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New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed
versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The
second volume is for programmers. The third volume is reference material. We’ve also added
a fourth volume for developers. All of these changes represent an experiment in print-on-
demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))
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Foreword

You are holding in your hands an unusual book. Winston Churchill once said that the
empires of the future will be empires of the mind. This book might hold an electronic key
to such an empire.

When computers were young and slow, the emerging computer science developed dreams
of Artificial Intelligence and Automatic Theorem Proving in which theorems can be proved
by machines instead of mathematicians. Now, when computer hardware has matured and
become cheaper and faster, there is not too much talk of putting the burden of formulating
and proving theorems on the computer’s shoulders. Moreover, even in those cases when com-
puter programs do prove theorems, or establish counter-examples (for example, the solution
of the four color problem, the non-existence of projective planes of order 10, the disproof of
the Mertens conjecture), humans carry most of the burden in the form of programming and
verification.

It is the language of computer programming that has turned out to be the crucial instrument
of productivity in the evolution of scientific computing. The original Artificial Intelligence ef-
forts gave birth to the first symbolic manipulation systems based on LISP. The first complete
symbolic manipulation or, as they are called now, computer algebra packages tried to imbed
the development programming and execution of mathematical problems into a framework
of familiar symbolic notations, operations and conventions. In the third decade of symbolic
computations, a couple of these early systems—REDUCE and MACSYMA—still hold their
own among faithful users.

Axiom was born in the mid-70’s as a system called Scratchpad developed by IBM researchers.
Scratchpad/Axiom was born big—its original platform was an IBM mainframe 3081, and
later a 3090. The system was growing and learning during the decade of the 80’s, and its
development and progress influenced the field of computer algebra. During this period, the
first commercially available computer algebra packages for mini and and microcomputers
made their debut. By now, our readers are aware of Mathematica, Maple, Derive, and
Macsyma. These systems (as well as a few special purpose computer algebra packages in
academia) emphasize ease of operation and standard scientific conventions, and come with
a prepared set of mathematical solutions for typical tasks confronting an applied scientist
or an engineer. These features brought a recognition of the enormous benefits of computer
algebra to the widest circles of scientists and engineers.

The Scratchpad system took its time to blossom into the beautiful Axiom product. There is
no rival to this powerful environment in its scope and, most importantly, in its structure and
organization. Axiom contains the basis for any comprehensive and elaborate mathematical
development. It gives the user all Foundation and Algebra instruments necessary to develop
a computer realization of sophisticated mathematical objects in exactly the way a mathe-
matician would do it. Axiom is also the basis of a complete scientific cyberspace—it provides
an environment for mathematical objects used in scientific computation, and the means of
controlling and communicating between these objects. Knowledge of only a few Axiom lan-
guage features and operating principles is all that is required to make impressive progress
in a given domain of interest. The system is powerful. It is not an interactive interpretive
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environment operating only in response to one line commands—it is a complete language
with rich syntax and a full compiler. Mathematics can be developed and explored with ease
by the user of Axiom. In fact, during Axiom’s growth cycle, many detailed mathematical
domains were constructed. Some of them are a part of Axiom’s core and are described in
this book. For a bird’s eye view of the algebra hierarchy of Axiom, glance inside the book
cover.

The crucial strength of Axiom lies in its excellent structural features and unlimited expandability—
it is open, modular system designed to support an ever growing number of facilities with
minimal increase in structural complexity. Its design also supports the integration of other
computation tools such as numerical software libraries written in FORTRAN and C. While
Axiom is already a very powerful system, the prospect of scientists using the system to
develop their own fields of Science is truly exciting—the day is still young for Axiom.

Over the last several years Scratchpad/Axiom has scored many successes in theoretical math-
ematics, mathematical physics, combinatorics, digital signal processing, cryptography and
parallel processing. We have to confess that we enjoyed using Scratchpad/Axiom. It pro-
vided us with an excellent environment for our research, and allowed us to solve problems
intractable on other systems. We were able to prove new diophantine results for π; estab-
lish the Grothendieck conjecture for certain classes of linear differential equations; study
the arithmetic properties of the uniformization of hyperelliptic and other algebraic curves;
construct new factorization algorithms based on formal groups; within Scratchpad/Axiom
we were able to obtain new identities needed for quantum field theory (elliptic genus formula
and double scaling limit for quantum gravity), and classify period relations for CM varieties
in terms of hypergeometric series.

The Axiom system is now supported and distributed by NAG, the group that is well known
for its high quality software products for numerical and statistical computations. The devel-
opment of Axiom in IBM was conducted at IBM T.J. Watson Research Center at Yorktown,
New York by a symbolic computation group headed by Richard D. Jenks. Shmuel Winograd
of IBM was instrumental in the progress of symbolic research at IBM.

This book opens the wonderful world of Axiom, guiding the reader and user through Ax-
iom’s definitions, rules, applications and interfaces. A variety of fully developed areas of
mathematics are presented as packages, and the user is well advised to take advantage of the
sophisticated realization of familiar mathematics. The Axiom book is easy to read and the
Axiom system is easy to use. It possesses all the features required of a modern computer
environment (for example, windowing, integration of operating system features, and interac-
tive graphics). Axiom comes with a detailed hypertext interface (HyperDoc), an elaborate
browser, and complete on-line documentation. The HyperDoc allows novices to solve their
problems in a straightforward way, by providing menus for step-by-step interactive entry.

The appearance of Axiom in the scientific market moves symbolic computing into a higher
plane, where scientists can formulate their statements in their own language and receive com-
puter assistance in their proofs. Axiom’s performance on workstations is truly impressive,
and users of Axiom will get more from them than we, the early users, got from mainframes.
Axiom provides a powerful scientific environment for easy construction of mathematical tools
and algorithms; it is a symbolic manipulation system, and a high performance numerical sys-
tem, with full graphics capabilities. We expect every (computer) power hungry scientist will
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want to take full advantage of Axiom.

David V. Chudnovsky Gregory V. Chudnovsky
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+---------------------------------------------------------------------+

| Richard Dimick Jenks |

| Axiom Developer and Computer Algebra Pioneer |

| |

| Richard D. Jenks was born on November 16, 1937 in Dixon, Illinois, |

| where he grew up. During his childhood he learned to play the |

| organ and sang in the church choir thereby developing a life-long |

| passion for music. |

| |

| He received his PhD in mathematics from the University of Illinois |

| at Urbana-Champaign in 1966. The title of his dissertation was |

| ‘‘Quadratic Differential Systems for Mathematical Models" and was |

| written under the supervision of Donald Gilles. After completing |

| his PhD, he was a post-doctoral fellow at Brookhaven National |

| Laboratory on Long Island. In 1968 he joined IBM Research where he |

| worked until his retirement in 2002. |

| |

| At IBM he was a principal architect of the Scratchpad system, one |

| of the earliest computer algebra systems(1971). Dick always |

| believed that natural user interfaces were essential and developed |

| a user-friendly rule-based system for Scratchpad. Although this |

| rule-based approach was easy to use, as algorithms for computer |

| algebra became more complicated, he began to understand that an |

| abstract data type approach would give sophisticated algorithm |

| development considerably more leverage. In 1977 he began the Axiom |

| development (originally called Scratchpad II) with the design of |

| MODLISP, a merger of Lisp with types (modes). In 1980, with the |

| help of many others, he completed an initial prototype design |

| based on categories and domains that were intended to be natural |

| for mathematically sophisticated users. |

| |

| During this period many researchers in computer algebra visited |

| IBM Research in Yorktown Heights and contributed to the development |

| of the Axiom system. All this activity made the computer algebra |

| group at IBM one of the leading centers for research in this area |

| and Dick was always there to organize the visits and provide a |

| stimulating and pleasant working environment for everyone. He had |

| a good perspective on the most important research directions and |

| worked to attract world-renowned experts to visit and interact |

| with his group. He was an ideal manager for whom to work, one who |

| always put the project and the needs of the group members first. |

| It was a joy to work in such a vibrant and stimulating environment. |

| |

| After many years of development, a decision was made to rename |

| Scratchpad II to Axiom and to release it as a product. Dick and |

| Robert Sutor were the primary authors of the book Axiom: The |

| Scientific Computation System. In the foreword of the book, |

| written by David and Gregory Chudnovsky, it is stated that ‘‘The |

| Scratchpad system took its time to blossom into the beautiful |

| Axiom product. There is no rival to this powerful environment in |
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| its scope and, most importantly, in its structure and organization. |

| Axiom was recently made available as free software. |

| See http://savannah.nongnu.org/projects/axiom. |

| |

| Dick was active in service to the computer algebra community as |

| well. Here are some highlights. He served as Chair of ACM SIGSAM |

| (1979-81) and Conference Co-chair (with J. A. van Hulzen) of |

| EUROSAM ’84, a precursor of the ISSAC meetings. Dick also had a |

| long period of service on the editorial board of the Journal of |

| Symbolic Computation. At ISSAC ’95 in Montreal, Dick was elected to |

| the initial ISSAC Steering Committee and was elected as the second |

| Chair of the Committee in 1997. He, along with David Chudnovsky, |

| organized the highly successful meetings on Computers and |

| Mathematics that were held at Stanford in 1986 and MIT in 1989. |

| |

| Dick had many interests outside of his professional pursuits |

| including reading, travel, physical fitness, and especially music. |

| Dick was an accomplished pianist, organist, and vocalist. At one |

| point he was the organist and choirmaster of the Church of the Holy |

| Communion in Mahopac, NY. In the 1980s and 1990s, he sang in choral |

| groups under the direction of Dr. Dennis Keene that performed at |

| Lincoln Center in New York city. |

| |

| Especially important to him was his family: his eldest son Doug and |

| his wife Patricia, his son Daniel and his wife Mercedes, a daughter |

| Susan, his brother Albert and his wife Barbara, his sister Diane |

| Alabaster and her husband Harold, his grandchildren Douglas, |

| Valerie, Ryan, and Daniel Richard, and step-granddaughter Danielle. |

| His longtime companion, Barbara Gatje, shared his love for music, |

| traveling, Point O’Woods, and life in general. |

| |

| On December 30, 2003, Dick Jenks died at the age of 66, after an |

| extended and courageous battle with multiple system |

| atrophy. Personally, Dick was warm, generous, and outgoing with |

| many friends. He will be missed for his technical accomplishments, |

| his artist talents, and most of all for his positive, gentle, |

| charming spirit. |

| |

| Prepared by Bob Caviness, Barry Trager, and Patrizia Gianni with |

| contributions from Barbara Gatje, James H. Griesmer, Tony Hearn, |

| Manuel Bronstein, and Erich Kaltofen. |

+---------------------------------------------------------------------+
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Introduction to Axiom

Welcome to the world of Axiom. We call Axiom a scientific computation system: a self-
contained toolbox designed to meet your scientific programming needs, from symbolics, to
numerics, to graphics.

This introduction is a quick overview of what Axiom offers.

Symbolic Computation

Axiom provides a wide range of simple commands for symbolic mathematical problem solv-
ing. Do you need to solve an equation, to expand a series, or to obtain an integral? If so,
just ask Axiom to do it.

Given ∫ (
1

(x3 (a+ bx)
1/3

)

)
dx

we would enter this into Axiom as:

integrate(1/(x**3 * (a+b*x)**(1/3)),x)

which would give the result:

−2 b2 x2
√
3 log

(
3
√
a

3
√
b x+ a

2
+ 3
√
a
2 3
√
b x+ a+ a

)
+

4 b2 x2
√
3 log

(
3
√
a
2 3
√
b x+ a− a

)
+

12 b2 x2 arctan

(
2
√
3 3
√
a
2 3
√
b x+ a+ a

√
3

3 a

)
+

(12 b x− 9 a)
√
3 3
√
a

3
√
b x+ a

2


18 a2 x2

√
3 3
√
a

Type: Union(Expression Integer,...)

1



2 INTRODUCTION TO AXIOM

Axiom provides state-of-the-art algebraic machinery to handle your most advanced symbolic
problems. For example, Axiom’s integrator gives you the answer when an answer exists.
If one does not, it provides a proof that there is no answer. Integration is just one of a
multitude of symbolic operations that Axiom provides.

Numeric Computation

Axiom has a numerical library that includes operations for linear algebra, solution of equa-
tions, and special functions. For many of these operations, you can select any number of
floating point digits to be carried out in the computation.

Solve x49 − 49x4 + 9 to 49 digits of accuracy. First we need to change the default output
length of numbers:

digits(49)

and then we execute the command:

solve(x**49-49*x**4+9 = 0,1.e-49)

[x = −0.6546536706904271136718122105095984761851224331556,

x = 1.086921395653859508493939035954893289009213388763,

x = 0.6546536707255271739694686066136764835361487607661]

Type: List Equation Polynomial Float

The output of a computation can be converted to FORTRAN to be used in a later numerical
computation. Besides floating point numbers, Axiom provides literally dozens of kinds of
numbers to compute with. These range from various kinds of integers, to fractions, complex
numbers, quaternions, continued fractions, and to numbers represented with an arbitrary
base.

What is 10 to the 90-th power in base 32?

radix(10**90,32)

returns:

FMM3O955CSEIV0ILKH820CN3I7PICQU0OQMDOFV6TP000000000000000000

Type: RadixExpansion 32
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The Axiom numerical library can be enhanced with a substantial number of functions from
the NAG library of numerical and statistical algorithms. These functions will provide cov-
erage of a wide range of areas including roots of functions, Fourier transforms, quadrature,
differential equations, data approximation, non-linear optimization, linear algebra, basic
statistics, step-wise regression, analysis of variance, time series analysis, mathematical pro-
gramming, and special functions. Contact the Numerical Algorithms Group Limited, Oxford,
England.

Graphics

You may often want to visualize a symbolic formula or draw a graph from a set of numerical
values. To do this, you can call upon the Axiom graphics capability.

Draw J0(
√
x2 + y2) for −20 ≤ x, y ≤ 20.

draw(5*besselJ(0,sqrt(x**2+y**2)), x=-20..20, y=-20..20)

X Y

Z

Figure 1.1: J0(
√
x2 + y2) for −20 ≤ x, y ≤ 20

Graphs in Axiom are interactive objects you can manipulate with your mouse. Just click
on the graph, and a control panel pops up. Using this mouse and the control panel, you
can translate, rotate, zoom, change the coloring, lighting, shading, and perspective on the
picture. You can also generate a PostScript copy of your graph to produce hard-copy output.
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HyperDoc

Figure 1.2: Hyperdoc opening menu

HyperDoc presents you windows on the world of Axiom, offering on-line help, examples,
tutorials, a browser, and reference material. HyperDoc gives you on-line access to this
document in a “hypertext” format. Words that appear in a different font (for example,
Matrix, factor, and category) are generally mouse-active; if you click on one with your
mouse, HyperDoc shows you a new window for that word.

As another example of a HyperDoc facility, suppose that you want to compute the roots of
x49 − 49x4 + 9 to 49 digits (as in our previous example) and you don’t know how to tell
Axiom to do this. The “basic command” facility of HyperDoc leads the way. Through the
series of HyperDoc windows shown in figure 1.2 on page 4 and the specified mouse clicks,
you and HyperDoc generate the correct command to issue to compute the answer.
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Interactive Programming

Axiom’s interactive programming language lets you define your own functions. A simple
example of a user-defined function is one that computes the successive Legendre polynomials.
Axiom lets you define these polynomials in a piece-wise way.

The first Legendre polynomial.

p(0) == 1

Type: Void

The second Legendre polynomial.

p(1) == x

Type: Void

The n-th Legendre polynomial for (n > 1).

p(n) == ((2*n-1)*x*p(n-1) - (n-1) * p(n-2))/n

Type: Void

In addition to letting you define simple functions like this, the interactive language can be
used to create entire application packages. All the graphs in the Axiom images section were
created by programs written in the interactive language.

The above definitions for p do no computation—they simply tell Axiom how to compute
p(k) for some positive integer k.

To actually get a value of a Legendre polynomial, you ask for it.

What is the tenth Legendre polynomial?

p(10)

Compiling function p with type Integer -> Polynomial Fraction

Integer

Compiling function p as a recurrence relation.

46189

256
x10 − 109395

256
x8 +

45045

128
x6 − 15015

128
x4 +

3465

256
x2 − 63

256
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Type: Polynomial Fraction Integer

Axiom applies the above pieces for p to obtain the value of p(10). But it does more: it
creates an optimized, compiled function for p. The function is formed by putting the pieces
together into a single piece of code. By compiled, we mean that the function is translated
into basic machine-code. By optimized, we mean that certain transformations are performed
on that code to make it run faster. For p, Axiom actually translates the original definition
that is recursive (one that calls itself) to one that is iterative (one that consists of a simple
loop).

What is the coefficient of x90 in p(90)?

coefficient(p(90),x,90)

5688265542052017822223458237426581853561497449095175

77371252455336267181195264

Type: Polynomial Fraction Integer

In general, a user function is type-analyzed and compiled on first use. Later, if you use it
with a different kind of object, the function is recompiled if necessary.

Data Structures

A variety of data structures are available for interactive use. These include strings, lists,
vectors, sets, multisets, and hash tables. A particularly useful structure for interactive use
is the infinite stream:

Create the infinite stream of derivatives of Legendre polynomials.

[D(p(i),x) for i in 1..]

[
1, 3 x,

15

2
x2 − 3

2
,
35

2
x3 − 15

2
x,

315

8
x4 − 105

4
x2 +

15

8
,

693

8
x5 − 315

4
x3 +

105

8
x,

3003

16
x6 − 3465

16
x4 +

945

16
x2 − 35

16
,

6435

16
x7 − 9009

16
x5 +

3465

16
x3 − 315

16
x,

109395

128
x8 − 45045

32
x6 +

45045

64
x4 − 3465

32
x2 +

315

128
,

230945

128
x9 − 109395

32
x7 +

135135

64
x5 − 15015

32
x3 +

3465

128
x, . . .

]
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Type: Stream Polynomial Fraction Integer

Streams display only a few of their initial elements. Otherwise, they are “lazy”: they only
compute elements when you ask for them.

Data structures are an important component for building application software. Advanced
users can represent data for applications in optimal fashion. In all, Axiom offers over forty
kinds of aggregate data structures, ranging from mutable structures (such as cyclic lists and
flexible arrays) to storage efficient structures (such as bit vectors). As an example, streams
are used as the internal data structure for power series.

What is the series expansion of log(cot(x)) about x = π/2?

series(log(cot(x)),x = %pi/2)

log

(
−2 x+ π

2

)
+

1

3

(
x− π

2

)2
+

7

90

(
x− π

2

)4
+

62

2835

(
x− π

2

)6
+

127

18900

(
x− π

2

)8
+

146

66825

(
x− π

2

)10
+O

((
x− π

2

)11)
Type: GeneralUnivariatePowerSeries(Expression Integer,x,pi/2)

Series and streams make no attempt to compute all their elements! Rather, they stand ready
to deliver elements on demand.

What is the coefficient of the 50-th term of this series?

coefficient(%,50)

44590788901016030052447242300856550965644

7131469286438669111584090881309360354581359130859375

Type: Expression Integer

Mathematical Structures

Axiom also has many kinds of mathematical structures. These range from simple ones (like
polynomials and matrices) to more esoteric ones (like ideals and Clifford algebras). Most
structures allow the construction of arbitrarily complicated “types.”

Even a simple input expression can result in a type with several levels.

matrix [ [x + %i,0], [1,-2] ] [
x+%i 0

1 −2

]
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Type: Matrix Polynomial Complex Integer

The Axiom interpreter builds types in response to user input. Often, the type of the result
is changed in order to be applicable to an operation.

The inverse operation requires that elements of the above matrices are fractions.

inverse(%)

 1

x+%i
0

1

2 x+ 2%i
− 1

2


Type: Union(Matrix Fraction Polynomial Complex Integer,...)

Pattern Matching

A convenient facility for symbolic computation is “pattern matching.” Suppose you have a
trigonometric expression and you want to transform it to some equivalent form. Use a rule
command to describe the transformation rules you need. Then give the rules a name and
apply that name as a function to your trigonometric expression.

Introduce two rewrite rules.

sinCosExpandRules := rule

sin(x+y) == sin(x)*cos(y) + sin(y)*cos(x)

cos(x+y) == cos(x)*cos(y) - sin(x)*sin(y)

sin(2*x) == 2*sin(x)*cos(x)

cos(2*x) == cos(x)**2 - sin(x)**2

{sin(y + x) == cos(x)sin(y) + cos(y)sin(x),

cos(y + x) == - sin(x)sin(y) + cos(x)cos(y),

sin(2x) == 2cos(x)sin(x),

2 2

cos(2x) == - sin(x) + cos(x) }

Type: Ruleset(Integer,Integer,Expression Integer)

Apply the rules to a simple trigonometric expression.

sinCosExpandRules(sin(a+2*b+c))
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−cos (a) sin (b)2 − 2 cos (b) sin (a) sin (b) + cos (a) cos (b)

2
)
sin (c)−

cos (c) sin (a) sin (b)
2
+ 2 cos (a) cos (b) cos (c) sin (b)+

cos (b)
2
cos (c) sin (a)

Type: Expression Integer

Using input files, you can create your own library of transformation rules relevant to your
applications, then selectively apply the rules you need.

Polymorphic Algorithms

All components of the Axiom algebra library are written in the Axiom library language. This
language is similar to the interactive language except for protocols that authors are obliged
to follow. The library language permits you to write “polymorphic algorithms,” algorithms
defined to work in their most natural settings and over a variety of types.

Define a system of polynomial equations S.

S := [3*x**3 + y + 1 = 0,y**2 = 4][
y + 3 x3 + 1 = 0, y2 = 4

]
Type: List Equation Polynomial Integer

Solve the system S using rational number arithmetic and 30 digits of accuracy.

solve(S,1/10**30)[[
y = −2, x =

1757879671211184245283070414507

2535301200456458802993406410752

]
, [y = 2, x = −1]

]
Type: List List Equation Polynomial Fraction Integer

Solve S with the solutions expressed in radicals.

radicalSolve(S)[
[y = 2, x = −1],

[
y = 2, x =

−
√
−3 + 1

2

]
,

[
y = 2, x =

√
−3 + 1

2

]
,

[
y = −2, x =

1
3
√
3

]
,

[
y = −2, x =

√
−1
√
3− 1

2 3
√
3

]
,

[
y = −2, x =

−
√
−1
√
3− 1

2 3
√
3

]]



10 INTRODUCTION TO AXIOM

Type: List List Equation Expression Integer

While these solutions look very different, the results were produced by the same internal
algorithm! The internal algorithm actually works with equations over any “field.” Examples
of fields are the rational numbers, floating point numbers, rational functions, power series,
and general expressions involving radicals.

Extensibility

Users and system developers alike can augment the Axiom library, all using one common
language. Library code, like interpreter code, is compiled into machine binary code for
run-time efficiency.

Using this language, you can create new computational types and new algorithmic packages.
All library code is polymorphic, described in terms of a database of algebraic properties.
By following the language protocols, there is an automatic, guaranteed interaction between
your code and that of colleagues and system implementers.
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A Technical Introduction

Axiom has both an interactive language for user interactions and a programming language
for building library modules. Like Modula 2, PASCAL, FORTRAN, and Ada, the program-
ming language emphasizes strict type-checking. Unlike these languages, types in Axiom are
dynamic objects: they are created at run-time in response to user commands.

Here is the idea of the Axiom programming language in a nutshell. Axiom types range
from algebraic ones (like polynomials, matrices, and power series) to data structures (like
lists, dictionaries, and input files). Types combine in any meaningful way. You can build
polynomials of matrices, matrices of polynomials of power series, hash tables with symbolic
keys and rational function entries, and so on.

Categories define algebraic properties to ensure mathematical correctness. They ensure, for
example, that matrices of polynomials are OK, but matrices of input files are not. Through
categories, programs can discover that polynomials of continued fractions have a commuta-
tive multiplication whereas polynomials of matrices do not.

Categories allow algorithms to be defined in their most natural setting. For example, an
algorithm can be defined to solve polynomial equations over any field. Likewise a great-
est common divisor can compute the “gcd” of two elements from any Euclidean domain.
Categories foil attempts to compute meaningless “gcds”, for example, of two hashtables.
Categories also enable algorithms to be compiled into machine code that can be run with
arbitrary types.

The Axiom interactive language is oriented towards ease-of-use. The Axiom interpreter uses
type-inferencing to deduce the type of an object from user input. Type declarations can
generally be omitted for common types in the interactive language.

So much for the nutshell. Here are these basic ideas described by ten design principles:
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A Technical Introduction to
Axiom

1.1 Types are Defined by Abstract Datatype Programs

Basic types are called domains of computation, or, simply, domains. Domains are defined
by Axiom programs of the form:

Name(...): Exports == Implementation

Each domain has a capitalized Name that is used to refer to the class of its members. For ex-
ample, Integer denotes “the class of integers,” Float, “the class of floating point numbers,”
and String, “the class of strings.”

The “...” part following Name lists zero or more parameters to the constructor. Some basic
ones like Integer take no parameters. Others, like Matrix, Polynomial and List, take
a single parameter that again must be a domain. For example, Matrix(Integer) denotes
“matrices over the integers,” Polynomial (Float) denotes “polynomial with floating point
coefficients,” and List (Matrix (Polynomial (Integer))) denotes “lists of matrices of
polynomials over the integers.” There is no restriction on the number or type of parameters
of a domain constructor.

SquareMatrix(2,Integer) is an example of a domain constructor that accepts both a particular
data value as well as an integer. In this case the number 2 specifies the number of rows and
columns the square matrix will contain. Elements of the matricies are integers.

The Exports part specifies operations for creating and manipulating objects of the domain.
For example, type Integer exports constants 0 and 1, and operations “+”, “-”, and “*”.
While these operations are common, others such as odd? and bit? are not. In addition
the Exports section can contain symbols that represent properties that can be tested. For
example, the Category EntireRing has the symbol noZeroDivisors which asserts that if a
product is zero then one of the factors must be zero.

The Implementation part defines functions that implement the exported operations of the
domain. These functions are frequently described in terms of another lower-level domain
used to represent the objects of the domain. Thus the operation of adding two vectors of
real numbers can be described and implemented using the addition operation from Float.

13
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1.2 The Type of Basic Objects is a Domain or Subdo-
main

Every Axiom object belongs to a unique domain. The domain of an object is also called its
type. Thus the integer 7 has type Integer and the string "daniel" has type String.

The type of an object, however, is not unique. The type of integer 7 is not only Integer

but NonNegativeInteger, PositiveInteger, and possibly, in general, any other “subdo-
main” of the domain Integer. A subdomain is a domain with a “membership predicate”.
PositiveInteger is a subdomain of Integer with the predicate “is the integer > 0?”.

Subdomains with names are defined by abstract datatype programs similar to those for
domains. The Export part of a subdomain, however, must list a subset of the exports of
the domain. The Implementation part optionally gives special definitions for subdomain
objects.

1.3 Domains Have Types Called Categories

Domains and subdomains in Axiom are themselves objects that have types. The type of a
domain or subdomain is called a category. Categories are described by programs of the form:

Name(...): Category == Exports

The type of every category is the distinguished symbol Category. The category Name

is used to designate the class of domains of that type. For example, category Ring des-
ignates the class of all rings. Like domains, categories can take zero or more parame-
ters as indicated by the “...” part following Name. Two examples are Module(R) and
MatrixCategory(R,Row,Col).

The Exports part defines a set of operations. For example, Ring exports the operations “0”,
“1”, “+”, “-”, and “*”. Many algebraic domains such as Integer and Polynomial (Float)

are rings. String and List (R) (for any domain R) are not.

Categories serve to ensure the type-correctness. The definition of matrices states Matrix(R:
Ring) requiring its single parameter R to be a ring. Thus a “matrix of polynomials” is
allowed, but “matrix of lists” is not.

Categories say nothing about representation. Domains, which are instances of category
types, specify representations.

1.4 Operations Can Refer To Abstract Types

All operations have prescribed source and target types. Types can be denoted by symbols
that stand for domains, called “symbolic domains.” The following lines of Axiom code use
a symbolic domain R:
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R: Ring

power: (R, NonNegativeInteger): R -> R

power(x, n) == x ** n

Line 1 declares the symbol R to be a ring. Line 2 declares the type of power in terms of
R. From the definition on line 3, power(3, 2) produces 9 for x = 3 and R = Integer. Also,
power(3.0, 2) produces 9.0 for x = 3.0 and R = Float. power(”oxford”, 2) however fails
since ”oxford” has type String which is not a ring.

Using symbolic domains, algorithms can be defined in their most natural or general setting.

1.5 Categories Form Hierarchies

Categories form hierarchies (technically, directed-acyclic graphs). A simplified hierarchical
world of algebraic categories is shown below. At the top of this world is SetCategory, the
class of algebraic sets. The notions of parents, ancestors, and descendants is clear. Thus
ordered sets (domains of category OrderedSet) and rings are also algebraic sets. Likewise,
fields and integral domains are rings and algebraic sets. However fields and integral domains
are not ordered sets.

SetCategory +---- Ring ---- IntegralDomain ---- Field

|

+---- Finite ---+

| \

+---- OrderedSet -----+ OrderedFinite

Figure 1. A simplified category hierarchy.

1.6 Domains Belong to Categories by Assertion

A category designates a class of domains. Which domains? You might think that Ring

designates the class of all domains that export 0, 1, “+”, “-”, and “*”. But this is not so.
Each domain must assert which categories it belongs to.

The Export part of the definition for Integer reads, for example:

Join(OrderedSet, IntegralDomain, ...) with ...

This definition asserts that Integer is both an ordered set and an integral domain. In fact,
Integer does not explicitly export constants 0 and 1 and operations “+”, “-” and “*” at all:
it inherits them all from Ring! Since IntegralDomain is a descendant of Ring, Integer is
therefore also a ring.

Assertions can be conditional. For example, Complex(R) defines its exports by:

Ring with ... if R has Field then Field ...
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Thus Complex(Float) is a field but Complex(Integer) is not since Integer is not a field.

You may wonder: “Why not simply let the set of operations determine whether a domain
belongs to a given category?”. Axiom allows operation names (for example, norm) to have
very different meanings in different contexts. The meaning of an operation in Axiom is
determined by context. By associating operations with categories, operation names can be
reused whenever appropriate or convenient to do so. As a simple example, the operation <

might be used to denote lexicographic-comparison in an algorithm. However, it is wrong to
use the same < with this definition of absolute-value:

abs(x) == if x < 0 then− x else x

Such a definition for abs in Axiom is protected by context: argument x is required to be a
member of a domain of category OrderedSet.

1.7 Packages Are Clusters of Polymorphic Operations

In Axiom, facilities for symbolic integration, solution of equations, and the like are placed
in “packages”. A package is a special kind of domain: one whose exported operations
depend solely on the parameters of the constructor and/or explicit domains. Packages,
unlike Domains, do not specify the representation.

If you want to use Axiom, for example, to define some algorithms for solving equations of
polynomials over an arbitrary field F , you can do so with a package of the form:

MySolve(F: Field): Exports == Implementation

where Exports specifies the solve operations you wish to export from the domain and
the Implementation defines functions for implementing your algorithms. Once Axiom has
compiled your package, your algorithms can then be used for any F: floating-point numbers,
rational numbers, complex rational functions, and power series, to name a few.

