with the variable name and an = sign.

draw(cos (x*y) ,x=-3..3,y=-3..3)

If you intend to use a function more than once, or it is long and complex, then first give its
definition to Axiom.

f(x,y) == sin(x)*cos(y)
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Type: Void

To draw the function, just give its name and drop the variables from the range specifications.
Axiom compiles your function for efficient computation of data for the graph. Notice that
Axiom uses the text of your function as a default title.

draw(f,-%pi..%pi,-%pi..%pi)

7.2.2 Plotting Three-Dimensional Parametric Space Curves

A second kind of three-dimensional graph is a three-dimensional space curve defined by the
parametric equations for z(t), y(t), and z(t) as a function of an independent variable t.

The general format for drawing a three-dimensional space curve defined by
parametric formulas x = f(t), y = g(t), and z = h(t) is:

draw(curve (f (t),g(t) ,h(t)), t = a..b, options)

where a..b defines the range of the independent variable ¢, and where options
prescribes zero or more options as described in section 23 on page BId. An
example of an option is title == "T'itle of Graph”. An alternative format
involving functions f, g and h is also available.

If you use explicit formulas to draw a space curve, always precede the range specification
with the variable name and an = sign.

draw(curve(5*cos(t), 5*sin(t),t), t=-12..12)

Alternatively, you can draw space curves by referring to functions.

i1 (t:DFLOAT) :DFLOAT == sin(t)*cos(3*t/5)

Function declaration il : DoubleFloat -> DoubleFloat has been added
to workspace.

Type: Void
This is useful if the functions are to be used more than once ...

i2(t:DFLOAT) :DFLOAT == cos(t)*cos(3*t/5)
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Function declaration i2 : DoubleFloat -> DoubleFloat has been added
to workspace.

Type: Void

or if the functions are long and complex.

i3(t:DFLOAT) :DFLOAT == cos(t)*sin(3*t/5)

Function declaration i3 : DoubleFloat -> DoubleFloat has been added
to workspace.

Type: Void

Give the names of the functions and drop the variable name specification in the second
argument. Again, Axiom supplies a default title.

draw(curve(il,i2,i3),0..15%%pi)

7.2.3 Plotting Three-Dimensional Parametric Surfaces

A third kind of three-dimensional graph is a surface defined by parametric equations for
x(u,v), y(u,v), and z(u,v) of two independent variables v and v.

The general format for drawing a three-dimensional graph defined by para-
metric formulas x = f(u,v), y = g(u,v), and z = h(u,v) is:

draw(surface(f (u,v),g(u,v) ,h(u,v)), u = a..b, v = c..d, options)

where a..b and c..d define the range of the independent variables v and v, and
where options prescribes zero or more options as described in section 23
on page BTM. An example of an option is title == "Title of Graph”. An
alternative format involving functions f, g and h is also available.

This example draws a graph of a surface plotted using the parabolic cylindrical coordinate
system option. The values of the functions supplied to surface are interpreted in coordinates
as given by a coordinates option, here as parabolic cylindrical coordinates (see section 28
on page BZ8.

draw(surface(uxcos(v), uxsin(v), v*cos(u)), u=-4..4, v=0..%pi, coordinates==
parabolicCylindrical)
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Again, you can graph these parametric surfaces using functions, if the functions are long and
complex.

Here we declare the types of arguments and values to be of type DoubleFloat.

nl(u:DFLOAT,v:DFLOAT) :DFLOAT == u*cos(v)

Function declaration nl : DoubleFloat -> DoubleFloat has been added
to workspace.

Type: Void
As shown by previous examples, these declarations are necessary.

n2(u:DFLOAT,v:DFLOAT) :DFLOAT == u*sin(v)

Function declaration n2 : DoubleFloat -> DoubleFloat has been added
to workspace.

Type: Void
In either case, Axiom compiles the functions when needed to graph a result.

n3(u:DFLOAT, v:DFLOAT) :DFLOAT == u

Function declaration n3 : DoubleFloat -> DoubleFloat has been added
to workspace.

Type: Void

Without these declarations, you have to suffix floats with @ DF LOAT to get a DoubleFloat
result. However, a call here with an unadorned float produces a DoubleFloat.

n3(0.5,1.0)

Compiling function n3 with type (DoubleFloat,DoubleFloat) ->
DoubleFloat

Type: DoubleFloat

Draw the surface by referencing the function names, this time choosing the toroidal coordi-
nate system.

draw(surface(nl,n2,n3), 1..4, 1..2*)pi, coordinates == toroidal (1$DFLOAT))

7.2.4 Axiom Images
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7.2.5 Three-Dimensional Options

The draw commands optionally take an optional list of options such as coordinates as
shown in the last example. Each option is given by the syntax: name == value. Here is a
list of the available options in the order that they are described below:

title coordinates varlSteps
style tubeRadius  var2Steps
colorFunction tubePoints  space

The option title gives your graph a title.

draw(cos (x*y) ,x=0..2%%pi,y=0..%pi,title == "Title of Graph")

The style determines which of four rendering algorithms is used for the graph. The choices
are "wireMesh", "solid", "shade", and "smooth".

draw(cos (x*y) ,x=-3..3,y=-3..3, style=="smooth", title=="Smooth Option")

In all but the wire-mesh style, polygons in a surface or tube plot are normally colored in
a graph according to their z-coordinate value. Space curves are colored according to their
parametric variable value. To change this, you can give a coloring function. The coloring
function is sampled across the range of its arguments, then normalized onto the standard
Axiom colormap.

A function of one variable makes the color depend on the value of the parametric variable
specified for a tube plot.

colori(t) ==

Type: Void
draw(curve(sin(t), cos(t),0), t=0..2xYpi, tubeRadius == .3, colorFunction ==
colorl)

A function of two variables makes the color depend on the values of the independent variables.

color2(u,v) == u*x*2 - v**x2

Type: Void

Use the option colorFunction for special coloring.
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draw(cos(u*v), u=-3..3, v=-3..3, colorFunction == color2)

With a three variable function, the color also depends on the value of the function.

color3(x,y,fxy) == sin(x*fxy) + cos(y*fxy)

Type: Void

draw(cos(x*y), x=-3..3, y=-3..3, colorFunction == color3)

Normally the Cartesian coordinate system is used. To change this, use the coordinates
option. For details, see section 2] on page BZA.

m(u:DFLOAT,v:DFLOAT) :DFLOAT ==

Function declaration m : (DoubleFloat,DoubleFloat) -> DoubleFloat
has been added to workspace.

Type: Void
Use the spherical coordinate system.

draw(m, O..2%%pi,0..%pi, coordinates == spherical, style=="shade")

Space curves may be displayed as tubes with polygonal cross sections. Two options, tubeRadius
and tubePoints, control the size and shape of this cross section.

The tubeRadius option specifies the radius of the tube that encircles the specified space
curve.

draw(curve(sin(t),cos(t),0),t=0..2*}pi, style=="shade", tubeRadius == .3)

The tubePoints option specifies the number of vertices defining the polygon that is used
to create a tube around the specified space curve. The larger this number is, the more
cylindrical the tube becomes.

draw(curve(sin(t), cos(t), 0), t=0..2%%pi, style=="shade", tubeRadius ==
.25, tubePoints == 3)

Options varlSteps and var2Steps specify the number of intervals into which the grid
defining a surface plot is subdivided with respect to the first and second parameters of the
surface function(s).
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draw(cos(x*y) ,x=-3..3,y=-3..3, style=="shade", varlSteps == 30, var2Steps ==
30)

The space option of a draw command lets you build multiple graphs in three space. To use
this option, first create an empty three-space object, then use the space option thereafter.
There is no restriction as to the number or kinds of graphs that can be combined this way.

Create an empty three-space object.
s := create3Space()$(ThreeSpace DFLOAT)

3 — SpacewithOcomponents

Type: ThreeSpace DoubleFloat

m(u:DFLOAT,v:DFLOAT) :DFLOAT ==

Function declaration m : (DoubleFloat,DoubleFloat) -> DoubleFloat
has been added to workspace.

Type: Void

Add a graph to this three-space object. The new graph destructively inserts the graph into
s.

draw(m,0..%pi,0..2%%pi, coordinates == spherical, space == s)
Add a second graph to s.

v := draw(curve(1l.5%sin(t), 1.5%cos(t),0), t=0..2%%pi, tubeRadius == .25,
space == s)

A three-space object can also be obtained from an existing three-dimensional viewport using
the subspace command. You can then use makeViewport3D to create a viewport window.

Assign to subsp the three-space object in viewport v.
subsp := subspace v
Reset the space component of v to the value of subsp.

subspace (v, subsp)

Create a viewport window from a three-space object.

makeViewport3D(subsp, "Graphs")
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7.2.6 The makeObject Command

An alternate way to create multiple graphs is to use makeObject. The makeObject
command is similar to the draw command, except that it returns a three-space object
rather than a ThreeDimensionalViewport. In fact, makeObject is called by the draw

command to create the ThreeSpace then makeViewport3D to create a viewport window.

m(u:DFLOAT,v:DFLOAT) : DFLOAT ==

Function declaration m : (DoubleFloat,DoubleFloat) -> DoubleFloat
has been added to workspace.

Type: Void
Do the last example a new way. First use makeObject to create a three-space object sph.

sph := makeObject(m, 0..%pi, 0..2%Y%pi, coordinates==spherical)

Compiling function m with type (DoubleFloat,DoubleFloat) ->
DoubleFloat

3 — Spacewithlcomponent
Type: ThreeSpace DoubleFloat
Add a second object to sph.

makeObject (curve(1.5%sin(t), 1.5%cos(t), 0), t=0..2%%pi, space == sph,
tubeRadius == .25)

Compiling function %D with type DoubleFloat -> DoubleFloat
Compiling function %F with type DoubleFloat -> DoubleFloat
Compiling function %H with type DoubleFloat -> DoubleFloat

3 — Spacewith2components
Type: ThreeSpace DoubleFloat
Create and display a viewport containing sph.

makeViewport3D(sph,"Multiple Objects")

Note that an undefined ThreeSpace parameter declared in a makeObject or draw com-
mand results in an error. Use the create3Space function to define a ThreeSpace, or obtain
a ThreeSpace that has been previously generated before including it in a command line.
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7.2.7 Building Three-Dimensional Objects From Primitives
Rather than using the draw and makeObject commands, you can create three-dimension-
al graphs from primitives. Operation create3Space creates a three-space object to which

points, curves and polygons can be added using the operations from the ThreeSpace domain.
The resulting object can then be displayed in a viewport using makeViewport3D.

Create the empty three-space object space.

space := create3Space()$(ThreeSpace DFLOAT)

3 — SpacewithOcomponents

Type: ThreeSpace DoubleFloat

Objects can be sent to this space using the operations exported by the ThreeSpace domain.
The following examples place curves into space.

Add these eight curves to the space.

closedCurve(space, [ [0,30,20], [0,30,30], [0,40,30], [0,40,100],
fo,30,100]1,[0,30,110], [0,60,110], [0,60,100], [0,50,100], [0,50,30],
[0,60,30], [0,60,20] 1)

3 — Spacewithlcomponent

Type: ThreeSpace DoubleFloat

closedCurve(space, [ [80,0,30], [80,0,100], [70,0,110], [40,0,110],
[30,0,100], [30,0,90], [40,0,90], [40,0,95], [45,0,100], [65,0,100],
[70,0,951, [70,0,35] 1)

3 — Spacewith2components

Type: ThreeSpace DoubleFloat

closedCurve(space, [ [70,0,35], [65,0,30], [45,0,30], [40,0,35], [40,0,60],
[50,0,60], [50,0,70], [30,0,70], [30,0,30], [40,0,20], [70,0,20], [80,0,30]
iD)

3 — Spacewith3components

Type: ThreeSpace DoubleFloat
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closedCurve(space, [ [0,70,20], [0,70,110], [0,110,110], [0,120,100],
(0,120,701, [0,115,65], [0,120,60], [0,120,30], [0,110,20], [0,80,20],
[0,80,30], [0,80,20] 1)

3 — Spacewith4components

Type: ThreeSpace DoubleFloat

closedCurve(space, [ [0,105,30], [0,110,35], [0,110,55], [0,105,60],
[o,80,60], [0,80,70], [0,105,70], [0,110,75], [0,110,95], [0,105,100],
[0,80,100], [0,80,20], [0,80,30] 1)

3 — Spacewithbcomponents

Type: ThreeSpace DoubleFloat

closedCurve(space, [ [140,0,20], [140,0,110], [130,0,110], [90,0,20],
(101,0,20],[114,0,50], [130,0,50], [130,0,60], [119,0,60], [130,0,85],
[130,0,20] 1)

3 — Spacewith6components

Type: ThreeSpace DoubleFloat

closedCurve(space, [ [0,140,20], [0,140,110], [0,150,110], [0,170,50],
[0,190,110], [0,200,110], [0,200,20], [0,190,20], [0,190,75], [0,175,35],
[0,165,35],[0,150,75], [0,150,20] 1)

3 — Spacewith7components

Type: ThreeSpace DoubleFloat

closedCurve(space, [ [200,0,20], [200,0,110], [189,0,110], [160,0,45],
[160,0,110], [150,0,110], [150,0,20], [161,0,20], [190,0,85], [190,0,20] 1)

3 — Spacewith8components
Type: ThreeSpace DoubleFloat

Create and display the viewport using makeViewport3D. Options may also be given but
here are displayed as a list with values enclosed in parentheses.

makeViewport3D(space, title == "Letters")
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Cube Example

As a second example of the use of primitives, we generate a cube using a polygon mesh.
It is important to use a consistent orientation of the polygons for correct generation of
three-dimensional objects.