1.8 The Interpreter Builds Domains Dynamically

The Axiom interpreter reads user input then builds whatever types it needs to perform the
indicated computations. For example, to create the matrix

M =

(
x2 + 1 0

0 x/2

)
using the command:

M = [ [x**2+1,0],[0,x / 2] ]::Matrix(POLY(FRAC(INT)))

M =

[
x2 + 1 0

0 x/2

]
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Type: Matrix Polynomial Fraction Integer

the interpreter first loads the modules Matrix, Polynomial, Fraction, and Integer from
the library, then builds the domain tower “matrices of polynomials of rational numbers (i.e.
fractions of integers)”.

You can watch the loading process by first typing

)set message autoload on

In addition to the named domains above many additional domains and categories are loaded.
Most systems are preloaded with such common types. For efficiency reasons the most com-
mon domains are preloaded but most (there are more than 1100 domains, categories, and
packages) are not. Once these domains are loaded they are immediately available to the
interpreter.

Once a domain tower is built, it contains all the operations specific to the type. Computation
proceeds by calling operations that exist in the tower. For example, suppose that the user
asks to square the above matrix. To do this, the function “*” from Matrix is passed the
matrixM to computeM ∗M . The function is also passed an environment containing R that,
in this case, is Polynomial (Fraction (Integer)). This results in the successive calling of
the “*” operations from Polynomial, then from Fraction, and then finally from Integer.

Categories play a policing role in the building of domains. Because the argument of Matrix
is required to be a Ring, Axiom will not build nonsensical types such as “matrices of input
files”.

1.9 Axiom Code is Compiled

Axiom programs are statically compiled to machine code, then placed into library modules.
Categories provide an important role in obtaining efficient object code by enabling:

• static type-checking at compile time;

• fast linkage to operations in domain-valued parameters;

• optimization techniques to be used for partially specified types (operations for “vectors
of R”, for instance, can be open-coded even though R is unknown).

1.10 Axiom is Extensible

Users and system implementers alike use the Axiom language to add facilities to the Axiom
library. The entire Axiom library is in fact written in the Axiom source code and available
for user modification and/or extension.
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Axiom’s use of abstract datatypes clearly separates the exports of a domain (what operations
are defined) from its implementation (how the objects are represented and operations are
defined). Users of a domain can thus only create and manipulate objects through these
exported operations. This allows implementers to “remove and replace” parts of the library
safely by newly upgraded (and, we hope, correct) implementations without consequence to
its users.

Categories protect names by context, making the same names available for use in other
contexts. Categories also provide for code-economy. Algorithms can be parameterized cat-
egorically to characterize their correct and most general context. Once compiled, the same
machine code is applicable in all such contexts.

Finally, Axiom provides an automatic, guaranteed interaction between new and old code.
For example:

• if you write a new algorithm that requires a parameter to be a field, then your algorithm
will work automatically with every field defined in the system; past, present, or future.

• if you introduce a new domain constructor that produces a field, then the objects of
that domain can be used as parameters to any algorithm using field objects defined in
the system; past, present, or future.

These are the key ideas. For further information, we particularly recommend your reading
chapters 11, 12, and 13, where these ideas are explained in greater detail.

1.11 Using Axiom as a Pocket Calculator

At the simplest level Axiom can be used as a pocket calculator where expressions involving
numbers and operators are entered directly in infix notation. In this sense the more advanced
features of the calculator can be regarded as operators (e.g sin, cos, etc).

Basic Arithmetic

An example of this might be to calculate the cosine of 2.45 (in radians). To do this one
would type:

(1) -> cos 2.45

−0.7702312540473073417

Type: Float

Before proceeding any further it would be best to explain the previous three lines. Firstly
the text “(1) -> ” is part of the prompt that the Axiom system provides when in interactive
mode. The full prompt has other text preceding this but it is not relevant here. The number
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in parenthesis is the step number of the input which may be used to refer to the results of
previous calculations. The step number appears at the start of the second line to tell you
which step the result belongs to. Since the interpreter probably loaded numberous libraries
to calculate the result given above and listed each one in the prcess, there could easily be
several pages of text between your input and the answer.

The last line contains the type of the result. The type Float is used to represent real
numbers of arbitrary size and precision (where the user is able to define how big arbitrary
is – the default is 20 digits but can be as large as your computer system can handle). The
type of the result can help track down mistakes in your input if you don’t get the answer
you expected.

Other arithmetic operations such as addition, subtraction, and multiplication behave as
expected:

6.93 * 4.1328

28.640304

Type: Float

6.93 / 4.1328

1.6768292682926829268

Type: Float

but integer division isn’t quite so obvious. For example, if one types:

4/6

2

3

Type: Fraction Integer

a fractional result is obtained. The function used to display fractions attempts to produce
the most readable answer. In the example:

4/2

2

Type: Fraction Integer

the result is stored as the fraction 2/1 but is displayed as the integer 2. This fraction
could be converted to type Integer with no loss of information but Axiom will not do so
automatically.
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Type Conversion

To obtain the floating point value of a fraction one must convert (conversions are applied
by the user and coercions are applied automatically by the interpreter) the result to type
Float using the “::” operator as follows:

(4.6)::Float

4.6

Type: Float

Although Axiom can convert this back to a fraction it might not be the same fraction you
started with as due to rounding errors. For example, the following conversion appears to be
without error but others might not:

%::Fraction Integer

23

5

Type: Fraction Integer

where “%” represents the previous result (not the calculation).

Although Axiom has the ability to work with floating-point numbers to a very high precision
it must be remembered that calculations with these numbers are not exact. Since Axiom is
a computer algebra package and not a numerical solutions package this should not create too
many problems. The idea is that the user should use Axiom to do all the necessary symbolic
manipulation and only at the end should actual numerical results be extracted.

If you bear in mind that Axiom appears to store expressions just as you have typed them
and does not perform any evalutation of them unless forced to then programming in the
system will be much easier. It means that anything you ask Axiom to do (within reason)
will be carried out with complete accuracy.

In the previous examples the “::” operator was used to convert values from one type to
another. This type conversion is not possible for all values. For instance, it is not possible
to convert the number 3.4 to an integer type since it can’t be represented as an integer. The
number 4.0 can be converted to an integer type since it has no fractional part.

Conversion from floating point values to integers is performed using the functions round
and truncate. The first of these rounds a floating point number to the nearest integer while
the other truncates (i.e. removes the fractional part). Both functions return the result as
a floating point number. To extract the fractional part of a floating point number use
the function fractionPart but note that the sign of the result depends on the sign of the
argument. Axiom obtains the fractional part of x using x− truncate(x):
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round(3.77623)

4.0

Type: Float

round(-3.77623)

−4.0

Type: Float

truncate(9.235)

9.0

Type: Float

truncate(-9.654)

−9.0

Type: Float

fractionPart(-3.77623)

−0.77623

Type: Float

Useful Functions

To obtain the absolute value of a number the abs function can be used. This takes a single
argument which is usually an integer or a floating point value but doesn’t necessarily have
to be. The sign of a value can be obtained via the sign function which rturns −1, 0, or 1
depending on the sign of the argument.

abs(4)
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4

Type: PositiveInteger

abs(-3)

3

Type: PositiveInteger

abs(-34254.12314)

34254.12314

Type: Float

sign(-49543.2345346)

−1

Type: Integer

sign(0)

0

Type: NonNegativeInteger

sign(234235.42354)

1

Type: PositiveInteger

Tests on values can be done using various functions which are generally more efficient than
using relational operators such as = particularly if the value is a matrix. Examples of some
of these functions are:

positive?(-234)
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false

Type: Boolean

negative?(-234)

true

Type: Boolean

zero?(42)

false

Type: Boolean

one?(1)

true

Type: Boolean

odd?(23)

true

Type: Boolean

odd?(9.435)

false

Type: Boolean

even?(-42)

true

Type: Boolean



24 A TECHNICAL INTRODUCTION TO AXIOM

prime?(37)

true

Type: Boolean

prime?(-37)

false

Type: Boolean

Some other functions that are quite useful for manipulating numerical values are:

sin(x) Sine of x

cos(x) Cosine of x

tan(x) Tangent of x

asin(x) Arcsin of x

acos(x) Arccos of x

atan(x) Arctangent of x

gcd(x,y) Greatest common divisor of x and y

lcm(x,y) Lowest common multiple of x and y

max(x,y) Maximum of x and y

min(x,y) Minimum of x and y

factorial(x) Factorial of x

factor(x) Prime factors of x

divide(x,y) Quotient and remainder of x/y

Some simple infix and prefix operators:

+ Addition - Subtraction

- Numerical Negation ~ Logical Negation

/\ Conjunction (AND) \/ Disjunction (OR)

and Logical AND (/\) or Logical OR (\/)

not Logical Negation ** Exponentiation

* Multiplication / Division

quo Quotient rem Remainder

< less than > greater than

<= less than or equal >= greater than or equal

Some useful Axiom macros:

%i The square root of -1

%e The base of the natural logarithm

%pi Pi

%infinity Infinity

%plusInfinity Positive Infinity

%minusInfinity Negative Infinity



1.12. USING AXIOM AS A SYMBOLIC CALCULATOR 25

1.12 Using Axiom as a Symbolic Calculator

In the previous section all the examples involved numbers and simple functions. Also none of
the expressions entered were assigned to anything. In this section we will move on to simple
algebra (i.e. expressions involving symbols and other features available on more sophisticated
calculators).

Expressions Involving Symbols

Expressions involving symbols are entered just as they are written down, for example:

xSquared := x**2

x2

Type: Polynomial Integer

where the assignment operator “:=” represents immediate assignment. Later it will be seen
that this form of assignment is not always desirable and the use of the delayed assignment
operator “==” will be introduced. The type of the result is Polynomial Integer which is
used to represent polynomials with integer coefficients. Some other examples along similar
lines are:

xDummy := 3.21*x**2

3.21 x2

Type: Polynomial Float

xDummy := x**2.5

x2
√
x

Type: Expression Float

xDummy := x**3.3

x3 10
√
x
3

Type: Expression Float
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xyDummy := x**2 - y**2

−y2 + x2

Type: Polynomial Integer

Given that we can define expressions involving symbols, how do we actually compute the
result when the symbols are assigned values? The answer is to use the eval function which
takes an expression as its first argument followed by a list of assignments. For example, to
evaluate the expressions xDummy and xyDummy resulting from their respective assign-
ments above we type:

eval(xDummy,x=3)

37.540507598529552193

Type: Expression Float

eval(xyDummy, [x=3, y=2.1])

4.59

Type: Polynomial Float

Complex Numbers

For many scientific calculations real numbers aren’t sufficient and support for complex num-
bers is also required. Complex numbers are handled in an intuitive manner and Axiom,
which uses the %i macro to represent the square root of −1. Thus expressions involving
complex numbers are entered just like other expressions.

(2/3 + %i)**3

−46

27
+

1

3
%i

Type: Complex Fraction Integer

The real and imaginary parts of a complex number can be extracted using the real and
imag functions and the complex conjugate of a number can be obtained using conjugate:

real(3 + 2*%i)
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3

Type: PositiveInteger

imag(3+ 2*%i)

2

Type: PositiveInteger

conjugate(3 + 2*%i)

3− 2%i

Type: Complex Integer

The function factor can also be applied to complex numbers but the results aren’t quite so
obvious as for factoring integer:

144 + 24*%i

144 + 24%i

Type: Complex Integer

factor %

%i(1 + %i)6 3(6 + %i)

Type: Factored Complex Integer

We can see that this multiplies out to the original value by expanding the factored expression:

expand %

144 + 24%i

Type: Complex Integer
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Number Representations

By default all numerical results are displayed in decimal with real numbers shown to 20
significant figures. If the integer part of a number is longer than 20 digits then nothing after
the decimal point is shown and the integer part is given in full. To alter the number of digits
shown the function digits can be called. The result returned by this function is the previous
setting. For example, to find the value of π to 40 digits we type:

digits(40)

20

Type: PositiveInteger

%pi::Float

3.1415926535 8979323846 2643383279 502884197

Type: Float

As can be seen in the example above, there is a gap after every ten digits. This can be
changed using the outputSpacing function where the argument is the number of digits
to be displayed before a space is inserted. If no spaces are desired then use the value
0. Two other functions controlling the appearance of real numbers are outputFloating
and outputFixed. The former causes Axiom to display floating-point values in exponent
notation and the latter causes it to use fixed-point notation. For example:

outputFloating(); %

0.3141592653589793238462643383279502884197 E 1

Type: Float

outputFloating(3); 0.00345

0.345 E − 2

Type: Float

outputFixed(); %

0.00345
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Type: Float

outputFixed(3); %

0.003

Type: Float

outputGeneral(); %

0.00345

Type: Float

Note that the semicolon “;” in the examples above allows several expressions to be entered
on one line. The result of the last expression is displayed. Remember also that the percent
symbol “%” is used to represent the result of a previous calculation.

To display rational numbers in a base other than 10 the function radix is used. The first
argument of this function is the expression to be displayed and the second is the base to be
used.

radix(10**10,32)

9A0NP00

Type: RadixExpansion 32

radix(3/21,5)

0.032412

Type: RadixExpansion 5

Rational numbers can be represented as a repeated decimal expansion using the decimal
function or as a continued fraction using continuedFraction. Any attempt to call these
functions with irrational values will fail.

decimal(22/7)

3.142857
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Type: DecimalExpansion

continuedFraction(6543/210)

31 +
1|
|6

+
1|
|2

+
1|
|1

+
1|
|3

Type: ContinuedFraction Integer

Finally, partial fractions in compact and expanded form are available via the functions
partialFraction and padicFraction respectively. The former takes two arguments, the
first being the numerator of the fraction and the second being the denominator. The latter
function takes a fraction and expands it further while the function compactFraction does
the reverse:

partialFraction(234,40)

6− 3

22
+

3

5

Type: PartialFraction Integer

padicFraction(%)

6− 1

2
− 1

22
+

3

5

Type: PartialFraction Integer

compactFraction(%)

6− 3

22
+

3

5

Type: PartialFraction Integer

padicFraction(234/40)

117

20

Type: PartialFraction Fraction Integer
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To extract parts of a partial fraction the function nthFractionalTerm is available and
returns a partial fraction of one term. To decompose this further the numerator can be
obtained using firstNumer and the denominator with firstDenom. The whole part of a
partial fraction can be retrieved using wholePart and the number of fractional parts can
be found using the function numberOfFractionalTerms:

t := partialFraction(234,40)

6− 3

22
+

3

5

Type: PartialFraction Integer

wholePart(t)

6

Type: PositiveInteger

numberOfFractionalTerms(t)

2

Type: PositiveInteger

p := nthFractionalTerm(t,1)

− 3

22

Type: PartialFraction Integer

firstNumer(p)

−3

Type: Integer

firstDenom(p)

22

Type: Factored Integer
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Modular Arithmetic

By using the type constructor PrimeField it is possible to do arithmetic modulo some prime
number. For example, arithmetic module 7 can be performed as follows:

x : PrimeField 7 := 5

5

Type: PrimeField 7

x**5 + 6

2

Type: PrimeField 7

1/x

3

Type: PrimeField 7

The first example should be read as:

Let x be of type PrimeField(7) and assign to it the value 5

Note that it is only possible to invert non-zero values if the arithmetic is performed modulo
a prime number. Thus arithmetic modulo a non-prime integer is possible but the reciprocal
operation is undefined and will generate an error. Attempting to use the PrimeField type
constructor with a non-prime argument will generate an error. An example of non-prime
modulo arithmetic is:

y : IntegerMod 8 := 11

3

Type: IntegerMod 8

y*4 + 27

7
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Type: IntegerMod 8

Note that polynomials can be constructed in a similar way:

(3*a**4 + 27*a - 36)::Polynomial PrimeField 7

3 a4 + 6 a+ 6

Type: Polynomial PrimeField 7

1.13 General Points about Axiom

Computation Without Output

It is sometimes desirable to enter an expression and prevent Axiom from displaying the result.
To do this the expression should be terminated with a semicolon “;”. In a previous section
it was mentioned that a set of expressions separated by semicolons would be evaluated and
the result of the last one displayed. Thus if a single expression is followed by a semicolon no
output will be produced (except for its type):

2 + 4*5;

Type: PositiveInteger

Accessing Earlier Results

The “%” macro represents the result of the previous computation. The “%%” macro is
available which takes a single integer argument. If the argument is positive then it refers to
the step number of the calculation where the numbering begins from one and can be seen
at the end of each prompt (the number in parentheses). If the argument is negative then it
refers to previous results counting backwards from the last result. That is, “%%(-1)” is the
same as “%”. The value of “%%(0)” is not defined and will generate an error if requested.

Splitting Expressions Over Several Lines

Although Axiom will quite happily accept expressions that are longer than the width of the
screen (just keep typing without pressing the Return key) it is often preferable to split the
expression being entered at a point where it would result in more readable input. To do
this the underscore “ ” symbol is placed before the break point and then the Return key
is pressed. The rest of the expression is typed on the next line, can be preceeded by any
number of whitespace chars, for example:
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2_

+_

3

5

Type: PositiveInteger

The underscore symbol is an escape character and its presence alters the meaning of the
characters that follow it. As mentions above whitespace following an underscore is ignored
(the Return key generates a whitespace character). Any other character following an un-
derscore loses whatever special meaning it may have had. Thus one can create the identifier
“a+b” by typing “a +b” although this might lead to confusions. Also note the result of the
following example:

ThisIsAVeryLong

VariableName

ThisIsAV eryLongV ariableName

Type: Variable ThisIsAVeryLongVariableName

Comments and Descriptions

Comments and descriptions are really only of use in files of Axiom code but can be used
when the output of an interactive session is being spooled to a file (via the system command
)spool). A comment begins with two dashes “- -” and continues until the end of the line.
Multi-line comments are only possible if each individual line begins with two dashes.

Descriptions are the same as comments except that the Axiom compiler will include them
in the object files produced and make them availabe to the end user for documentation
purposes.

A description is placed before a calculation begins with three “+” signs (i.e. “+++”) and a
description placed after a calculation begins with two plus symbols (i.e.“++”). The so-called
“plus plus” comments are used within the algebra files and are processed by the compiler to
add to the documentation. The so-called “minus minus” comments are ignored everywhere.

Control of Result Types

In earlier sections the type of an expression was converted to another via the “::” operator.
However, this is not the only method for converting between types and two other operators
need to be introduced and explained.

The first operator is “$” and is used to specify the package to be used to calculate the result.
Thus:
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(2/3)$Float

0.6666666666 6666666667

Type: Float

tells Axiom to use the “/” operator from the Float package to evaluate the expression 2/3.
This does not necessarily mean that the result will be of the same type as the domain from
which the operator was taken. In the following example the sign operator is taken from the
Float package but the result is of type Integer.

sign(2.3)$Float

1

Type: Integer

The other operator is “@” which is used to tell Axiom what the desired type of the result
of the calculation is. In most situations all three operators yield the same results but the
example below should help distinguish them.

(2 + 3)::String

"5"

Type: String

(2 + 3)@String

An expression involving @ String actually evaluated to one of

type PositiveInteger . Perhaps you should use :: String .

(2 + 3)$String

The function + is not implemented in String .

If an expression X is converted using one of the three operators to type T the interpretations
are:

:: means explicitly convert X to type T if possible.

$ means use the available operators for type T to compute X.

@ means choose operators to compute X so that the result is of type T.
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1.14 Data Structures in Axiom

This chapter is an overview of some of the data structures provided by Axiom.

Lists

The Axiom List type constructor is used to create homogenous lists of finite size. The
notation for lists and the names of the functions that operate over them are similar to those
found in functional languages such as ML.

Lists can be created by placing a comma separated list of values inside square brackets or if
a list with just one element is desired then the function list is available:

[4]

[4]

Type: List PositiveInteger

list(4)

[4]

Type: List PositiveInteger

[1,2,3,5,7,11]

[1, 2, 3, 5, 7, 11]

Type: List PositiveInteger

The function append takes two lists as arguments and returns the list consisting of the
second argument appended to the first. A single element can be added to the front of a list
using cons:

append([1,2,3,5],[7,11])

[1, 2, 3, 5, 7, 11]

Type: List PositiveInteger

cons(23,[65,42,19])
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[23, 65, 42, 19]

Type: List PositiveInteger

Lists are accessed sequentially so if Axiom is asked for the value of the twentieth element in
the list it will move from the start of the list over nineteen elements before it reaches the
desired element. Each element of a list is stored as a node consisting of the value of the
element and a pointer to the rest of the list. As a result the two main operations on a list
are called first and rest. Both of these functions take a second optional argument which
specifies the length of the first part of the list:

first([1,5,6,2,3])

1

Type: PositiveInteger

first([1,5,6,2,3],2)

[1, 5]

Type: List PositiveInteger

rest([1,5,6,2,3])

[5, 6, 2, 3]

Type: List PositiveInteger

rest([1,5,6,2,3],2)

[6, 2, 3]

Type: List PositiveInteger

Other functions are empty? which tests to see if a list contains no elements, member?
which tests to see if the first argument is a member of the second, reverse which reverses
the order of the list, sort which sorts a list, and removeDuplicates which removes any
duplicates. The length of a list can be obtained using the “#” operator.

empty?([7,2,-1,2])
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false

Type: Boolean

member?(-1,[7,2,-1,2])

true

Type: Boolean

reverse([7,2,-1,2])

[2,−1, 2, 7]

Type: List Integer

sort([7,2,-1,2])

[−1, 2, 2, 7]

Type: List Integer

removeDuplicates([1,5,3,5,1,1,2])

[1, 5, 3, 2]

Type: List PositiveInteger

#[7,2,-1,2]

4

Type: PositiveInteger

Lists in Axiom are mutable and so their contents (the elements and the links) can be modified
in place. Functions that operate over lists in this way have names ending in the symbol “!”.
For example, concat! takes two lists as arguments and appends the second argument to
the first (except when the first argument is an empty list) and setrest! changes the link
emanating from the first argument to point to the second argument:
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u := [9,2,4,7]

[9, 2, 4, 7]

Type: List PositiveInteger

concat!(u,[1,5,42]); u

[9, 2, 4, 7, 1, 5, 42]

Type: List PositiveInteger

endOfu := rest(u,4)

[1, 5, 42]

Type: List PositiveInteger

partOfu := rest(u,2)

[4, 7, 1, 5, 42]

Type: List PositiveInteger

setrest!(endOfu,partOfu); u

[
9, 2, 4, 7, 1

]
Type: List PositiveInteger

From this it can be seen that the lists returned by first and rest are pointers to the original
list and not a copy. Thus great care must be taken when dealing with lists in Axiom.

Although the nth element of the list l can be obtained by applying the first function to n−1
applications of rest to l, Axiom provides a more useful access method in the form of the “.”
operator:

u.3

4
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Type: PositiveInteger

u.5

1

Type: PositiveInteger

u.6

4

Type: PositiveInteger

first rest rest u -- Same as u.3

4

Type: PositiveInteger

u.first

9

Type: PositiveInteger

u(3)

4

Type: PositiveInteger

The operation u.i is referred to as indexing into u or elting into u. The latter term comes
from the elt function which is used to extract elements (the first element of the list is at
index 1).

elt(u,4)

7
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Type: PositiveInteger

If a list has no cycles then any attempt to access an element beyond the end of the list will
generate an error. However, in the example above there was a cycle starting at the third
element so the access to the sixth element wrapped around to give the third element. Since
lists are mutable it is possible to modify elements directly:

u.3 := 42; u

[
9, 2, 42, 7, 1

]
Type: List PositiveInteger

Other list operations are:

L := [9,3,4,7]; #L

4

Type: PositiveInteger

last(L)

7

Type: PositiveInteger

L.last

7

Type: PositiveInteger

L.(#L - 1)

4

Type: PositiveInteger

Note that using the “#” operator on a list with cycles causes Axiom to enter an infinite
loop.

Note that any operation on a list L that returns a list LL
′
will, in general, be such that any

changes to LL
′
will have the side-effect of altering L. For example:
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m := rest(L,2)

[4, 7]

Type: List PositiveInteger

m.1 := 20; L

[9, 3, 20, 7]

Type: List PositiveInteger

n := L

[9, 3, 20, 7]

Type: List PositiveInteger

n.2 := 99; L

[9, 99, 20, 7]

Type: List PositiveInteger

n

[9, 99, 20, 7]

Type: List PositiveInteger

Thus the only safe way of copying lists is to copy each element from one to another and not
use the assignment operator:

p := [i for i in n] -- Same as ‘p := copy(n)’

[9, 99, 20, 7]

Type: List PositiveInteger

p.2 := 5; p
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[9, 5, 20, 7]

Type: List PositiveInteger

n

[9, 99, 20, 7]

Type: List PositiveInteger

In the previous example a new way of constructing lists was given. This is a powerful method
which gives the reader more information about the contents of the list than before and which
is extremely flexible. The example

[i for i in 1..10]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Type: List PositiveInteger

should be read as

“Using the expression i, generate each element of the list by iterating the symbol i over the
range of integers [1,10]”

To generate the list of the squares of the first ten elements we just use:

[i**2 for i in 1..10]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Type: List PositiveInteger

For more complex lists we can apply a condition to the elements that are to be placed into
the list to obtain a list of even numbers between 0 and 11:

[i for i in 1..10 | even?(i)]

[2, 4, 6, 8, 10]

Type: List PositiveInteger
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This example should be read as:

“Using the expression i, generate each element of the list by iterating the symbol i over the
range of integers [1,10] such that i is even”

The following achieves the same result:

[i for i in 2..10 by 2]

[2, 4, 6, 8, 10]

Type: List PositiveInteger

Segmented Lists

A segmented list is one in which some of the elements are ranges of values. The expand
function converts lists of this type into ordinary lists:

[1..10]

[1..10]

Type: List Segment PositiveInteger

[1..3,5,6,8..10]

[1..3, 5..5, 6..6, 8..10]

Type: List Segment PositiveInteger

expand(%)

[1, 2, 3, 5, 6, 8, 9, 10]

Type: List Integer

If the upper bound of a segment is omitted then a different type of segmented list is obtained
and expanding it will produce a stream (which will be considered in the next section):

[1..]
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[1..]

Type: List UniversalSegment PositiveInteger

expand(%)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .]

Type: Stream Integer

Streams

Streams are infinite lists which have the ability to calculate the next element should it be
required. For example, a stream of positive integers and a list of prime numbers can be
generated by:

[i for i in 1..]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .]

Type: Stream PositiveInteger

[i for i in 1.. | prime?(i)]

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .]

Type: Stream PositiveInteger

In each case the first few elements of the stream are calculated for display purposes but the
rest of the stream remains unevaluated. The value of items in a stream are only calculated
when they are needed which gives rise to their alternative name of “lazy lists”.

Another method of creating streams is to use the generate(f,a) function. This applies its
first argument repeatedly onto its second to produce the stream
[a, f(a), f(f(a)), f(f(f(a))) . . .]. Given that the function nextPrime returns the lowest
prime number greater than its argument we can generate a stream of primes as follows:

generate(nextPrime,2)$Stream Integer

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .]

Type: Stream Integer
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As a longer example a stream of Fibonacci numbers will be computed. The Fibonacci
numbers start at 1 and each following number is the addition of the two numbers that
precede it so the Fibonacci sequence is:

1, 1, 2, 3, 5, 8, . . .

.

Since the generation of any Fibonacci number only relies on knowing the previous two num-
bers we can look at the series through a window of two elements. To create the series the
window is placed at the start over the values [1, 1] and their sum obtained. The window
is now shifted to the right by one position and the sum placed into the empty slot of the
window; the process is then repeated. To implement this we require a function that takes
a list of two elements (the current view of the window), adds them, and outputs the new
window. The result is the function [a, b] -> [b, a+ b]:

win : List Integer -> List Integer

Type: Void

win(x) == [x.2, x.1 + x.2]

Type: Void

win([1,1])

[1, 2]

Type: List Integer

win(%)

[2, 3]

Type: List Integer

Thus it can be seen that by repeatedly applying win to the results of the previous invocation
each element of the series is obtained. Clearly win is an ideal function to construct streams
using the generate function:

fibs := [generate(win,[1,1])]
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[[1, 1], [1, 2], [2, 3], [3, 5], [5, 8], [8, 13], [13, 21], [21, 34], [34, 55], [55, 89], . . .]

Type: Stream List Integer

This isn’t quite what is wanted – we need to extract the first element of each list and place
that in our series:

fibs := [i.1 for i in [generate(win,[1,1])] ]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .]

Type: Stream Integer

Obtaining the 200th Fibonacci number is trivial:

fibs.200

280571172992510140037611932413038677189525

Type: PositiveInteger

One other function of interest is complete which expands a finite stream derived from an
infinite one (and thus was still stored as an infinite stream) to form a finite stream.

Arrays, Vectors, Strings, and Bits

The simplest array data structure is the one-dimensional array which can be obtained by
applying the oneDimensionalArray function to a list:

oneDimensionalArray([7,2,5,4,1,9])

[7, 2, 5, 4, 1, 9]

Type: OneDimensionalArray PositiveInteger

One-dimensional arrays are homogenous (all elements must have the same type) and mutable
(elements can be changed) like lists but unlike lists they are constant in size and have uniform
access times (it is just as quick to read the last element of a one-dimensional array as it is
to read the first; this is not true for lists).

Since these arrays are mutable all the warnings that apply to lists apply to arrays. That is,
it is possible to modify an element in a copy of an array and change the original:

x := oneDimensionalArray([7,2,5,4,1,9])
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[7, 2, 5, 4, 1, 9]

Type: OneDimensionalArray PositiveInteger

y := x

[7, 2, 5, 4, 1, 9]

Type: OneDimensionalArray PositiveInteger

y.3 := 20 ; x

[7, 2, 20, 4, 1, 9]

Type: OneDimensionalArray PositiveInteger

Note that because these arrays are of fixed size the concat! function cannot be applied to
them without generating an error. If arrays of this type are required use the FlexibleArray
constructor.

One-dimensional arrays can be created using new which specifies the size of the array and
the initial value for each of the elements. Other operations that can be applied to one-
dimensional arrays are map! which applies a mapping onto each element, swap! which
swaps two elements and copyInto!(a,b,c) which copies the array b onto a starting at
position c.

a : ARRAY1 PositiveInteger := new(10,3)

[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

Type: OneDimensionalArray PositiveInteger

(note that ARRAY1 is an abbreviation for the type OneDimensionalArray.) Other types
based on one-dimensional arrays are Vector, String, and Bits.

map!(i +-> i+1,a); a

[4, 4, 4, 4, 4, 4, 4, 4, 4, 4]

Type: OneDimensionalArray PositiveInteger

b := oneDimensionalArray([2,3,4,5,6])



1.14. DATA STRUCTURES IN AXIOM 49

[2, 3, 4, 5, 6]

Type: OneDimensionalArray PositiveInteger

swap!(b,2,3); b

[2, 4, 3, 5, 6]

Type: OneDimensionalArray PositiveInteger

copyInto!(a,b,3)

[4, 4, 2, 4, 3, 5, 6, 4, 4, 4]

Type: OneDimensionalArray PositiveInteger

a

[4, 4, 2, 4, 3, 5, 6, 4, 4, 4]

Type: OneDimensionalArray PositiveInteger

vector([1/2,1/3,1/14]) [
1

2
,
1

3
,
1

14

]
Type: Vector Fraction Integer

"Hello, World"

"Hello, World"

Type: String

bits(8,true)

"11111111"

Type: Bits

A vector is similar to a one-dimensional array except that if its components belong to a ring
then arithmetic operations are provided.
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Flexible Arrays

Flexible arrays are designed to provide the efficiency of one-dimensional arrays while retain-
ing the flexibility of lists. They are implemented by allocating a fixed block of storage for
the array. If the array needs to be expanded then a larger block of storage is allocated and
the contents of the old block are copied into the new one.