Again start with an empty three-space object.

spaceC := create3Space()$(ThreeSpace DFLOAT)

3 — SpacewithOcomponents

Type: ThreeSpace DoubleFloat

For convenience, give DoubleFloat values +1 and —1 names.

I
-

x: DFLOAT :

1.0

Type: DoubleFloat

I
|
=

y: DFLOAT :

—1.0

Type: DoubleFloat

Define the vertices of the cube.

a := point [x,x,y,1::DFLOAT]$(Point DFLOAT)
[1.0,1.0,—1.0,1.0]
Type: Point DoubleFloat
b := point [y,x,y,4::DFLOAT]$(Point DFLOAT)

[-1.0,1.0,—1.0,4.0]

Type: Point DoubleFloat
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c :=

d := point [x,x,x,12:
e := point [x,y,y,16:
f := point [y,y,y,20:
g := point [y,y,x,24:
h := point [x,y,x,27:

point [y,x,x,8::DFLOAT]$(Point DFLOAT)

[~1.0,1.0,1.0,8.0]

:DFLOAT] $(Point DFLOAT)

1.0,1.0,1.0,12.0]

:DFLOAT]$(Point DFLOAT)

[1.0, 1.0, —1.0, 16.0]

:DFLOAT] $(Point DFLOAT)

[-1.0,—1.0,—1.0,20.0]

:DFLOAT] $(Point DFLOAT)

[~1.0,—1.0, 1.0, 24.0]

:DFLOAT]$(Point DFLOAT)

[1.0, —1.0,1.0,27.0]
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Type:

Type:

Type:

Type:

Type:

Type:

Point DoubleFloat

Point DoubleFloat

Point DoubleFloat

Point DoubleFloat

Point DoubleFloat

Point DoubleFloat

Add the faces of the cube as polygons to the space using a consistent orientation.

polygon(spaceC, [d,c,g,h])
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polygon(spaceC, [d,h,e,al)

polygon(spaceC, [c,d,a,b])

polygon(spaceC, [g,c,b,f])

polygon(spaceC, [h,g,f,e])

polygon(spaceC, [e,f,b,a])

3 — Spacewithlcomponent

Type:

3 — Spacewith2components

Type:

3 — Spacewith3components

Type:

3 — Spacewith4components

Type:

3 — Spacewithbcomponents

Type:

3 — Spacewith6components

Type:

Create and display the viewport.

makeViewport3D(spaceC, title == "Cube")

ThreeSpace

ThreeSpace

ThreeSpace

ThreeSpace

ThreeSpace

ThreeSpace
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DoubleFloat

DoubleFloat

DoubleFloat

DoubleFloat

DoubleFloat

DoubleFloat
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7.2.8 Coordinate System Transformations
The CoordinateSystems package provides coordinate transformation functions that map a
given data point from the coordinate system specified into the Cartesian coordinate system.

The default coordinate system, given a triplet (f(u,v),u,v), assumes that z = f(u,v), z =u
and y = v, that is, reads the coordinates in (z,x,y) order.

m(u:DFLOAT,v:DFLOAT) :DFLOAT == u**2

Function declaration m : (DoubleFloat,DoubleFloat) -> DoubleFloat
has been added to workspace.

Type: Void
Graph plotted in default coordinate system.

draw(m,0..3,0..5)

The z coordinate comes first since the first argument of the draw command gives its values.
In general, the coordinate systems Axiom provides, or any that you make up, must provide
a map to an (x,y, z) triplet in order to be compatible with the coordinates DrawOption.
Here is an example.

Define the identity function.

cartesian(point:Point DFLOAT) :Point DFLOAT == point

Function declaration cartesian : Point DoubleFloat -> Point
DoubleFloat has been added to workspace.

Type: Void
Pass cartesian as the coordinates parameter to the draw command.
draw(m,0..3,0..5,coordinates==cartesian)
What happened? The option coordinates == cartesian directs Axiom to treat the depen-

dent variable m defined by m = u? as the  coordinate. Thus the triplet of values (m,u,v)
is transformed to coordinates (,y, z) and so we get the graph of x = y.

Here is another example. The cylindrical transform takes input of the form (w,u,v),
interprets it in the order (r,d,z) and maps it to the Cartesian coordinates x = rcos(6),
y =rsin(f), z = z in which r is the radius, 6 is the angle and z is the z-coordinate.

An example using the cylindrical coordinates for the constant r = 3.
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f (u:DFLOAT,v:DFLOAT) :DFLOAT ==

Function declaration f : (DoubleFloat,DoubleFloat) -> DoubleFloat
has been added to workspace.

Type: Void
Graph plotted in cylindrical coordinates.

draw(f,0..%pi,0..6,coordinates==cylindrical)

Suppose you would like to specify z as a function of r and 6 instead of just r? Well, you
still can use the cylindrical Axiom transformation but we have to reorder the triplet before
passing it to the transformation.

First, let’s create a point to work with and call it pt with some color col.

col :=5

Type: Positivelnteger

pt := point[1,2,3,col]$(Point DFLOAT)
[1.0,2.0,3.0,5.0]
Type: Point DoubleFloat

The reordering you want is (z,r,0) to (r, 0, z) so that the first element is moved to the third
element, while the second and third elements move forward and the color element does not
change.

Define a function reorder to reorder the point elements.

reorder (p:Point DFLOAT) :Point DFLOAT == point[p.2, p.3, p.1, p.4]

Function declaration reorder : Point DoubleFloat -> Point
DoubleFloat has been added to workspace.

Type: Void
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The function moves the second and third elements forward but the color does not change.
reorder pt
[2.0,3.0,1.0,5.0]
Type: Point DoubleFloat

The function newmap converts our reordered version of the cylindrical coordinate system
to the standard (z,y, z) Cartesian system.

newmap (pt :Point DFLOAT) :Point DFLOAT == cylindrical(reorder pt)

Function declaration newmap : Point DoubleFloat -> Point DoubleFloat
has been added to workspace.

Type: Void

newmap pt

[—1.9799849932008908, 0.28224001611973443, 1.0, 5.0]

Type: Point DoubleFloat

Graph the same function f using the coordinate mapping of the function newmap, so it is
now interpreted as z = 3:

draw(f,0..3,0..2%)pi,coordinates==newmap)

The CoordinateSystems package exports the following operations: bipolar, bipolarCylin-
drical, cartesian, conical, cylindrical, elliptic, ellipticCylindrical, oblateSpheroidal,
parabolic, parabolicCylindrical, paraboloidal, polar, prolateSpheroidal, spherical,
and toroidal. Use Browse or the ) show system command to get more information.

7.2.9 Three-Dimensional Clipping

A three-dimensional graph can be explicitly clipped within the draw command by indicating
a minimum and maximum threshold for the given function definition. These thresholds can
be defined using the Axiom min and max functions.

gamma(x,y) ==
g := Gamma complex(x,y)
point [x, y, max( min(real g, 4), -4), argument g]
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Here is an example that clips the gamma function in order to eliminate the extreme diver-
gence it creates.

draw(gamma,-%pi..%pi,-%pi..%pi,varlSteps==50,var2Steps==50)

7.2.10 Three-Dimensional Control-Panel

Once you have created a viewport, move your mouse to the viewport and click with your
left mouse button. This displays a control-panel on the side of the viewport that is closest
to where you clicked.

— Control Panel 3D o i
Axiom 3D
Rotate Scale Translate

lorigin|lobject|[x |lulz || xy || xz || uz |

AR B
NN

: :

- +

Wire ((Solid ||Shade ||Snooth ||| Reset

Bounds || Axes || Outline || BY Hide

™| Light ||Yieu Volune || Save Quit |7

E !

Figure 7.3: Three-dimensional control-panel.

Transformations

We recommend you first select the Bounds button while executing transformations since
the bounding box displayed indicates the object’s position as it changes.

Rotate: A rotation transformation occurs by clicking the mouse within the Rotate window
in the upper left corner of the control-panel. The rotation is computed in spherical
coordinates, using the horizontal mouse position to increment or decrement the value
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of the longitudinal angle # within the range of 0 to 27 and the vertical mouse position
to increment or decrement the value of the latitudinal angle ¢ within the range of -7
to m. The active mode of rotation is displayed in green on a color monitor or in clear
text on a black and white monitor, while the inactive mode is displayed in red for color
display or a mottled pattern for black and white.

origin: The origin button indicates that the rotation is to occur with respect to the
origin of the viewing space, that is indicated by the axes.

object: The object button indicates that the rotation is to occur with respect to the
center of volume of the object, independent of the axes’ origin position.

Scale: A scaling transformation occurs by clicking the mouse within the Scale window in
the upper center of the control-panel, containing a zoom arrow. The axes along which
the scaling is to occur are indicated by selecting the appropriate button above the
zoom arrow window. The selected axes are displayed in green on a color monitor or
in clear text on a black and white monitor, while the unselected axes are displayed in
red for a color display or a mottled pattern for black and white.

uniform: Uniform scaling along the x, y and z axes occurs when all the axes buttons
are selected.

non-uniform: If any of the axes buttons are not selected, non-uniform scaling occurs,
that is, scaling occurs only in the direction of the axes that are selected.

Translate: Translation occurs by indicating with the mouse in the Translate window the
direction you want the graph to move. This window is located in the upper right corner
of the control-panel and contains a potentiometer with crossed arrows pointing up,
down, left and right. Along the top of the Translate window are three buttons (XY,
XZ, and YZ) indicating the three orthographic projection planes. Each orientates the
group as a view into that plane. Any translation of the graph occurs only along this
plane.

Messages

The window directly below the potentiometer windows for transformations is used to display
system messages relating to the viewport, the control-panel and the current graph displaying
status.

Colormap

Directly below the message window is the colormap range indicator window. The Axiom
Colormap shows a sampling of the spectrum from which hues can be drawn to represent the
colors of a surface. The Colormap is composed of five shades for each of the hues along this
spectrum. By moving the markers above and below the Colormap, the range of hues that are
used to color the existing surface are set. The bottom marker shows the hue for the low end
of the color range and the top marker shows the hue for the upper end of the range. Setting
the bottom and top markers at the same hue results in monochromatic smooth shading of the
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graph when Smooth mode is selected. At each end of the Colormap are 4+ and - buttons.
When clicked on, these increment or decrement the top or bottom marker.

Buttons

Below the Colormap window and to the left are located various buttons that determine the
characteristics of a graph. The buttons along the bottom and right hand side all have special
meanings; the remaining buttons in the first row indicate the mode or style used to display
the graph. The second row are toggles that turn on or off a property of the graph. On a
color monitor, the property is on if green (clear text, on a monochrome monitor) and off if
red (mottled pattern, on a monochrome monitor). Here is a list of their functions.

Wire displays surface and tube plots as a wireframe image in a single color (blue) with
no hidden surfaces removed, or displays space curve plots in colors based upon their
parametric variables. This is the fastest mode for displaying a graph. This is very
useful when you want to find a good orientation of your graph.

Solid displays the graph with hidden surfaces removed, drawing each polygon beginning
with the furthest from the viewer. The edges of the polygons are displayed in the hues
specified by the range in the Colormap window.

Shade displays the graph with hidden surfaces removed and with the polygons shaded,
drawing each polygon beginning with the furthest from the viewer. Polygons are
shaded in the hues specified by the range in the Colormap window using the Phong
illumination model.

Smooth displays the graph using a renderer that computes the graph one line at a time.
The location and color of the graph at each visible point on the screen are determined
and displayed using the Phong illumination model. Smooth shading is done in one of
two ways, depending on the range selected in the colormap window and the number
of colors available from the hardware and/or window manager. When the top and
bottom markers of the colormap range are set to different hues, the graph is rendered
by dithering between the transitions in color hue. When the top and bottom markers
of the colormap range are set to the same hue, the graph is rendered using the Phong
smooth shading model. However, if enough colors cannot be allocated for this purpose,
the renderer reverts to the color dithering method until a sufficient color supply is
available. For this reason, it may not be possible to render multiple Phong smooth
shaded graphs at the same time on some systems.

Bounds encloses the entire volume of the viewgraph within a bounding box, or removes the
box if previously selected. The region that encloses the entire volume of the viewport
graph is displayed.

Axes displays Cartesian coordinate axes of the space, or turns them off if previously selected.

Outline causes quadrilateral polygons forming the graph surface to be outlined in black
when the graph is displayed in Shade mode.
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BW converts a color viewport to black and white, or vice-versa. When this button is
selected the control-panel and viewport switch to an immutable colormap composed
of a range of grey scale patterns or tiles that are used wherever shading is necessary.

Light takes you to a control-panel described below.
ViewVolume takes you to another control-panel as described below.

Save creates a menu of the possible file types that can be written using the control-panel.
The Exit button leaves the save menu. The Pixmap button writes an Axiom pixmap
of the current viewport contents. The file is called axiom3D.pixmap and is located in
the directory from which Axiom or viewalone was started. The PS button writes the
current viewport contents to PostScript output rather than to the viewport window.
By default the file is called axiom3D.ps; however, if a file name is specified in the
user’s .Xdefaults file it is used. The file is placed in the directory from which the
Axiom or viewalone session was begun. See also the write function.

Reset returns the object transformation characteristics back to their initial states.
Hide causes the control-panel for the corresponding viewport to disappear from the screen.

Quit queries whether the current viewport session should be terminated.

Light

The Light button changes the control-panel into the Lighting Control-Panel. At the top
of this panel, the three axes are shown with the same orientation as the object. A light
vector from the origin of the axes shows the current position of the light source relative to
the object. At the bottom of the panel is an Abort button that cancels any changes to the
lighting that were made, and a Return button that carries out the current set of lighting
changes on the graph.

XY: The XY lighting axes window is below the Lighting Control-Panel title and to the
left. This changes the light vector within the XY view plane.

Z: The Z lighting axis window is below the Lighting Control-Panel title and in the center.
This changes the Z location of the light vector.

Intensity: Below the Lighting Control-Panel title and to the right is the light intensity
meter. Moving the intensity indicator down decreases the amount of light emitted
from the light source. When the indicator is at the top of the meter the light source is
emitting at 100% intensity. At the bottom of the meter the light source is emitting at
a level slightly above ambient lighting.

View Volume

The View Volume button changes the control-panel into the Viewing Volume Panel.
At the bottom of the viewing panel is an Abort button that cancels any changes to the
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viewing volume that were made and a Return button that carries out the current set of
viewing changes to the graph.

Eye Reference: At the top of this panel is the Eye Reference window. It shows a planar
projection of the viewing pyramid from the eye of the viewer relative to the location of
the object. This has a bounding region represented by the rectangle on the left. Below
the object rectangle is the Hither window. By moving the slider in this window the
hither clipping plane sets the front of the view volume. As a result of this depth
clipping all points of the object closer to the eye than this hither plane are not shown.
The Eye Distance slider to the right of the Hither slider is used to change the degree
of perspective in the image.

Clip Volume: The Clip Volume window is at the bottom of the Viewing Volume
Panel. On the right is a Settings menu. In this menu are buttons to select viewing
attributes. Selecting the Perspective button computes the image using perspective
projection. The Show Region button indicates whether the clipping region of the
volume is to be drawn in the viewport and the Clipping On button shows whether
the view volume clipping is to be in effect when the image is drawn. The left side of the
Clip Volume window shows the clipping boundary of the graph. Moving the knobs
along the X, Y, and Z sliders adjusts the volume of the clipping region accordingly.

7.2.11 Operations for Three-Dimensional Graphics

Here is a summary of useful Axiom operations for three-dimensional graphics. Each operation
name is followed by a list of arguments. Each argument is written as a variable informally
named according to the type of the argument (for example, integer). If appropriate, a default
value for an argument is given in parentheses immediately following the name.

adaptive3D? ()
tests whether space curves are to be plotted according to the adaptive refinement
algorithm.

axes (viewport, string("on"))
turns the axes on and off.

close (wiewport)
closes the viewport.

colorDef (viewport, color; (1), colory(27))
sets the colormap range to be from color; to colors.

controlPanel (viewport, string("off"))
declares whether the control-panel for the viewport is to be displayed or not.

diagonals (viewport, string("off"))
declares whether the polygon outline includes the diagonals or not.
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drawStyle (viewport, style)
selects which of four drawing styles are used: "wireMesh", "solid", "shade", or
"smooth".

eyeDistance (viewport,float(500))
sets the distance of the eye from the origin of the object for use in the perspective.

key (viewport)
returns the operating system process ID number for the viewport.

lighting (viewport, float,(-0.5), float,(0.5), float.(0.5))
sets the Cartesian coordinates of the light source.

modifyPointData (viewport,integer,point)
replaces the coordinates of the point with the index integer with point.

move (viewport, integery (viewPosDefault), integer, (viewPosDefault))
moves the upper left-hand corner of the viewport to screen position (integer,, integery ).

options (wviewport)
returns a list of all current draw options.

outlineRender (viewport, string("off"))
turns polygon outlining off or on when drawing in "shade" mode.

perspective (viewport, string("on"))
turns perspective viewing on and off.

reset (viewport)
resets the attributes of a viewport to their initial settings.

resize (viewport, integeryiar, (viewSizeDefault), ntegerneight (viewSizeDefault))
resets the width and height values for a viewport.

rotate (viewport, numberg(viewThetaDefapult), numbers(viewPhiDefault) )
rotates the viewport by rotation angles for longitude (6) and latitude (¢). Angles
designate radians if given as floats, or degrees if given as integers.

setAdaptive3D (boolean(true))
sets whether space curves are to be plotted according to the adaptive refinement algo-
rithm.

setMaxPoints3D (integer(1000))
sets the default maximum number of possible points to be used when constructing a
three-dimensional space curve.

setMinPoints3D (integer(49))
sets the default minimum number of possible points to be used when constructing a
three-dimensional space curve.
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setScreenResolution3D (integer(49))
sets the default screen resolution constant used in setting the computation limit of
adaptively generated three-dimensional space curve plots.

showRegion (viewport, string("off"))
declares whether the bounding box of a graph is shown or not.

subspace (viewport)
returns the space component.

subspace (viewport, subspace)
resets the space component to subspace.

title (viewport, string)
gives the viewport the title string.

translate (viewport, float, (viewDeltaXDefault), float,(viewDeltaYDefault))
translates the object horizontally and vertically relative to the center of the viewport.

intensity (viewport,float(1.0))
resets the intensity I of the light source, 0 < I < 1.

tubePointsDefault ([integer(6)1)
sets or indicates the default number of vertices defining the polygon that is used to
create a tube around a space curve.

tubeRadiusDefault ([float(0.5)])
sets or indicates the default radius of the tube that encircles a space curve.

varlStepsDefault ([integer(27)])
sets or indicates the default number of increments into which the grid defining a surface
plot is subdivided with respect to the first parameter declared in the surface function.

var2StepsDefault ([integer(27)1)
sets or indicates the default number of increments into which the grid defining a surface
plot is subdivided with respect to the second parameter declared in the surface function.

viewDefaults ([integerpoint, integeriine, integerages, integerunits, floatpeint, listposition,
listsizel)
resets the default settings for the point color, line color, axes color, units color, point
size, viewport upper left-hand corner position, and the viewport size.

viewDeltaXDefault ([float(0)]1)
resets the default horizontal offset from the center of the viewport, or returns the
current default offset if no argument is given.

viewDeltaYDefault ([float(0)])
resets the default vertical offset from the center of the viewport, or returns the current
default offset if no argument is given.
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viewPhiDefault ([float(-7/4)1)
resets the default latitudinal view angle, or returns the current default angle if no
argument is given. ¢ is set to this value.

viewpoint (viewport, floats, float,, float.)
sets the viewing position in Cartesian coordinates.

viewpoint (viewport, floate, Floats)
sets the viewing position in spherical coordinates.

viewpoint (viewport, Floatg, Floaty, FloatscaieFactor, Floatyofsset, Floatyoffset)
sets the viewing position in spherical coordinates, the scale factor, and offsets. 6
(longitude) and ¢ (latitude) are in radians.

viewPosDefault ([list([0,01)])
sets or indicates the position of the upper left-hand corner of a two-dimensional view-

port, relative to the display root window (the upper left-hand corner of the display is
[0, 0]).

viewSizeDefault ([list([400,4001)1)
sets or indicates the width and height dimensions of a viewport.

viewThetaDefault ([float(n/4)1)
resets the default longitudinal view angle, or returns the current default angle if no
argument is given. When a parameter is specified, the default longitudinal view angle
0 is set to this value.

viewWriteAvailable ([list(["pixmap", "bitmap", "postscript", "image"])])
indicates the possible file types that can be created with the write function.

viewWriteDefault ([list([1)1)
sets or indicates the default types of files that are created in addition to the data file
when a write command is executed on a viewport.

viewScaleDefault ([float])
sets the default scaling factor, or returns the current factor if no argument is given.

write (viewport, directory, Loption])
writes the file data for viewport in the directory directory. An optional third argument
specifies a file type (one of pixmap, bitmap, postscript, or image), or a list of file
types. An additional file is written for each file type listed.

scale (wiewport, float(2.5))
specifies the scaling factor.

7.2.12 Customization using .Xdefaults

Both the two-dimensional and three-dimensional drawing facilities consult the .Xdefaults
file for various defaults. The list of defaults that are recognized by the graphing routines is
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discussed in this section. These defaults are preceded by Axiom.3D. for three-dimensional
viewport defaults, Axiom.2D. for two-dimensional viewport defaults, or Axiom* (no dot) for
those defaults that are acceptable to either viewport type.

AxiomxbuttonFont: font
This indicates which font type is used for the button text on the control-panel. Rom11

Axiom.2D.graphFont: font (2D only)
This indicates which font type is used for displaying the graph numbers and slots in
the Graphs section of the two-dimensional control-panel. Rom22

Axiom.3D.headerFont: font
This indicates which font type is used for the axes labels and potentiometer header
names on three-dimensional viewport windows. This is also used for two-dimensional
control-panels for indicating which font type is used for potentionmeter header names
and multiple graph title headers. Itl114

Axiom*inverse: switch
This indicates whether the background color is to be inverted from white to black. If
on, the graph viewports use black as the background color. If off or no declaration is
made, the graph viewports use a white background. off

Axiom.3D.lightingFont: font (3D only)
This indicates which font type is used for the x, y, and z labels of the two lighting axes
potentiometers, and for the Intensity title on the lighting control-panel. Rom10

Axiom.2D.messageFont, Axiom.3D.messageFont: font
These indicate the font type to be used for the text in the control-panel message
window. Rom14

Axiom*monochrome: switch
This indicates whether the graph viewports are to be displayed as if the monitor is
black and white, that is, a 1 bit plane. If on is specified, the viewport display is black
and white. If off is specified, or no declaration for this default is given, the viewports
are displayed in the normal fashion for the monitor in use. off

Axiom.2D.postScript: filename
This specifies the name of the file that is generated when a 2D PostScript graph is
saved. axiom2d.ps

Axiom.3D.postScript: filename
This specifies the name of the file that is generated when a 3D PostScript graph is
saved. axiom3D.ps

Axiom*titleFont font
This indicates which font type is used for the title text and, for three-dimensional
graphs, in the lighting and viewing-volume control-panel windows. Rom14
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Axiom.2D.unitFont: font (2D only)
This indicates which font type is used for displaying the unit labels on two-dimensional
viewport graphs. 6x10

Axiom.3D.volumeFont: font (3D only)
This indicates which font type is used for the x, y, and z labels of the clipping re-
gion sliders; for the Perspective, Show Region, and Clipping On buttons under
Settings, and above the windows for the Hither and Eye Distance sliders in the
Viewing Volume Panel of the three-dimensional control-panel. Rom8



Chapter 8

Advanced Problem Solving

In this chapter we describe techniques useful in solving advanced problems with Axiom.