There are several operations that can be applied to this type, most of which modify the array
in place. As a result these functions all have names ending in “!”. The physicalLength
returns the actual length of the array as stored in memory while the physicalLength!
allows this value to be changed by the user.

f : FARRAY INT := new(6,1)

[1, 1, 1, 1, 1, 1]

Type: FlexibleArray Integer

f.1:=4; f.2:=3 ; f.3:=8 ; f.5:=2 ; f

[4, 3, 8, 1, 2, 1]

Type: FlexibleArray Integer

insert!(42,f,3); f

[4, 3, 42, 8, 1, 2, 1]

Type: FlexibleArray Integer

insert!(28,f,8); f

[4, 3, 42, 8, 1, 2, 1, 28]

Type: FlexibleArray Integer

removeDuplicates!(f)

[4, 3, 42, 8, 1, 2, 28]

Type: FlexibleArray Integer
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delete!(f,5)

[4, 3, 42, 8, 2, 28]

Type: FlexibleArray Integer

g:=f(3..5)

[42, 8, 2]

Type: FlexibleArray Integer

g.2:=7; f

[4, 3, 42, 8, 2, 28]

Type: FlexibleArray Integer

insert!(g,f,1)

[42, 7, 2, 4, 3, 42, 8, 2, 28]

Type: FlexibleArray Integer

physicalLength(f)

10

Type: PositiveInteger

physicalLength!(f,20)

[42, 7, 2, 4, 3, 42, 8, 2, 28]

Type: FlexibleArray Integer

merge!(sort!(f),sort!(g))

[2, 2, 2, 3, 4, 7, 7, 8, 28, 42, 42, 42]



52 A TECHNICAL INTRODUCTION TO AXIOM

Type: FlexibleArray Integer

shrinkable(false)$FlexibleArray(Integer)

true

Type: Boolean

There are several things to point out concerning these examples. First, although flexible
arrays are mutable, making copies of these arrays creates separate entities. This can be seen
by the fact that the modification of element g.2 above did not alter f. Second, the merge!
function can take an extra argument before the two arrays are merged. The argument is a
comparison function and defaults to “<=” if omitted. Lastly, shrinkable tells the system
whether or not to let flexible arrays contract when elements are deleted from them. An
explicit package reference must be given as in the example above.

1.15 Functions, Choices, and Loops

By now the reader should be able to construct simple one-line expressions involving variables
and different data structures. This section builds on this knowledge and shows how to use
iteration, make choices, and build functions in Axiom. At the moment it is assumed that the
reader has a rough idea of how types are specified and constructed so that they can follow
the examples given.

From this point on most examples will be taken from input files.

Reading Code from a File

Input files contain code that will be fed to the command prompt. The primary difference
between the command line and an input file is that indentation matters. In an input file you
can specify “piles” of code by using indentation.

The names of all input files in Axiom should end in “.input” otherwise Axiom will refuse to
read them.

If an input file is named foo.input you can feed the contents of the file to the command
prompt (as though you typed them) by writing: )read foo.input.

It is good practice to start each input file with the )clear all command so that all functions
and variables in the current environment are erased.

Blocks

The Axiom constructs that provide looping, choices, and user-defined functions all rely on
the notion of blocks. A block is a sequence of expressions which are evaluated in the order
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that they appear except when it is modified by control expressions such as loops. To leave a
block prematurely use an expression of the form: BoolExpr => Expr where BoolExpr is any
Axiom expression that has type Boolean. The value and type of Expr determines the value
and type returned by the block.

If blocks are entered at the keyboard (as opposed to reading them from a text file) then
there is only one way of creating them. The syntax is:

(expression1; expression2; . . . ; expressionN)

In an input file a block can be constructed as above or by placing all the statements at the
same indentation level. When indentation is used to indicate program structure the block
is called a pile. As an example of a simple block a list of three integers can be constructed
using parentheses:

( a:=4; b:=1; c:=9; L:=[a,b,c])

[4, 1, 9]

Type: List PositiveInteger

Doing the same thing using piles in an input file you could type:

L :=

a:=4

b:=1

c:=9

[a,b,c]

[4, 1, 9]

Type: List PositiveInteger

Since blocks have a type and a value they can be used as arguments to functions or as part of
other expressions. It should be pointed out that the following example is not recommended
practice but helps to illustrate the idea of blocks and their ability to return values:

sqrt(4.0 +

a:=3.0

b:=1.0

c:=a + b

c

)

2.8284271247 461900976

Type: Float
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Note that indentation is extremely important. If the example above had the pile starting
at “a:=” moved left by two spaces so that the “a” was under the “(” of the first line then
the interpreter would signal an error. Furthermore if the closing parenthesis “)” is moved
up to give

sqrt(4.0 +

a:=3.0

b:=1.0

c:=a + b

c)

Line 1: sqrt(4.0 +

....A

Error A: Missing mate.

Line 2: a:=3.0

Line 3: b:=1.0

Line 4: c:=a + b

Line 5: c)

.........AB

Error A: (from A up to B) Ignored.

Error B: Improper syntax.

Error B: syntax error at top level

Error B: Possibly missing a )

5 error(s) parsing

then the parser will generate errors. If the parenthesis is shifted right by several spaces so
that it is in line with the “c” thus:

sqrt(4.0 +

a:=3.0

b:=1.0

c:=a + b

c

)

Line 1: sqrt(4.0 +

....A

Error A: Missing mate.

Line 2: a:=3.0

Line 3: b:=1.0

Line 4: c:=a + b

Line 5: c

Line 6: )

.........A

Error A: (from A up to A) Ignored.

Error A: Improper syntax.

Error A: syntax error at top level

Error A: Possibly missing a )

5 error(s) parsing
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a similar error will be raised. Finally, the “)” must be indented by at least one space relative
to the sqrt thus:

sqrt(4.0 +

a:=3.0

b:=1.0

c:=a + b

c

)

2.8284271247 461900976

Type: Float

or an error will be generated.

It can be seen that great care needs to be taken when constructing input files consisting
of piles of expressions. It would seem prudent to add one pile at a time and check if it
is acceptable before adding more, particularly if piles are nested. However, it should be
pointed out that the use of piles as values for functions is not very readable and so perhaps
the delicate nature of their interpretation should deter programmers from using them in
these situations. Using piles should really be restricted to constructing functions, etc. and
a small amount of rewriting can remove the need to use them as arguments. For example,
the previous block could easily be implemented as:

a:=3.0

b:=1.0

c:=a + b

sqrt(4.0 + c)

a:=3.0

3.0

Type: Float

b:=1.0

1.0

Type: Float

c:=a + b

4.0
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Type: Float

sqrt(4.0 + c)

2.8284271247 461900976

Type: Float

which achieves the same result and is easier to understand. Note that this is still a pile but
it is not as fragile as the previous version.

Functions

Definitions of functions in Axiom are quite simple providing two things are observed. First,
the type of the function must either be completely specified or completely unspecified. Sec-
ond, the body of the function is assigned to the function identifier using the delayed assign-
ment operator “==”.

To specify the type of something the “:” operator is used. Thus to define a variable x to be
of type Fraction Integer we enter:

x : Fraction Integer

Type: Void

For functions the method is the same except that the arguments are placed in parentheses
and the return type is placed after the symbol “->”. Some examples of function definitions
taking zero, one, two, or three arguments and returning a list of integers are:

f : () -> List Integer

Type: Void

g : (Integer) -> List Integer

Type: Void

h : (Integer, Integer) -> List Integer
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Type: Void

k : (Integer, Integer, Integer) -> List Integer

Type: Void

Now the actual function definitions might be:

f() == [ ]

Type: Void

g(a) == [a]

Type: Void

h(a,b) == [a,b]

Type: Void

k(a,b,c) == [a,b,c]

Type: Void

with some invocations of these functions:

f()

Compiling function f with type () -> List Integer

[ ]

Type: List Integer

g(4)
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Compiling function g with type Integer -> List Integer

[4]

Type: List Integer

h(2,9)

Compiling function h with type (Integer,Integer) -> List Integer

[2, 9]

Type: List Integer

k(-3,42,100)

Compiling function k with type (Integer,Integer,Integer) -> List

Integer

[−3, 42, 100]

Type: List Integer

The value returned by a function is either the value of the last expression evaluated or the
result of a return statement. For example, the following are effectively the same:

p : Integer -> Integer

Type: Void

p x == (a:=1; b:=2; a+b+x)

Type: Void

p x == (a:=1; b:=2; return(a+b+x))

Type: Void
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Note that a block (pile) is assigned to the function identifier p and thus all the rules about
blocks apply to function definitions. Also there was only one argument so the parenthese
are not needed.

This is basically all that one needs to know about defining functions in Axiom – first specify
the complete type and then assign a block to the function name. The rest of this section
is concerned with defining more complex blocks than those in this section and as a result
function definitions will crop up continually particularly since they are a good way of testing
examples. Since the block structure is more complex we will use the pile notation and thus
have to use input files to read the piles.

Choices

Apart from the “=>” operator that allows a block to exit before the end Axiom provides the
standard if-then-else construct. The general syntax is:

if BooleanExpr then Expr1 else Expr2

where “else Expr2” can be omitted. If the expression BooleanExpr evaluates to true then
Expr1 is executed otherwise Expr2 (if present) will be executed. An example of piles and
if-then-else is: (read from an input file)

h := 2.0

if h > 3.1 then

1.0

else

z:= cos(h)

max(x,0.5)

h := 2.0

2.0

Type: Float

if h > 3.1 then

1.0

else

z:= cos(h)

max(x,0.5)

x

Type: Polynomial Float
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Note the indentation – the “else” must be indented relative to the “if” otherwise it will
generate an error (Axiom will think there are two piles, the second one beginning with
“else”).

Any expression that has type Boolean can be used as BooleanExpr and the most common
will be those involving the relational operators “>”, “<”, and “=”. Usually the type of an
expression involving the equality operator “=” will be Boolean but in those situations when
it isn’t you may need to use the “@” operator to ensure that it is.

Loops

Loops in Axiom are regarded as expressions containing another expression called the loop
body. The loop body is executed zero or more times depending on the kind of loop. Loops
can be nested to any depth.

The repeat loop

The simplest kind of loop provided by Axiom is the repeat loop. The general syntax of this
is:

repeat loopBody

This will cause Axiom to execute loopBody repeatedly until either a break or return
statement is encountered. If loopBody contains neither of these statements then it will loop
forever. The following piece of code will display the numbers from 1 to 4:

i:=1

repeat

if i > 4 then break

output(i)

i:=i+1

i:=1

1

Type: PositiveInteger

repeat

if i > 4 then break

output(i)

i:=i+1

1

2

3

4
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Type: Void

It was mentioned that loops will only be left when either a break or return statement is
encountered so why can’t one use the “=>” operator? The reason is that the “=>” operator
tells Axiom to leave the current block whereas break leaves the current loop. The return
statement leaves the current function.

To skip the rest of a loop body and continue the next iteration of the loop use the iterate
statement (the -- starts a comment in Axiom)

i := 0

repeat

i := i + 1

if i > 6 then break

-- Return to start if i is odd

if odd?(i) then iterate

output(i)

i := 0

0

Type: NonNegativeInteger

repeat

i := i + 1

if i > 6 then break

-- Return to start if i is odd

if odd?(i) then iterate

output(i)

2

4

6

Type: Void

The while loop

The while statement extends the basic repeat loop to place the control of leaving the loop
at the start rather than have it buried in the middle. Since the body of the loop is still part
of a repeat loop, break and “=>” work in the same way as in the previous section. The
general syntax of a while loop is:
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while BoolExpr repeat loopBody

As before, BoolExpr must be an expression of type Boolean. Before the body of the loop is
executed BoolExpr is tested. If it evaluates to true then the loop body is entered otherwise
the loop is terminated. Multiple conditions can be applied using the logical operators such
as and or by using several while statements before the repeat.

x:=1

y:=1

while x < 4 and y < 10 repeat

output [x,y]

x := x + 1

y := y + 2

x:=1

1

Type: PositiveInteger

y:=1

1

Type: PositiveInteger

while x < 4 and y < 10 repeat

output [x,y]

x := x + 1

y := y + 2

[1,1]

[2,3]

[3,5]

Type: Void

We could use two parallel whiles

x:=1

y:=1

while x < 4 while y < 10 repeat

output [x,y]

x := x + 1

y := y + 2
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the )read yields:

x:=1

1

Type: PositiveInteger

y:=1

1

Type: PositiveInteger

while x < 4 while y < 10 repeat

output [x,y]

x := x + 1

y := y + 2

[1,1]

[2,3]

[3,5]

Type: Void

Note that the last example using two while statements is not a nested loop but the following
one is:

x:=1

y:=1

while x < 4 repeat

while y < 10 repeat

output [x,y]

x := x + 1

y := y + 2

x:=1

1

Type: PositiveInteger

y:=1
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1

Type: PositiveInteger

while x < 4 repeat

while y < 10 repeat

output [x,y]

x := x + 1

y := y + 2

[1,1]

[2,3]

[3,5]

[4,7]

[5,9]

Type: Void

Suppose we that, given a matrix of arbitrary size, find the position and value of the first
negative element by examining the matrix in row-major order:

m := matrix [ [ 21, 37, 53, 14 ],_

[ 8, 22,-24, 16 ],_

[ 2, 10, 15, 14 ],_

[ 26, 33, 55,-13 ] ]

lastrow := nrows(m)

lastcol := ncols(m)

r := 1

while r <= lastrow repeat

c := 1 -- Index of first column

while c <= lastcol repeat

if elt(m,r,c) < 0 then

output [r,c,elt(m,r,c)]

r := lastrow

break -- Don’t look any further

c := c + 1

r := r + 1

m := matrix [ [ 21, 37, 53, 14 ],_

[ 8, 22,-24, 16 ],_

[ 2, 10, 15, 14 ],_

[ 26, 33, 55,-13 ] ]
21 37 53 14
8 22 −24 16
2 10 15 14
26 33 55 −13


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Type: Matrix Integer

lastrow := nrows(m)

4

Type: PositiveInteger

lastcol := ncols(m)

4

Type: PositiveInteger

r := 1

1

Type: PositiveInteger

while r <= lastrow repeat

c := 1 -- Index of first column

while c <= lastcol repeat

if elt(m,r,c) < 0 then

output [r,c,elt(m,r,c)]

r := lastrow

break -- Don’t look any further

c := c + 1

r := r + 1

[2,3,- 24]

Type: Void

The for loop

The last loop statement of interest is the for loop. There are two ways of creating a for
loop. The first way uses either a list or a segment:

for var in seg repeat loopBody
for var in list repeat loopBody
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where var is an index variable which is iterated over the values in seg or list. The value seg
is a segment such as 1 . . . 10 or 1 . . . and list is a list of some type. For example:

for i in 1..10 repeat

~prime?(i) => iterate

output(i)

2

3

5

7

Type: Void

for w in ["This", "is", "your", "life!"] repeat

output(w)

This

is

your

life!

Type: Void

The second form of the for loop syntax includes a “such that” clause which must be of
type Boolean:

for var in seg | BoolExpr repeat loopBody
for var in list | BoolExpr repeat loopBody

Some examples are:

for i in 1..10 | prime?(i) repeat

output(i)

2

3

5

7

Type: Void

for i in [1,2,3,4,5,6,7,8,9,10] | prime?(i) repeat

output(i)

2

3

5

7
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Type: Void

You can also use a while clause:

for i in 1.. while i < 7 repeat

if even?(i) then output(i)

2

4

6

Type: Void

Using the “such that” clause makes this appear simpler:

for i in 1.. | even?(i) while i < 7 repeat

output(i)

2

4

6

Type: Void

You can use multiple for clauses to iterate over several sequences in parallel:

for a in 1..4 for b in 5..8 repeat

output [a,b]

[1,5]

[2,6]

[3,7]

[4,8]

Type: Void

As a general point it should be noted that any symbols referred to in the “such that” and
while clauses must be pre-defined. This either means that the symbols must have been
defined in an outer level (e.g. in an enclosing loop) or in a for clause appearing before the
“such that” or while. For example:

for a in 1..4 repeat

for b in 7..9 | prime?(a+b) repeat

output [a,b,a+b]

[2,9,11]

[3,8,11]

[4,7,11]

[4,9,13]
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Type: Void

Finally, the for statement has a by clause to specify the step size. This makes it possible to
iterate over the segment in reverse order:

for a in 1..4 for b in 8..5 by -1 repeat

output [a,b]

[1,8]

[2,7]

[3,6]

[4,5]

Type: Void

Note that without the “by -1” the segment 8..5 is empty so there is nothing to iterate over
and the loop exits immediately.



Chapter 1

An Overview of Axiom

When we start cataloging the gains in tools sitting on a computer, the benefits
of software are amazing. But, if the benefits of software are so great, why do
we worry about making it easier – don’t the ends pay for the means? We worry
because making such software is extraordinarily hard and almost no one can do it
– the detail is exhausting, the creativity required is extreme, the hours of failure
upon failure requiring patience and persistence would tax anyone claiming to be
sane. Yet we require people with such characteristics be found and employed and
employed cheaply.

– Christopher Alexander

(from Patterns of Software by Richard Gabriel)

Welcome to the Axiom environment for interactive computation and problem solving. Con-
sider this chapter a brief, whirlwind tour of the Axiom world. We introduce you to Axiom’s
graphics and the Axiom language. Then we give a sampling of the large variety of facili-
ties in the Axiom system, ranging from the various kinds of numbers, to data types (like
lists, arrays, and sets) and mathematical objects (like matrices, integrals, and differential
equations). We conclude with the discussion of system commands and an interactive “undo.”

Before embarking on the tour, we need to brief those readers working interactively with
Axiom on some details.

1.1 Starting Up and Winding Down

You need to know how to start the Axiom system and how to stop it. We assume that Axiom
has been correctly installed on your machine (as described in another Axiom document).

To begin using Axiom, issue the command axiom to the Axiom operating system shell.
There is a brief pause, some start-up messages, and then one or more windows appear.

1
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If you are not running Axiom under the X Window System, there is only one window (the
console). At the lower left of the screen there is a prompt that looks like

(1) ->

When you want to enter input to Axiom, you do so on the same line after the prompt.
The “1” in “(1)”, also called the equation number, is the computation step number and is
incremented after you enter Axiom statements. Note, however, that a system command such
as )clear all may change the step number in other ways. We talk about step numbers
more when we discuss system commands and the workspace history facility.

If you are running Axiom under the X Window System, there may be two windows: the
console window (as just described) and the HyperDoc main menu. HyperDoc is a multiple-
window hypertext system that lets you view Axiom documentation and examples on-line,
execute Axiom expressions, and generate graphics. If you are in a graphical windowing
environment, it is usually started automatically when Axiom begins. If it is not running,
issue )hd to start it. We discuss the basics of HyperDoc in section 3 on page 101.

To interrupt an Axiom computation, hold down the Ctrl (control) key and press c. This
brings you back to the Axiom prompt.

To exit from Axiom, move to the console window, type )quit at the input
prompt and press the Enter key. You will probably be prompted with the
following message:

Please enter y or yes if you really want to leave the
interactive environment and return to the operating system

You should respond yes, for example, to exit Axiom.

We are purposely vague in describing exactly what your screen looks like or what messages
Axiom displays. Axiom runs on a number of different machines, operating systems and
window environments, and these differences all affect the physical look of the system. You
can also change the way that Axiom behaves via system commands described later in this
chapter and in Appendix A. System commands are special commands, like )set, that begin
with a closing parenthesis and are used to change your environment. For example, you can
set a system variable so that you are not prompted for confirmation when you want to leave
Axiom.

Clef

If you are using Axiom under the X Window System, the Clef command line editor is
probably available and installed. With this editor you can recall previous lines with the up
and down arrow keys. To move forward and backward on a line, use the right and left arrows.
You can use the Insert key to toggle insert mode on or off. When you are in insert mode,
the cursor appears as a large block and if you type anything, the characters are inserted into
the line without deleting the previous ones.
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If you press the Home key, the cursor moves to the beginning of the line and if you press
the End key, the cursor moves to the end of the line. Pressing Ctrl-End deletes all the text
from the cursor to the end of the line.

Clef also provides Axiom operation name completion for a limited set of operations. If you
enter a few letters and then press the Tab key, Clef tries to use those letters as the prefix of
an Axiom operation name. If a name appears and it is not what you want, press Tab again
to see another name.

You are ready to begin your journey into the world of Axiom.

1.2 Typographic Conventions

In this document we have followed these typographical conventions:

• Categories, domains and packages are displayed in this font:
Ring, Integer, DiophantineSolutionPackage.

• Prefix operators, infix operators, and punctuation symbols in the Axiom language are
displayed in the text like this: +, $, +->.

• Axiom expressions or expression fragments are displayed in this font:
inc(x) == x + 1.

• For clarity of presentation, TEX is often used to format expressions
g(x) = x2 + 1.

• Function names and HyperDoc button names are displayed in the text in this font:
factor, integrate, Lighting.

• Italics are used for emphasis and for words defined in the glossary:
category.

This document contains over 2500 examples of Axiom input and output. All examples were
run though Axiom and their output was created in TEX form by the Axiom TexFormat

package. We have deleted system messages from the example output if those messages are
not important for the discussions in which the examples appear.

1.3 The Axiom Language

The Axiom language is a rich language for performing interactive computations and for
building components of the Axiom library. Here we present only some basic aspects of
the language that you need to know for the rest of this chapter. Our discussion here is
intentionally informal, with details unveiled on an “as needed” basis. For more information
on a particular construct, we suggest you consult the index.
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Arithmetic Expressions

For arithmetic expressions, use the “+” and “-” operator as in mathematics. Use “*” for
multiplication, and “**” for exponentiation. To create a fraction, use “/”. When an expres-
sion contains several operators, those of highest precedence are evaluated first. For arithmetic
operators, “**” has highest precedence, “*” and “/” have the next highest precedence, and
“+” and “-” have the lowest precedence.

Axiom puts implicit parentheses around operations of higher precedence, and groups those
of equal precedence from left to right.

1 + 2 - 3 / 4 * 3 ** 2 - 1

−19

4

Type: Fraction Integer

The above expression is equivalent to this.

((1 + 2) - ((3 / 4) * (3 ** 2))) - 1

−19

4

Type: Fraction Integer

If an expression contains subexpressions enclosed in parentheses, the parenthesized subex-
pressions are evaluated first (from left to right, from inside out).

1 + 2 - 3/ (4 * 3 ** (2 - 1))

11

4

Type: Fraction Integer

Previous Results

Use the percent sign “%” to refer to the last result. Also, use “%%’ to refer to previous
results. “%%(-1)” is equivalent to “%”, “%%(-2)” returns the next to the last result, and so
on. “%%(1)” returns the result from step number 1, “%%(2)” returns the result from step
number 2, and so on. “%%(0)” is not defined.

This is ten to the tenth power.

10 ** 10
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10000000000

Type: PositiveInteger

This is the last result minus one.

% - 1

9999999999

Type: PositiveInteger

This is the last result.

%%(-1)

9999999999

Type: PositiveInteger

This is the result from step number 1.

%%(1)

10000000000

Type: PositiveInteger

Some Types

Everything in Axiom has a type. The type determines what operations you can perform on
an object and how the object can be used. The section 2 on page 57 is dedicated to the
interactive use of types. Several of the final chapters discuss how types are built and how
they are organized in the Axiom library.

Positive integers are given type PositiveInteger.

8

8

Type: PositiveInteger

Negative ones are given type Integer. This fine distinction is helpful to the Axiom inter-
preter.
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-8

−8

Type: Integer

Here a positive integer exponent gives a polynomial result.

x**8

x8

Type: Polynomial Integer

Here a negative integer exponent produces a fraction.

x**(-8)

1

x8

Type: Fraction Polynomial Integer

Symbols, Variables, Assignments, and Declarations

A symbol is a literal used for the input of things like the “variables” in polynomials and
power series.

We use the three symbols x, y, and z in entering this polynomial.

(x - y*z)**2

y2 z2 − 2 x y z + x2

Type: Polynomial Integer

A symbol has a name beginning with an uppercase or lowercase alphabetic character, “%”,
or “!”. Successive characters (if any) can be any of the above, digits, or “?”. Case is
distinguished: the symbol points is different from the symbol Points.

A symbol can also be used in Axiom as a variable. A variable refers to a value. To assign
a value to a variable, the operator “:=” is used.1 A variable initially has no restrictions on
the kinds of values to which it can refer.

This assignment gives the value 4 (an integer) to a variable named x.

1Axiom actually has two forms of assignment: immediate assignment, as discussed here, and delayed
assignment. See section 5.1 on page 119 for details.
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x := 4

4

Type: PositiveInteger

This gives the value z + 3/5 (a polynomial) to x.

x := z + 3/5

z +
3

5

Type: Polynomial Fraction Integer

To restrict the types of objects that can be assigned to a variable, use a declaration

y : Integer

Type: Void

After a variable is declared to be of some type, only values of that type can be assigned to
that variable.

y := 89

89

Type: Integer

The declaration for y forces values assigned to y to be converted to integer values.

y := sin %pi

0

Type: Integer

If no such conversion is possible, Axiom refuses to assign a value to y.

y := 2/3
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Cannot convert right-hand side of assignment

2

-

3

to an object of the type Integer of the left-hand side.

A type declaration can also be given together with an assignment. The declaration can assist
Axiom in choosing the correct operations to apply.

f : Float := 2/3

0.6666666666 6666666667

Type: Float

Any number of expressions can be given on input line. Just separate them by semicolons.
Only the result of evaluating the last expression is displayed.

These two expressions have the same effect as the previous single expression.

f : Float; f := 2/3

0.6666666666 6666666667

Type: Float

The type of a symbol is either Symbol or Variable(name) where name is the name of the
symbol.

By default, the interpreter gives this symbol the type Variable(q).

q

q

Type: Variable q

When multiple symbols are involved, Symbol is used.

[q, r]

[q, r]

Type: List OrderedVariableList [q,r]
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What happens when you try to use a symbol that is the name of a variable?

f

0.6666666666 6666666667

Type: Float

Use a single quote “’” before the name to get the symbol.

’f

f

Type: Variable f

Quoting a name creates a symbol by preventing evaluation of the name as a variable. Expe-
rience will teach you when you are most likely going to need to use a quote. We try to point
out the location of such trouble spots.

Conversion

Objects of one type can usually be “converted” to objects of several other types. To convert
an object to a new type, use the “::” infix operator.2 For example, to display an object, it
is necessary to convert the object to type OutputForm.

This produces a polynomial with rational number coefficients.

p := r**2 + 2/3

r2 +
2

3

Type: Polynomial Fraction Integer

Create a quotient of polynomials with integer coefficients by using “::”.

p :: Fraction Polynomial Integer

3 r2 + 2

3

Type: Fraction Polynomial Integer

Some conversions can be performed automatically when Axiom tries to evaluate your input.
Others conversions must be explicitly requested.

2Conversion is discussed in detail in section 2.7 on page 82.
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Calling Functions

As we saw earlier, when you want to add or subtract two values, you place the arithmetic
operator “+” or “-” between the two arguments denoting the values. To use most other
Axiom operations, however, you use another syntax: write the name of the operation first,
then an open parenthesis, then each of the arguments separated by commas, and, finally, a
closing parenthesis. If the operation takes only one argument and the argument is a number
or a symbol, you can omit the parentheses.

This calls the operation factor with the single integer argument 120.

factor(120)

23 3 5

Type: Factored Integer

This is a call to divide with the two integer arguments 125 and 7.

divide(125,7)

[quotient = 17, remainder = 6]

Type: Record(quotient: Integer, remainder: Integer)

This calls quatern with four floating-point arguments.

quatern(3.4,5.6,2.9,0.1)

3.4 + 5.6 i+ 2.9 j + 0.1 k

Type: Quaternion Float

This is the same as factorial(10).

factorial 10

3628800

Type: PositiveInteger

An operations that returns a Boolean value (that is, true or false) frequently has a name
suffixed with a question mark (“?”). For example, the even? operation returns true if its
integer argument is an even number, false otherwise.
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An operation that can be destructive on one or more arguments usually has a name ending
in a exclamation point (“!”). This actually means that it is allowed to update its arguments
but it is not required to do so. For example, the underlying representation of a collection type
may not allow the very last element to removed and so an empty object may be returned
instead. Therefore, it is important that you use the object returned by the operation and not
rely on a physical change having occurred within the object. Usually, destructive operations
are provided for efficiency reasons.

Some Predefined Macros

Axiom provides several macros for your convenience.3 Macros are names (or forms) that
expand to larger expressions for commonly used values.

%i The square root of -1.
%e The base of the natural logarithm.
%pi π.
%infinity ∞.
%plusInfinity +∞.
%minusInfinity −∞.

To display all the macros (along with anything you have defined in the workspace), issue the
system command )display all.

Long Lines

When you enter Axiom expressions from your keyboard, there will be times when they are
too long to fit on one line. Axiom does not care how long your lines are, so you can let them
continue from the right margin to the left side of the next line.

Alternatively, you may want to enter several shorter lines and have Axiom glue them together.
To get this glue, put an underscore ( ) at the end of each line you wish to continue.

2_

+_

3

is the same as if you had entered

2+3

Axiom statements in an input file (see section 4.1 on page 109) can use indentation to indicate
the program structure. (see section 5.2 on page 123).

3See section 6.2 on page 154 for a discussion on how to write your own macros.
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Comments

Comment statements begin with two consecutive hyphens or two consecutive plus signs and
continue until the end of the line.

The comment beginning with “--” is ignored by Axiom.

2 + 3 -- this is rather simple, no?

5

Type: PositiveInteger

There is no way to write long multi-line comments other than starting each line with “--”
or “++”.

1.4 Numbers

Axiom distinguishes very carefully between different kinds of numbers, how they are repre-
sented and what their properties are. Here are a sampling of some of these kinds of numbers
and some things you can do with them.

Integer arithmetic is always exact.

11**13 * 13**11 * 17**7 - 19**5 * 23**3

25387751112538918594666224484237298

Type: PositiveInteger

Integers can be represented in factored form.

factor 643238070748569023720594412551704344145570763243

1113 1311 177 195 233 292

Type: Factored Integer

Results stay factored when you do arithmetic. Note that the 12 is automatically factored
for you.

% * 12

22 3 1113 1311 177 195 233 292
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Type: Factored Integer

Integers can also be displayed to bases other than 10. This is an integer in base 11.

radix(25937424601,11)

10000000000

Type: RadixExpansion 11

Roman numerals are also available for those special occasions.

roman(1992)

MCMXCII

Type: RomanNumeral

Rational number arithmetic is also exact.

r := 10 + 9/2 + 8/3 + 7/4 + 6/5 + 5/6 + 4/7 + 3/8 + 2/9

55739

2520

Type: Fraction Integer

To factor fractions, you have to map factor onto the numerator and denominator.

map(factor,r)

139 401

23 32 5 7

Type: Fraction Factored Integer

SingleInteger refers to machine word-length integers.

In English, this expression means “11 as a small integer”.

11@SingleInteger

11

Type: SingleInteger
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Machine double-precision floating-point numbers are also available for numeric and graphical
applications.

123.21@DoubleFloat

123.21000000000001

Type: DoubleFloat

The normal floating-point type in Axiom, Float, is a software implementation of floating-
point numbers in which the exponent and the mantissa may have any number of digits. The
types Complex(Float) and Complex(DoubleFloat) are the corresponding software imple-
mentations of complex floating-point numbers.