8.1 Numeric Functions

Axiom provides two basic floating-point types: Float and DoubleFloat. This section de-
scribes how to use numerical operations defined on these types and the related complex
types. As we mentioned in Chapter section M on page B4, the Float type is a software
implementation of floating-point numbers in which the exponent and the significand may
have any number of digits. See Float EZ31 on page for detailed information about this
domain. The DoubleFloat on page b33 is usually a hardware implementation of floating
point numbers, corresponding to machine double precision. The types Complex Float and
Complex DoubleFloat are the corresponding software implementations of complex floating-
point numbers. In this section the term floating-point type means any of these four types.
The floating-point types implement the basic elementary functions. These include (where $
means DoubleFloat, Float, Complex DoubleFloat, or Complex Float):

exp, log: $— > §

sin, cos, tan, cot, sec, csc: $— > $

sin, cos, tan, cot, sec, csc: $— > $

asin, acos, atan, acot, asec, acsc: $— > §
sinh, cosh, tanh, coth, sech, csch: $— > §
asinh, acosh, atanh, acoth, asech, acsch: $— > §
pi: )—>$

sqrt: $— > $

nthRoot: ($, Integer)— > $

**. (8, FractionInteger)— > $§

% (5,8)— > %

The handling of roots depends on whether the floating-point type is real or complex: for

339
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the real floating-point types, DoubleFloat and Float, if a real root exists the one with the
same sign as the radicand is returned; for the complex floating-point types, the principal
value is returned. Also, for real floating-point types the inverse functions produce errors if
the results are not real. This includes cases such as asin(1.2), log(—3.2), sqrt(—1.1).

The default floating-point type is Float so to evaluate functions using Float or Complex
Float, just use normal decimal notation.

exp(3.1)

22.197951281441633405

Type: Float

exp(3.1 + 4.5 * %i)
—4.6792348860969899118 — 21.699165928071731864 1
Type: Complex Float

To evaluate functions using DoubleFloat or Complex DoubleFloat, a declaration or con-
version is required.

r: DFLOAT := 3.1; t: DFLOAT := 4.5; exp(r + t*)i)

—4.6792348860969906 — 21.699165928071732

Type: Complex DoubleFloat

exp(3.1::DFLOAT + 4.5::DFLOAT * %i)

—4.6792348860969906 — 21.699165928071732 4

Type: Complex DoubleFloat

A number of special functions are provided by the package DoubleFloatSpecialFunctions
for the machine-precision floating-point types. The special functions provided are listed
below, where F' stands for the types DoubleFloat and Complex DoubleFloat. The real
versions of the functions yield an error if the result is not real.

Gamma: F— > F
Gamma(z) is the Euler gamma function, I'(z), defined by

F(z)z/ t*~tetat.
0
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Beta: F'— > F
Beta(u,v) is the Euler Beta function, Beta(u,v), defined by

1
Beta(u,v) = / t“ (1 — ) tdt.
0

This is related to I'(z) by
r
Beta(u,v) =

logGamma: F— > F

logGamma(z) is the natural logarithm of I'(z). This can often be computed even if T'(z)
cannot.

digamma: F'— > F

digamma(z), also called psi(z), is the function ¥ (z), defined by

¥(z) =T"(2)/T(2).

polygamma: (NonNegativelnteger, F)— > F
polygamma(n, z) is the n-th derivative of ¥(z), written (™) (z).
E1l: (DoubleFloat)— > OnePointCompletionDouble Float

E1(x) is the Exponential Integral function The current implementation is a piecewise ap-
proximation involving one poly from —4..4 and a second poly for = > 4

En: (PI,DFLOAT)— > OnePointCompletionDoubleFloat
En(PLR) is the nth Exponential Integral

Ei: (OnePointCompletionDFLOAT)— > OnePointCompletionDF LOAT

Ei is the Exponential Integral function This is computed using a 6 part piecewise approxi-
mation. DoubleFloat can only preserve about 16 digits but the Chebyshev approximation
used can give 30 digits.

Eil: (DoubleFloat)— > DoubleFloat
Eil is the first approximation of Ei where the result is x * e~ 2 * Ei(z) from -infinity to -10
(preserves digits)

Ei2: (DoubleFloat)— > DoubleFloat

Ei2 is the first approximation of Ei where the result is zxe~z* Ei(x) from -10 to -4 (preserves
digits)

Ei3: (DoubleFloat)— > DoubleFloat

Ei3 is the first approximation of Ei where the result is (Ei(x) — log|z| — gamma)/x from -4
to 4 (preserves digits)

Ei4: (DoubleFloat)— > DoubleFloat

Ei4 is the first approximation of Ei where the result is zx e~z * Fi(x) from 4 to 12 (preserves
digits)

Ei5: (DoubleFloat)— > DoubleFloat

Eib is the first approximation of Ei where the result is xxe~x* Ei(z) from 12 to 32 (preserves
digits)
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Ei6: (DoubleFloat)— > DoubleFloat
Ei6 is the first approximation of Ei where the result is z % e~ x * Ei(z) from 32 to infinity
(preserves digits)

bessell: (F,F)— > F
besselJ (v, z) is the Bessel function of the first kind, J, (). This function satisfies the differ-
ential equation

20" (2) + 2w’ (2) + (22 — vH)w(z) = 0.
besselY: (F,F)— > F
besselY (v, z) is the Bessel function of the second kind, Y, (z). This function satisfies the
same differential equation as besselJ. The implementation simply uses the relation

Y, () = Jyu(2) COS.(VTF) - J_l,(z).
sin(v)
bessell: (F, F)— > F
bessell(v, z) is the modified Bessel function of the first kind, I,,(z). This function satisfies
the differential equation

2w (2) + 2w/ (2) — (22 + vH)w(z) = 0.

besselK: (F, F)— > F
besselK (v, z) is the modified Bessel function of the second kind, K, (z). This function satis-
fies the same differential equation as bessell. The implementation simply uses the relation

I_,(2) = L,(2)
K, () = n—u 2l —v2)
(2) = 2sin(vn)
airyAi: F'— > F
airyAi(z) is the Airy function Ai(z). This function satisfies the differential equation w”(z)—
zw(z) = 0. The implementation simply uses the relation

1

Ai(=2) = 2VA1y3(27%) + Tus(

2 223/2))'

3
airyBi: F— > F
airyBi(z) is the Airy function Bi(z). This function satisfies the same differential equation
as airyAi. The implementation simply uses the relation

‘ L s 2 32 2 3/2

Bi(—z) = 3 3Z(J—1/3(§Z ) — J1/3(§Z ))-

hypergeometricOF1: (F, F)— > F
hypergeometricOF1(c, z) is the hypergeometric function ¢Fj(;¢; z).
The above special functions are defined only for small floating-point types. If you give Float
arguments, they are converted to DoubleFloat by Axiom.
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Gamma (0.5) **2

3.14159265358979

Type: DoubleFloat

a :=2.1; b :=1.1; bessell(a + %i*b, b*a + 1)

2.489481690673867 — 2.365846713181643 4

Type: Complex DoubleFloat

A number of additional operations may be used to compute numerical values. These are
special polynomial functions that can be evaluated for values in any commutative ring R,
and in particular for values in any floating-point type. The following operations are provided
by the package OrthogonalPolynomialFunctions:

chebyshevT: (NonNegativelnteger, R)— > R
chebyshevT (n, z) is the n-th Chebyshev polynomial of the first kind, 7T, (z). These are

defined by
11—tz
Tn(
1—2z+12 Z

chebyshevU: (NonNegativelnteger, R)— > R
chebyshevU (n, z) is the n-th Chebyshev polynomial of the second kind, U, (z). These are
defined by

1—2tz+t2 ZU

hermiteH: (NonNegativelnteger, R)— > R
hermiteH (n, z) is the n-th Hermite polynomial, H,(z). These are defined by

2tz t? E H
'IL

laguerreL: (NonNegativelnteger, R)— > R
laguerreL(n, z) is the n-th Laguerre polynomial, L, (z). These are defined by

e o s tn
-N"L
1—¢ ; n(2)

laguerreL: (NonNegativelnteger, NonNegativeInteger, R)— > R
laguerreL(m,n, z) is the associated Laguerre polynomial, L7 (z). This is the m-th derivative
of L, (z).
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legendreP: (NonNegativelnteger, R)— > R
legendreP(n, z) is the n-th Legendre polynomial, P,(z). These are defined by

1 o0
S e—— N NP3
V1= 2tz + 2 ;o )

These operations require non-negative integers for the indices, but otherwise the argument
can be given as desired.

[chebyshevT(i, z) for i in 0..5]
1,222 —1,42° =3 282" —82°+1,16 2° — 20 2° + 5 ]
Type: List Polynomial Integer

The expression chebyshevT(n, z) evaluates to the n-th Chebyshev polynomial of the first
kind.

chebyshevT(3, 5.0 + 6.0%%1i)
—1675.0 + 918.0 ¢
Type: Complex Float
chebyshevT(3, 5.0::DoubleFloat)

485.0

Type: DoubleFloat

The expression chebyshevU (n, z) evaluates to the n-th Chebyshev polynomial of the second
kind.

[chebyshevU(i, z) for i in 0..5]
[1,2 2,42 — 1,8 2° =4 2,16 2" — 12 2 + 1,32 2° — 32 2° + 6 7]
Type: List Polynomial Integer
chebyshevU(3, 0.2)

—0.736
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Type: Float
The expression hermiteH (n, z) evaluates to the n-th Hermite polynomial.

[hermiteH(i, z) for i in 0..5]
(1,2 2,4 2% — 2,8 2% — 12 2,16 2* — 48 2% + 12,32 2° — 160 2° + 120 2]
Type: List Polynomial Integer
hermiteH(100, 1.0)

—0.1448706729337934088 £93
Type: Float
The expression laguerreL(n, z) evaluates to the n-th Laguerre polynomial.

[laguerrelL(i, z) for i in 0. .4]
[1,—24+1,2 -4 242,—2°+9 2> — 18 2+ 6,2" — 16 2° + 72 2> — 96 2 + 24

Type: List Polynomial Integer

laguerrelL(4, 1.2)
—13.0944
Type: Float
[laguerrelL(j, 3, z) for j in 0..4]
[—2°+92*—18246,-3 2>+ 18 2 —18,—6 z + 18,—6,0]

Type: List Polynomial Integer

laguerrelL(1, 3, 2.1)

6.57
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Type: Float
The expression legendreP(n, z) evaluates to the n-th Legendre polynomial,

[legendreP(i,z) for i in 0..5]

3 15 3 35 15 3 63 35 15
Lz,— 22—, - 22— 2, = - 2o, A 2B
2 2°2 2 8 4 8" 8 4 8
Type: List Polynomial Fraction Integer
legendreP (3, 3.0%%i)
—72.01

Type: Complex Float

Finally, three number-theoretic polynomial operations may be evaluated. The following
operations are provided by the package NumberTheoreticPolynomialFunctions. .

bernoulliB: (NonNegativelnteger, R)— > R
bernoulliB(n, z) is the n-th Bernoulli polynomial, B, (z). These are defined by

tezt tn
1= ZBR(Z)H.

eulerE: (NonNegativelnteger, R)— > R
euler E(n, z) is the n-th Euler polynomial, F,(z). These are defined by

o0

26zt +n
et +1 = ZEn(Z)E

n=0

cyclotomic: (NonNegativelnteger, R)— > R

cyclotomic(n, z) is the n-th cyclotomic polynomial ®,(z). This is the polynomial whose
roots are precisely the primitive n-th roots of unity. This polynomial has degree given by
the Euler totient function ¢(n).