This is a floating-point approximation to about twenty digits. The “::” is used here to
change from one kind of object (here, a rational number) to another (a floating-point num-
ber).

r :: Float

22.118650793650793651

Type: Float

Use digits to change the number of digits in the representation. This operation returns the
previous value so you can reset it later.

digits(22)

20

Type: PositiveInteger

To 22 digits of precision, the number eπ
√
163.0 appears to be an integer.

exp(%pi * sqrt 163.0)

262537412640768744.0

Type: Float

Increase the precision to forty digits and try again.

digits(40); exp(%pi * sqrt 163.0)
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26253741 2640768743.9999999999 9925007259 76

Type: Float

Here are complex numbers with rational numbers as real and imaginary parts.

(2/3 + %i)**3

−46

27
+

1

3
i

Type: Complex Fraction Integer

The standard operations on complex numbers are available.

conjugate %

−46

27
− 1

3
i

Type: Complex Fraction Integer

You can factor complex integers.

factor(89 - 23 * %i)

−(1 + i) (2 + i)
2
(3 + 2 i)

2

Type: Factored Complex Integer

Complex numbers with floating point parts are also available.

exp(%pi/4.0 * %i)

0.7071067811 8654752440 0844362104 8490392849+

0.7071067811 8654752440 0844362104 8490392848 i

Type: Complex Float

The real and imaginary parts can be symbolic.

complex(u,v)

u+ v i
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Type: Complex Polynomial Integer

Of course, you can do complex arithmetic with these also.

% ** 2

−v2 + u2 + 2 u v i

Type: Complex Polynomial Integer

Every rational number has an exact representation as a repeating decimal expansion

decimal(1/352)

0.0028409

Type: DecimalExpansion

A rational number can also be expressed as a continued fraction.

continuedFraction(6543/210)

31 +
1|
|6

+
1|
|2

+
1|
|1

+
1|
|3

Type: ContinuedFraction Integer

Also, partial fractions can be used and can be displayed in a compact format

partialFraction(1,factorial(10))

159

28
− 23

34
− 12

52
+

1

7

Type: PartialFraction Integer

or expanded format.

padicFraction(%)

1

2
+

1

24
+

1

25
+

1

26
+

1

27
+

1

28
− 2

32
− 1

33
− 2

34
− 2

5
− 2

52
+

1

7

Type: PartialFraction Integer
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Like integers, bases (radices) other than ten can be used for rational numbers. Here we use
base eight.

radix(4/7, 8)

0.4

Type: RadixExpansion 8

Of course, there are complex versions of these as well. Axiom decides to make the result a
complex rational number.

% + 2/3*%i

4

7
+

2

3
i

Type: Complex Fraction Integer

You can also use Axiom to manipulate fractional powers.

(5 + sqrt 63 + sqrt 847)**(1/3)

3

√
14
√
7 + 5

Type: AlgebraicNumber

You can also compute with integers modulo a prime.

x : PrimeField 7 := 5

5

Type: PrimeField 7

Arithmetic is then done modulo 7.

x**3

6

Type: PrimeField 7

Since 7 is prime, you can invert nonzero values.
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1/x

3

Type: PrimeField 7

You can also compute modulo an integer that is not a prime.

y : IntegerMod 6 := 5

5

Type: IntegerMod 6

All of the usual arithmetic operations are available.

y**3

5

Type: IntegerMod 6

Inversion is not available if the modulus is not a prime number. Modular arithmetic and
prime fields are discussed in section 8.11 on page 358.

1/y

There are 12 exposed and 13 unexposed library operations named /

having 2 argument(s) but none was determined to be applicable.

Use HyperDoc Browse, or issue

)display op /

to learn more about the available operations. Perhaps

package-calling the operation or using coercions on the arguments

will allow you to apply the operation.

Cannot find a definition or applicable library operation named /

with argument type(s)

PositiveInteger

IntegerMod 6

Perhaps you should use "@" to indicate the required return type,

or "$" to specify which version of the function you need.

This defines a to be an algebraic number, that is, a root of a polynomial equation.
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a := rootOf(a**5 + a**3 + a**2 + 3,a)

a

Type: Expression Integer

Computations with a are reduced according to the polynomial equation.

(a + 1)**10

−85 a4 − 264 a3 − 378 a2 − 458 a− 287

Type: Expression Integer

Define b to be an algebraic number involving a.

b := rootOf(b**4 + a,b)

b

Type: Expression Integer

Do some arithmetic.

2/(b - 1)

2

b− 1

Type: Expression Integer

To expand and simplify this, call ratDenom to rationalize the denominator.

ratDenom(%) (
a4 − a3 + 2 a2 − a+ 1

)
b3 +

(
a4 − a3 + 2 a2 − a+ 1

)
b2+(

a4 − a3 + 2 a2 − a+ 1
)
b+ a4 − a3 + 2 a2 − a+ 1

Type: Expression Integer

If we do this, we should get b.

2/%+1
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(a4 − a3 + 2 a2 − a+ 1
)
b3 +

(
a4 − a3 + 2 a2 − a+ 1

)
b2+(

a4 − a3 + 2 a2 − a+ 1
)
b+ a4 − a3 + 2 a2 − a+ 3


(a4 − a3 + 2 a2 − a+ 1

)
b3 +

(
a4 − a3 + 2 a2 − a+ 1

)
b2+(

a4 − a3 + 2 a2 − a+ 1
)
b+ a4 − a3 + 2 a2 − a+ 1


Type: Expression Integer

But we need to rationalize the denominator again.

ratDenom(%)

b

Type: Expression Integer

Types Quaternion and Octonion are also available. Multiplication of quaternions is non-
commutative, as expected.

q:=quatern(1,2,3,4)*quatern(5,6,7,8) - quatern(5,6,7,8)*quatern(1,2,3,4)

−8 i+ 16 j − 8 k

Type: Quaternion Integer

1.5 Data Structures

Axiom has a large variety of data structures available. Many data structures are particularly
useful for interactive computation and others are useful for building applications. The data
structures of Axiom are organized into category hierarchies.

A list 4 is the most commonly used data structure in Axiom for holding objects all of the
same type. The name list is short for “linked-list of nodes.” Each node consists of a value
(first) and a link (rest) that points to the next node, or to a distinguished value denoting
the empty list. To get to, say, the third element, Axiom starts at the front of the list, then
traverses across two links to the third node.

Write a list of elements using square brackets with commas separating the elements.

u := [1,-7,11]

4List 9.54 on page 632
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[1,−7, 11]

Type: List Integer

This is the value at the third node. Alternatively, you can say u.3.

first rest rest u

11

Type: PositiveInteger

Many operations are defined on lists, such as: empty?, to test that a list has no elements;
cons(x, l), to create a new list with first element x and rest l; reverse, to create a new list
with elements in reverse order; and sort, to arrange elements in order.

An important point about lists is that they are “mutable”: their constituent elements and
links can be changed “in place.” To do this, use any of the operations whose names end with
the character “!”.

The operation concat!(u, v) replaces the last link of the list u to point to some other list v.
Since u refers to the original list, this change is seen by u.

concat!(u,[9,1,3,-4]); u

[1,−7, 11, 9, 1, 3,−4]

Type: List Integer

A cyclic list is a list with a “cycle”: a link pointing back to an earlier node of the list. To
create a cycle, first get a node somewhere down the list.

lastnode := rest(u,3)

[9, 1, 3,−4]

Type: List Integer

Use setrest! to change the link emanating from that node to point back to an earlier part
of the list.

setrest!(lastnode,rest(u,2)); u [
1,−7, 11, 9

]
Type: List Integer

A stream is a structure that (potentially) has an infinite number of distinct elements. Think
of a stream as an “infinite list” where elements are computed successively. 5

5Stream 9.88 on page 765



22 CHAPTER 1. AN OVERVIEW OF AXIOM

Create an infinite stream of factored integers. Only a certain number of initial elements are
computed and displayed.

[factor(i) for i in 2.. by 2]

[
2, 22, 2 3, 23, 2 5, 22 3, 2 7, 24, 2 32, 22 5, . . .

]
Type: Stream Factored Integer

Axiom represents streams by a collection of already-computed elements together with a
function to compute the next element “on demand.” Asking for the n-th element causes
elements 1 through n to be evaluated.

%.36

23 32

Type: Factored Integer

Streams can also be finite or cyclic. They are implemented by a linked list structure similar
to lists and have many of the same operations. For example, first and rest are used to
access elements and successive nodes of a stream.

A one-dimensional array is another data structure used to hold objects of the same type 6.
Unlike lists, one-dimensional arrays are inflexible—they are implemented using a fixed block
of storage. Their advantage is that they give quick and equal access time to any element.

A simple way to create a one-dimensional array is to apply the operation oneDimension-
alArray to a list of elements.

a := oneDimensionalArray [1, -7, 3, 3/2][
1,−7, 3, 3

2

]
Type: OneDimensionalArray Fraction Integer

One-dimensional arrays are also mutable: you can change their constituent elements “in
place.”

a.3 := 11; a [
1,−7, 11, 3

2

]
6OneDimensionalArray 9.65 on page 674
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Type: OneDimensionalArray Fraction Integer

However, one-dimensional arrays are not flexible structures. You cannot destructively con-
cat! them together.

concat!(a,oneDimensionalArray [1,-2])

There are 5 exposed and 0 unexposed library operations named concat!

having 2 argument(s) but none was determined to be applicable.

Use HyperDoc Browse, or issue

)display op concat!

to learn more about the available operations. Perhaps

package-calling the operation or using coercions on the arguments

will allow you to apply the operation.

Cannot find a definition or applicable library operation named

concat! with argument type(s)

OneDimensionalArray Fraction Integer

OneDimensionalArray Integer

Perhaps you should use "@" to indicate the required return type,

or "$" to specify which version of the function you need.

Examples of datatypes similar to OneDimensionalArray are: Vector (vectors are mathe-
matical structures implemented by one-dimensional arrays), String (arrays of “characters,”
represented by byte vectors), and Bits (represented by “bit vectors”).

A vector of 32 bits, each representing the Boolean value true.

bits(32,true)

"11111111111111111111111111111111"

Type: Bits

A flexible array 7 is a cross between a list and a one-dimensional array. Like a one-dimensional
array, a flexible array occupies a fixed block of storage. Its block of storage, however, has
room to expand. When it gets full, it grows (a new, larger block of storage is allocated);
when it has too much room, it contracts.

Create a flexible array of three elements.

f := flexibleArray [2, 7, -5]

[2, 7,−5]
7FlexibleArray 9.30 on page 514
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Type: FlexibleArray Integer

Insert some elements between the second and third elements.

insert!(flexibleArray [11, -3],f,2)

[2, 11,−3, 7,−5]

Type: FlexibleArray Integer

Flexible arrays are used to implement “heaps.” A heap 8 is an example of a data struc-
ture called a priority queue, where elements are ordered with respect to one another. A
heap is organized so as to optimize insertion and extraction of maximum elements. The
extract! operation returns the maximum element of the heap, after destructively removing
that element and reorganizing the heap so that the next maximum element is ready to be
delivered.

An easy way to create a heap is to apply the operation heap to a list of values.

h := heap [-4,7,11,3,4,-7]

[11, 4, 7,−4, 3,−7]

Type: Heap Integer

This loop extracts elements one-at-a-time from h until the heap is exhausted, returning the
elements as a list in the order they were extracted.

[extract!(h) while not empty?(h)]

[11, 7, 4, 3,−4,−7]

Type: List Integer

A binary tree is a “tree” with at most two branches per node: it is either empty, or else
is a node consisting of a value, and a left and right subtree (again, binary trees). Ex-
amples of binary tree types are BinarySearchTree, PendantTree, TournamentTree, and
BalancedBinaryTree.

A binary search tree is a binary tree such that, for each node, the value of the node is greater
than all values (if any) in the left subtree, and less than or equal all values (if any) in the
right subtree. 9

binarySearchTree [5,3,2,9,4,7,11]

8Heap 9.38 on page 539
9BinarySearchTree 9.7 on page 417
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[[2, 3, 4], 5, [7, 9, 11]]

Type: BinarySearchTree PositiveInteger

A balanced binary tree is useful for doing modular computations. 10 Given a list lm of
moduli, modTree(a, lm) produces a balanced binary tree with the values a mod m at its
leaves.

modTree(8,[2,3,5,7])

[0, 2, 3, 1]

Type: List Integer

A set is a collection of elements where duplication and order is irrelevant. 11 Sets are always
finite and have no corresponding structure like streams for infinite collections.

Create sets using braces “{” and “}” rather than brackets.

fs := set [1/3,4/5,-1/3,4/5] {
−1

3
,
1

3
,
4

5

}
Type: Set Fraction Integer

A multiset is a set that keeps track of the number of duplicate values. 12

For all the primes p between 2 and 1000, find the distribution of p mod 5.

multiset [x rem 5 for x in primes(2,1000)]

{0, 42: 3, 40: 1, 38: 4, 47: 2}

Type: Multiset Integer

A table is conceptually a set of “key–value” pairs and is a generalization of a multiset. For
examples of tables, see
AssociationList, HashTable, KeyedAccessFile,
Library, SparseTable, StringTable, and Table.
The domain Table(Key, Entry) provides a general-purpose type for tables with values of
type Entry indexed by keys of type Key.

Compute the above distribution of primes using tables. First, let t denote an empty table of
keys and values, each of type Integer.

10BalancedBinaryTree 9.4 on page 409
11Set 9.82 on page 748
12Multiset 9.60 on page 664
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t : Table(Integer,Integer) := empty()

table()

Type: Table(Integer,Integer)

We define a function howMany to return the number of values of a given modulus k seen
so far. It calls search(k, t) which returns the number of values stored under the key k in
table t, or "failed" if no such value is yet stored in t under k.

In English, this says “Define howMany(k) as follows. First, let n be the value of search(k, t).
Then, if n has the value ”failed”, return the value 1; otherwise return n+ 1.”

howMany(k) == (n:=search(k,t); n case "failed" => 1; n+1)

Type: Void

Run through the primes to create the table, then print the table. The expression t.m :=

howMany(m) updates the value in table t stored under key m.

for p in primes(2,1000) repeat (m:= p rem 5; t.m:= howMany(m)); t

Compiling function howMany with type Integer -> Integer

table (2 = 47, 4 = 38, 1 = 40, 3 = 42, 0 = 1)

Type: Table(Integer,Integer)

A record is an example of an inhomogeneous collection of objects.13 A record consists of a
set of named selectors that can be used to access its components.

Declare that daniel can only be assigned a record with two prescribed fields.

daniel : Record(age : Integer, salary : Float)

Type: Void

Give daniel a value, using square brackets to enclose the values of the fields.

daniel := [28, 32005.12]

[age = 28, salary = 32005.12]

13See section 2.4 on page 72 for details.
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Type: Record(age: Integer,salary: Float)

Give daniel a raise.

daniel.salary := 35000; daniel

[age = 28, salary = 35000.0]

Type: Record(age: Integer,salary: Float)

A union is a data structure used when objects have multiple types.14

Let dog be either an integer or a string value.

dog: Union(licenseNumber: Integer, name: String)

Type: Void

Give dog a name.

dog := "Whisper"

"Whisper"

Type: Union(name: String,...)

All told, there are over forty different data structures in Axiom. Using the domain construc-
tors described in section 13 on page 911, you can add your own data structure or extend
an existing one. Choosing the right data structure for your application may be the key to
obtaining good performance.

1.6 Expanding to Higher Dimensions

To get higher dimensional aggregates, you can create one-dimensional aggregates with el-
ements that are themselves aggregates, for example, lists of lists, one-dimensional arrays
of lists of multisets, and so on. For applications requiring two-dimensional homogeneous
aggregates, you will likely find two-dimensional arrays and matrices most useful.

The entries in TwoDimensionalArray and Matrix objects are all the same type, except
that those for Matrix must belong to a Ring. You create and access elements in roughly
the same way. Since matrices have an understood algebraic structure, certain algebraic

14See section 2.5 on page 76 for details.
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operations are available for matrices but not for arrays. Because of this, we limit our dis-
cussion here to Matrix, that can be regarded as an extension of TwoDimensionalArray.
See TwoDimensionalArray for more information about arrays. For more information about
Axiom’s linear algebra facilities, see Matrix 9.59 on page 654, Permanent 9.70 on page 692,
SquareMatrix 9.85 on page 756, Vector 9.99 on page 815, TwoDimensionalArray 9.94 on
page 786, section 8.4 on page 309 (computation of eigenvalues and eigenvectors), and sec-
tion 8.5 on page 312 (solution of linear and polynomial equations).

You can create a matrix from a list of lists, where each of the inner lists represents a row of
the matrix.

m := matrix([ [1,2], [3,4] ]) [
1 2
3 4

]
Type: Matrix Integer

The “collections” construct (see section 5.5 on page 146) is useful for creating matrices whose
entries are given by formulas.

matrix([ [1/(i + j - x) for i in 1..4] for j in 1..4])


− 1

x−2 − 1
x−3 − 1

x−4 − 1
x−5

− 1
x−3 − 1

x−4 − 1
x−5 − 1

x−6

− 1
x−4 − 1

x−5 − 1
x−6 − 1

x−7

− 1
x−5 − 1

x−6 − 1
x−7 − 1

x−8


Type: Matrix Fraction Polynomial Integer

Let vm denote the three by three Vandermonde matrix.

vm := matrix [ [1,1,1], [x,y,z], [x*x,y*y,z*z] ] 1 1 1
x y z
x2 y2 z2


Type: Matrix Polynomial Integer

Use this syntax to extract an entry in the matrix.

vm(3,3)

z2
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Type: Polynomial Integer

You can also pull out a row or a column.

column(vm,2)

[
1, y, y2

]
Type: Vector Polynomial Integer

You can do arithmetic.

vm * vm  x2 + x+ 1 y2 + y + 1 z2 + z + 1
x2 z + x y + x y2 z + y2 + x z3 + y z + x

x2 z2 + x y2 + x2 y2 z2 + y3 + x2 z4 + y2 z + x2


Type: Matrix Polynomial Integer

You can perform operations such as transpose, trace, and determinant.

factor determinant vm

(y − x) (z − y) (z − x)

Type: Factored Polynomial Integer

1.7 Writing Your Own Functions

Axiom provides you with a very large library of predefined operations and objects to compute
with. You can use the Axiom library of constructors to create new objects dynamically of
quite arbitrary complexity. For example, you can make lists of matrices of fractions of
polynomials with complex floating point numbers as coefficients. Moreover, the library
provides a wealth of operations that allow you to create and manipulate these objects.

For many applications, you need to interact with the interpreter and write some Axiom
programs to tackle your application. Axiom allows you to write functions interactively,
thereby effectively extending the system library. Here we give a few simple examples, leaving
the details to section 6 on page 153.

We begin by looking at several ways that you can define the “factorial” function in Axiom.
The first way is to give a piece-wise definition of the function. This method is best for a
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general recurrence relation since the pieces are gathered together and compiled into an effi-
cient iterative function. Furthermore, enough previously computed values are automatically
saved so that a subsequent call to the function can pick up from where it left off.

Define the value of fact at 0.

fact(0) == 1

Type: Void

Define the value of fact(n) for general n.

fact(n) == n*fact(n-1)

Type: Void

Ask for the value at 50. The resulting function created by Axiom computes the value by
iteration.

fact(50)

Compiling function fact with type Integer -> Integer

Compiling function fact as a recurrence relation.

30414093201713378043612608166064768844377641568960512000000000000

Type: PositiveInteger

A second definition uses an if-then-else and recursion.

fac(n) == if n < 3 then n else n * fac(n - 1)

Type: Void

This function is less efficient than the previous version since each iteration involves a recursive
function call.

fac(50)

30414093201713378043612608166064768844377641568960512000000000000

Type: PositiveInteger
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A third version directly uses iteration.

fa(n) == (a := 1; for i in 2..n repeat a := a*i; a)

Type: Void

This is the least space-consumptive version.

fa(50)

Compiling function fac with type Integer -> Integer

30414093201713378043612608166064768844377641568960512000000000000

Type: PositiveInteger

A final version appears to construct a large list and then reduces over it with multiplication.

f(n) == reduce(*,[i for i in 2..n])

Type: Void

In fact, the resulting computation is optimized into an efficient iteration loop equivalent to
that of the third version.

f(50)

Compiling function f with type

PositiveInteger -> PositiveInteger

30414093201713378043612608166064768844377641568960512000000000000

Type: PositiveInteger

The library version uses an algorithm that is different from the four above because it highly
optimizes the recurrence relation definition of factorial.

factorial(50)

30414093201713378043612608166064768844377641568960512000000000000
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Type: PositiveInteger

You are not limited to one-line functions in Axiom. If you place your function definitions
in .input files (see section 4.1 on page 109), you can have multi-line functions that use
indentation for grouping.

Given n elements, diagonalMatrix creates an n by n matrix with those elements down the
diagonal. This function uses a permutation matrix that interchanges the ith and jth rows
of a matrix by which it is right-multiplied.

This function definition shows a style of definition that can be used in .input files. Indenta-
tion is used to create blocks: sequences of expressions that are evaluated in sequence except
as modified by control statements such as if-then-else and return.

permMat(n, i, j) ==

m := diagonalMatrix

[(if i = k or j = k then 0 else 1)

for k in 1..n]

m(i,j) := 1

m(j,i) := 1

m

This creates a four by four matrix that interchanges the second and third rows.

p := permMat(4,2,3)

Compiling function permMat with type (PositiveInteger,

PositiveInteger,PositiveInteger) -> Matrix Integer
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Type: Matrix Integer

Create an example matrix to permute.

m := matrix [ [4*i + j for j in 1..4] for i in 0..3]


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16


Type: Matrix Integer
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Interchange the second and third rows of m.

permMat(4,2,3) * m


1 2 3 4
9 10 11 12
5 6 7 8
13 14 15 16


Type: Matrix Integer

A function can also be passed as an argument to another function, which then applies the
function or passes it off to some other function that does. You often have to declare the type
of a function that has functional arguments.

This declares t to be a two-argument function that returns a Float. The first argument is
a function that takes one Float argument and returns a Float.

t : (Float -> Float, Float) -> Float

Type: Void

This is the definition of t.

t(fun, x) == fun(x)**2 + sin(x)**2

Type: Void

We have not defined a cos in the workspace. The one from the Axiom library will do.

t(cos, 5.2058)

1.0

Type: Float

Here we define our own (user-defined) function.

cosinv(y) == cos(1/y)

Type: Void
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Pass this function as an argument to t.

t(cosinv, 5.2058)

1.7392237241 8005164925 4147684772 932520785

Type: Float

Axiom also has pattern matching capabilities for simplification of expressions and for defining
new functions by rules. For example, suppose that you want to apply regularly a transfor-
mation that groups together products of radicals:

√
a
√
b 7→
√
ab, (∀a)(∀b)

Note that such a transformation is not generally correct. Axiom never uses it automatically.

Give this rule the name groupSqrt.

groupSqrt := rule(sqrt(a) * sqrt(b) == sqrt(a*b))

%C
√
a
√
b== %C

√
a b

Type: RewriteRule(Integer,Integer,Expression Integer)

Here is a test expression.

a := (sqrt(x) + sqrt(y) + sqrt(z))**4

(
(4 z + 4 y + 12 x)

√
y + (4 z + 12 y + 4 x)

√
x
) √

z+

(12 z + 4 y + 4 x)
√
x
√
y + z2 + (6 y + 6 x) z + y2 + 6 x y + x2

Type: Expression Integer

The rule groupSqrt successfully simplifies the expression.

groupSqrt a

(4 z + 4 y + 12 x)
√
y z + (4 z + 12 y + 4 x)

√
x z+

(12 z + 4 y + 4 x)
√
x y + z2 + (6 y + 6 x) z + y2 + 6 x y + x2

Type: Expression Integer
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1.8 Polynomials

Polynomials are the commonly used algebraic types in symbolic computation. Interactive
users of Axiom generally only see one type of polynomial: Polynomial(R). This type repre-
sents polynomials in any number of unspecified variables over a particular coefficient domain
R. This type represents its coefficients sparsely: only terms with non-zero coefficients are
represented.

In building applications, many other kinds of polynomial representations are useful. Polyno-
mials may have one variable or multiple variables, the variables can be named or unnamed,
the coefficients can be stored sparsely or densely. So-called “distributed multivariate poly-
nomials” store polynomials as coefficients paired with vectors of exponents. This type is
particularly efficient for use in algorithms for solving systems of non-linear polynomial equa-
tions.

The polynomial constructor most familiar to the interactive user is Polynomial.

(x**2 - x*y**3 +3*y)**2

x2 y6 − 6 x y4 − 2 x3 y3 + 9 y2 + 6 x2 y + x4

Type: Polynomial Integer

If you wish to restrict the variables used, UnivariatePolynomial provides polynomials in
one variable.

p: UP(x,INT) := (3*x-1)**2 * (2*x + 8)

18 x3 + 60 x2 − 46 x+ 8

Type: UnivariatePolynomial(x,Integer)

The constructor MultivariatePolynomial provides polynomials in one or more specified
variables.

m: MPOLY([x,y],INT) := (x**2-x*y**3+3*y)**2

x4 − 2 y3 x3 +
(
y6 + 6 y

)
x2 − 6 y4 x+ 9 y2

Type: MultivariatePolynomial([x,y],Integer)

You can change the way the polynomial appears by modifying the variable ordering in the
explicit list.

m :: MPOLY([y,x],INT)



36 CHAPTER 1. AN OVERVIEW OF AXIOM

x2 y6 − 6 x y4 − 2 x3 y3 + 9 y2 + 6 x2 y + x4

Type: MultivariatePolynomial([y,x],Integer)

The constructor DistributedMultivariatePolynomial provides
polynomials in one or more specified variables with the monomials ordered lexicographically.

m :: DMP([y,x],INT)

y6 x2 − 6 y4 x− 2 y3 x3 + 9 y2 + 6 y x2 + x4

Type: DistributedMultivariatePolynomial([y,x],Integer)

The constructor HomogeneousDistributedMultivariatePolynomial is similar except that
the monomials are ordered by total order refined by reverse lexicographic order.

m :: HDMP([y,x],INT)

y6 x2 − 2 y3 x3 − 6 y4 x+ x4 + 6 y x2 + 9 y2

Type: HomogeneousDistributedMultivariatePolynomial([y,x],Integer)

More generally, the domain constructor GeneralDistributedMultivariatePolynomial al-
lows the user to provide an arbitrary predicate to define his own term ordering. These last
three constructors are typically used in Gröbner basis applications and when a flat (that is,
non-recursive) display is wanted and the term ordering is critical for controlling the compu-
tation.

1.9 Limits

Axiom’s limit function is usually used to evaluate limits of quotients where the numerator
and denominator both tend to zero or both tend to infinity. To find the limit of an expression
f as a real variable x tends to a limit value a, enter limit(f, x=a). Use complexLimit if
the variable is complex. Additional information and examples of limits are in section 8.6 on
page 319.

You can take limits of functions with parameters.

g := csc(a*x) / csch(b*x)

csc (a x)

csch (b x)

Type: Expression Integer
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As you can see, the limit is expressed in terms of the parameters.

limit(g,x=0)

b

a

Type: Union(OrderedCompletion Expression Integer,...)

A variable may also approach plus or minus infinity:

h := (1 + k/x)**x

x+ k

x

x

Type: Expression Integer

Use %plusInfinity and %minusInfinity to denote ∞ and −∞.

limit(h,x=%plusInfinity)

ek

Type: Union(OrderedCompletion Expression Integer,...)

A function can be defined on both sides of a particular value, but may tend to different limits
as its variable approaches that value from the left and from the right.

limit(sqrt(y**2)/y,y = 0)

[leftHandLimit = −1, rightHandLimit = 1]

Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression

Integer,"failed"),rightHandLimit: Union(OrderedCompletion Expression

Integer,"failed")),...)

As x approaches 0 along the real axis, exp(-1/x**2) tends to 0.

limit(exp(-1/x**2),x = 0)

0

Type: Union(OrderedCompletion Expression Integer,...)
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However, if x is allowed to approach 0 along any path in the complex plane, the limiting
value of exp(-1/x**2) depends on the path taken because the function has an essential
singularity at x = 0. This is reflected in the error message returned by the function.

complexLimit(exp(-1/x**2),x = 0)

"failed"

Type: Union("failed",...)

1.10 Series

Axiom also provides power series. By default, Axiom tries to compute and display the
first ten elements of a series. Use )set streams calculate to change the default value to
something else. For the purposes of this document, we have used this system command to
display fewer than ten terms. For more information about working with series, see section 8.9
on page 328.

You can convert a functional expression to a power series by using the operation series. In
this example, sin(a*x) is expanded in powers of (x− 0), that is, in powers of x.

series(sin(a*x),x = 0)

a x− a3

6
x3 +

a5

120
x5 − a7

5040
x7 +

a9

362880
x9 − a11

39916800
x11 +O

(
x12
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

This expression expands sin(a*x) in powers of (x - %pi/4).

series(sin(a*x),x = %pi/4)

sin
(a π

4

)
+ a cos

(a π
4

) (
x− π

4

)
−

a2 sin
(
a π
4

)
2

(
x− π

4

)2
−
a3 cos

(
a π
4

)
6

(
x− π

4

)3
+

a4 sin
(
a π
4

)
24

(
x− π

4

)4
+
a5 cos

(
a π
4

)
120

(
x− π

4

)5
−

a6 sin
(
a π
4

)
720

(
x− π

4

)6
−
a7 cos

(
a π
4

)
5040

(
x− π

4

)7
+

a8 sin
(
a π
4

)
40320

(
x− π

4

)8
+
a9 cos

(
a π
4

)
362880

(
x− π

4

)9
−

a10 sin
(
a π
4

)
3628800

(
x− π

4

)10
+O

((
x− π

4

)11)
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Type: UnivariatePuiseuxSeries(Expression Integer,x,pi/4)

Axiom provides Puiseux series: series with rational number exponents. The first argument
to series is an in-place function that computes the n-th coefficient. (Recall that the “+->”
is an infix operator meaning “maps to.”)

series(n +-> (-1)**((3*n - 4)/6)/factorial(n - 1/3),x=0,4/3..,2)

x
4
3 − 1

6
x

10
3 +O

(
x5
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Once you have created a power series, you can perform arithmetic operations on that series.
We compute the Taylor expansion of 1/(1− x).

f := series(1/(1-x),x = 0)

1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +O
(
x11
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Compute the square of the series.

f ** 2

1 + 2 x+ 3 x2 + 4 x3 + 5 x4 + 6 x5 + 7 x6 + 8 x7 + 9 x8 + 10 x9 + 11 x10 +O
(
x11
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

The usual elementary functions (log, exp, trigonometric functions, and so on) are defined
for power series.

f := series(1/(1-x),x = 0)

1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +O
(
x11
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

g := log(f)

x+ 1
2 x

2 + 1
3 x

3 + 1
4 x

4 + 1
5 x

5 + 1
6 x

6 + 1
7 x

7+

1

8
x8 +

1

9
x9 +

1

10
x10 +

1

11
x11 +O

(
x12
)
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Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

exp(g)

1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +O
(
x11
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Here is a way to obtain numerical approximations of e from the Taylor series expansion of
exp(x). First create the desired Taylor expansion.

f := taylor(exp(x))

1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5 +

1

720
x6 +

1

5040
x7 +

1

40320
x8 +

1

362880
x9 +

1

3628800
x10 +O

(
x11
)

Type: UnivariateTaylorSeries(Expression Integer,x,0)

Evaluate the series at the value 1.0. As you see, you get a sequence of partial sums.

eval(f,1.0)

[1.0, 2.0, 2.5, 2.6666666666666666667,

2.7083333333333333333, 2.7166666666666666667,

2.7180555555555555556, 2.718253968253968254,

2.7182787698412698413, 2.7182815255731922399, . . . ]

Type: Stream Expression Float

1.11 Derivatives

Use the Axiom function D to differentiate an expression.

To find the derivative of an expression f with respect to a variable x, enter D(f, x).

f := exp exp x

ee
x
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Type: Expression Integer

D(f, x)

ex ee
x

Type: Expression Integer

An optional third argument n in D asks Axiom for the n-th derivative of f . This finds the
fourth derivative of f with respect to x.

D(f, x, 4)

(
ex4 + 6 ex3 + 7 ex2 + ex

)
ee

x

Type: Expression Integer

You can also compute partial derivatives by specifying the order of differentiation.

g := sin(x**2 + y)

sin
(
y + x2

)
Type: Expression Integer

D(g, y)

cos
(
y + x2

)
Type: Expression Integer

D(g, [y, y, x, x])

4 x2 sin
(
y + x2

)
− 2 cos

(
y + x2

)
Type: Expression Integer

Axiom can manipulate the derivatives (partial and iterated) of expressions involving formal
operators. All the dependencies must be explicit.

This returns 0 since F (so far) does not explicitly depend on x.
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D(F,x)

0

Type: Polynomial Integer

Suppose that we have F a function of x, y, and z, where x and y are themselves functions
of z.

Start by declaring that F , x, and y are operators.

F := operator ’F; x := operator ’x; y := operator ’y

y

Type: BasicOperator

You can use F, x, and y in expressions.

a := F(x z, y z, z**2) + x y(z+1)

x (y (z + 1)) + F
(
x (z), y (z), z2

)
Type: Expression Integer

Differentiate formally with respect to z. The formal derivatives appearing in dadz are not
just formal symbols, but do represent the derivatives of x, y, and F.

dadz := D(a, z)

2 z F,3

(
x (z), y (z), z2

)
+ y, (z) F,2

(
x (z), y (z), z2

)
+

x, (z) F,1

(
x (z), y (z), z2

)
+ x, (y (z + 1)) y, (z + 1)

Type: Expression Integer

You can evaluate the above for particular functional values of F, x, and y. If x(z) is exp(z)
and y(z) is log(z+1), then evaluates dadz.

eval(eval(dadz, ’x, z +-> exp z), ’y, z +-> log(z+1))
(
2 z2 + 2 z

)
F,3

(
ez, log (z + 1), z2

)
+

F,2

(
ez, log (z + 1), z2

)
+

(z + 1) ez F,1

(
ez, log (z + 1), z2

)
+ z + 1


z + 1
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Type: Expression Integer

You obtain the same result by first evaluating a and then differentiating.

eval(eval(a, ’x, z +-> exp z), ’y, z +-> log(z+1))

F
(
ez, log (z + 1), z2

)
+ z + 2

Type: Expression Integer

D(%, z)


(
2 z2 + 2 z

)
F,3

(
ez, log (z + 1), z2

)
+

F,2

(
ez, log (z + 1), z2

)
+

(z + 1) ez F,1

(
ez, log (z + 1), z2

)
+ z + 1


z + 1

Type: Expression Integer

1.12 Integration

Axiom has extensive library facilities for integration.

The first example is the integration of a fraction with denominator that factors into a
quadratic and a quartic irreducible polynomial. The usual partial fraction approach used by
most other computer algebra systems either fails or introduces expensive unneeded algebraic
numbers.

We use a factorization-free algorithm.

integrate((x**2+2*x+1)/((x+1)**6+1),x)

arctan
(
x3 + 3 x2 + 3 x+ 1

)
3

Type: Union(Expression Integer,...)

When real parameters are present, the form of the integral can depend on the signs of some
expressions.

Rather than query the user or make sign assumptions, Axiom returns all possible answers.
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integrate(1/(x**2 + a),x)

 log
(
(x2−a)

√
−a+2 a x

x2+a

)
2
√
−a

,
arctan

(
x

√
a

a

)
√
a


Type: Union(List Expression Integer,...)

The integrate operation generally assumes that all parameters are real. The only exception
is when the integrand has complex valued quantities.

If the parameter is complex instead of real, then the notion of sign is undefined and there is
a unique answer. You can request this answer by “prepending” the word “complex” to the
command name:

complexIntegrate(1/(x**2 + a),x)

log
(

x
√
−a+a√
−a

)
− log

(
x

√
−a−a√
−a

)
2
√
−a

Type: Expression Integer

The following two examples illustrate the limitations of table-based approaches. The two
integrands are very similar, but the answer to one of them requires the addition of two new
algebraic numbers.

This one is the easy one. The next one looks very similar but the answer is much more
complicated.

integrate(x**3 / (a+b*x)**(1/3),x)

(
120 b3 x3 − 135 a b2 x2 + 162 a2 b x− 243 a3

)
3
√
b x+ a

2

440 b4

Type: Union(Expression Integer,...)

Only an algorithmic approach is guaranteed to find what new constants must be added in
order to find a solution.

integrate(1 / (x**3 * (a+b*x)**(1/3)),x)



1.12. INTEGRATION 45



−2 b2 x2
√
3 log

(
3
√
a 3
√
b x+ a

2
+ 3
√
a
2 3
√
b x+ a+ a

)
+

4 b2 x2
√
3 log

(
3
√
a
2 3
√
b x+ a− a

)
+

12 b2 x2 arctan

(
2
√
3 3
√
a
2 3
√
b x+ a+ a

√
3

3 a

)
+

(12 b x− 9 a)
√
3 3
√
a

3
√
b x+ a

2


18 a2 x2

√
3 3
√
a

Type: Union(Expression Integer,...)

Some computer algebra systems use heuristics or table-driven approaches to integration.
When these systems cannot determine the answer to an integration problem, they reply
“I don’t know.” Axiom uses an algorithm which is a decision procedure for integration.
If Axiom returns the original integral that conclusively proves that an integral cannot be
expressed in terms of elementary functions.

When Axiom returns an integral sign, it has proved that no answer exists as an elementary
function.

integrate(log(1 + sqrt(a*x + b)) / x,x)

∫ x log
(√

b+%Q a+ 1
)

%Q
d%Q

Type: Union(Expression Integer,...)

Axiom can handle complicated mixed functions much beyond what you can find in tables.

Whenever possible, Axiom tries to express the answer using the functions present in the
integrand.

integrate((sinh(1+sqrt(x+b))+2*sqrt(x+b)) / (sqrt(x+b) * (x + cosh(1+sqrt(x

+ b)))), x)

2 log

(
−2 cosh

(√
x+ b+ 1

)
− 2 x

sinh
(√
x+ b+ 1

)
− cosh

(√
x+ b+ 1

))− 2
√
x+ b

Type: Union(Expression Integer,...)

A strong structure-checking algorithm in Axiom finds hidden algebraic relationships between
functions.
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integrate(tan(atan(x)/3),x)
8 log

(
3 tan

(
arctan(x)

3

)2
− 1

)
− 3 tan

(
arctan(x)

3

)2
+

18 x tan

(
arctan (x)

3

)


18

Type: Union(Expression Integer,...)

The discovery of this algebraic relationship is necessary for correct integration of this func-
tion. Here are the details:

1. If x = tan t and g = tan(t/3) then the following algebraic relation is true:

g3 − 3xg2 − 3g + x = 0

2. Integrate g using this algebraic relation; this produces:

(24g2 − 8) log(3g2 − 1) + (81x2 + 24)g2 + 72xg − 27x2 − 16

54g2 − 18

3. Rationalize the denominator, producing:

8 log(3g2 − 1)− 3g2 + 18xg + 16

18

Replace g by the initial definition g = tan(arctan(x)/3) to produce the final result.

This is an example of a mixed function where the algebraic layer is over the transcendental
one.

integrate((x + 1) / (x*(x + log x) ** (3/2)), x)

−
2
√

log (x) + x

log (x) + x

Type: Union(Expression Integer,...)

While incomplete for non-elementary functions, Axiom can handle some of them.

integrate(exp(-x**2) * erf(x) / (erf(x)**3 - erf(x)**2 - erf(x) + 1),x)

(erf (x)− 1)
√
π log

(
erf(x)−1
erf(x)+1

)
− 2
√
π

8 erf (x)− 8

Type: Union(Expression Integer,...)

More examples of Axiom’s integration capabilities are discussed in section 8.8 on page 324.
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1.13 Differential Equations

The general approach used in integration also carries over to the solution of linear differential
equations.

Let’s solve some differential equations. Let y be the unknown function in terms of x.

y := operator ’y

y

Type: BasicOperator

Here we solve a third order equation with polynomial coefficients.

deq := x**3 * D(y x, x, 3) + x**2 * D(y x, x, 2) - 2 * x * D(y x, x) + 2 * y

x = 2 * x**4

x3 y,,, (x) + x2 y,, (x)− 2 x y, (x) + 2 y (x) = 2 x4

Type: Equation Expression Integer

solve(deq, y, x)

[
particular = x5−10 x3+20 x2+4

15 x ,

basis =

[
2 x3 − 3 x2 + 1

x
,
x3 − 1

x
,
x3 − 3 x2 − 1

x

]]
Type: Union(Record(particular: Expression Integer,basis: List Expression

Integer),...)

Here we find all the algebraic function solutions of the equation.

deq := (x**2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) + y x = 0

(
x2 + 1

)
y,, (x) + 3 x y, (x) + y (x) = 0

Type: Equation Expression Integer

solve(deq, y, x)



48 CHAPTER 1. AN OVERVIEW OF AXIOM[
particular = 0, basis =

[
1√

x2 + 1
,
log
(√
x2 + 1− x

)
√
x2 + 1

]]

Type: Union(Record(particular: Expression Integer,basis: List Expression

Integer),...)

Coefficients of differential equations can come from arbitrary constant fields. For example,
coefficients can contain algebraic numbers.

This example has solutions whose logarithmic derivative is an algebraic function of degree
two.

eq := 2*x**3 * D(y x,x,2) + 3*x**2 * D(y x,x) - 2 * y x

2 x3 y,, (x) + 3 x2 y, (x)− 2 y (x)

Type: Expression Integer

solve(eq,y,x).basis [
e

(
− 2√

x

)
, e

2√
x

]
Type: List Expression Integer

Here’s another differential equation to solve.

deq := D(y x, x) = y(x) / (x + y(x) * log y x)

y, (x) =
y (x)

y (x) log (y (x)) + x

Type: Equation Expression Integer

solve(deq, y, x)

y (x) log (y (x))
2 − 2 x

2 y (x)

Type: Union(Expression Integer,...)

Rather than attempting to get a closed form solution of a differential equation, you instead
might want to find an approximate solution in the form of a series.

Let’s solve a system of nonlinear first order equations and get a solution in power series. Tell
Axiom that x is also an operator.
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x := operator ’x

x

Type: BasicOperator

Here are the two equations forming our system.

eq1 := D(x(t), t) = 1 + x(t)**2

x, (t) = x (t)
2
+ 1

Type: Equation Expression Integer

eq2 := D(y(t), t) = x(t) * y(t)

y, (t) = x (t) y (t)

Type: Equation Expression Integer

We can solve the system around t = 0 with the initial conditions x(0) = 0 and y(0) = 1.
Notice that since we give the unknowns in the order [x, y], the answer is a list of two series
in the order [series for x(t), series for y(t)].

seriesSolve([eq2, eq1], [x, y], t = 0, [y(0) = 1, x(0) = 0])

[
t+

1

3
t3 +

2

15
t5 +

17

315
t7 +

62

2835
t9 +O

(
t11
)
,

1 +
1

2
t2 +

5

24
t4 +

61

720
t6 +

277

8064
t8 +

50521

3628800
t10 +O

(
t11
)]

Type: List UnivariateTaylorSeries(Expression Integer,t,0)

1.14 Solution of Equations

Axiom also has state-of-the-art algorithms for the solution of systems of polynomial equa-
tions. When the number of equations and unknowns is the same, and you have no symbolic
coefficients, you can use solve for real roots and complexSolve for complex roots. In each
case, you tell Axiom how accurate you want your result to be. All operations in the solve
family return answers in the form of a list of solution sets, where each solution set is a list
of equations.

A system of two equations involving a symbolic parameter t.
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S(t) == [x**2-2*y**2 - t,x*y-y-5*x + 5]

Type: Void

Find the real roots of S(19) with rational arithmetic, correct to within 1/1020.

solve(S(19),1/10**20)[[
y = 5, x = −2451682632253093442511

295147905179352825856

]
,[

y = 5, x =
2451682632253093442511

295147905179352825856

]]
Type: List List Equation Polynomial Fraction Integer

Find the complex roots of S(19) with floating point coefficients to 20 digits accuracy in the
mantissa.

complexSolve(S(19),10.e-20)

[[y = 5.0, x = 8.3066238629180748526],

[y = 5.0, x = −8.3066238629180748526],
[y = −3.0 i, x = 1.0], [y = 3.0 i, x = 1.0]]

Type: List List Equation Polynomial Complex Float

If a system of equations has symbolic coefficients and you want a solution in radicals, try
radicalSolve.

radicalSolve(S(a),[x,y])[[
x = −

√
a+ 50, y = 5

]
,
[
x =
√
a+ 50, y = 5

]
,[

x = 1, y =

√
−a+ 1

2

]
,

[
x = 1, y = −

√
−a+ 1

2

]]
Type: List List Equation Expression Integer

For systems of equations with symbolic coefficients, you can apply solve, listing the variables
that you want Axiom to solve for. For polynomial equations, a solution cannot usually
be expressed solely in terms of the other variables. Instead, the solution is presented as
a “triangular” system of equations, where each polynomial has coefficients involving only
the succeeding variables. This is analogous to converting a linear system of equations to
“triangular form”.

A system of three equations in five variables.
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eqns := [x**2 - y + z,x**2*z + x**4 - b*y, y**2 *z - a - b*x][
z − y + x2, x2 z − b y + x4, y2 z − b x− a

]
Type: List Polynomial Integer

Solve the system for unknowns [x, y, z], reducing the solution to triangular form.

solve(eqns,[x,y,z])[[
x = −a

b
, y = 0, z = −a

2

b2

]
,[

x =
z3 + 2 b z2 + b2 z − a

b
, y = z + b,

z6 + 4 b z5 + 6 b2 z4 +
(
4 b3 − 2 a

)
z3 +

(
b4 − 4 a b

)
z2 − 2 a b2 z − b3 + a2 = 0

]


Type: List List Equation Fraction Polynomial Integer

1.15 System Commands

We conclude our tour of Axiom with a brief discussion of system commands. System com-
mands are special statements that start with a closing parenthesis ()). They are used to
control or display your Axiom environment, start the HyperDoc system, issue operating sys-
tem commands and leave Axiom. For example, )system is used to issue commands to the
operating system from Axiom. Here is a brief description of some of these commands. For
more information on specific commands, see Appendix A on page 971.

Perhaps the most important user command is the )clear all command that initializes your
environment. Every section and subsection in this document has an invisible )clear all

that is read prior to the examples given in the section. )clear all gives you a fresh, empty
environment with no user variables defined and the step number reset to 1. The )clear

command can also be used to selectively clear values and properties of system variables.

Another useful system command is )read. A preferred way to develop an application in
Axiom is to put your interactive commands into a file, say my.input file. To get Axiom to
read this file, you use the system command )read my.input. If you need to make changes
to your approach or definitions, go into your favorite editor, change my.input, then )read

my.input again.

Other system commands include: )history, to display previous input and/or output lines;
)display, to display properties and values of workspace variables; and )what.

Issue )what to get a list of Axiom objects that contain a given substring in their name.

)what operations integrate
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Operations whose names satisfy the above pattern(s):

HermiteIntegrate algintegrate complexIntegrate

expintegrate extendedIntegrate fintegrate

infieldIntegrate integrate internalIntegrate

internalIntegrate0 lazyGintegrate lazyIntegrate

lfintegrate limitedIntegrate monomialIntegrate

nagPolygonIntegrate palgintegrate pmComplexintegrate

pmintegrate primintegrate tanintegrate

To get more information about an operation such as

limitedIntegrate , issue the command )display op limitedIntegrate

Undo

A useful system command is )undo. Sometimes while computing interactively with Axiom,
you make a mistake and enter an incorrect definition or assignment. Or perhaps you need to
try one of several alternative approaches, one after another, to find the best way to approach
an application. For this, you will find the undo facility of Axiom helpful.

System command )undo n means “undo back to step n”; it restores the values of user
variables to those that existed immediately after input expression n was evaluated. Similarly,
)undo -n undoes changes caused by the last n input expressions. Once you have done an
)undo, you can continue on from there, or make a change and redo all your input expressions
from the point of the )undo forward. The )undo is completely general: it changes the
environment like any user expression. Thus you can )undo any previous undo.

Here is a sample dialogue between user and Axiom.

“Let me define two mutually dependent functions f and g piece-wise.”

f(0) == 1; g(0) == 1

Type: Void

“Here is the general term for f .”

f(n) == e/2*f(n-1) - x*g(n-1)

Type: Void

“And here is the general term for g.”

g(n) == -x*f(n-1) + d/3*g(n-1)
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Type: Void

“What is the value of f(3)?”

f(3)

−x3 +
(
e+

1

3
d

)
x2 +

(
−1

4
e2 − 1

6
d e− 1

9
d2
)
x+

1

8
e3

Type: Polynomial Fraction Integer

“Hmm, I think I want to define f differently. Undo to the environment right after I defined
f .”

)undo 2

“Here is how I think I want f to be defined instead.”

f(n) == d/3*f(n-1) - x*g(n-1)

1 old definition(s) deleted for function or rule f

Type: Void

Redo the computation from expression 3 forward.

)undo )redo

g(n) == -x*f(n-1) + d/3*g(n-1)

Type: Void

f(3)

Compiling function g with type Integer -> Polynomial Fraction

Integer

Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined

Compiling function g with type Integer -> Polynomial Fraction

Integer

Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined
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+++ |*1;g;1;G82322| redefined

Compiling function f with type Integer -> Polynomial Fraction

Integer

Compiling function f as a recurrence relation.

+++ |*1;f;1;G82322;AUX| redefined

+++ |*1;f;1;G82322| redefined

−x3 + d x2 − 1

3
d2 x+

1

27
d3

Type: Polynomial Fraction Integer

“I want my old definition of f after all. Undo the undo and restore the environment to that
immediately after (4).”

)undo 4

“Check that the value of f(3) is restored.”

f(3)

Compiling function g with type Integer -> Polynomial Fraction

Integer

Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined

Compiling function g with type Integer -> Polynomial Fraction

Integer

Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined

Compiling function f with type Integer -> Polynomial Fraction

Integer

Compiling function f as a recurrence relation.

+++ |*1;f;1;G82322;AUX| redefined

+++ |*1;f;1;G82322| redefined

−x3 +
(
e+

1

3
d

)
x2 +

(
−1

4
e2 − 1

6
d e− 1

9
d2
)
x+

1

8
e3
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Type: Polynomial Fraction Integer

After you have gone off on several tangents, then backtracked to previous points in your
conversation using )undo, you might want to save all the “correct” input commands you
issued, disregarding those undone. The system command )history )write mynew.input

writes a clean straight-line program onto the file mynew.input on your disk.

1.16 Graphics

Axiom has a two- and three-dimensional drawing and rendering package that allows you to
draw, shade, color, rotate, translate, map, clip, scale and combine graphic output of Axiom
computations. The graphics interface is capable of plotting functions of one or more variables
and plotting parametric surfaces. Once the graphics figure appears in a window, move your
mouse to the window and click. A control panel appears immediately and allows you to
interactively transform the object.

This is an example of Axiom’s two-dimensional plotting. From the 2D Control Panel you
can rescale the plot, turn axes and units on and off and save the image, among other things.
This PostScript image was produced by clicking on the PS 2D Control Panel button.

draw(cos(5*t/8), t=0..16*%pi, coordinates==polar)

Figure 1.1: J0(
√
x2 + y2) for −20 ≤ x, y ≤ 20

This is an example of Axiom’s three-dimensional plotting. It is a monochrome graph of
the complex arctangent function. The image displayed was rotated and had the “shade”
and “outline” display options set from the 3D Control Panel. The PostScript output was
produced by clicking on the save 3D Control Panel button and then clicking on the PS



56 CHAPTER 1. AN OVERVIEW OF AXIOM

button. See section 8.1 on page 289 for more details and examples of Axiom’s numeric and
graphics capabilities.

draw((x,y) +-> real atan complex(x,y), -%pi..%pi, -%pi..%pi, colorFunction

== (x,y) +-> argument atan complex(x,y))

Figure 1.2: atan

An exhibit of Axiom images is given later. For a description of the commands and programs
that produced these figures, see section F on page 1189. PostScript output is available so
that Axiom images can be printed.15 See section 7 on page 217 for more examples and
details about using Axiom’s graphics facilities.

This concludes your tour of Axiom. To disembark, issue the system command )quit to leave
Axiom and return to the operating system.

15PostScript is a trademark of Adobe Systems Incorporated, registered in the United States.



Chapter 2

Using Types and Modes

Only recently have I begun to realize that the problem is not merely one of
technical mastery or the competent application of the rules . . . but that there is
actually something else which is guiding these rules. It actually involves a differ-
ent level of mastery. It’s quite a different process to do it right; and every single
act that you do can be done in that sense well or badly. But even assuming that
you have got the technical part clear, the creation of this quality is a much more
complicated process of the most utterly absorbing and fascinating dimensions. It
is in fact a major creative or artistic act – every single little thing you do – . . .

– Christopher Alexander

(from Patterns of Software by Richard Gabriel)

In this chapter we look at the key notion of type and its generalization mode. We show
that every Axiom object has a type that determines what you can do with the object. In
particular, we explain how to use types to call specific functions from particular parts of the
library and how types and modes can be used to create new objects from old. We also look
at Record and Union types and the special type Any. Finally, we give you an idea of how
Axiom manipulates types and modes internally to resolve ambiguities.

2.1 The Basic Idea

The Axiom world deals with many kinds of objects. There are mathematical objects such
as numbers and polynomials, data structure objects such as lists and arrays, and graphics
objects such as points and graphic images. Functions are objects too.

Axiom organizes objects using the notion of domain of computation, or simply domain.
Each domain denotes a class of objects. The class of objects it denotes is usually given by
the name of the domain: Integer for the integers, Float for floating-point numbers, and
so on. The convention is that the first letter of a domain name is capitalized. Similarly,

57
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the domain Polynomial(Integer) denotes “polynomials with integer coefficients.” Also,
Matrix(Float) denotes “matrices with floating-point entries.”

Every basic Axiom object belongs to a unique domain. The integer 3 belongs to the domain
Integer and the polynomial x + 3 belongs to the domain Polynomial(Integer). The
domain of an object is also called its type. Thus we speak of “the type Integer” and “the
type Polynomial(Integer).”

After an Axiom computation, the type is displayed toward the right-hand side of the page
(or screen).

-3

−3

Type: Integer

Here we create a rational number but it looks like the last result. The type however tells you
it is different. You cannot identify the type of an object by how Axiom displays the object.

-3/1

−3

Type: Fraction Integer

When a computation produces a result of a simpler type, Axiom leaves the type unsimplified.
Thus no information is lost.

x + 3 - x

3

Type: Polynomial Integer

This seldom matters since Axiom retracts the answer to the simpler type if it is necessary.

factorial(%)

6

Type: Expression Integer

When you issue a positive number, the type PositiveInteger is printed. Surely, 3 also has
type Integer! The curious reader may now have two questions. First, is the type of an
object not unique? Second, how is PositiveInteger related to Integer?
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3

3

Type: PositiveInteger

Any domain can be refined to a subdomain by a membership predicate. A predicate is a
function that, when applied to an object of the domain, returns either true or false. For
example, the domain Integer can be refined to the subdomain PositiveInteger, the set of
integers x such that x > 0, by giving the Axiom predicate x +-> x > 0. Similarly, Axiom
can define subdomains such as “the subdomain of diagonal matrices,” “the subdomain of
lists of length two,” “the subdomain of monic irreducible polynomials in x,” and so on.
Trivially, any domain is a subdomain of itself.

While an object belongs to a unique domain, it can belong to any number of subdomains.
Any subdomain of the domain of an object can be used as the type of that object. The type
of 3 is indeed both Integer and PositiveInteger as well as any other subdomain of integer
whose predicate is satisfied, such as “the prime integers,” “the odd positive integers between
3 and 17,” and so on.

Domain Constructors

In Axiom, domains are objects. You can create them, pass them to functions, and, as we’ll
see later, test them for certain properties.

In Axiom, you ask for a value of a function by applying its name to a set of arguments.

To ask for “the factorial of 7” you enter this expression to Axiom. This applies the function
factorial to the value 7 to compute the result.

factorial(7)

5040

Type: PositiveInteger

Enter the type Polynomial (Integer) as an expression to Axiom. This looks much like a
function call as well. It is! The result is appropriately stated to be of type Domain, which
according to our usual convention, denotes the class of all domains.

Polynomial(Integer)

Polynomial Integer

Type: Domain
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The most basic operation involving domains is that of building a new domain from a given
one. To create the domain of “polynomials over the integers,” Axiom applies the function
Polynomial to the domain Integer. A function like Polynomial is called a domain con-
structor or, more simply, a constructor. A domain constructor is a function that creates a
domain. An argument to a domain constructor can be another domain or, in general, an
arbitrary kind of object. Polynomial takes a single domain argument while SquareMatrix

takes a positive integer as an argument to give its dimension and a domain argument to give
the type of its components.

What kinds of domains can you use as the argument to Polynomial or SquareMatrix or
List? Well, the first two are mathematical in nature. You want to be able to perform
algebraic operations like “+” and “*” on polynomials and square matrices, and operations
such as determinant on square matrices. So you want to allow polynomials of integers and
polynomials of square matrices with complex number coefficients and, in general, anything
that “makes sense.” At the same time, you don’t want Axiom to be able to build nonsense
domains such as “polynomials of strings!”

In contrast to algebraic structures, data structures can hold any kind of object. Operations
on lists such as insert, delete, and concat just manipulate the list itself without changing
or operating on its elements. Thus you can build List over almost any datatype, including
itself.

Create a complicated algebraic domain.

List (List (Matrix (Polynomial (Complex (Fraction (Integer))))))

List List Matrix Polynomial Complex Fraction Integer

Type: Domain

Try to create a meaningless domain.

Polynomial(String)

Polynomial String is not a valid type.

Evidently from our last example, Axiom has some mechanism that tells what a constructor
can use as an argument. This brings us to the notion of category. As domains are objects,
they too have a domain. The domain of a domain is a category. A category is simply a type
whose members are domains.

A common algebraic category is Ring, the class of all domains that are “rings.” A ring
is an algebraic structure with constants 0 and 1 and operations “+”, “-”, and “*”. These
operations are assumed “closed” with respect to the domain, meaning that they take two
objects of the domain and produce a result object also in the domain. The operations
are understood to satisfy certain “axioms,” certain mathematical principles providing the
algebraic foundation for rings. For example, the additive inverse axiom for rings states:
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Every element x has an additive inverse y such that x+ y = 0.

The prototypical example of a domain that is a ring is the integers. Keep them in mind
whenever we mention Ring.

Many algebraic domain constructors such as Complex, Polynomial, Fraction, take rings as
arguments and return rings as values. You can use the infix operator “has” to ask a domain
if it belongs to a particular category.

All numerical types are rings. Domain constructor Polynomial builds “the ring of polyno-
mials over any other ring.”

Polynomial(Integer) has Ring

true

Type: Boolean

Constructor List never produces a ring.

List(Integer) has Ring

false

Type: Boolean

The constructor Matrix(R) builds “the domain of all matrices over the ring R.” This domain
is never a ring since the operations “+”, “-”, and “*” on matrices of arbitrary shapes are
undefined.

Matrix(Integer) has Ring

false

Type: Boolean

Thus you can never build polynomials over matrices.

Polynomial(Matrix(Integer))

Polynomial Matrix Integer is not a valid type.

Use SquareMatrix(n,R) instead. For any positive integer n, it builds “the ring of n by n
matrices over R.”
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Polynomial(SquareMatrix(7,Complex(Integer)))

Polynomial SquareMatrix(7,Complex Integer)

Type: Domain

Another common category is Field, the class of all fields. A field is a ring with additional
operations. For example, a field has commutative multiplication and a closed operation
“/” for the division of two elements. Integer is not a field since, for example, 3/2 does
not have an integer result. The prototypical example of a field is the rational numbers,
that is, the domain Fraction(Integer). In general, the constructor Fraction takes an
IntegralDomain, which is a ring with additional properties, as an argument and returns a
field. 1 Other domain constructors, such as Complex, build fields only if their argument
domain is a field.

The complex integers (often called the “Gaussian integers”) do not form a field.

Complex(Integer) has Field

false

Type: Boolean

But fractions of complex integers do.

Fraction(Complex(Integer)) has Field

true

Type: Boolean

The algebraically equivalent domain of complex rational numbers is a field since domain
constructor Complex produces a field whenever its argument is a field.

Complex(Fraction(Integer)) has Field

true

Type: Boolean

The most basic category is Type. It denotes the class of all domains and subdomains. Note
carefully that Type does not denote the class of all types. The type of all categories is
Category. The type of Type itself is undefined. Domain constructor List is able to build

1Actually, the argument domain must have some additional so as to belong to the category IntegralDomain
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“lists of elements from domain D” for arbitrary D simply by requiring that D belong to
category Type.

Now, you may ask, what exactly is a category? Like domains, categories can be defined in
the Axiom language. A category is defined by three components:

1. a name (for example, Ring), used to refer to the class of domains that the category
represents;

2. a set of operations, used to refer to the operations that the domains of this class support
(for example, “+”, “-”, and “*” for rings); and

3. an optional list of other categories that this category extends.

This last component is a new idea. And it is key to the design of Axiom! Because categories
can extend one another, they form hierarchies. Detailed charts showing the category hier-
archies in Axiom are displayed in Appendix (TPDHERE). There you see that all categories
are extensions of Type and that Field is an extension of Ring.

The operations supported by the domains of a category are called the exports of that category
because these are the operations made available for system-wide use. The exports of a
domain of a given category are not only the ones explicitly mentioned by the category.
Since a category extends other categories, the operations of these other categories—and all
categories these other categories extend—are also exported by the domains.

For example, polynomial domains belong to PolynomialCategory. This category explicitly
mentions some twenty-nine operations on polynomials, but it extends eleven other cate-
gories (including Ring). As a result, the current system has over one hundred operations on
polynomials.

If a domain belongs to a category that extends, say, Ring, it is convenient to say that the
domain exports Ring. The name of the category thus provides a convenient shorthand for
the list of operations exported by the category. Rather than listing operations such as “+”
and “*” of Ring each time they are needed, the definition of a type simply asserts that it
exports category Ring.

The category name, however, is more than a shorthand. The name Ring, in fact, implies that
the operations exported by rings are required to satisfy a set of “axioms” associated with
the name Ring. This subtle but important feature distinguishes Axiom from other abstract
datatype designs.