The expression bernoulliB(n, z) evaluates to the n-th Bernoulli polynomial.

bernoulliB(3, z)
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Type: Polynomial Fraction Integer

bernoulliB(3, 0.7 + 0.4 * %i)
—0.138 — 0.116 ¢
Type: Complex Float
The expression euler E(n, z) evaluates to the n-th Euler polynomial.

eulerE(3, z)

3 1
3_°2 221
R
Type: Polynomial Fraction Integer
eulerE(3, 0.7 + 0.4 * %i)
—0.238 — 0.316 ¢

Type: Complex Float
The expression cyclotomic(n, z) evaluates to the n-th cyclotomic polynomial.
cyclotomic(3, z)

224241

Type: Polynomial Integer

cyclotomic(3, (-1.0 + 0.0 * %i)**(2/3))

0.0

Type: Complex Float

Drawing complex functions in Axiom is presently somewhat awkward compared to drawing
real functions. It is necessary to use the draw operations that operate on functions rather
than expressions.

This is the complex exponential function (rotated interactively). When this is displayed in
color, the height is the value of the real part of the function and the color is the imaginary
part. Red indicates large negative imaginary values, green indicates imaginary values near
zero and blue/violet indicates large positive imaginary values.
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draw((x,y)+-> real exp complex(x,y), -2..2, -2xYpi..2*Ypi, colorFunction ==
(x, y) +-> imag exp complex(x,y), title=="exp(x+/ixy)", style=="smooth")

This is the complex arctangent function. Again, the height is the real part of the function
value but here the color indicates the function value’s phase. The position of the branch
cuts are clearly visible and one can see that the function is real only for a real argument.

vp := draw((x,y) +-> real atan complex(x,y), -%pi..%pi, -%pi..%pi,
colorFunction==(x,y) +->argument atan complex(x,y), title=="atan(x+}ix*y)",
style=="shade"); rotate(vp,-160,-45); vp

This is the complex Gamma function.

draw((x,y) +-> max(min(real Gamma complex(x,y),4),-4), -%pi..%pi, -hpi..%pi,
style=="shade", colorFunction == (x,y) +-> argument Gamma complex(x,y),
title == "Gamma(x+%i*y)", variSteps == 50, var2Steps== 50)

This shows the real Beta function near the origin.

draw(Beta(x,y)/100, x=-1.6..1.7, y = -1.6..1.7, style=="shade",
title=="Beta(x,y)", varlSteps==40, var2Steps==40)

This is the Bessel function J, () for index « in the range —6..4 and argument z in the range
2..14.

draw((alpha,x) +-> min(max(besselJ(alpha, x+8), -6), 6), -6..4, -6..6,
title=="besselJ(alpha,x)", style=="shade", varlSteps==40, var2Steps==40)

This is the modified Bessel function I, (z) evaluated for various real values of the index «
and fixed argument x = 5.

draw(besselI(alpha, 5), alpha = -12..12, unit==[5,20])

This is similar to the last example except the index « takes on complex values in a 6x6
rectangle centered on the origin.

draw((x,y) +-> real besselI(complex(x/20, y/20),5), -60..60, -60..60,
colorFunction == (x,y)+-> argument besselI(complex(x/20,y/20),5),
title=="bessell(x+i*y,5)", style=="shade")
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8.2 Polynomial Factorization

The Axiom polynomial factorization facilities are available for all polynomial types and a
wide variety of coefficient domains. Here are some examples.

8.2.1 Integer and Rational Number Coefficients
Polynomials with integer coefficients can be be factored.
Vo= (Akxxk3+2%yk*k2+1) k (12%xkk5-x**3%y+12)

228 Y3+ (24 2° +24) y? + (-4 2% —2%) y+48 2% + 12 2% + 48 2% + 12

Type: Polynomial Integer

factor v
—(2®y—122° —12) (29y* +42° +1)
Type: Factored Polynomial Integer
Also, Axiom can factor polynomials with rational number coefficients.
W= (Akxkk3+(2/3) *kxxk2+1) % (12%xk*5-(1/2) *x**3+12)

35 95
2= 24827+ 12

48 28 +8 27 — 2 2°
x°+38x x—|—3 5

Type: Polynomial Fraction Integer

factor w

1 1 1
48 <x3+6x2+4> (m5—24x3+1)

Type: Factored Polynomial Fraction Integer



350 CHAPTER 8. ADVANCED PROBLEM SOLVING

8.2.2 Finite Field Coefficients

Polynomials with coefficients in a finite field can be also be factored.
u : POLY(PF(19)) :=3*x**4+2*x**2+15xx+18
32t 4222+ 152+ 18
Type: Polynomial PrimeField 19
These include the integers mod p, where p is prime, and extensions of these fields.
factor u
3 (z+18) (2° + 2> + 8 2 + 13)
Type: Factored Polynomial PrimeField 19

Convert this to have coefficients in the finite field with 19% elements. See section B on
page EOA for more information about finite fields.

factor(u :: POLY FFX(PF 19,3))

3(x+18) (x+5 %I +3 % +13) (x+16 %I* +14 %I +13) (z+ 17 %I* +2 %I + 13)

Type: Factored Polynomial FiniteFieldExtension(PrimeField 19,3)

8.2.3 Simple Algebraic Extension Field Coefficients

Polynomials with coefficients in simple algebraic extensions of the rational numbers can be
factored.

Here, aa and bb are symbolic roots of polynomials.

aa := rootOf (aa**2+aa+1)

aa

Type: AlgebraicNumber

p:=(x**x3+aax*2*x+y) * (aa*x**2+aaxx+aaxy**2) ¥*2
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(—aa—1) y° + ((—aa — 1) 23 + aa z) y*+

(-2 aa —2) 2 + (-2 aa — 2) z) y*+

(-2 aa —2) 2° + (-2 aa — 2) 2* + 2 aa 2* + 2 aa 2°) y*+

( aa —1) * + (=2 aa —2) 2° + (—aa — 1) z )y—|—

(—aa —1) 2" + (=2 aa — 2) 25 — 2° + 2 aa =* + aa 2°

Type: Polynomial AlgebraicNumber

Note that the second argument to factor can be a list of algebraic extensions to factor over.

factor(p, [aal)
(—aa—1) (y+2° + (—aa—1) z) (y* +2° + x)2

Type: Factored Polynomial AlgebraicNumber
This factors x * *2 + 3 over the integers.
factor (x**2+3)

243
Type: Factored Polynomial Integer
Factor the same polynomial over the field obtained by adjoining aa to the rational numbers.
factor (x**2+3, [aal)
(x—2aa—1)(x+2aa+1)

Type: Factored Polynomial AlgebraicNumber
Factor x * %6 4+ 108 over the same field.
factor (x**6+108, [aal)

(z° —12 aa — 6) (2 + 12 aa + 6)

Type: Factored Polynomial AlgebraicNumber
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bb:=root0f (bb**3-2)

bb

Type: AlgebraicNumber

factor (x**6+108, [bb])

(z* =3 bb x + 3 bb%) (2 + 3 bb*) (2 +3 bb x + 3 bb?)
Type: Factored Polynomial AlgebraicNumber
Factor again over the field obtained by adjoining both aa and bb to the rational numbers.
factor (x**6+108, [aa,bb])
(x 4+ (=2 aa—1) bb) (x + (—aa —2) bb) (x + (—aa + 1) bb)

(x + (aa — 1) bb) (z + (aa +2) bb) (z + (2 aa + 1) bb)

Type: Factored Polynomial AlgebraicNumber

8.2.4 Factoring Rational Functions

Since fractions of polynomials form a field, every element (other than zero) divides any
other, so there is no useful notion of irreducible factors. Thus the factor operation is not
very useful for fractions of polynomials.

There is, instead, a specific operation factorFraction that separately factors the numerator
and denominator and returns a fraction of the factored results.

factorFraction((x**2-4)/(y**2-4))

(r—2) (z+2)
(y—2) (y+2)

Type: Fraction Factored Polynomial Integer

You can also use map. This expression applies the factor operation to the numerator and
denominator.

map (factor, (x**2-4) / (y**2-4))

(z—2) (z+2)
(y—2) (y+2)

Type: Fraction Factored Polynomial Integer
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8.3 Manipulating Symbolic Roots of a Polynomial

In this section we show you how to work with one root or all roots of a polynomial. These
roots are represented symbolically (as opposed to being numeric approximations). See sec-
tion B2 on page BG2 and section B3 on page for information about solving for the
roots of one or more polynomials.

8.3.1 Using a Single Root of a Polynomial

Use rootOf to get a symbolic root of a polynomial: rootO f(p, z) returns a root of p(z).

This creates an algebraic number a.

a := rootOf (a**4+1,a)

Type: Expression Integer
To find the algebraic relation that defines a, use definingPolynomial.

definingPolynomial a

Type: Expression Integer
You can use a in any further expression, including a nested rootOf.

b := rootO0f (b**2-a-1,b)

Type: Expression Integer
Higher powers of the roots are automatically reduced during calculations.
a+b

b+a

Type: Expression Integer
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% *%x 5

(100> +11a*+2a—4) b+15a°>+10a”> +4a—10

Type: Expression Integer

The operation zeroOf is similar to root Of, except that it may express the root using radicals
in some cases.

rootOf (cx*x2+c+1,c)

Type: Expression Integer

zeroOf (d**2+d+1,d)
v=3-1
Type: Expression Integer

rootOf (ex*x5-2,e)

Type: Expression Integer

zero0f (£**5-2,f)

Type: Expression Integer

8.3.2 Using All Roots of a Polynomial

Use rootsOf to get all symbolic roots of a polynomial: rootsO f(p, x) returns a list of all the
roots of p(x). If p(x) has a multiple root of order n, then that root appears n times in the
list.

Compute all the roots of x x x4 + 1.
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1 := rootsOf (x**4+1,x)
(%20, %x0 %x1, —%20, —%x0 %x1]

Type: List Expression Integer
As a side effect, the variables %xz0 and %x1 are bound to the first two roots of = * x4 + 1.
%x0**5

—%x0
Type: Expression Integer

Although they all satisfy z * x4 + 1 = 0, %20 and %=x1 are different algebraic numbers. To
find the algebraic relation that defines each of them, use definingPolynomial.

definingPolynomial %x0

%20* + 1

Type: Expression Integer

definingPolynomial %x1

%rl1? +1

Type: Expression Integer

[t1:=1.1, t2:=1.2, t3:=1.3, t4:=1.4]
(%20, %20 %1, —%z0, — %20 %xl]
Type: List Expression Integer
We can check that the sum and product of the roots of x * x4 4 1 are its trace and norm.

t1+t2+t3+t4
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Type: Expression Integer

t1xt2%t3*t4d

Type: Expression Integer

Corresponding to the pair of operations rootOf/zeroOf in section B52 on page BB, there
is an operation zerosOf that, like rootsOf, computes all the roots of a given polynomial,
but which expresses some of them in terms of radicals.

zerosOf (y**4+1,y)

V=1+1 y/=1-1 —\/—1-1 —y/=1+1

Type: List Expression Integer

As you see, only one implicit algebraic number was created (%y1), and its defining equation
is this. The other three roots are expressed in radicals.

definingPolynomial %yl

%%var? + 1

Type: Expression Integer

8.4 Computation of Eigenvalues and Eigenvectors

In this section we show you some of Axiom’s facilities for computing and manipulating
eigenvalues and eigenvectors, also called characteristic values and characteristic vectors, re-
spectively.

Let’s first create a matrix with integer entries.

ml := matrix [ [1,2,1],[2,1,-2],[1,-2,4] ]
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Type: Matrix Integer
To get a list of the rational eigenvalues, use the operation eigenvalues.
leig := eigenvalues(ml)

5, (%K | %K* — %K —5)]

Type: List Union(Fraction Polynomial Integer,SuchThat(Symbol,Polynomial
Integer))

Given an explicit eigenvalue, eigenvector computes the eigenvectors corresponding to it.

eigenvector (first(leig) ,m1)

N

Type: List Matrix Fraction Polynomial Fraction Integer

The operation eigenvectors returns a list of pairs of values and vectors. When an eigenvalue
is rational, Axiom gives you the value explicitly; otherwise, its minimal polynomial is given,
(the polynomial of lowest degree with the eigenvalues as roots), together with a parametric
representation of the eigenvector using the eigenvalue. This means that if you ask Axiom to
solve the minimal polynomial, then you can substitute these roots into the parametric form
of the corresponding eigenvectors.