Why is it not correct to assume that some type is a ring if it exports all of the operations
of Ring? Here is why. Some languages such as APL denote the Boolean constants true

and false by the integers 1 and 0 respectively, then use “+” and “*” to denote the logical
operators or and and. But with these definitions Boolean is not a ring since the additive
inverse axiom is violated. That is, there is no inverse element a such that 1 + a = 0, or,
in the usual terms: true or a = false. This alternative definition of Boolean can be
easily and correctly implemented in Axiom, since Boolean simply does not assert that it
is of category Ring. This prevents the system from building meaningless domains such as
Polynomial(Boolean) and then wrongfully applying algorithms that presume that the ring
axioms hold.
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Enough on categories. To learn more about them, see section 12 on page 899. We now return
to our discussion of domains.

Domains export a set of operations to make them available for system-wide use. Integer, for
example, exports the operations “+” and “=” given by the signatures “+”: (Integer,Integer)
→ Integer and “=”: (Integer,Integer) → Boolean, respectively. Each of these operations takes
two Integer arguments. The “+” operation also returns an Integer but “=” returns a
Boolean: true or false. The operations exported by a domain usually manipulate objects
of the domain—but not always.

The operations of a domain may actually take as arguments, and return as values, objects
from any domain. For example, Fraction (Integer) exports the operations “/”: (Inte-
ger,Integer) → Fraction(Integer) and characteristic: → NonNegativeInteger.

Suppose all operations of a domain take as arguments and return as values, only objects
from other domains. This kind of domain is what Axiom calls a package.

A package does not designate a class of objects at all. Rather, a package is just a collection
of operations. Actually the bulk of the Axiom library of algorithms consists of packages.
The facilities for factorization; integration; solution of linear, polynomial, and differential
equations; computation of limits; and so on, are all defined in packages. Domains needed
by algorithms can be passed to a package as arguments or used by name if they are not
“variable.” Packages are useful for defining operations that convert objects of one type to
another, particularly when these types have different parameterizations. As an example,
the package PolynomialFunction2(R,S) defines operations that convert polynomials over
a domain R to polynomials over S. To convert an object from Polynomial(Integer) to
Polynomial(Float), Axiom builds the package PolynomialFunctions2(Integer,Float)

in order to create the required conversion function. (This happens “behind the scenes” for
you: see section 2.7 on page 82 for details on how to convert objects.)

Axiom categories, domains and packages and all their contained functions are written in
the Axiom programming language and have been compiled into machine code. This is what
comprises the Axiom library. We will show you how to use these domains and their functions
and how to write your own functions.

2.2 Writing Types and Modes

We have already seen in the last section section 2.1 on page 57 several examples of types.
Most of these examples had either no arguments (for example, Integer) or one argument (for
example, Polynomial (Integer)). In this section we give details about writing arbitrary
types. We then define modes and discuss how to write them. We conclude the section with
a discussion on constructor abbreviations.

When might you need to write a type or mode? You need to do so when you declare variables.

a : PositiveInteger

Type: Void
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You need to do so when you declare functions (See section 2.3 on page 69)

f : Integer -> String

Type: Void

You need to do so when you convert an object from one type to another (See section 2.7 on
page 82).

factor(2 :: Complex(Integer))

−i (1 + i)
2

Type: Factored Complex Integer

(2 = 3)$Integer

false

Type: Boolean

You need to do so when you give computation target type information (See section 2.9 on
page 89)

(2 = 3)@Boolean

false

Type: Boolean

Types with No Arguments

A constructor with no arguments can be written either with or without trailing opening and
closing parentheses “()”.

Boolean() is the same as Boolean
Integer() is the same as Integer
String() is the same as String

Void() is the same as Void

It is customary to omit the parentheses.
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Types with One Argument

A constructor with one argument can frequently be written with no parentheses. Types nest
from right to left so that Complex Fraction Polynomial Integer is the same as Complex
(Fraction (Polynomial (Integer))). You need to use parentheses to force the appli-
cation of a constructor to the correct argument, but you need not use any more than is
necessary to remove ambiguities.

Here are some guidelines for using parentheses (they are possibly slightly more restrictive
than they need to be).

If the argument is an expression like 2+3 then you must enclose the argument in parentheses.

e : PrimeField(2 + 3)

Type: Void

If the type is to be used with package calling then you must enclose the argument in paren-
theses.

content(2)$Polynomial(Integer)

2

Type: Integer

Alternatively, you can write the type without parentheses then enclose the whole type ex-
pression with parentheses.

content(2)$(Polynomial Complex Fraction Integer)

2

Type: Complex Fraction Integer

If you supply computation target type information (See section 2.9 on page 89) then you
should enclose the argument in parentheses.

(2/3)@Fraction(Polynomial(Integer))

2

3

Type: Fraction Polynomial Integer



2.2. WRITING TYPES AND MODES 67

If the type itself has parentheses around it and we are not in the case of the first example
above, then the parentheses can usually be omitted.

(2/3)@Fraction(Polynomial Integer)

2

3

Type: Fraction Polynomial Integer

If the type is used in a declaration and the argument is a single-word type, integer or symbol,
then the parentheses can usually be omitted.

(d,f,g) : Complex Polynomial Integer

Type: Void

Types with More Than One Argument

If a constructor has more than one argument, you must use parentheses. Some examples are

UnivariatePolynomial(x, Float)

MultivariatePolynomial([z,w,r], Complex Float)

SquareMatrix(3, Integer)

FactoredFunctions2(Integer,Fraction Integer)

Modes

A mode is a type that possibly is a question mark (?) or contains one in an argument posi-
tion. For example, the following are all modes.

?

Polynomial ?

Matrix Polynomial ?

SquareMatrix(3,?)

Integer

OneDimensionalArray(Float)

As is evident from these examples, a mode is a type with a part that is not specified (indicated
by a question mark). Only one “?” is allowed per mode and it must appear in the most
deeply nested argument that is a type. Thus ?(Integer), Matrix(? (Polynomial)),
SquareMatrix(?, Integer) (it requires a numeric argument) and SquareMatrix(?, ?)
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are all invalid. The question mark must take the place of a domain, not data. This rules
out, for example, the two SquareMatrix expressions.

Modes can be used for declarations (See section 2.3 on page 69) and conversions (section 2.7
on page 82). However, you cannot use a mode for package calling or giving target type
information.

Abbreviations

Every constructor has an abbreviation that you can freely substitute for the constructor
name. In some cases, the abbreviation is nothing more than the capitalized version of the
constructor name.

Aside from allowing types to be written more concisely, abbreviations are
used by Axiom to name various system files for constructors (such as library
filenames, test input files and example files). Here are some common abbre-
viations.

COMPLEX abbreviates Complex DFLOAT abbreviates DoubleFloat

EXPR abbreviates Expression FLOAT abbreviates Float

FRAC abbreviates Fraction INT abbreviates Integer

MATRIX abbreviates Matrix NNI abbreviates NonNegativeInteger

PI abbreviates PositiveInteger POLY abbreviates Polynomial

STRING abbreviates String UP abbreviates UnivariatePolynomial

You can combine both full constructor names and abbreviations in a type expression. Here
are some types using abbreviations.

POLY INT is the same as Polynomial(INT)

POLY(Integer) is the same as Polynomial(Integer)

POLY(Integer) is the same as Polynomial(INT)

FRAC(COMPLEX(INT)) is the same as Fraction Complex Integer

FRAC(COMPLEX(INT)) is the same as FRAC(Complex Integer)

There are several ways of finding the names of constructors and their abbreviations. For a
specific constructor, use )abbreviation query. You can also use the )what system com-
mand to see the names and abbreviations of constructors. For more information about
)what, see section A.30 on page 1002.

)abbreviation query can be abbreviated (no pun intended) to )abb q.

)abb q Integer

INT abbreviates domain Integer
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The )abbreviation query command lists the constructor name if you give the abbreviation.
Issue )abb q if you want to see the names and abbreviations of all Axiom constructors.

)abb q DMP

DMP abbreviates domain DistributedMultivariatePolynomial

Issue this to see all packages whose names contain the string “ode”.

)what packages ode

---------------------- Packages -----------------------

Packages with names matching patterns:

ode

EXPRODE ExpressionSpaceODESolver

FCPAK1 FortranCodePackage1

GRAY GrayCode

LODEEF ElementaryFunctionLODESolver

NODE1 NonLinearFirstOrderODESolver

ODECONST ConstantLODE

ODEEF ElementaryFunctionODESolver

ODEINT ODEIntegration

ODEPAL PureAlgebraicLODE

ODERAT RationalLODE

ODERED ReduceLODE

ODESYS SystemODESolver

ODETOOLS ODETools

UTSODE UnivariateTaylorSeriesODESolver

UTSODETL UTSodetools

2.3 Declarations

A declaration is an expression used to restrict the type of values that can be assigned to
variables. A colon “:” is always used after a variable or list of variables to be declared.

For a single variable, the syntax for declaration is

variableName : typeOrMode

For multiple variables, the syntax is

(variableName1, variableName2, ...variableNameN): typeOrMode
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You can always combine a declaration with an assignment. When you do, it is equivalent
to first giving a declaration statement, then giving an assignment. For more information on
assignment, see section 1.3 on page 6 and section 5.1 on page 119. To see how to declare
your own functions, see section 6.4 on page 158.

This declares one variable to have a type.

a : Integer

Type: Void

This declares several variables to have a type.

(b,c) : Integer

Type: Void

a, b and c can only hold integer values.

a := 45

45

Type: Integer

If a value cannot be converted to a declared type, an error message is displayed.

b := 4/5

Cannot convert right-hand side of assignment

4

-

5

to an object of the type Integer of the left-hand side.

This declares a variable with a mode.

n : Complex ?

Type: Void
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This declares several variables with a mode.

(p,q,r) : Matrix Polynomial ?

Type: Void

This complex object has integer real and imaginary parts.

n := -36 + 9 * %i

−36 + 9 i

Type: Complex Integer

This complex object has fractional symbolic real and imaginary parts.

n := complex(4/(x + y),y/x)

4

y + x
+
y

x
i

Type: Complex Fraction Polynomial Integer

This matrix has entries that are polynomials with integer coefficients.

p := [ [1,2],[3,4],[5,6] ]  1 2
3 4
5 6


Type: Matrix Polynomial Integer

This matrix has a single entry that is a polynomial with rational number coefficients.

q := [ [x - 2/3] ] [
x− 2

3

]
Type: Matrix Polynomial Fraction Integer

This matrix has entries that are polynomials with complex integer coefficients.

r := [ [1-%i*x,7*y+4*%i] ]
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[
−i x+ 1 7 y + 4 i

]
Type: Matrix Polynomial Complex Integer

Note the difference between this and the next example. This is a complex object with
polynomial real and imaginary parts.

f : COMPLEX POLY ? := (x + y*%i)**2

−y2 + x2 + 2 x y i

Type: Complex Polynomial Integer

This is a polynomial with complex integer coefficients. The objects are convertible from one
to the other. See section 2.7 on page 82 for more information.

g : POLY COMPLEX ? := (x + y*%i)**2

−y2 + 2 i x y + x2

Type: Polynomial Complex Integer

2.4 Records

A Record is an object composed of one or more other objects, each of which is referenced
with a selector. Components can all belong to the same type or each can have a different
type.

The syntax for writing a Record type is

Record(selector1:type1, selector2:type2, ..., selectorN:typeN)

You must be careful if a selector has the same name as a variable in the
workspace. If this occurs, precede the selector name by a single quote.

Record components are implicitly ordered. All the components of a record can be set at
once by assigning the record a bracketed tuple of values of the proper length. For example:

r : Record(a:Integer, b: String) := [1, "two"]

[a = 1, b = "two"]



2.4. RECORDS 73

Type: Record(a: Integer,b: String)

To access a component of a record r, write the name r, followed by a period, followed by a
selector.

The object returned by this computation is a record with two components: a quotient part
and a remainder part.

u := divide(5,2)

[quotient = 2, remainder = 1]

Type: Record(quotient: Integer,remainder: Integer)

This is the quotient part.

u.quotient

2

Type: PositiveInteger

This is the remainder part.

u.remainder

1

Type: PositiveInteger

You can use selector expressions on the left-hand side of an assignment to change destruc-
tively the components of a record.

u.quotient := 8978

8978

Type: PositiveInteger

The selected component quotient has the value 8978, which is what is returned by the
assignment. Check that the value of u was modified.

u

[quotient = 8978, remainder = 1]
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Type: Record(quotient: Integer,remainder: Integer)

Selectors are evaluated. Thus you can use variables that evaluate to selectors instead of the
selectors themselves.

s := ’quotient

quotient

Type: Variable quotient

Be careful! A selector could have the same name as a variable in the workspace. If this
occurs, precede the selector name by a single quote, as in u.′quotient.

divide(5,2).s

2

Type: PositiveInteger

Here we declare that the value of bd has two components: a string, to be accessed via name,
and an integer, to be accessed via birthdayMonth.

bd : Record(name : String, birthdayMonth : Integer)

Type: Void

You must initially set the value of the entire Record at once.

bd := ["Judith", 3]

[name = "Judith", birthdayMonth = 3]

Type: Record(name: String,birthdayMonth: Integer)

Once set, you can change any of the individual components.

bd.name := "Katie"

"Katie"

Type: String
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Records may be nested and the selector names can be shared at different levels.

r : Record(a : Record(b: Integer, c: Integer), b: Integer)

Type: Void

The record r has a b selector at two different levels. Here is an initial value for r.

r := [ [1,2], 3 ]

[a = [b = 1, c = 2], b = 3]

Type: Record(a: Record(b: Integer,c: Integer),b: Integer)

This extracts the b component from the a component of r.

r.a.b

1

Type: PositiveInteger

This extracts the b component from r.

r.b

3

Type: PositiveInteger

You can also use spaces or parentheses to refer to Record components. This is the same as
r.a.

r(a)

[b = 1, c = 2]

Type: Record(b: Integer,c: Integer)

This is the same as r.b.

r b
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3

Type: PositiveInteger

This is the same as r.b := 10.

r(b) := 10

10

Type: PositiveInteger

Look at r to make sure it was modified.

r

[a = [b = 1, c = 2], b = 10]

Type: Record(a: Record(b: Integer,c: Integer),b: Integer)

2.5 Unions

Type Union is used for objects that can be of any of a specific finite set of types. Two
versions of unions are available, one with selectors (like records) and one without.

Unions Without Selectors

The declaration x : Union(Integer, String, F loat) states that x can have values that are
integers, strings or “big” floats. If, for example, the Union object is an integer, the object is
said to belong to the Integer branch of the Union. Note that we are being a bit careless with
the language here. Technically, the type of x is always Union(Integer, String, Float).
If it belongs to the Integer branch, x may be converted to an object of type Integer.

The syntax for writing a Union type without selectors is

Union(type1, type2, ..., typeN)

The types in a union without selectors must be distinct.

It is possible to create unions like Union(Integer, PositiveInteger) but they are difficult
to work with because of the overlap in the branch types. See below for the rules Axiom uses
for converting something into a union object.
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The case infix operator returns a Boolean and can be used to determine the branch in which
an object lies.

This function displays a message stating in which branch of the Union the object (defined
as x above) lies.

sayBranch(x : Union(Integer,String,Float)) : Void ==

output

x case Integer => "Integer branch"

x case String => "String branch"

"Float branch"

This tries sayBranch with an integer.

sayBranch 1

Compiling function sayBranch with type Union(Integer,String,Float)

-> Void

Integer branch

Type: Void

This tries sayBranch with a string.

sayBranch "hello"

String branch

Type: Void

This tries sayBranch with a floating-point number.

sayBranch 2.718281828

Float branch

Type: Void

There are two things of interest about this particular example to which we would like to
draw your attention.

1. Axiom normally converts a result to the target value before passing it to the function. If
we left the declaration information out of this function definition then the sayBranch
call would have been attempted with an Integer rather than a Union, and an error
would have resulted.
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2. The types in a Union are searched in the order given. So if the type were given as

sayBranch(x: Union(String,Integer,Float,Any)): Void

then the result would have been “String branch” because there is a conversion from
Integer to String.

Sometimes Union types can have extremely long names. Axiom therefore abbreviates the
names of unions by printing the type of the branch first within the Union and then eliding
the remaining types with an ellipsis (...).

Here the Integer branch is displayed first. Use “::” to create a Union object from an
object.

78 :: Union(Integer,String)

78

Type: Union(Integer,...)

Here the String branch is displayed first.

s := "string" :: Union(Integer,String)

"string"

Type: Union(String,...)

Use typeOf to see the full and actual Union type.

typeOf s

Union(Integer, String)

Type: Domain

A common operation that returns a union is exquo which returns the “exact quotient” if
the quotient is exact,

three := exquo(6,2)

3

Type: Union(Integer,...)

and "failed" if the quotient is not exact.
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exquo(5,2)

"failed"

Type: Union("failed",...)

A union with a "failed" is frequently used to indicate the failure or lack of applicability
of an object. As another example, assign an integer a variable r declared to be a rational
number.

r: FRAC INT := 3

3

Type: Fraction Integer

The operation retractIfCan tries to retract the fraction to the underlying domain Integer.
It produces a union object. Here it succeeds.

retractIfCan(r)

3

Type: Union(Integer,...)

Assign it a rational number.

r := 3/2

3

2

Type: Fraction Integer

Here the retraction fails.

retractIfCan(r)

"failed"

Type: Union("failed",...)
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Unions With Selectors

Like records (section 2.4 on page 72), you can write Union types with selectors.

The syntax for writing a Union type with selectors is

Union(selector1:type1, selector2:type2, ..., selectorN:typeN)

You must be careful if a selector has the same name as a variable in the
workspace. If this occurs, precede the selector name by a single quote. It
is an error to use a selector that does not correspond to the branch of the
Union in which the element actually lies.

Be sure to understand the difference between records and unions with selectors. Records
can have more than one component and the selectors are used to refer to the components.
Unions always have one component but the type of that one component can vary. An object
of type Record(a: Integer, b: Float, c: String) contains an integer and a float
and a string. An object of type Union(a: Integer, b: Float, c: String) contains
an integer or a float or a string.

Here is a version of the sayBranch function (cf. section 2.5 on page 76) that works with a
union with selectors. It displays a message stating in which branch of the Union the object
lies.

sayBranch(x:Union(i:Integer,s:String,f:Float)):Void==

output

x case i => "Integer branch"

x case s => "String branch"

"Float branch"

Note that case uses the selector name as its right-hand argument. If you accidentally use
the branch type on the right-hand side of case, false will be returned.

Declare variable u to have a union type with selectors.

u : Union(i : Integer, s : String)

Type: Void

Give an initial value to u.

u := "good morning"

"good morning"

Type: Union(s: String,...)
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Use case to determine in which branch of a Union an object lies.

u case i

false

Type: Boolean

u case s

true

Type: Boolean

To access the element in a particular branch, use the selector.

u.s

"good morning"

Type: String

2.6 The “Any” Domain

With the exception of objects of type Record, all Axiom data structures are homogenous,
that is, they hold objects all of the same type. If you need to get around this, you can use
type Any. Using Any, for example, you can create lists whose elements are integers, rational
numbers, strings, and even other lists.

Declare u to have type Any.

u: Any

Type: Void

Assign a list of mixed type values to u

u := [1, 7.2, 3/2, x**2, "wally"][
1, 7.2,

3

2
, x2, "wally"

]
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Type: List Any

When we ask for the elements, Axiom displays these types.

u.1

1

Type: PositiveInteger

Actually, these objects belong to Any but Axiom automatically converts them to their natural
types for you.

u.3

3

2

Type: Fraction Integer

Since type Any can be anything, it can only belong to type Type. Therefore it cannot be
used in algebraic domains.

v : Matrix(Any)

Matrix Any is not a valid type.

Perhaps you are wondering how Axiom internally represents objects of type Any. An object
of type Any consists not only a data part representing its normal value, but also a type part
(a badge) giving its type. For example, the value 1 of type PositiveInteger as an object
of type Any internally looks like [1, PositiveInteger()].

When should you use Any instead of a Union type? For a Union, you must know in advance
exactly which types you are going to allow. For Any, anything that comes along can be
accommodated.

2.7 Conversion

Conversion is the process of changing an object of one type into an object of
another type. The syntax for conversion is:

object ::newType
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By default, 3 has the type PositiveInteger.

3

3

Type: PositiveInteger

We can change this into an object of type Fraction Integer by using “::”.

3 :: Fraction Integer

3

Type: Fraction Integer

A coercion is a special kind of conversion that Axiom is allowed to do automatically when
you enter an expression. Coercions are usually somewhat safer than more general conver-
sions. The Axiom library contains operations called coerce and convert. Only the coerce
operations can be used by the interpreter to change an object into an object of another type
unless you explicitly use a ::.

By now you will be quite familiar with what types and modes look like. It is useful to think
of a type or mode as a pattern for what you want the result to be.

Let’s start with a square matrix of polynomials with complex rational number coefficients.

m : SquareMatrix(2,POLY COMPLEX FRAC INT)

Type: Void

m := matrix [ [x-3/4*%i,z*y**2+1/2],[3/7*%i*y**4 - x,12-%i*9/5] ]

[
x− 3

4 i y2 z + 1
2

3
7 i y

4 − x 12− 9
5 i

]
Type: SquareMatrix(2,Polynomial Complex Fraction Integer)

We first want to interchange the Complex and Fraction layers. We do the conversion by
doing the interchange in the type expression.

m1 := m :: SquareMatrix(2,POLY FRAC COMPLEX INT)[
x− 3 i

4 y2 z + 1
2

3 i
7 y4 − x 60−9 i

5

]
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Type: SquareMatrix(2,Polynomial Fraction Complex Integer)

Interchange the Polynomial and the Fraction levels.

m2 := m1 :: SquareMatrix(2,FRAC POLY COMPLEX INT)[
4 x−3 i

4
2 y2 z+1

2
3 i y4−7 x

7
60−9 i

5

]

Type: SquareMatrix(2,Fraction Polynomial Complex Integer)

Interchange the Polynomial and the Complex levels.

m3 := m2 :: SquareMatrix(2,FRAC COMPLEX POLY INT)[
4 x−3 i

4
2 y2 z+1

2
−7 x+3 y4 i

7
60−9 i

5

]

Type: SquareMatrix(2,Fraction Complex Polynomial Integer)

All the entries have changed types, although in comparing the last two results only the entry
in the lower left corner looks different. We did all the intermediate steps to show you what
Axiom can do.

In fact, we could have combined all these into one conversion.

m :: SquareMatrix(2,FRAC COMPLEX POLY INT)[
4 x−3 i

4
2 y2 z+1

2
−7 x+3 y4 i

7
60−9 i

5

]

Type: SquareMatrix(2,Fraction Complex Polynomial Integer)

There are times when Axiom is not be able to do the conversion in one step. You may
need to break up the transformation into several conversions in order to get an object of the
desired type.

We cannot move either Fraction or Complex above (or to the left of, depending on how you
look at it) SquareMatrix because each of these levels requires that its argument type have
commutative multiplication, whereas SquareMatrix does not. That is because Fraction

requires that its argument belong to the category IntegralDomain and Complex requires that
its argument belong to CommutativeRing. See section 2.1 on page 57 for a brief discussion
of categories. The Integer level did not move anywhere because it does not allow any
arguments. We also did not move the SquareMatrix part anywhere, but we could have.

Recall that m looks like this.
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m [
x− 3

4 i y2 z + 1
2

3
7 i y

4 − x 12− 9
5 i

]
Type: SquareMatrix(2,Polynomial Complex Fraction Integer)

If we want a polynomial with matrix coefficients rather than a matrix with polynomial
entries, we can just do the conversion.

m :: POLY SquareMatrix(2,COMPLEX FRAC INT)

[
0 1
0 0

]
y2 z +

[
0 0
3
7 i 0

]
y4 +

[
1 0
−1 0

]
x+

[
−3

4 i
1
2

0 12− 9
5 i

]
Type: Polynomial SquareMatrix(2,Complex Fraction Integer)

We have not yet used modes for any conversions. Modes are a great shorthand for indicating
the type of the object you want. Instead of using the long type expression in the last example,
we could have simply said this.

m :: POLY ?[
0 1
0 0

]
y2 z +

[
0 0
3
7 i 0

]
y4 +

[
1 0
−1 0

]
x+

[
−3

4 i
1
2

0 12− 9
5 i

]
Type: Polynomial SquareMatrix(2,Complex Fraction Integer)

We can also indicate more structure if we want the entries of the matrices to be fractions.

m :: POLY SquareMatrix(2,FRAC ?)

[
0 1
0 0

]
y2 z +

[
0 0
3 i
7 0

]
y4 +

[
1 0
−1 0

]
x+

[
− 3 i

4
1
2

0 60−9 i
5

]
Type: Polynomial SquareMatrix(2,Fraction Complex Integer)

2.8 Subdomains Again

A subdomain S of a domain D is a domain consisting of

1. those elements of D that satisfy some predicate (that is, a test that returns true or
false) and
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2. a subset of the operations of D.

Every domain is a subdomain of itself, trivially satisfying the membership test: true.

Currently, there are only two system-defined subdomains in Axiom that receive substantial
use. PositiveInteger and NonNegativeInteger are subdomains of Integer. An element
x of NonNegativeInteger is an integer that is greater than or equal to zero, that is, satisfies
x >= 0. An element x of PositiveInteger is a nonnegative integer that is, in fact, greater
than zero, that is, satisfies x > 0. Not all operations from Integer are available for these
subdomains. For example, negation and subtraction are not provided since the subdomains
are not closed under those operations. When you use an integer in an expression, Axiom
assigns to it the type that is the most specific subdomain whose predicate is satisfied.

This is a positive integer.

5

5

Type: PositiveInteger

This is a nonnegative integer.

0

0

Type: NonNegativeInteger

This is neither of the above.

-5

−5

Type: Integer

Furthermore, unless you are assigning an integer to a declared variable or using a conversion,
any integer result has as type the most specific subdomain.

(-2) - (-3)

1

Type: PositiveInteger
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0 :: Integer

0

Type: Integer

x : NonNegativeInteger := 5

5

Type: NonNegativeInteger

When necessary, Axiom converts an integer object into one belonging to a less specific sub-
domain. For example, in 3−2, the arguments to “-” are both elements of PositiveInteger,
but this type does not provide a subtraction operation. Neither does NonNegativeInteger,
so 3 and 2 are viewed as elements of Integer, where their difference can be calculated. The
result is 1, which Axiom then automatically assigns the type PositiveInteger.

Certain operations are very sensitive to the subdomains to which their arguments belong.
This is an element of PositiveInteger.

2 ** 2

4

Type: PositiveInteger

This is an element of Fraction Integer.

2 ** (-2)

1

4

Type: Fraction Integer

It makes sense then that this is a list of elements of PositiveInteger.

[10**i for i in 2..5]

[100, 1000, 10000, 100000]

Type: List PositiveInteger
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What should the type of [10**(i-1) for i in 2..5] be? On one hand, i − 1 is always
an integer greater than zero as i ranges from 2 to 5 and so 10 ∗ ∗i is also always a positive
integer. On the other, i − 1 is a very simple function of i. Axiom does not try to analyze
every such function over the index’s range of values to determine whether it is always positive
or nowhere negative. For an arbitrary Axiom function, this analysis is not possible.

So, to be consistent no such analysis is done and we get this.

[10**(i-1) for i in 2..5]

[10, 100, 1000, 10000]

Type: List Fraction Integer

To get a list of elements of PositiveInteger instead, you have two choices. You can use a
conversion.

[10**((i-1) :: PI) for i in 2..5]

Compiling function G82696 with type Integer -> Boolean

Compiling function G82708 with type NonNegativeInteger -> Boolean

[10, 100, 1000, 10000]

Type: List PositiveInteger

Or you can use pretend.

[10**((i-1) pretend PI) for i in 2..5]

[10, 100, 1000, 10000]

Type: List PositiveInteger

The operation pretend is used to defeat the Axiom type system. The expression object

pretend D means “make a new object (without copying) of type D from object.” If object
were an integer and you told Axiom to pretend it was a list, you would probably see a
message about a fatal error being caught and memory possibly being damaged. Lists do not
have the same internal representation as integers!

You use pretend at your peril.

Use pretend with great care! Axiom trusts you that the value is of the specified type.

(2/3) pretend Complex Integer

2 + 3 i

Type: Complex Integer
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2.9 Package Calling and Target Types

Axiom works hard to figure out what you mean by an expression without your having to
qualify it with type information. Nevertheless, there are times when you need to help it
along by providing hints (or even orders!) to get Axiom to do what you want.

We saw in section 2.3 on page 69 that declarations using types and modes control the type of
the results produced. For example, we can either produce a complex object with polynomial
real and imaginary parts or a polynomial with complex integer coefficients, depending on
the declaration.

Package calling is how you tell Axiom to use a particular function from a particular part of
the library.

Use the “/” from Fraction Integer to create a fraction of two integers.

2/3

2

3

Type: Fraction Integer

If we wanted a floating point number, we can say “use the “/” in Float.”

(2/3)$Float

0.66666666666666666667

Type: Float

Perhaps we actually wanted a fraction of complex integers.

(2/3)$Fraction(Complex Integer)

2

3

Type: Fraction Complex Integer

In each case, Axiom used the indicated operations, sometimes first needing to convert the
two integers into objects of the appropriate type. In these examples, “/” is written as an
infix operator.

To use package calling with an infix operator, use the following syntax:

( arg1 op arg2 )$type
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We used, for example, (2/3)$Float. The expression 2 + 3 + 4 is equivalent to (2 + 3) + 4.
Therefore in the expression (2+ 3+ 4)$Float the second “+” comes from the Float domain.
The first “+” comes from Float because the package call causes Axiom to convert (2 + 3)
and 4 to type Float. Before the sum is converted, it is given a target type of Float by Axiom
and then evaluated. The target type causes the “+” from Float to be used.

For an operator written before its arguments, you must use parentheses
around the arguments (even if there is only one), and follow the closing
parenthesis by a “$” and then the type.

fun ( arg1, arg2, . . . , argN )$type

For example, to call the “minimum” function from DoubleFloat on two integers, you could
write min(4,89)$DoubleFloat. Another use of package calling is to tell Axiom to use a
library function rather than a function you defined. We discuss this in section 6.9 on page 166.

Sometimes rather than specifying where an operation comes from, you just want to say what
type the result should be. We say that you provide a target type for the expression. Instead
of using a “$”, use a “@” to specify the requested target type. Otherwise, the syntax is the
same. Note that giving a target type is not the same as explicitly doing a conversion. The
first says “try to pick operations so that the result has such-and-such a type.” The second
says “compute the result and then convert to an object of such-and-such a type.”

Sometimes it makes sense, as in this expression, to say “choose the operations in this ex-
pression so that the final result is Float.

(2/3)@Float

0.66666666666666666667

Type: Float

Here we used “@” to say that the target type of the left-hand side was Float. In this simple
case, there was no real difference between using “$” and “@”. You can see the difference if
you try the following.

This says to try to choose “+” so that the result is a string. Axiom cannot do this.

(2 + 3)@String

An expression involving @ String actually evaluated to one of

type PositiveInteger . Perhaps you should use :: String .

This says to get the + from String and apply it to the two integers. Axiom also cannot do
this because there is no + exported by String.
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(2 + 3)$String

The function + is not implemented in String .

The operation concat is used to concatenate two strings. One can also concatenate strings
by juxtaposition. For instance, by writing

"asdf" "jkl"

When we have more than one operation in an expression, the difference is even more evident.
The following two expressions show that Axiom uses the target type to create different
objects. The “+”, “*” and “**” operations are all chosen so that an object of the correct
final type is created.