You must be aware that unless an exact eigenvalue has been computed, the eigenvector may
be badly in error.

eigenvectors(ml)

etgval = b, eigmult = 1, eigvec = —

N

%L
eigval = (%L | %L? — %L — 5), eigmult = 1, eigvec =
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Type: List Record(eigval: Union(Fraction Polynomial
Integer,SuchThat (Symbol,Polynomial Integer)),eigmult:
NonNegativelnteger,eigvec: List Matrix Fraction Polynomial Integer)

Another possibility is to use the operation radicalEigenvectors tries to compute explicitly
the eigenvectors in terms of radicals.

radicalEigenvectors(ml)

[ V2141
2
radval = @, radmult = 1, radvect = 2 ,
i 1
r —/21+1
—V21+1 2
radval = T—i—, radmult = 1, radvect = 2 ,
L 1
0
radval = 5, radmult = 1, radvect = f%
1

Type: List Record(radval: Expression Integer,radmult: Integer,radvect:
List Matrix Expression Integer)

Alternatively, Axiom can compute real or complex approximations to the eigenvectors and
eigenvalues using the operations realEigenvectors or complexEigenvectors. They each
take an additional argument € to specify the “precision” required. In the real case, this
means that each approximation will be within +e€ of the actual result. In the complex case,
this means that each approximation will be within +e of the actual result in each of the real
and imaginary parts.

The precision can be specified as a Float if the results are desired in floating-point notation,
or as Fraction Integer if the results are to be expressed using rational (or complex rational)
numbers.

realEigenvectors(ml,1/1000)
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0
outval = 5, outmult = 1, outvect = —% ,
i 1
I 5717
2048
outval = ,outmult = 1, outvect = 2 ,
2048 1
__ 3669
3669 2048
outval = ———, outmult = 1, outvect = 2
2048 1

Type: List Record(outval: Fraction Integer,outmult: Integer,outvect:
List Matrix Fraction Integer)

If an n by n matrix has n distinct eigenvalues (and therefore n eigenvectors) the operation
eigenMatrix gives you a matrix of the eigenvectors.

eigenMatrix(m1)

2
2 2 —
1 1 1

V2141 V2141 0

1
2
Type: Union(Matrix Expression Integer,...)

m2 := matrix [ [-5,-2],[18,7] 1]

-5 =2
8 7
Type: Matrix Integer

eigenMatrix(m2)
"failed"
Type: Union("failed",...)

If a symmetric matrix has a basis of orthonormal eigenvectors, then orthonormalBasis
computes a list of these vectors.

m3 := matrix [ [1,2],[2,1] 1]
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2 1]

Type: Matrix Integer

orthonormalBasis (m3)

[E4EEd|

Type: List Matrix Expression Integer

8.5 Solution of Linear and Polynomial Equations

In this section we discuss the Axiom facilities for solving systems of linear equations, finding
the roots of polynomials and solving systems of polynomial equations. For a discussion of
the solution of differential equations, see section B0 on page BY3.

8.5.1 Solution of Systems of Linear Equations

You can use the operation solve to solve systems of linear equations.

The operation solve takes two arguments, the list of equations and the list of the unknowns
to be solved for. A system of linear equations need not have a unique solution.

To solve the linear system:

r + y + =z = 8
3r — 2y + =z = 0
z + 2y + 2z = 17

evaluate this expression.
solve ([x+y+z=8, 3*xx-2*y+z=0,x+2*y+2*z=17] , [x,y,z])
[e=-Ly=22="7]
Type: List List Equation Fraction Polynomial Integer

Parameters are given as new variables starting with a percent sign and % and the variables
are expressed in terms of the parameters. If the system has no solutions then the empty list
is returned.
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When you solve the linear system

r + 2y + 3z = 2
2 + 3y + 4z = 2
3z + 4y + 5z = 2

with this expression you get a solution involving a parameter.

solve ([x+2xy+3%z=2, 2xx+3*y+4*z=2, 3*xx+4*y+5x2z=2] , [x,y,2])

[[x=%Q -2,y = -2 %Q + 2,2 = %Q|]

Type: List List Equation Fraction Polynomial Integer

The system can also be presented as a matrix and a vector. The matrix contains the co-
efficients of the linear equations and the vector contains the numbers appearing on the
right-hand sides of the equations. You may input the matrix as a list of rows and the vector
as a list of its elements.

To solve the system:

r + y + =z = 8
3 — 2y + =z = 0
z + 2y + 2z = 17

in matrix form you would evaluate this expression.

solve([ [1,1,1],03,-2,1],[1,2,2] ]1,(8,0,17])

[particular = [—1,2,7],basis = [[0, 0, 0]]]

Type: Record(particular: Union(Vector Fraction Integer,"failed"), basis:
List Vector Fraction Integer)

The solutions are presented as a Record with two components: the component particular
contains a particular solution of the given system or the item "failed" if there are no
solutions, the component basis contains a list of vectors that are a basis for the space of
solutions of the corresponding homogeneous system. If the system of linear equations does
not have a unique solution, then the basis component contains non-trivial vectors.

This happens when you solve the linear system

r + 2y + 3z = 2
2 4+ 3y + 4z = 2
3z + 4y + 5z = 2

with this command.

solve([ [1,2,3],[2,3,4],[3,4,5] 1,[2,2,2])
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[particular = [—2,2,0], basis = [[1, —2,1]]]

Type: Record(particular: Union(Vector Fraction Integer,"failed"), basis:
List Vector Fraction Integer)

All solutions of this system are obtained by adding the particular solution with a linear
combination of the basis vectors.

When no solution exists then "failed" is returned as the particular component, as follows:

solve([ [1,2,3],[2,3,4],[3,4,5] 1,[2,3,2])

[particular = "failed", basis = [[1,—2,1]]]

Type: Record(particular: Union(Vector Fraction Integer,"failed"), basis:
List Vector Fraction Integer)

When you want to solve a system of homogeneous equations (that is, a system where the
numbers on the right-hand sides of the equations are all zero) in the matrix form you can
omit the second argument and use the nullSpace operation.

This computes the solutions of the following system of equations:

r + 2y + 3z = 0
2r 4+ 3y + 4z = 0
3r + 4y + 5z = 0

The result is given as a list of vectors and these vectors form a basis for the solution space.

nullSpace([ [1,2,3],[2,3,4],[3,4,5] 1)

[[17 -2, 1]]

Type: List Vector Integer

8.5.2 Solution of a Single Polynomial Equation

Axiom can solve polynomial equations producing either approximate or exact solutions.
Exact solutions are either members of the ground field or can be presented symbolically as
roots of irreducible polynomials.

This returns the one rational root along with an irreducible polynomial describing the other
solutions.

solve (x**3 = 8,x)
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[z =2,2"+22+4=0]
Type: List Equation Fraction Polynomial Integer
If you want solutions expressed in terms of radicals you would use this instead.
radicalSolve (x**3 = 8,x)
[x:—\/ji’)—l,x:\/j?)fl,z:Q]
Type: List Equation Expression Integer

The solve command always returns a value but radicalSolve returns only the solutions
that it is able to express in terms of radicals.

If the polynomial equation has rational coefficients you can ask for approximations to its real
roots by calling solve with a second argument that specifies the “precision” e. This means
that each approximation will be within +e of the actual result.

Notice that the type of second argument controls the type of the result.
solve(x**x4 - 10*x**3 + 35*x**2 — 50*x + 25,.0001)
[x = 3.618011474609375, x = 1.381988525390625]
Type: List Equation Polynomial Float

If you give a floating-point precision you get a floating-point result; if you give the precision
as a rational number you get a rational result.

solve (x**3-2,1/1000)
2581
r=_—
2048
Type: List Equation Polynomial Fraction Integer

If you want approximate complex results you should use the command complexSolve that
takes the same precision argument e.

complexSolve (x**3-2,.0001)
[ = 1.259918212890625,
r = —0.62989432795395613131 — 1.091094970703125 ¢,

x = —0.62989432795395613131 + 1.091094970703125 7]



364 CHAPTER 8. ADVANCED PROBLEM SOLVING
Type: List Equation Polynomial Complex Float

Each approximation will be within +e of the actual result in each of the real and imaginary
parts.

complexSolve (x**2-2x%1i+1,1/100)

13028925 325 P 13028925 N 325 .
T 16777216 256 7 16777216 256

Type: List Equation Polynomial Complex Fraction Integer

Note that if you omit the = from the first argument Axiom generates an equation by equating
the first argument to zero. Also, when only one variable is present in the equation, you do
not need to specify the variable to be solved for, that is, you can omit the second argument.

Axiom can also solve equations involving rational functions. Solutions where the denominator
vanishes are discarded.

radicalSolve(1/x**3 + 1/x**x2 + 1/x = 0,x)

—V/=-3-1  /=3-1

xzf,x— 5

Type: List Equation Expression Integer

8.5.3 Solution of Systems of Polynomial Equations

Given a system of equations of rational functions with exact coefficients:
p1(T1s s Tn)

pm(xla s 7xn)

Axiom can find numeric or symbolic solutions. The system is first split into irreducible
components, then for each component, a triangular system of equations is found that reduces
the problem to sequential solution of univariate polynomials resulting from substitution of
partial solutions from the previous stage.

ql(xlv"'axn)

dm (xn)
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Symbolic solutions can be presented using “implicit” algebraic numbers defined as roots of
irreducible polynomials or in terms of radicals. Axiom can also find approximations to the
real or complex roots of a system of polynomial equations to any user-specified accuracy.

The operation solve for systems is used in a way similar to solve for single equations.
Instead of a polynomial equation, one has to give a list of equations and instead of a single
variable to solve for, a list of variables. For solutions of single equations see section 52 on
page BG2.

Use the operation solve if you want implicitly presented solutions.
solve([3*x*x*3 + y + 1,y**2 -4], [x,y])
[z=-1y=2],[2> —2+1=0,y=2],[32° - 1=0,y = -2]]

Type: List List Equation Fraction Polynomial Integer

solve([x = y**2-19,y = z**2+x+3,z = 3xx], [x,y,2z])

ot 3224249
—3YT 3

9284622455 22 +15 z—90:0H
Type: List List Equation Fraction Polynomial Integer

Use radicalSolve if you want your solutions expressed in terms of radicals.

radicalSolve ([3*x*x*3 + y + 1,yx*2 -4],[x,y])

Hw= 7\/?5’“&:2}, [wz 7‘“?*1,.1;:2},

—V/-1V3-1 _ V/-1V3-1 _
t= VTP T T YT

Type: List List Equation Expression Integer

To get numeric solutions you only need to give the list of equations and the precision desired.
The list of variables would be redundant information since there can be no parameters for
the numerical solver.

If the precision is expressed as a floating-point number you get results expressed as floats.

solve ([x**2xy - 1,x*y**x2 - 2],.01)
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[ly = 1.5859375, z = 0.79296875]]
Type: List List Equation Polynomial Float

To get complex numeric solutions, use the operation complexSolve, which takes the same
arguments as in the real case.

complexSolve ([x**2*y - 1,xxy*x2 - 2],1/1000)

[ly = 1533 = = 3631,
_ 435445573689 1407 . 435445573689 1407
Y 549755813888 1024 T 1099511627776 2048 |’

T 549755813838 | 1024 T T T 1099511627776 | 2048

[y— 435445573689 1407 | 435445573689 1407 ”

Type: List List Equation Polynomial Complex Fraction Integer

It is also possible to solve systems of equations in rational functions over the rational numbers.

Note that [x = 0.0,a = 0.0] is not returned as a solution since the denominator vanishes
there.

solve([x**2/a = a,a = a*x],.001)
[[x=1.0,a = —1.0],[x = 1.0,a = 1.0]]
Type: List List Equation Polynomial Float

When solving equations with denominators, all solutions where the denominator vanishes
are discarded.

radicalSolve([x**2/a + a + y**3 - 1l,axy + a + 1], [x,y])
|:|:1, _ _\/7a4+2 a34(r1§ a?4+3 a+1’y — 0211:|’

l \/a4+2a3+3a2+3a+1 alH
xr = D) Yy =
a a

Type: List List Equation Expression Integer
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8.6 Limits

To compute a limit, you must specify a functional expression, a variable, and a limiting value
for that variable. If you do not specify a direction, Axiom attempts to compute a two-sided
limit.
Issue this to compute the limit
. 22— 3z +2
z—1 x° —1

limit((x**2 - 3*x + 2)/(x**2 - 1) ,x = 1)

1

2

Type: Union(OrderedCompletion Fraction Polynomial Integer,...)

Sometimes the limit when approached from the left is different from the limit from the right
and, in this case, you may wish to ask for a one-sided limit. Also, if you have a function
that is only defined on one side of a particular value, you can compute a one-sided limit.

The function log(x) is only defined to the right of zero, that is, for £ > 0. Thus, when
computing limits of functions involving log(z), you probably want a “right-hand” limit.

limit(x * log(x),x = 0,"right")

Type: Union(OrderedCompletion Expression Integer,...)

When you do not specify “right” or “left” as the optional fourth argument, limit tries to
compute a two-sided limit. Here the limit from the left does not exist, as Axiom indicates
when you try to take a two-sided limit.

limit(x * log(x),x = 0)

[leftHandLimit = "failed", right HandLimit = 0]

Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression
Integer,"failed"), rightHandLimit: Union(OrderedCompletion Expression
Integer,"failed")),...)

A function can be defined on both sides of a particular value, but tend to different limits
as its variable approaches that value from the left and from the right. We can construct an
example of this as follows: Since /y? is simply the absolute value of y, the function /y2/y
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is simply the sign (4+1 or —1) of the nonzero real number y. Therefore, \/y%/y = —1 for
y < 0 and \/y?/y = +1 for y > 0.

This is what happens when we take the limit at y = 0. The answer returned by Axiom gives
both a “left-hand” and a “right-hand” limit.

limit (sqrt(y**2)/y,y = 0)

[leftHandLimit = —1,right HandLimit = 1]

Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression
Integer,"failed"), rightHandLimit: Union(OrderedCompletion Expression
Integer,"failed")),...)

Here is another example, this time using a more complicated function.

limit(sqrt(1 - cos(t))/t,t = 0)

1
leftHandLimit = ——, right HandLimit = —

V2 V2

Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression
Integer,"failed"), rightHandLimit: Union(OrderedCompletion Expression
Integer,"failed")),...)

You can compute limits at infinity by passing either 400 or —oco as the third argument of
limit.

To do this, use the constants %plusin finity and %minusInfinity.

limit (sqrt(3*x**2 + 1)/(5*x),x = YplusInfinity)

V3

5

Type: Union(OrderedCompletion Expression Integer,...)

limit(sqrt (3*x**2 + 1)/(5%x),x = YminusInfinity)

V3

5

Type: Union(OrderedCompletion Expression Integer,...)
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You can take limits of functions with parameters. As you can see, the limit is expressed in
terms of the parameters.

limit (sinh(a*x)/tan(b*x),x = 0)
a
b
Type: Union(OrderedCompletion Expression Integer,...)

When you use limit, you are taking the limit of a real function of a real variable.

When you compute this, Axiom returns 0 because, as a function of a real variable, sin(1/z)
is always between —1 and 1, so z * sin(1/z) tends to 0 as z tends to 0.

limit(z * sin(1/z),z = 0)

Type: Union(OrderedCompletion Expression Integer,...)
However, as a function of a complex variable, sin(1/z) is badly behaved near 0 (one says
that sin(1/z) has an essential singularity at z = 0).
When viewed as a function of a complex variable, z * sin(1/z) does not approach any limit
as z tends to 0 in the complex plane. Axiom indicates this when we call complexLimit.
complexLimit(z * sin(1/z),z = 0)
"failed"

Type: Union("failed",...)

Here is another example. As x approaches 0 along the real axis, exp(—1/x * %2) tends to 0.

limit(exp(-1/x**2),x = 0)

Type: Union(OrderedCompletion Expression Integer,...)

However, if x is allowed to approach 0 along any path in the complex plane, the limiting
value of exp(—1/x % x2) depends on the path taken because the function has an essential
singularity at = 0. This is reflected in the error message returned by the function.
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complexLimit (exp(-1/x**2) ,x = 0)
"failed"
Type: Union("failed",...)

You can also take complex limits at infinity, that is, limits of a function of z as z approaches
infinity on the Riemann sphere. Use the symbol %in finity to denote “complex infinity.”

As above, to compute complex limits rather than real limits, use complexLimit.
complexLimit((2 + z)/(1 - z),z = %infinity)
-1
Type: OnePointCompletion Fraction Polynomial Integer

In many cases, a limit of a real function of a real variable exists when the corresponding
complex limit does not. This limit exists.

limit(sin(x)/x,x = %plusInfinity)

0
Type: Union(OrderedCompletion Expression Integer,...)
But this limit does not.
complexLimit(sin(x)/x,x = %infinity)
"failed"

Type: Union("failed",...)

8.7 Laplace Transforms

Axiom can compute some forward Laplace transforms, mostly of elementary functions not
involving logarithms, although some cases of special functions are handled.

To compute the forward Laplace transform of F'(t) with respect to ¢ and express the result
as f(s), issue the command laplace(F(t),t,s).

laplace(sin(a*t)*cosh(axt)-cos(a*t)*sinh(a*t), t, s)
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4 a3
s*+4 a*
Type:
Here are some other non-trivial examples.
laplace((exp(a*xt) - exp(b*t))/t, t, s)
—log (s — a) + log (s — b)
Type:
laplace(2/t * (1 - cos(a*t)), t, s)
log (s* 4+ a®) — 2 log (s)
Type:
laplace(exp(-a*xt) * sin(b*t) / b**2, t, s)
1
bs?2+2abs+b3+a%b
Type:
laplace((cos(a*xt) - cos(b*t))/t, t, s)
log (s + b?) — log (s* + a?)
2
Type:

Axiom also knows about a few special functions.

laplace(exp(axt+b)*Ei(c*t), t, s)

o log (222)

Ss—a

Type:
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Expression Integer

Expression Integer

Expression Integer

Expression Integer

Expression Integer

Expression Integer
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laplace(a*Ci(b*t) + c*Si(d*t), t, s)

szggbz) + 2 ¢ arctan (4)

alog( .
2s

Type: Expression Integer

When Axiom does not know about a particular transform, it keeps it as a formal transform
in the answer.

laplace(sin(a*t) - a*t*cos(axt) + exp(t**2), t, s)

(s* + 2 a* s*> + a*) laplace (etz,t, S) +2a?

st +2a? s2 4+ gt

Type: Expression Integer

8.8 Integration

Integration is the reverse process of differentiation, that is, an integral of a function f with
respect to a variable x is any function g such that D(g,z) is equal to f.

The package FunctionSpaceIntegration provides the top-level integration operation, in-
tegrate, for integrating real-valued elementary functions.

integrate (cosh(a*x)*sinh(a*x), x)

sinh (a 2)* + cosh (a )
4a

Type: Union(Expression Integer,...)

Unfortunately, antiderivatives of most functions cannot be expressed in terms of elementary
functions.

integrate(log(l + sqrt(a * x + b)) / x, x)

d%M

z log (m+ 1)
| =

Type: Union(Expression Integer,...)
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Given an elementary function to integrate, Axiom returns a formal integral as above only
when it can prove that the integral is not elementary and not when it cannot determine
the integral. In this rare case it prints a message that it cannot determine if an elementary
integral exists.

Similar functions may have antiderivatives that look quite different because the form of the
antiderivative depends on the sign of a constant that appears in the function.

integrate(1/(x**2 - 2),x)
.2 _ .
log <(£ +2x)2f 4 1>
2 V2

Type: Union(Expression Integer,...)

integrate(1/(x**2 + 2),x)

2

V2

Type: Union(Expression Integer,...)

arctan (”” \/5)

If the integrand contains parameters, then there may be several possible antiderivatives,
depending on the signs of expressions of the parameters.

In this case Axiom returns a list of answers that cover all the possible cases. Here you use
the answer involving the square root of a when a > 0 and the answer involving the square
root of —a when a < 0.

integrate (x**2 / (x**4 - a**2), x)

1Og<Wc>+2 alrctarl(ur a\/E)
1 va )

log ((ﬁa) v=at2a x) — 2 arctan (I ‘éja)

z2+4a
4 +\/—a

Type: Union(List Expression Integer,...)
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If the parameters and the variables of integration can be complex numbers rather than real,
then the notion of sign is not defined. In this case all the possible answers can be expressed
as one complex function. To get that function, rather than a list of real functions, use
complexIntegrate, which is provided by the package FunctionSpaceComplexIntegration.

This operation is used for integrating complex-valued elementary functions.

complexIntegrate (x**2 / (x**4 - ax*2), x)
z V/—4 a+2 a x \/H+2 a
\/4 alog (ﬁ) —\/Talog (T)"F

oo () i ()

2vV=4da+via

Type: Expression Integer

As with the real case, antiderivatives for most complex-valued functions cannot be expressed
in terms of elementary functions.

complexIntegrate(log(l + sqrt(a * x + b)) / x, x)

d%M

z log (m+ 1)
| =

Type: Expression Integer

Sometimes integrate can involve symbolic algebraic numbers such as those returned by
rootOf. To see how to work with these strange generated symbols (such as %%a0), see
section BZ37 on page Bad.

Definite integration is the process of computing the area between the z-axis and the curve
of a function f(z). The fundamental theorem of calculus states that if f is continuous on
an interval a..b and if there exists a function g that is differentiable on a..b and such that
D(g,x) is equal to f, then the definite integral of f for = in the interval a..b is equal to

9(b) —g(a).
The package RationalFunctionDefiniteIntegration provides the top-level definite inte-
gration operation, integrate, for integrating real-valued rational functions.

integrate ((x**4 — 3*x**2 + 6)/(x*k*x6-5*x**4+5*xx**2+4), x = 1..2)

2 arctan (8) + 2 arctan (5) + 2 arctan (2) 4+ 2 arctan (1) — 7
2
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Type: Union(fl: OrderedCompletion Expression Integer,...)

Axiom checks beforehand that the function you are integrating is defined on the interval
a..b, and prints an error message if it finds that this is not case, as in the following example:

integrate(1/(x**2-2), x = 1..2)

>> Error detected within library code:
Pole in path of integration
You are being returned to the top level
of the interpreter.

When parameters are present in the function, the function may or may not be defined on
the interval of integration.

If this is the case, Axiom issues a warning that a pole might lie in the path of integration,
and does not compute the integral.

integrate(1/(x**2-a), x = 1..2)
potential Pole
Type: Union(pole: potentialPole,...)

If you know that you are using values of the parameter for which the function has no pole
in the interval of integration, use the string ¢ ‘noPole’’ as a third argument to integrate:

The value here is, of course, incorrect if sgrt(a) is between 1 and 2.

integrate(1/(x**2-a), x = 1..2, "noPole")

40,74(1 +a+6a+a
—log ( u2 2 atl )-+

: (( 8 a? —32a)f+a + 24 a? +16a>
og

2_-8a+16
1a !

—arctan (2 F) -+ arctan (‘/;7“>
V—a

Type: Union(f2: List OrderedCompletion Expression Integer,...)
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8.9 Working with Power Series

Axiom has very sophisticated facilities for working with power series.

Infinite series are represented by a list of the coefficients that have already been determined,
together with a function for computing the additional coeflicients if needed.

The system command that determines how many terms of a series is displayed is )set
streams calculate. For the purposes of this book, we have used this system command to
display fewer than ten terms. Series can be created from expressions, from functions for the
series coeflficients, and from applications of operations on existing series. The most general
function for creating a series is called series, although you can also use taylor, laurent and
puiseux in situations where you know what kind of exponents are involved.

For information about solving differential equations in terms of power series, see section B3
on page HII3.

8.9.1 Creation of Power Series

This is the easiest way to create a power series. This tells Axiom that x is to be treated as
a power series, so functions of x are again power series.

X := series ’x
T
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
We didn’t say anything about the coefficients of the power series, so the coefficients are

general expressions over the integers. This allows us to introduce denominators, symbolic
constants, and other variables as needed.