This says that the operations should be chosen so that the result is a Complex object.

((x + y * %i)**2)@(Complex Polynomial Integer)

−y2 + x2 + 2 x y i

Type: Complex Polynomial Integer

This says that the operations should be chosen so that the result is a Polynomial object.

((x + y * %i)**2)@(Polynomial Complex Integer)

−y2 + 2 i x y + x2

Type: Polynomial Complex Integer

What do you think might happen if we left off all target type and package call information
in this last example?

(x + y * %i)**2

−y2 + 2 i x y + x2

Type: Polynomial Complex Integer

We can convert it to Complex as an afterthought. But this is more work than just saying
making what we want in the first place.

% :: Complex ?

−y2 + x2 + 2 x y i



92 CHAPTER 2. USING TYPES AND MODES

Type: Complex Polynomial Integer

Finally, another use of package calling is to qualify fully an operation that is passed as an
argument to a function.

Start with a small matrix of integers.

h := matrix [ [8,6],[-4,9] ] [
8 6
−4 9

]
Type: Matrix Integer

We want to produce a new matrix that has for entries the multiplicative inverses of the
entries of h. One way to do this is by calling map with the inv function from Fraction

(Integer).

map(inv$Fraction(Integer),h)

[
1
8

1
6

− 1
4

1
9

]
Type: Matrix Fraction Integer

We could have been a bit less verbose and used abbreviations.

map(inv$FRAC(INT),h)

[
1
8

1
6

− 1
4

1
9

]
Type: Matrix Fraction Integer

As it turns out, Axiom is smart enough to know what we mean anyway. We can just say
this.

map(inv,h)

[
1
8

1
6

− 1
4

1
9

]
Type: Matrix Fraction Integer
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2.10 Resolving Types

In this section we briefly describe an internal process by which Axiom determines a type
to which two objects of possibly different types can be converted. We do this to give you
further insight into how Axiom takes your input, analyzes it, and produces a result.

What happens when you enter x + 1 to Axiom? Let’s look at what you get from the two
terms of this expression.

This is a symbolic object whose type indicates the name.

x

x

Type: Variable x

This is a positive integer.

1

1

Type: PositiveInteger

There are no operations in PositiveInteger that add positive integers to objects of type
Variable(x) nor are there any in Variable(x). Before it can add the two parts, Axiom
must come up with a common type to which both x and 1 can be converted. We say that
Axiom must resolve the two types into a common type. In this example, the common type
is Polynomial(Integer).

Once this is determined, both parts are converted into polynomials, and the addition oper-
ation from Polynomial(Integer) is used to get the answer.

x + 1

x+ 1

Type: Polynomial Integer

Axiom can always resolve two types: if nothing resembling the original types can be found,
then Any is be used. This is fine and useful in some cases.

["string",3.14159]

["string", 3.14159]
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Type: List Any

In other cases objects of type Any can’t be used by the operations you specified.

"string" + 3.14159

There are 11 exposed and 5 unexposed library operations named +

having 2 argument(s) but none was determined to be applicable.

Use HyperDoc Browse, or issue

)display op +

to learn more about the available operations. Perhaps

package-calling the operation or using coercions on the

arguments will allow you to apply the operation.

Cannot find a definition or applicable library operation named +

with argument type(s)

String

Float

Perhaps you should use "@" to indicate the required return type,

or "$" to specify which version of the function you need.

Although this example was contrived, your expressions may need to be qualified slightly to
help Axiom resolve the types involved. You may need to declare a few variables, do some
package calling, provide some target type information or do some explicit conversions.

We suggest that you just enter the expression you want evaluated and see what Axiom does.
We think you will be impressed with its ability to “do what I mean.” If Axiom is still being
obtuse, give it some hints. As you work with Axiom, you will learn where it needs a little
help to analyze quickly and perform your computations.

2.11 Exposing Domains and Packages

In this section we discuss how Axiom makes some operations available to you while hiding
others that are meant to be used by developers or only in rare cases. If you are a new user
of Axiom, it is likely that everything you need is available by default and you may want to
skip over this section on first reading.

Every domain and package in the Axiom library is either exposed (meaning that you can
use its operations without doing anything special) or it is hidden (meaning you have to
either package call (see section 2.9 on page 89) the operations it contains or explicitly expose
it to use the operations). The initial exposure status for a constructor is set in the file
exposed.lsp (see the Installer’s Note for Axiom if you need to know the location of this file).
Constructors are collected together in exposure groups. Categories are all in the exposure
group “categories” and the bulk of the basic set of packages and domains that are exposed
are in the exposure group “basic.” Here is an abbreviated sample of the file (without the
Lisp parentheses):
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basic

AlgebraicNumber AN

AlgebraGivenByStructuralConstants ALGSC

Any ANY

AnyFunctions1 ANY1

BinaryExpansion BINARY

Boolean BOOLEAN

CardinalNumber CARD

CartesianTensor CARTEN

Character CHAR

CharacterClass CCLASS

CliffordAlgebra CLIF

Color COLOR

Complex COMPLEX

ContinuedFraction CONTFRAC

DecimalExpansion DECIMAL

...

categories

AbelianGroup ABELGRP

AbelianMonoid ABELMON

AbelianMonoidRing AMR

AbelianSemiGroup ABELSG

Aggregate AGG

Algebra ALGEBRA

AlgebraicallyClosedField ACF

AlgebraicallyClosedFunctionSpace ACFS

ArcHyperbolicFunctionCategory AHYP

...

For each constructor in a group, the full name and the abbreviation is given. There are
other groups in exposed.lsp but initially only the constructors in exposure groups “basic”
“categories” “naglink” and “anna” are exposed.

As an interactive user of Axiom, you do not need to modify this file. Instead, use )set

expose to expose, hide or query the exposure status of an individual constructor or expo-
sure group. The reason for having exposure groups is to be able to expose or hide multiple
constructors with a single command. For example, you might group together into exposure
group “quantum” a number of domains and packages useful for quantum mechanical com-
putations. These probably should not be available to every user, but you want an easy way
to make the whole collection visible to Axiom when it is looking for operations to apply.

If you wanted to hide all the basic constructors available by default, you would issue )set

expose drop group basic. We do not recommend that you do this. If, however, you
discover that you have hidden all the basic constructors, you should issue )set expose add

group basic to restore your default environment.

It is more likely that you would want to expose or hide individual constructors. In section 6.19
on page 203 we use several operations from OutputForm, a domain usually hidden. To avoid
package calling every operation from OutputForm, we expose the domain and let Axiom
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conclude that those operations should be used. Use )set expose add constructor and
)set expose drop constructor to expose and hide a constructor, respectively. You should
use the constructor name, not the abbreviation. The )set expose command guides you
through these options.

If you expose a previously hidden constructor, Axiom exhibits new behavior (that was your
intention) though you might not expect the results that you get. OutputForm is, in fact, one
of the worst offenders in this regard. This domain is meant to be used by other domains for
creating a structure that Axiom knows how to display. It has functions like “+” that form
output representations rather than do mathematical calculations. Because of the order in
which Axiom looks at constructors when it is deciding what operation to apply, OutputForm
might be used instead of what you expect.

This is a polynomial.

x + x

2 x

Type: Polynomial Integer

Expose OutputForm.

)set expose add constructor OutputForm

OutputForm is now explicitly exposed in frame G82322

This is what we get when OutputForm is automatically available.

x + x

x+ x

Type: OutputForm

Hide OutputForm so we don’t run into problems with any later examples!

)set expose drop constructor OutputForm

OutputForm is now explicitly hidden in frame G82322

Finally, exposure is done on a frame-by-frame basis. A frame (see section A.11 on page 981)
is one of possibly several logical Axiom workspaces within a physical one, each having its
own environment (for example, variables and function definitions). If you have several Axiom
workspace windows on your screen, they are all different frames, automatically created for
you by HyperDoc. Frames can be manually created, made active and destroyed by the
)frame system command. They do not share exposure information, so you need to use )set
expose in each one to add or drop constructors from view.
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2.12 Commands for Snooping

To conclude this chapter, we introduce you to some system commands that you can use for
getting more information about domains, packages, categories, and operations. The most
powerful Axiom facility for getting information about constructors and operations is the
Browse component of HyperDoc. This is discussed in section 14 on page 931.

Use the )what system command to see lists of system objects whose name contain a particular
substring (uppercase or lowercase is not significant).

Issue this to see a list of all operations with “complex” in their names.

)what operation complex

Operations whose names satisfy the above pattern(s):

complex complex?

complexEigenvalues complexEigenvectors

complexElementary complexExpand

complexForm complexIntegrate

complexLimit complexNormalize

complexNumeric complexNumericIfCan

complexRoots complexSolve

complexZeros createLowComplexityNormalBasis

createLowComplexityTable doubleComplex?

drawComplex drawComplexVectorField

fortranComplex fortranDoubleComplex

pmComplexintegrate

To get more information about an operation such as

complexZeros, issue the command )display op complexZeros

If you want to see all domains with “matrix” in their names, issue this.

)what domain matrix

----------------------- Domains -----------------------

Domains with names matching patterns:

matrix

DHMATRIX DenavitHartenbergMatrix

DPMM DirectProductMatrixModule

IMATRIX IndexedMatrix

LSQM LieSquareMatrix

M3D ThreeDimensionalMatrix

MATCAT- MatrixCategory&
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MATRIX Matrix

RMATCAT- RectangularMatrixCategory&

RMATRIX RectangularMatrix

SMATCAT- SquareMatrixCategory&

SQMATRIX SquareMatrix

Similarly, if you wish to see all packages whose names contain “gauss”, enter this.

)what package gauss

---------------------- Packages -----------------------

Packages with names matching patterns:

gauss

GAUSSFAC GaussianFactorizationPackage

This command shows all the operations that Any provides. Wherever $ appears, it means
“Any”.

)show Any

Any is a domain constructor

Abbreviation for Any is ANY

This constructor is exposed in this frame.

Issue )edit /usr/local/axiom/mnt/algebra/any.spad

to see algebra source code for ANY

--------------------- Operations ----------------------

?=? : (%,%) -> Boolean

any : (SExpression,None) -> %

coerce : % -> OutputForm

dom : % -> SExpression

domainOf : % -> OutputForm

hash : % -> SingleInteger

latex : % -> String

obj : % -> None

objectOf : % -> OutputForm

?~=? : (%,%) -> Boolean

showTypeInOutput : Boolean -> String

This displays all operations with the name complex.

)display operation complex
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There is one exposed function called complex :

[1] (D1,D1) -> D from D if D has COMPCAT D1 and D1 has COMRING

Let’s analyze this output.

First we find out what some of the abbreviations mean.

)abbreviation query COMPCAT

COMPCAT abbreviates category ComplexCategory

)abbreviation query COMRING

COMRING abbreviates category CommutativeRing

So if D1 is a commutative ring (such as the integers or floats) and D belongs to Complex-

Category D1, then there is an operation called complex that takes two elements of D1 and
creates an element of D. The primary example of a constructor implementing domains be-
longing to ComplexCategory is Complex. See Complex 9.13 on page 447 for more information
on that and see section 6.4 on page 158 for more information on function types.
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Chapter 3

Using HyperDoc

Figure 3.1: The HyperDoc root window page.

HyperDoc is the gateway to Axiom. It’s both an on-line tutorial and an on-line reference
manual. It also enables you to use Axiom simply by using the mouse and filling in templates.
HyperDoc is available to you if you are running Axiom under the X Window System.

Pages usually have active areas, marked in this font (bold face). As you move the mouse

101
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pointer to an active area, the pointer changes from a filled dot to an open circle. The active
areas are usually linked to other pages. When you click on an active area, you move to the
linked page.

3.1 Headings

Most pages have a standard set of buttons at the top of the page. This is what they mean:

Click on this to get help. The button only appears if there is specific help for the
page you are viewing. You can get general help for HyperDoc by clicking the help
button on the home page.

Click here to go back one page. By clicking on this button repeatedly, you can go
back several pages and then take off in a new direction.

Go back to the home page, that is, the page on which you started. Use HyperDoc to
explore, to make forays into new topics. Don’t worry about how to get back. HyperDoc
remembers where you came from. Just click on this button to return.

From the root window (the one that is displayed when you start the system) this
button leaves the HyperDoc program, and it must be restarted if you want to use it
again. From any other HyperDoc window, it just makes that one window go away. You
must use this button to get rid of a window. If you use the window manager “Close”
button, then all of HyperDoc goes away.

The buttons are not displayed if they are not applicable to the page you are viewing. For

example, there is no button on the top-level menu.

3.2 Key Definitions

The following keyboard definitions are in effect throughout HyperDoc. See section 3.3 on
page 103 and section 3.4 on page 103 for some contextual key definitions.

F1 Display the main help page.

F3 Same as , makes the window go away if you are not at the top-level window or
quits the HyperDoc facility if you are at the top-level.

F5 Rereads the HyperDoc database, if necessary (for system developers).

F9 Displays this information about key definitions.

F12 Same as F3.
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Up Arrow Scroll up one line.

Down Arrow Scroll down one line.

Page Up Scroll up one page.

Page Down Scroll down one page.

3.3 Scroll Bars

Whenever there is too much text to fit on a page, a scroll bar automatically appears along
the right side.

With a scroll bar, your page becomes an aperture, that is, a window into a larger amount
of text than can be displayed at one time. The scroll bar lets you move up and down in the
text to see different parts. It also shows where the aperture is relative to the whole text.
The aperture is indicated by a strip on the scroll bar.

Move the cursor with the mouse to the “down-arrow” at the bottom of the scroll bar and
click. See that the aperture moves down one line. Do it several times. Each time you click,
the aperture moves down one line. Move the mouse to the “up-arrow” at the top of the
scroll bar and click. The aperture moves up one line each time you click.

Next move the mouse to any position along the middle of the scroll bar and click. HyperDoc
attempts to move the top of the aperture to this point in the text.

You cannot make the aperture go off the bottom edge. When the aperture is about half the
size of text, the lowest you can move the aperture is halfway down.

To move up or down one screen at a time, use the PageUp and PageDown keys on

your keyboard. They move the visible part of the region up and down one page each time
you press them.

If the HyperDoc page does not contain an input area (see section 3.4 on page 103, you can

also use the Home and ↑ and ↓ arrow keys to navigate. When you press the Home

key, the screen is positioned at the very top of the page. Use the ↑ and ↓ arrow keys to

move the screen up and down one line at a time, respectively.

3.4 Input Areas

Input areas are boxes where you can put data.

To enter characters, first move your mouse cursor to somewhere within the HyperDoc page.
Characters that you type are inserted in front of the underscore. This means that when you
type characters at your keyboard, they go into this first input area.

The input area grows to accommodate as many characters as you type. Use the Backspace

key to erase characters to the left. To modify what you type, use the right-arrow → and
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left-arrow keys ← and the keys Insert , Delete , Home and End . These keys are
found immediately on the right of the standard IBM keyboard.

If you press the Home key, the cursor moves to the beginning of the line and if you press

the End key, the cursor moves to the end of the line. Pressing Ctrl – End deletes all
the text from the cursor to the end of the line.

A page may have more than one input area. Only one input area has an underscore cursor.
When you first see apage, the top-most input area contains the cursor. To type information

into another input area, use the Enter or Tab key to move from one input area to

xanother. To move in the reverse order, use Shift – Tab .

You can also move from one input area to another using your mouse. Notice that each input
area is active. Click on one of the areas. As you can see, the underscore cursor moves to
that window.

3.5 Radio Buttons and Toggles

Some pages have radio buttons and toggles. Radio buttons are a group of buttons like those
on car radios: you can select only one at a time.

Once you have selected a button, it appears to be inverted and contains a checkmark. To
change the selection, move the cursor with the mouse to a different radio button and click.

A toggle is an independent button that displays some on/off state. When “on”, the button
appears to be inverted and contains a checkmark. When “off”, the button is raised.

Unlike radio buttons, you can set a group of them any way you like. To change toggle the
selection, move the cursor with the mouse to the button and click.

3.6 Search Strings

A search string is used for searching some database. To learn about search strings, we suggest
that you bring up the HyperDoc glossary. To do this from the top-level page of HyperDoc:

1. Click on Reference, bringing up the Axiom Reference page.

2. Click on Glossary, bringing up the glossary.

The glossary has an input area at its bottom. We review the various kinds of search strings
you can enter to search the glossary.

The simplest search string is a word, for example, operation. A word only matches an entry
having exactly that spelling. Enter the word operation into the input area above then click
on Search. As you can see, operation matches only one entry, namely with operation

itself.

Normally matching is insensitive to whether the alphabetic characters of your search string
are in uppercase or lowercase. Thus operation and OperAtion both have the same effect.
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You will very often want to use the wildcard “*” in your search string so as to match multiple
entries in the list. The search key “*” matches every entry in the list. You can also use “*”
anywhere within a search string to match an arbitrary substring. Try “cat*” for example:
enter “cat*” into the input area and click on Search. This matches several entries.

You use any number of wildcards in a search string as long as they are not adjacent. Try
search strings such as “*dom*”. As you see, this search string matches “domain”, “domain
constructor”, “subdomain”, and so on.

Logical Searches

For more complicated searches, you can use “and”, “or”, and “not” with basic search strings;
write logical expressions using these three operators just as in the Axiom language. For ex-
ample, domain or package matches the two entries domain and package. Similarly, “dom*
and *con*” matches “domain constructor” and others. Also “not *a*” matches every
entry that does not contain the letter “a” somewhere.

Use parentheses for grouping. For example, “dom* and (not *con*)” matches “domain”
but not “domain constructor”.

There is no limit to how complex your logical expression can be. For example,

a* or b* or c* or d* or e* and (not *a*)

is a valid expression.

3.7 Example Pages

Many pages have Axiom example commands.

Each command has an active “button” along the left margin. When you click on this button,
the output for the command is “pasted-in.” Click again on the button and you see that the
pasted-in output disappears.

Maybe you would like to run an example? To do so, just click on any part of its text! When
you do, the example line is copied into a new interactive Axiom buffer for this HyperDoc
page.

Sometimes one example line cannot be run before you run an earlier one. Don’t worry—
HyperDoc automatically runs all the necessary lines in the right order!

The new interactive Axiom buffer disappears when you leave HyperDoc. If you want to get
rid of it beforehand, use the Cancel button of the X Window manager or issue the Axiom
system command )close.
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3.8 X Window Resources for HyperDoc

You can control the appearance of HyperDoc while running under Version 11 of the X
Window System by placing the following resources in the file .Xdefaults in your home
directory. In what follows, font is any valid X11 font name (for example, Rom14) and color
is any valid X11 color specification (for example, NavyBlue). For more information about
fonts and colors, refer to the X Window documentation for your system.

Axiom.hyperdoc.RmFont: font
This is the standard text font. The default value is Rom14

Axiom.hyperdoc.RmColor: color
This is the standard text color. The default value is black

Axiom.hyperdoc.ActiveFont: font
This is the font used for HyperDoc link buttons. The default value is Bld14

Axiom.hyperdoc.ActiveColor: color
This is the color used for HyperDoc link buttons. The default value is black

Axiom.hyperdoc.AxiomFont: font
This is the font used for active Axiom commands. The default value is Bld14

Axiom.hyperdoc.AxiomColor: color
This is the color used for active Axiom commands. The default value is black

Axiom.hyperdoc.BoldFont: font
This is the font used for bold face. The default value is Bld14

Axiom.hyperdoc.BoldColor: color
This is the color used for bold face. The default value is black

Axiom.hyperdoc.TtFont: font
This is the font used for Axiom output in HyperDoc. This font must be fixed-width.
The default value is Rom14

Axiom.hyperdoc.TtColor: color
This is the color used for Axiom output in HyperDoc. The default value is black

Axiom.hyperdoc.EmphasizeFont: font
This is the font used for italics. The default value is Itl14

Axiom.hyperdoc.EmphasizeColor: color
This is the color used for italics. The default value is black

Axiom.hyperdoc.InputBackground: color
This is the color used as the background for input areas. The default value is black

Axiom.hyperdoc.InputForeground: color
This is the color used as the foreground for input areas. The default value is white
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Axiom.hyperdoc.BorderColor: color
This is the color used for drawing border lines. The default value is black

Axiom.hyperdoc.Background: color
This is the color used for the background of all windows. The default value is white
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Chapter 4

Input Files and Output Styles

In this chapter we discuss how to collect Axiom statements and commands into files and
then read the contents into the workspace. We also show how to display the results of
your computations in several different styles including TEX, FORTRAN and monospace
two-dimensional format.1

The printed version of this book uses the Axiom TEX output formatter. When we demon-
strate a particular output style, we will need to turn TEX formatting off and the output style
on so that the correct output is shown in the text.

4.1 Input Files

In this section we explain what an input file is and why you would want to know about it.
We discuss where Axiom looks for input files and how you can direct it to look elsewhere.
We also show how to read the contents of an input file into the workspace and how to use
the history facility to generate an input file from the statements you have entered directly
into the workspace.

An input file contains Axiom expressions and system commands. Anything that you can
enter directly to Axiom can be put into an input file. This is how you save input functions
and expressions that you wish to read into Axiom more than one time.

To read an input file into Axiom, use the )read system command. For example, you can
read a file in a particular directory by issuing

)read /spad/src/input/matrix.input

The “.input” is optional; this also works:

)read /spad/src/input/matrix

1TEX is a trademark of the American Mathematical Society.
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What happens if you just enter )read matrix.input or even )read matrix? Axiom looks
in your current working directory for input files that are not qualified by a directory name.
Typically, this directory is the directory from which you invoked Axiom.

To change the current working directory, use the )cd system command. The command )cd

by itself shows the current working directory. To change it to the src/input subdirectory
for user “babar”, issue

)cd /u/babar/src/input

Axiom looks first in this directory for an input file. If it is not found, it looks in the system’s
directories, assuming you meant some input file that was provided with Axiom.

If you have the Axiom history facility turned on (which it is by default), you
can save all the lines you have entered into the workspace by entering
)history )write
Axiom tells you what input file to edit to see your statements. The file is in
your home directory or in the directory you specified with )cd.

In section 5.2 on page 123 we discuss using indentation in input files to group statements
into blocks.

4.2 The .axiom.input File

When Axiom starts up, it tries to read the input file .axiom.input2 from your home direc-
tory. It there is no .axiom.input in your home directory, it reads the copy located in its
own src/input directory. The file usually contains system commands to personalize your
Axiom environment. In the remainder of this section we mention a few things that users
frequently place in their .axiom.input files.

In order to have FORTRAN output always produced from your computations, place the
system command )set output fortran on in .axiom.input. If you do not want to be
prompted for confirmation when you issue the )quit system command, place )set quit

unprotected in .axiom.input.

If you then decide that you do want to be prompted, issue )set quit protected. This is
the default setting so that new users do not leave Axiom inadvertently.3

To see the other system variables you can set, issue )set or use the HyperDoc Settings
facility to view and change Axiom system variables.

2.axiom.input used to be called axiom.input in the NAG version
3The system command )pquit always prompts you for confirmation.
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4.3 Common Features of Using Output Formats

In this section we discuss how to start and stop the display of the different output formats
and how to send the output to the screen or to a file. To fix ideas, we use FORTRAN output
format for most of the examples.

You can use the )set output system command to toggle or redirect the different kinds of
output. The name of the kind of output follows “output” in the command. The names are

fortran for FORTRAN output.
algebra for monospace two-dimensional mathematical output.
tex for TEX output.
script for IBM Script Formula Format output.

For example, issue )set output fortran on to turn on FORTRAN format and issue )set
output fortran off to turn it off. By default, algebra is on and all others are off. When
output is started, it is sent to the screen. To send the output to a file, give the file name
without directory or extension. Axiom appends a file extension depending on the kind of
output being produced.

Issue this to redirect FORTRAN output to, for example, the file linalg.sfort.

)set output fortran linalg

FORTRAN output will be written to file linalg.sfort .

You must also turn on the creation of FORTRAN output. The above just says where it goes
if it is created.

)set output fortran on

In what directory is this output placed? It goes into the directory from which you started
Axiom, or if you have used the )cd system command, the one that you specified with )cd.
You should use )cd before you send the output to the file.

You can always direct output back to the screen by issuing this.

)set output fortran console

Let’s make sure FORTRAN formatting is off so that nothing we do from now on produces
FORTRAN output.

)set output fortran off

We also delete the demonstrated output file we created.

)system rm linalg.sfort
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You can abbreviate the words “on,” “off,” and “console” to the minimal number of char-
acters needed to distinguish them. Because of this, you cannot send output to files called
on.sfort, off.sfort, of.sfort, console.sfort, consol.sfort and so on.

The width of the output on the page is set by )set output length for all formats except
FORTRAN. Use )set fortran fortlength to change the FORTRAN line length from its
default value of 72.

4.4 Monospace Two-Dimensional Mathematical Format

This is the default output format for Axiom. It is usually on when you start the system.

If it is not, issue this.

)set output algebra on

Since the printed version of this book (as opposed to the HyperDoc version) shows output
produced by the TEX output formatter, let us temporarily turn off TEX output.

)set output tex off

Here is an example of what it looks like.

matrix [ [i*x**i + j*%i*y**j for i in 1..2] for j in 3..4]

+ 3 3 2+

|3%i y + x 3%i y + 2x |

(1) | |

| 4 4 2|

+4%i y + x 4%i y + 2x +

Type: Matrix Polynomial Complex Integer

Issue this to turn off this kind of formatting.

)set output algebra off

Turn TEX output on again.

)set output tex on

The characters used for the matrix brackets above are rather ugly. You get this character set
when you issue )set output characters plain. This character set should be used when
you are running on a machine that does not support the IBM extended ASCII character set.
If you are running on an IBM workstation, for example, issue )set output characters

default to get better looking output.
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4.5 TeX Format

Axiom can produce TEX output for your expressions. The output is produced using macros
from the LATEX document preparation system by Leslie Lamport[1]. The printed version of
this book was produced using this formatter.

To turn on TEX output formatting, issue this.

)set output tex on

Here is an example of its output.

matrix [ [i*x**i + j*\%i*y**j for i in 1..2] for j in 3..4]

$$

\left[

\begin{array}{cc}

{{3 \ i \ {y \sp 3}}+x} &

{{3 \ i \ {y \sp 3}}+{2 \ {x \sp 2}}} \\

{{4 \ i \ {y \sp 4}}+x} &

{{4 \ i \ {y \sp 4}}+{2 \ {x \sp 2}}}

\end{array}

\right]

$$

This formats as [
3 i y3 + x 3 i y3 + 2 x2

4 i y4 + x 4 i y4 + 2 x2

]
To turn TEX output formatting off, issue )set output tex off. The LATEXmacros in the
output generated by Axiom are all standard except for the following definitions:

\def\csch{\mathop{\rm csch}\nolimits}

\def\erf{\mathop{\rm erf}\nolimits}

\def\zag#1#2{

{\frac{\hfill \left. {#1} \right|}{\left| {#2} \right. \hfill}

}

}

4.6 IBM Script Formula Format

Axiom can produce IBM Script Formula Format output for your expressions.

To turn IBM Script Formula Format on, issue this.
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)set output script on

Here is an example of its output.

matrix [ [i*x**i + j*%i*y**j for i in 1..2] for j in 3..4]

.eq set blank @

:df.

<left lb < < < <3 @@ %i @@ <y sup 3> >+x> here < <3 @@ %i @@

<y sup 3> >+<2 @@ <x sup 2> > > > habove < < <4 @@ %i @@

<y sup 4> >+x> here < <4 @@ %i @@ <y sup 4> >+<2 @@

<x up 2> > > > > right rb>

:edf.

To turn IBM Script Formula Format output formatting off, issue this.

)set output script off

4.7 FORTRAN Format

In addition to turning FORTRAN output on and off and stating where the output should
be placed, there are many options that control the appearance of the generated code. In
this section we describe some of the basic options. Issue )set fortran to see a full list with
their current settings.

The output FORTRAN expression usually begins in column 7. If the expression needs
more than one line, the ampersand character & is used in column 6. Since some versions
of FORTRAN have restrictions on the number of lines per statement, Axiom breaks long
expressions into segments with a maximum of 1320 characters (20 lines of 66 characters)
per segment. If you want to change this, say, to 660 characters, issue the system command
)set fortran explength 660. You can turn off the line breaking by issuing )set fortran

segment off. Various code optimization levels are available.

FORTRAN output is produced after you issue this.

)set output fortran on

For the initial examples, we set the optimization level to 0, which is the lowest level.

)set fortran optlevel 0

The output is usually in columns 7 through 72, although fewer columns are used in the
following examples so that the output fits nicely on the page.

)set fortran fortlength 60
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By default, the output goes to the screen and is displayed before the standard Axiom two-
dimensional output. In this example, an assignment to the variable R1 was generated because
this is the result of step 1.

(x+y)**3

R1=y**3+3*x*y*y+3*x*x*y+x**3

y3 + 3 x y2 + 3 x2 y + x3

Type: Polynomial Integer

Here is an example that illustrates the line breaking.

(x+y+z)**3

R2=z**3+(3*y+3*x)*z*z+(3*y*y+6*x*y+3*x*x)*z+y**3+3*x*y

&*y+3*x*x*y+x**3

z3 + (3 y + 3 x) z2 +
(
3 y2 + 6 x y + 3 x2

)
z + y3 + 3 x y2 + 3 x2 y + x3

Type: Polynomial Integer

Note in the above examples that integers are generally converted to floating point numbers,
except in exponents. This is the default behavior but can be turned off by issuing )set

fortran ints2floats off. The rules governing when the conversion is done are:

1. If an integer is an exponent, convert it to a floating point number if it is greater than
32767 in absolute value, otherwise leave it as an integer.

2. Convert all other integers in an expression to floating point numbers.

These rules only govern integers in expressions.
Numbers generated by Axiom for DIMENSION statements are also integers.

To set the type of generated FORTRAN data, use one of the following:

)set fortran defaulttype REAL

)set fortran defaulttype INTEGER

)set fortran defaulttype COMPLEX

)set fortran defaulttype LOGICAL

)set fortran defaulttype CHARACTER

When temporaries are created, they are given a default type of REAL. Also, the REAL versions
of functions are used by default.
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sin(x)

R3=DSIN(x)

sin (x)

Type: Expression Integer

At optimization level 1, Axiom removes common subexpressions.

)set fortran optlevel 1

(x+y+z)**3

T2=y*y

T3=x*x

R4=z**3+(3*y+3*x)*z*z+(3*T2+6*x*y+3*T3)*z+y**3+3*x*T2+

&3*T3*y+x**3

z3 + (3 y + 3 x) z2 +
(
3 y2 + 6 x y + 3 x2

)
z + y3 + 3 x y2 + 3 x2 y + x3

Type: Polynomial Integer

This changes the precision to DOUBLE. Substitute single for double to return to single
precision.

)set fortran precision double

Complex constants display the precision.

2.3 + 5.6*%i

R5=(2.3D0,5.6D0)

2.3 + 5.6 i

Type: Complex Float

The function names that Axiom generates depend on the chosen precision.

sin %e
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R6=DSIN(DEXP(1))

sin (e)

Type: Expression Integer

Reset the precision to single and look at these two examples again.

)set fortran precision single

2.3 + 5.6*%i

R7=(2.3,5.6)

2.3 + 5.6 i

Type: Complex Float

sin %e

R8=SIN(EXP(1))

sin (e)

Type: Expression Integer

Expressions that look like lists, streams, sets or matrices cause array code to be generated.