Here the coefficients are integers (note that the coefficients are the Fibonacci numbers).
1/(1 - x - x*%2)
l+z+22°+32°+52" +82° +132°+21 2" +34 2% + 55 27 + 89 2'° + O (2!
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
This series has coeflicients that are rational numbers.
sin(x)

x—f:v?’—i—iﬁ— ! z’ ! ) — ——
6 120 5040 362830 39916800

1,11 + 10 (.’E12)
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Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
When you enter this expression you introduce the symbolic constants sin(1) and cos(1).

sin(1 + x)

sin (1) + cos (1) Tz — sin2(1) 2 coz(l) 23 + sin(1) 24 + cos(1) 25— sin(1) 26

24 120 720
cos(l) -, sin(l) ¢ cos(l) 4 sin(l) 4 1
= o)
5010 © *aos20 © " 362ss0 ©  aezssoo ¢ O )

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
When you enter the expression the variable a appears in the resulting series expansion.

sin(a * x)

a3 5 ab . a’ . a® 0 all
ar——2+_— 1 — ' + T -
6 120 5040 362880 39916800

2140 (x12)
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

You can also convert an expression into a series expansion. This expression creates the series
expansion of 1/log(y) about y = 1. For details and more examples, see section BI3 on
page B4.

series(1/log(y),y = 1)

-1 2 3 4
(=05 - Dtas -1 =8 =D+ (- D'~

863 275 33953

863 s 200 e 33993 7
goaso ¥~ Dt 3q100 W1~ 3638800 W
8183 s 3250433 0 10
9009 )8 22ESS ( —1 )
1036800 Y~ 1)~ Froooteo0 WY tO(w -1

Type: UnivariatePuiseuxSeries(Expression Integer,y,1)

You can create power series with more general coefficients. You normally accomplish this
via a type declaration (see section 3 on page [[33). See section BT on page for some
warnings about working with declared series.

We declare that y is a one-variable Taylor series (UTS is the abbreviation for UnivariateTaylorSeries)
in the variable z with FLOAT (that is, floating-point) coefficients, centered about 0. Then, by
assignment, we obtain the Taylor expansion of exp(z) with floating-point coefficients.
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y : UTS(FLOAT,’z,0) := exp(z)

1.0+ z + 0.5 2% + 0.1666666666 6666666667 2>+

0.0416666666 66666666667 ~* + 0.0083333333 333333333334 2°+
0.0013838888 888388888889 26 + 0.0001984126 984126984127 2"+
0.0000248015 87301587301587 2® + 0.0000027557 319223985890653 2°+
0.2755731922 3985890653L — 6 z'* + O (2'')

Type: UnivariateTaylorSeries(Float,z,0.0)

You can also create a power series by giving an explicit formula for its n-th coefficient. For
details and more examples, see section U@ on page BX4.

To create a series about w = 0 whose n-th Taylor coefficient is 1/n!, you can evaluate this
expression. This is the Taylor expansion of exp(w) at w = 0.

series(1/factorial(n),n,w = 0)

1 2 1 3 1 4 1 5 1 6 1 7
L+w+ 5w+ § w4 57 w° + 555 W+ 735 W+ gop W'

1

8
10320 Y T

1 9 1 10 11
- 19
362880 © T 3628800 T O )

Type: UnivariatePuiseuxSeries(Expression Integer,w,0)

8.9.2 Coeflicients of Power Series

You can extract any coefficient from a power series—even one that hasn’t been computed yet.
This is possible because in Axiom, infinite series are represented by a list of the coefficients
that have already been determined, together with a function for computing the additional
coefficients. (This is known as lazy evaluation.) When you ask for a coefficient that hasn’t yet
been computed, Axiom computes whatever additional coefficients it needs and then stores
them in the representation of the power series.

Here’s an example of how to extract the coefficients of a power series.
x := series(x)

xT

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
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y := exp(x) * sin(x)
PR e e T kg

1 10 1 11 12
Ti3a00 © + 12a7ang © YO @)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

This coefficient is readily available.

coefficient(y,6)

1

90

Type: Expression Integer

But let’s get the fifteenth coefficient of y.
coefficient(y,15)

1

10216206000

Type: Expression Integer

If you look at y then you see that the coefficients up to order 15 have all been computed.

2,1.,3 1.5 1,6 1 .7 1 9 1 10
r+att+gzw 30 T 90 T 630 £ T 22680 £~ T Ti3a00 £t

1 11 1 13 1 14 1

- - o o 15 16
o700 © " o7a97200 ©  6aiosodon © ~ 1oziezosoos & TO ()

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

8.9.3 Power Series Arithmetic

You can manipulate power series using the usual arithmetic operations +, —, %, and / (from
UnivariatePuiseuxSeries)

The results of these operations are also power series.
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X := series X

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

(3 +x) / (1 + 7%xx)

3 —20 x + 140 2% — 980 23 + 6860 z* — 48020 x° + 336140 25 — 2352980 ="+

16470860 z® — 115296020 2” + 807072140 2'* + O (z'!)
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
You can also compute f(x) x xg(x), where f(z) and g(z) are two power series.
base := 1/ (1 - x)
1+x+x2—|—x3—|—x4+x5+x6+x7+w8+x9+m10+0(x11)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
expon := X * base
x+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+O(a:12)
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
base ** expon

2 ,.3.,3, 7.4 ,43 .5, 649 6 , 241 .7 , 3706 ,.8
Ita"+5a”+g0° + 3527+ 555 27+ 55 2° + 3575 o7+

85763 4, 245339 1
5040 10080

+0 (xu)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
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8.9.4 Functions on Power Series

Once you have created a power series, you can apply transcendental functions (for example,
exp, log, sin, tan, cosh, etc.) to it.

To demonstrate this, we first create the power series expansion of the rational function

2

T
1 — 6z + z?
about x = 0.
X := series ’x
x
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
rat := x**2 / (1 - 6xx + x**2)

22 4+ 6 2% + 35 % + 204 2° + 1189 26 + 6930 27 + 40391 2° + 235416 2%+
1372105 z'° 4 7997214 ' + 46611179 2'* + O (2'?)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

If you want to compute the series expansion of

(=)
sin ([ ————
1—6z+zx

you simply compute the sine of rat.
sin(rat)
22 +6 2° + 35 ot + 204 2° + 733 26 4 6927 27 4 SOTL 28 4+ 235068 2+

164285281 ,, = 31888513 ,, 371324777 ,,
— g0 g g

13
120 " 8 +0(2")

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Warning: the type of the coefficients of a power series may affect the kind
of computations that you can do with that series. This can only happen
when you have made a declaration to specify a series domain with a certain
type of coefficient.
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If you evaluate then you have declared that y is a one variable Taylor series (UTS is the ab-
breviation for UnivariateTaylorSeries) in the variable y with FRAC INT (that is, fractions
of integer) coefficients, centered about 0.

y : UTS(FRAC INT,y,0) :=y
)
Type: UnivariateTaylorSeries(Fraction Integer,y,0)

You can now compute certain power series in y, provided that these series have rational
coefficients.

exp(y)

1.,2,1.3, 1 4, 1 .5, 1 .6 1.7 1.8
Ity+ v +5v+u ¥+ ¥ tm¥ taomw ¥ o0 ¥ T

1 9

10 11
360850 ¥+ 3easan0 ¥ TO W)

Type: UnivariateTaylorSeries(Fraction Integer,y,0)

You can get examples of such series by applying transcendental functions to series in y that
have no constant terms.

tan (y**2)

1 2
2 6 10 11
= — 0
y+3y+15y + (y)

Type: UnivariateTaylorSeries(Fraction Integer,y,0)

cos(y + y**5)

po Lo Ly T2 g 6721 o 184464
2 ¥ "o Y T 70 Y Ta0320 Y T 3628800 7

+ 9] (yll)
Type: UnivariateTaylorSeries(Fraction Integer,y,0)

Similarly, you can compute the logarithm of a power series with rational coefficients if the
constant coeflicient is 1.

log(1 + sin(y))
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1 2 1 3 1 4 1 5 1 6 61 7 17 8 277 9
Y=y +t5¥ 1Y tu¥V Y tson¥ m0Y sy -
31

10 11
s Y Towh)

Type: UnivariateTaylorSeries(Fraction Integer,y,O)

If you wanted to apply, say, the operation exp to a power series with a nonzero constant
coefficient ag, then the constant coefficient of the result would be e®°, which is not a rational
number. Therefore, evaluating exp(2 + tan(y)) would generate an error message.

If you want to compute the Taylor expansion of exp(2 + tan(y)), you must ensure that the
coefficient domain has an operation exp defined for it. An example of such a domain is
Expression Integer, the type of formal functional expressions over the integers.

When working with coefficients of this type,

z : UTS(EXPR INT,z,0) := z

Type: UnivariateTaylorSeries(Expression Integer,z,0)
this presents no problems.

exp(2 + tan(z))

2 2 e? 2 e® 3, 3¢e% 4,37 5, 59> 6, 137> 7
etz T 2+ T At g At g 2 a0 2t T 2T

871¢* o 41641¢® , 326249 ¢
5760 362880 3628800

+ O (zn)
Type: UnivariateTaylorSeries(Expression Integer,z,O)

Another way to create Taylor series whose coefficients are expressions over the integers is to
use taylor which works similarly to series.

This is equivalent to the previous computation, except that now we are using the variable w
instead of z.

w := taylor ’w

w

Type: UnivariateTaylorSeries(Expression Integer,W,O)
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exp(2 + tan(w))

871 ¢ o 41641 €2 o 325249 ¢2

11
5760 ¥ T 362880 T 3628800 +0 (')

Type: UnivariateTaylorSeries(Expression Integer,w,O)

8.9.5 Converting to Power Series

The ExpressionToUnivariatePowerSeries package provides operations for computing se-
ries expansions of functions.

Evaluate this to compute the Taylor expansion of sinxz about x = 0. The first argument,
sin(x), specifies the function whose series expansion is to be computed and the second
argument, x = 0, specifies that the series is to be expanded in power of (z — 0), that is, in
power of x.

taylor(sin(x),x = 0)

1 3 T 1 5 1 7 4
r— T — T — = T
6 120 5040 362880

9 +0 (.’Iill)
Type: UnivariateTaylorSeries(Expression Integer,x,0)
Here is the Taylor expansion of sinx about x = %:

taylor(sin(x),x = %pi/6)

Jis m\2 m\3 m\4
L @5 1§ % @5 s @)+
V3 m\5 1 7\ 6 V3 7 1 m\ 8
240 (m_E) T 1440 (“’_6) ~ 10080 (x_é) * 30640 (x_E) +

s
7257360 (v~ %)9 - m (v~ %)10 +O <<x - g)u)

Type: UnivariateTaylorSeries(Expression Integer,x,pi/6)

SIS

The function to be expanded into a series may have variables other than the series variable.

For example, we may expand tan(x * y) as a Taylor series in x

taylor (tan(x*y),x = 0)
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3 5 7 9
Yy o3, 2y 5 1Ty" . 62y
Yoty e T s Tt gss

¥ +0 (:1:11)
Type: UnivariateTaylorSeries(Expression Integer,x,0)
or as a Taylor series in y.

taylor (tan(x*y),y = 0)

. +£3 3+2x5 s 177 7+62x9
YTV Ty Y T s YT 35

yg +0 (yll)
Type: UnivariateTaylorSeries(Expression Integer,y,0)

A more interesting function is
temt
el —1
When we expand this function as a Taylor series in t the n-th order coefficient is the n-th
Bernoulli polynomial divided by n!.

bern := taylor(t*exp(x*t)/(exp(t) - 1),t = 0)

2 z—1 6 2°—6 z+1 ;2 | 2 23 z’4ax ,3
L+ 55— t+ 12 =+ 12 o+
30 2% — 60 2® 430 22 — 1 t4+6x5715:c4+10x3fa:

5
720 720 +

422°—1262° +105 28 2122 +1 ¢ 627 -212°+210° T2t o
30240 30240

30 28 — 120 27 + 140 2% — 70 2* +20 22 — 1 8
1209600

+

102 —45 28 +60 2" —42 25 +20 2 — 3 z

9
3628800 e

66 219 — 330 2% + 495 2® — 462 25 + 330 2% — 99 2% + 5 410
239500800

+ 19 (tll)
Type: UnivariateTaylorSeries(Expression Integer,t,0)
Therefore, this and the next expression produce the same result.

factorial(6) * coefficient(bern,6)
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42 2% — 126 2° + 105 z* — 21 22 + 1
42

Type: Expression Integer

bernoulliB(6,x)

Type: Polynomial Fraction Integer

Technically, a series with terms of negative degree is not considered to be a Taylor series,
but, rather, a Laurent series. If you try to compute a Taylor series expansion of ﬁ at
x =1 via taylor(z/log(x),x = 1) you get an error message. The reason is that the function
has a pole at x = 1, meaning that its series expansion about this point has terms of negative
degree. A series with finitely many terms of negative degree is called a Laurent series.

You get the desired series expansion by issuing this.

laurent (x/log(x),x = 1)

-1 2 3 4
R R A R e N R VAEE  CE VN R Vs

271 s 13 6 7297 . 425 .

L PO Y S P DL TR A VR L OV

60150 “ Y " mas0 ) F3as00 @Y T ag0300 GV
5301