[x+1,y+1,z+1]

T1(1)=x+1

T1(2)=y+1

T1(3)=z+1

R9=T1

[x+ 1, y + 1, z + 1]

Type: List Polynomial Integer

A temporary variable is generated to be the name of the array. This may have to be changed
in your particular application.
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set[2,3,4,3,5]

T1(1)=2

T1(2)=3

T1(3)=4

T1(4)=5

R10=T1

{2, 3, 4, 5}

Type: Set PositiveInteger

By default, the starting index for generated FORTRAN arrays is 0.

matrix [ [2.3,9.7],[0.0,18.778] ]

T1(0,0)=2.3

T1(0,1)=9.7

T1(1,0)=0.0

T1(1,1)=18.778

T1 [
2.3 9.7
0.0 18.778

]
Type: Matrix Float

To change the starting index for generated FORTRAN arrays to be 1, issue this. This value
can only be 0 or 1.

)set fortran startindex 1

Look at the code generated for the matrix again.

matrix [ [2.3,9.7],[0.0,18.778] ]

T1(1,1)=2.3

T1(1,2)=9.7

T1(2,1)=0.0

T1(2,2)=18.778

T1 [
2.3 9.7
0.0 18.778

]
Type: Matrix Float



Chapter 5

Overview of Interactive
Language

In this chapter we look at some of the basic components of the Axiom language that you can
use interactively. We show how to create a block of expressions, how to form loops and list
iterations, how to modify the sequential evaluation of a block and how to use if-then-else
to evaluate parts of your program conditionally. We suggest you first read the boxed material
in each section and then proceed to a more thorough reading of the chapter.

5.1 Immediate and Delayed Assignments

A variable in Axiom refers to a value. A variable has a name beginning with an uppercase or
lowercase alphabetic character, “%”, or “!”. Successive characters (if any) can be any of the
above, digits, or “?”. Case is distinguished. The following are all examples of valid, distinct
variable names:

a tooBig? a1B2c3%!?

A %j numberOfPoints

beta6 %J numberofpoints

The “:=” operator is the immediate assignment operator. Use it to associate a value with a
variable.

The syntax for immediate assignment for a single variable is

variable := expression

The value returned by an immediate assignment is the value of expression.

119
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The right-hand side of the expression is evaluated, yielding 1. This value is then assigned to
a.

a := 1

1

Type: PositiveInteger

The right-hand side of the expression is evaluated, yielding 1. This value is then assigned to
b. Thus a and b both have the value 1 after the sequence of assignments.

b := a

1

Type: PositiveInteger

What is the value of b if a is assigned the value 2?

a := 2

2

Type: PositiveInteger

As you see, the value of b is left unchanged.

b

1

Type: PositiveInteger

This is what we mean when we say this kind of assignment is immediate; b has no depen-
dency on a after the initial assignment. This is the usual notion of assignment found in
programming languages such as C, PASCAL and FORTRAN.

Axiom provides delayed assignment with “==”. This implements a delayed evaluation of the
right-hand side and dependency checking.

The syntax for delayed assignment is

variable == expression

The value returned by a delayed assignment is the unique value of Void.
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Using a and b as above, these are the corresponding delayed assignments.

a == 1

Type: Void

b == a

Type: Void

The right-hand side of each delayed assignment is left unevaluated until the variables on the
left-hand sides are evaluated. Therefore this evaluation and . . .

a

Compiling body of rule a to compute value of type PositiveInteger

1

Type: PositiveInteger

this evaluation seem the same as before.

b

Compiling body of rule b to compute value of type PositiveInteger

1

Type: PositiveInteger

If we change a to 2

a == 2

Compiled code for a has been cleared.

Compiled code for b has been cleared.

1 old definition(s) deleted for function or rule a

Type: Void



122 CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

then a evaluates to 2, as expected, but

a

Compiling body of rule a to compute value of type PositiveInteger

+++ |*0;a;1;G82322| redefined

2

Type: PositiveInteger

the value of b reflects the change to a.

b

Compiling body of rule b to compute value of type PositiveInteger

+++ |*0;b;1;G82322| redefined

2

Type: PositiveInteger

It is possible to set several variables at the same time by using a tuple of variables and a
tuple of expressions. Note that a tuple is a collection of things separated by commas, often
surrounded by parentheses.

The syntax for multiple immediate assignments is

( var1, var2, ..., varN ) := ( expr1, expr2, ..., exprN )

The value returned by an immediate assignment is the value of exprN .

This sets x to 1 and y to 2.

(x,y) := (1,2)

2

Type: PositiveInteger

Multiple immediate assigments are parallel in the sense that the expressions on the right are
all evaluated before any assignments on the left are made. However, the order of evaluation
of these expressions is undefined.

You can use multiple immediate assignment to swap the values held by variables.
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(x,y) := (y,x)

1

Type: PositiveInteger

x has the previous value of y.

x

2

Type: PositiveInteger

y has the previous value of x.

y

1

Type: PositiveInteger

There is no syntactic form for multiple delayed assignments. See the discussion in section 6.8
on page 165 about how Axiom differentiates between delayed assignments and user functions
of no arguments.

5.2 Blocks

A block is a sequence of expressions evaluated in the order that they appear, except as modi-
fied by control expressions such as break, return, iterate and if-then-else constructions.
The value of a block is the value of the expression last evaluated in the block.

To leave a block early, use “=>”. For example, i < 0 => x. The expression before the “=>”
must evaluate to true or false. The expression following the “=>” is the return value for
the block.

A block can be constructed in two ways:

1. the expressions can be separated by semicolons and the resulting expression surrounded
by parentheses, and

2. the expressions can be written on succeeding lines with each line indented the same
number of spaces (which must be greater than zero). A block entered in this form is
called a pile.
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Only the first form is available if you are entering expressions directly to Axiom. Both forms
are available in .input files.

The syntax for a simple block of expressions entered interactively is

( expression1; expression2; ...; expressionN )

The value returned by a block is the value of an => expression, or expressionN
if no => is encountered.

In .input files, blocks can also be written using piles. The examples throughout this book
are assumed to come from .input files.

In this example, we assign a rational number to a using a block consisting of three expressions.
This block is written as a pile. Each expression in the pile has the same indentation, in this
case two spaces to the right of the first line.

a :=

i := gcd(234,672)

i := 3*i**5 - i + 1

1 / i

1

23323

Type: Fraction Integer

Here is the same block written on one line. This is how you are required to enter it at the
input prompt.

a := (i := gcd(234,672); i := 3*i**5 - i + 1; 1 / i)

1

23323

Type: Fraction Integer

Blocks can be used to put several expressions on one line. The value returned is that of the
last expression.

(a := 1; b := 2; c := 3; [a,b,c])

[1, 2, 3]

Type: List PositiveInteger
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Axiom gives you two ways of writing a block and the preferred way in an .input file is to
use a pile. Roughly speaking, a pile is a block whose constituent expressions are indented
the same amount. You begin a pile by starting a new line for the first expression, indenting
it to the right of the previous line. You then enter the second expression on a new line,
vertically aligning it with the first line. And so on. If you need to enter an inner pile, further
indent its lines to the right of the outer pile. Axiom knows where a pile ends. It ends when
a subsequent line is indented to the left of the pile or the end of the file.

Blocks can be used to perform several steps before an assignment (immediate or delayed) is
made.

d :=

c := a**2 + b**2

sqrt(c * 1.3)

2.549509756796392415

Type: Float

Blocks can be used in the arguments to functions. (Here h is assigned 2.1 + 3.5.)

h := 2.1 +

1.0

3.5

5.6

Type: Float

Here the second argument to eval is x = z, where the value of z is computed in the first line
of the block starting on the second line.

eval(x**2 - x*y**2,

z := %pi/2.0 - exp(4.1)

x = z

)

58.769491270567072878 y2 + 3453.853104201259382

Type: Polynomial Float

Blocks can be used in the clauses of if-then-else expressions (see section 5.3 on page 127).

if h > 3.1 then 1.0 else (z := cos(h); max(z,0.5))

1.0



126 CHAPTER 5. OVERVIEW OF INTERACTIVE LANGUAGE

Type: Float

This is the pile version of the last block.

if h > 3.1 then

1.0

else

z := cos(h)

max(z,0.5)

1.0

Type: Float

Blocks can be nested.

a := (b := factorial(12); c := (d := eulerPhi(22); factorial(d));b+c)

482630400

Type: PositiveInteger

This is the pile version of the last block.

a :=

b := factorial(12)

c :=

d := eulerPhi(22)

factorial(d)

b+c

482630400

Type: PositiveInteger

Since c+ d does equal 3628855, a has the value of c and the last line is never evaluated.

a :=

c := factorial 10

d := fibonacci 10

c + d = 3628855 => c

d

3628800

Type: PositiveInteger
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5.3 if-then-else

Like many other programming languages, Axiom uses the three keywords if, then and
else to form conditional expressions. The else part of the conditional is optional. The
expression between the if and then keywords is a predicate: an expression that evaluates to
or is convertible to either true or false, that is, a Boolean.

The syntax for conditional expressions is

if predicate then expression1 else expression2

where the else expression2 part is optional. The value returned from a
conditional expression is expression1 if the predicate evaluates to true and
expression2 otherwise. If no else clause is given, the value is always the
unique value of Void.

An if-then-else expression always returns a value. If the else clause is missing then the
entire expression returns the unique value of Void. If both clauses are present, the type of
the value returned by if is obtained by resolving the types of the values of the two clauses.
See section 2.10 on page 93 for more information.

The predicate must evaluate to, or be convertible to, an object of type Boolean: true or
false. By default, the equal sign “=” creates an equation.

This is an equation. In particular, it is an object of type Equation Polynomial Integer.

x + 1 = y

x+ 1 = y

Type: Equation Polynomial Integer

However, for predicates in if expressions, Axiom places a default target type of Boolean
on the predicate and equality testing is performed. Thus you need not qualify the “=” in
any way. In other contexts you may need to tell Axiom that you want to test for equality
rather than create an equation. In those cases, use “@” and a target type of Boolean. See
section 2.9 on page 89 for more information.

The compound symbol meaning “not equal” in Axiom is “∼=”. This can be used directly
without a package call or a target specification. The expression a ∼= b is directly translated
into not(a = b).

Many other functions have return values of type Boolean. These include “<”, “<=”, “>”,
“>=”, “∼=” and “member?”. By convention, operations with names ending in “?” return
Boolean values.

The usual rules for piles are suspended for conditional expressions. In .input files, the then
and else keywords can begin in the same column as the corresponding if but may also
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appear to the right. Each of the following styles of writing if-then-else expressions is
acceptable:

if i>0 then output("positive") else output("nonpositive")

if i > 0 then output("positive")

else output("nonpositive")

if i > 0 then output("positive")

else output("nonpositive")

if i > 0

then output("positive")

else output("nonpositive")

if i > 0

then output("positive")

else output("nonpositive")

A block can follow the then or else keywords. In the following two assignments to a, the
then and else clauses each are followed by two-line piles. The value returned in each is the
value of the second line.

a :=

if i > 0 then

j := sin(i * pi())

exp(j + 1/j)

else

j := cos(i * 0.5 * pi())

log(abs(j)**5 + 1)

a :=

if i > 0

then

j := sin(i * pi())

exp(j + 1/j)

else

j := cos(i * 0.5 * pi())

log(abs(j)**5 + 1)

These are both equivalent to the following:

a :=

if i > 0 then (j := sin(i * pi()); exp(j + 1/j))

else (j := cos(i * 0.5 * pi()); log(abs(j)**5 + 1))
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5.4 Loops

A loop is an expression that contains another expression, called the loop body, which is to be
evaluated zero or more times. All loops contain the repeat keyword and return the unique
value of Void. Loops can contain inner loops to any depth.

The most basic loop is of the form

repeat loopBody

Unless loopBody contains a break or return expression, the loop repeats
forever. The value returned by the loop is the unique value of Void.

Compiling vs. Interpreting Loops

Axiom tries to determine completely the type of every object in a loop and then to translate
the loop body to LISP or even to machine code. This translation is called compilation.

If Axiom decides that it cannot compile the loop, it issues a message stating the problem
and then the following message:

We will attempt to step through and interpret the code.

It is still possible that Axiom can evaluate the loop but in interpret-code mode. See sec-
tion 6.10 on page 168 where this is discussed in terms of compiling versus interpreting
functions.

return in Loops

A return expression is used to exit a function with a particular value. In particular, if
a return is in a loop within the function, the loop is terminated whenever the return is
evaluated.

Suppose we start with this.

f() ==

i := 1

repeat

if factorial(i) > 1000 then return i

i := i + 1

Type: Void

When factorial(i) is big enough, control passes from inside the loop all the way outside
the function, returning the value of i (or so we think).
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f()

Type: Void

What went wrong? Isn’t it obvious that this function should return an integer? Well, Axiom
makes no attempt to analyze the structure of a loop to determine if it always returns a value
because, in general, this is impossible. So Axiom has this simple rule: the type of the
function is determined by the type of its body, in this case a block. The normal value of a
block is the value of its last expression, in this case, a loop. And the value of every loop is
the unique value of Void! So the return type of f is Void.

There are two ways to fix this. The best way is for you to tell Axiom what the return type
of f is. You do this by giving f a declaration f:() -> Integer prior to calling for its value.
This tells Axiom: “trust me—an integer is returned.” We’ll explain more about this in the
next chapter. Another clumsy way is to add a dummy expression as follows.

Since we want an integer, let’s stick in a dummy final expression that is an integer and will
never be evaluated.

f() ==

i := 1

repeat

if factorial(i) > 1000 then return i

i := i + 1

0

Type: Void

When we try f again we get what we wanted. See section 6.15 on page 186 for more infor-
mation.

f()

Compiling function f with type () -> NonNegativeInteger

7

Type: PositiveInteger

break in Loops

The break keyword is often more useful in terminating a loop. A break causes control to
transfer to the expression immediately following the loop. As loops always return the unique
value of Void, you cannot return a value with break. That is, break takes no argument.

This example is a modification of the last example in the previous section 5.4 on page 129.
Instead of using return, we’ll use break.
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f() ==

i := 1

repeat

if factorial(i) > 1000 then break

i := i + 1

i

Compiled code for f has been cleared.

1 old definition(s) deleted for function or rule f

Type: Void

The loop terminates when factorial(i) gets big enough, the last line of the function
evaluates to the corresponding “good” value of i, and the function terminates, returning
that value.

f()

Compiling function f with type () -> PositiveInteger

+++ |*0;f;1;G82322| redefined

7

Type: PositiveInteger

You can only use break to terminate the evaluation of one loop. Let’s consider a loop within
a loop, that is, a loop with a nested loop. First, we initialize two counter variables.

(i,j) := (1, 1)

1

Type: PositiveInteger

Nested loops must have multiple break expressions at the appropriate nesting level. How
would you rewrite this so (i + j) > 10 is only evaluated once?

repeat

repeat

if (i + j) > 10 then break

j := j + 1

if (i + j) > 10 then break

i := i + 1

Type: Void
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break vs. => in Loop Bodies

Compare the following two loops:

i := 1 i := 1

repeat repeat

i := i + 1 i := i + 1

i > 3 => i if i > 3 then break

output(i) output(i)

In the example on the left, the values 2 and 3 for i are displayed but then the “=>” does
not allow control to reach the call to output again. The loop will not terminate until you
run out of space or interrupt the execution. The variable i will continue to be incremented
because the “=>” only means to leave the block, not the loop.

In the example on the right, upon reaching 4, the break will be executed, and both the
block and the loop will terminate. This is one of the reasons why both “=>” and break are
provided. Using a while clause (see below) with the “=>” lets you simulate the action of
break.

More Examples of break

Here we give four examples of repeat loops that terminate when a value exceeds a given
bound.

First, initialize i as the loop counter.

i := 0

0

Type: NonNegativeInteger

Here is the first loop. When the square of i exceeds 100, the loop terminates.

repeat

i := i + 1

if i**2 > 100 then break

Type: Void

Upon completion, i should have the value 11.

i

11



5.4. LOOPS 133

Type: NonNegativeInteger

Do the same thing except use “=>” instead an if-then expression.

i := 0

0

Type: NonNegativeInteger

repeat

i := i + 1

i**2 > 100 => break

Type: Void

i

11

Type: NonNegativeInteger

As a third example, we use a simple loop to compute n!.

(n, i, f) := (100, 1, 1)

1

Type: PositiveInteger

Use i as the iteration variable and f to compute the factorial.

repeat

if i > n then break

f := f * i

i := i + 1

Type: Void

Look at the value of f .

f
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93326215443944152681699238856266700490715968264381621468_

59296389521759999322991560894146397615651828625369792082_

7223758251185210916864000000000000000000000000

Type: PositiveInteger

Finally, we show an example of nested loops. First define a four by four matrix.

m := matrix [ [21,37,53,14], [8,-24,22,-16], [2,10,15,14], [26,33,55,-13] ]
21 37 53 14
8 −24 22 −16
2 10 15 14
26 33 55 −13


Type: Matrix Integer

Next, set row counter r and column counter c to 1. Note: if we were writing a function,
these would all be local variables rather than global workspace variables.

(r, c) := (1, 1)

1

Type: PositiveInteger

Also, let lastrow and lastcol be the final row and column index.

(lastrow, lastcol) := (nrows(m), ncols(m))

4

Type: PositiveInteger

Scan the rows looking for the first negative element. We remark that you can reformulate this
example in a better, more concise form by using a for clause with repeat. See section 5.4
on page 138 for more information.

repeat

if r > lastrow then break

c := 1

repeat

if c > lastcol then break

if elt(m,r,c) < 0 then

output [r, c, elt(m,r,c)]
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r := lastrow

break -- don’t look any further

c := c + 1

r := r + 1

[2,2,- 24]

Type: Void

iterate in Loops

Axiom provides an iterate expression that skips over the remainder of a loop body and
starts the next loop iteration.

We first initialize a counter.

i := 0

0

Type: NonNegativeInteger

Display the even integers from 2 to 5.

repeat

i := i + 1

if i > 5 then break

if odd?(i) then iterate

output(i)

2

4

Type: Void

while Loops

The repeat in a loop can be modified by adding one or more while clauses. Each clause
contains a predicate immediately following the while keyword. The predicate is tested before
the evaluation of the body of the loop. The loop body is evaluated whenever the predicates
in a while clause are all true.
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The syntax for a simple loop using while is

while predicate repeat loopBody

The predicate is evaluated before loopBody is evaluated. A while loop
terminates immediately when predicate evaluates to false or when a break

or return expression is evaluated in loopBody. The value returned by the
loop is the unique value of Void.

Here is a simple example of using while in a loop. We first initialize the counter.

i := 1

1

Type: PositiveInteger

The steps involved in computing this example are
(1) set i to 1,
(2) test the condition i < 1 and determine that it is not true, and
(3) do not evaluate the loop body and therefore do not display ”hello”.

while i < 1 repeat

output "hello"

i := i + 1

Type: Void

If you have multiple predicates to be tested use the logical and operation to separate them.
Axiom evaluates these predicates from left to right.

(x, y) := (1, 1)

1

Type: PositiveInteger

while x < 4 and y < 10 repeat

output [x,y]

x := x + 1

y := y + 2

[1,1]

[2,3]

[3,5]
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Type: Void

A break expression can be included in a loop body to terminate a loop even if the predicate
in any while clauses are not false.

(x, y) := (1, 1)

1

Type: PositiveInteger

This loop has multiple while clauses and the loop terminates before any one of their condi-
tions evaluates to false.

while x < 4 while y < 10 repeat

if x + y > 7 then break

output [x,y]

x := x + 1

y := y + 2

[1,1]

[2,3]

Type: Void

Here’s a different version of the nested loops that looked for the first negative element in a
matrix.

m := matrix [ [21,37,53,14], [8,-24,22,-16], [2,10,15,14], [26,33,55,-13] ]
21 37 53 14
8 −24 22 −16
2 10 15 14
26 33 55 −13


Type: Matrix Integer

Initialized the row index to 1 and get the number of rows and columns. If we were writing
a function, these would all be local variables.

r := 1

1

Type: PositiveInteger
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(lastrow, lastcol) := (nrows(m), ncols(m))

4

Type: PositiveInteger

Scan the rows looking for the first negative element.

while r <= lastrow repeat

c := 1 -- index of first column

while c <= lastcol repeat

if elt(m,r,c) < 0 then

output [r, c, elt(m,r,c)]

r := lastrow

break -- don’t look any further

c := c + 1

r := r + 1

[2,2,- 24]

Type: Void

for Loops

Axiom provides the for and in keywords in repeat loops, allowing you to iterate across
all elements of a list, or to have a variable take on integral values from a lower bound to
an upper bound. We shall refer to these modifying clauses of repeat loops as for clauses.
These clauses can be present in addition to while clauses. As with all other types of repeat
loops, break can be used to prematurely terminate the evaluation of the loop.

The syntax for a simple loop using for is

for iterator repeat loopBody

The iterator has several forms. Each form has an end test which is evaluated
before loopBody is evaluated. A for loop terminates immediately when the
end test succeeds (evaluates to true) or when a break or return expression
is evaluated in loopBody. The value returned by the loop is the unique value
of Void.

for i in n..m repeat

If for is followed by a variable name, the in keyword and then an integer segment of the form
n..m, the end test for this loop is the predicate i > m. The body of the loop is evaluated
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m − n + 1 times if this number is greater than 0. If this number is less than or equal to 0,
the loop body is not evaluated at all.

The variable i has the value n, n+1, ...,m for successive iterations of the loop body.The loop
variable is a local variable within the loop body: its value is not available outside the loop
body and its value and type within the loop body completely mask any outer definition of a
variable with the same name.

This loop prints the values of 103, 113, and 123:

for i in 10..12 repeat output(i**3)

1000

1331

1728

Type: Void

Here is a sample list.

a := [1,2,3]

[1, 2, 3]

Type: List PositiveInteger

Iterate across this list, using “.” to access the elements of a list and the “#” operation to
count its elements.

for i in 1..#a repeat output(a.i)

1

2

3

Type: Void

This type of iteration is applicable to anything that uses “.”. You can also use it with
functions that use indices to extract elements.

Define m to be a matrix.

m := matrix [ [1,2],[4,3],[9,0] ]
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4 3
9 0


Type: Matrix Integer

Display the rows of m.

for i in 1..nrows(m) repeat output row(m,i)

[1,2]

[4,3]

[9,0]

Type: Void

You can use iterate with for-loops.

Display the even integers in a segment.

for i in 1..5 repeat

if odd?(i) then iterate

output(i)

2

4

Type: Void

See Segment 9.80 on page 744.

for i in n..m by s repeat

By default, the difference between values taken on by a variable in loops such as for i in

n..m repeat ... is 1. It is possible to supply another, possibly negative, step value by
using the by keyword along with for and in. Like the upper and lower bounds, the step
value following the by keyword must be an integer. Note that the loop for i in 1..2 by 0

repeat output(i) will not terminate by itself, as the step value does not change the index
from its initial value of 1.

This expression displays the odd integers between two bounds.

for i in 1..5 by 2 repeat output(i)

1

3

5
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Type: Void

Use this to display the numbers in reverse order.

for i in 5..1 by -2 repeat output(i)

5

3

1

Type: Void

for i in n.. repeat

If the value after the “..” is omitted, the loop has no end test. A potentially infinite loop
is thus created. The variable is given the successive values n, n+ 1, n+ 2, ... and the loop is
terminated only if a break or return expression is evaluated in the loop body. However you
may also add some other modifying clause on the repeat (for example, a while clause) to
stop the loop.

This loop displays the integers greater than or equal to 15 and less than the first prime
greater than 15.

for i in 15.. while not prime?(i) repeat output(i)

15

16

Type: Void

for x in l repeat

Another variant of the for loop has the form:

for x in list repeat loopBody

This form is used when you want to iterate directly over the elements of a list. In this form
of the for loop, the variable x takes on the value of each successive element in l. The end
test is most simply stated in English: “are there no more x in l?”

If l is this list,

l := [0,-5,3]
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[0,−5, 3]

Type: List Integer

display all elements of l, one per line.

for x in l repeat output(x)

0

- 5

3

Type: Void

Since the list constructing expression expand[n..m] creates the list [n, n+ 1, ...,m]. Note
that this list is empty if n > m. You might be tempted to think that the loops

for i in n..m repeat output(i)

and

for x in expand [n..m] repeat output(x)

are equivalent. The second form first creates the list expand[n..m] (no matter how large it
might be) and then does the iteration. The first form potentially runs in much less space, as
the index variable i is simply incremented once per loop and the list is not actually created.
Using the first form is much more efficient.

Of course, sometimes you really want to iterate across a specific list. This displays each of
the factors of 2400000.

for f in factors(factor(2400000)) repeat output(f)

[factor= 2,exponent= 8]

[factor= 3,exponent= 1]

[factor= 5,exponent= 5]

Type: Void

“Such that” Predicates

A for loop can be followed by a “|” and then a predicate. The predicate qualifies the use of
the values from the iterator following the for. Think of the vertical bar “|” as the phrase
“such that.”

This loop expression prints out the integers n in the given segment such that n is odd.
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for n in 0..4 | odd? n repeat output n

1

3

Type: Void

A for loop can also be written

for iterator | predicate repeat loopBody

which is equivalent to:

for iterator repeat if predicate then loopBody else iterate

The predicate need not refer only to the variable in the for clause: any variable in an outer
scope can be part of the predicate.

In this example, the predicate on the inner for loop uses i from the outer loop and the j
from the for clause that it directly modifies.

for i in 1..50 repeat

for j in 1..50 | factorial(i+j) < 25 repeat

output [i,j]

[1,1]

[1,2]

[1,3]

[2,1]

[2,2]

[3,1]

Type: Void

Parallel Iteration

The last example of the previous section 5.4 on page 142 gives an example of nested iteration:
a loop is contained in another loop. Sometimes you want to iterate across two lists in parallel,
or perhaps you want to traverse a list while incrementing a variable.
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The general syntax of a repeat loop is

iterator1 iterator2 . . . iteratorN repeat loopBody

where each iterator is either a for or a while clause. The loop terminates
immediately when the end test of any iterator succeeds or when a break or
return expression is evaluated in loopBody. The value returned by the loop
is the unique value of Void.

Here we write a loop to iterate across two lists, computing the sum of the pairwise product
of elements. Here is the first list.

l := [1,3,5,7]

[1, 3, 5, 7]

Type: List PositiveInteger

And the second.

m := [100,200]

[100, 200]

Type: List PositiveInteger

The initial value of the sum counter.

sum := 0

0

Type: NonNegativeInteger

The last two elements of l are not used in the calculation because m has two fewer elements
than l.

for x in l for y in m repeat

sum := sum + x*y

Type: Void

Display the “dot product.”
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sum

700

Type: NonNegativeInteger

Next, we write a loop to compute the sum of the products of the loop elements with their
positions in the loop.

l := [2,3,5,7,11,13,17,19,23,29,31,37]

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]

Type: List PositiveInteger

The initial sum.

sum := 0

0

Type: NonNegativeInteger

Here looping stops when the list l is exhausted, even though the for i in 0.. specifies no
terminating condition.

for i in 0.. for x in l repeat sum := i * x

Type: Void

Display this weighted sum.

sum

407

Type: NonNegativeInteger

When “|” is used to qualify any of the for clauses in a parallel iteration, the variables in
the predicates can be from an outer scope or from a for clause in or to the left of a modified
clause.

This is correct:
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for i in 1..10 repeat

for j in 200..300 | odd? (i+j) repeat

output [i,j]

This is not correct since the variable j has not been defined outside the inner loop.

for i in 1..10 | odd? (i+j) repeat -- wrong, j not defined

for j in 200..300 repeat

output [i,j]

Mixing Loop Modifiers

This example shows that it is possible to mix several of the forms of repeat modifying
clauses on a loop.

for i in 1..10

for j in 151..160 | odd? j

while i + j < 160 repeat

output [i,j]

[1,151]

[3,153]

Type: Void

Here are useful rules for composing loop expressions:

1. while predicates can only refer to variables that are global (or in an outer scope) or
that are defined in for clauses to the left of the predicate.

2. A “such that” predicate (something following “|”) must directly follow a for clause
and can only refer to variables that are global (or in an outer scope) or defined in the
modified for clause or any for clause to the left.

5.5 Creating Lists and Streams with Iterators

All of what we did for loops in section 5.4 on page 129 can be transformed into expressions
that create lists and streams. The repeat, break or iterate words are not used but all the
other ideas carry over. Before we give you the general rule, here are some examples which
give you the idea.

This creates a simple list of the integers from 1 to 10.

list := [i for i in 1..10]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
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Type: List PositiveInteger

Create a stream of the integers greater than or equal to 1.

stream := [i for i in 1..]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .]

Type: Stream PositiveInteger

This is a list of the prime integers between 1 and 10, inclusive.

[i for i in 1..10 | prime? i]

[2, 3, 5, 7]

Type: List PositiveInteger

This is a stream of the prime integers greater than or equal to 1.

[i for i in 1.. | prime? i]

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .]

Type: Stream PositiveInteger

This is a list of the integers between 1 and 10, inclusive, whose squares are less than 700.

[i for i in 1..10 while i*i < 700]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Type: List PositiveInteger

This is a stream of the integers greater than or equal to 1 whose squares are less than 700.

[i for i in 1.. while i*i < 700]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .]

Type: Stream PositiveInteger

Here is the general rule.
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The general syntax of a collection is

[ collectExpression iterator1 iterator2 ...iteratorN ]

where each iteratori is either a for or a while clause. The loop terminates
immediately when the end test of any iteratori succeeds or when a return

expression is evaluated in collectExpression. The value returned by the
collection is either a list or a stream of elements, one for each iteration of
the collectExpression.

Be careful when you use while to create a stream. By default, Axiom tries to compute and
display the first ten elements of a stream. If the while condition is not satisfied quickly,
Axiom can spend a long (possibly infinite) time trying to compute the elements. Use )set

streams calculate to change the default to something else. This also affects the number
of terms computed and displayed for power series. For the purposes of this book, we have
used this system command to display fewer than ten terms.

Use nested iterators to create lists of lists which can then be given as an argument to matrix.

matrix [ [x**i+j for i in 1..3] for j in 10..12] x+ 10 x2 + 10 x3 + 10
x+ 11 x2 + 11 x3 + 11
x+ 12 x2 + 12 x3 + 12


Type: Matrix Polynomial Integer

You can also create lists of streams, streams of lists and streams of streams. Here is a stream
of streams.

[ [i/j for i in j+1..] for j in 1..][
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, . . .],

[
3
2 , 2,

5
2 , 3,

7
2 , 4,

9
2 , 5,

11
2 , 6, . . .

]
,[

4

3
,
5

3
, 2,

7

3
,
8

3
, 3,

10

3
,
11

3
, 4,

13

3
, . . .

]
,

[
5

4
,
3

2
,
7

4
, 2,

9

4
,
5

2
,
11

4
, 3,

13

4
,
7

2
, . . .

]
,

[
6

5
,
7

5
,
8

5
,
9

5
, 2,

11

5
,
12

5
,
13

5
,
14

5
, 3, . . .

]
,

[
7

6
,
4

3
,
3

2
,
5

3
,
11

6
, 2,

13

6
,
7

3
,
5

2
,
8

3
, . . .

]
,

[
8

7
,
9

7
,
10

7
,
11

7
,
12

7
,
13

7
, 2,

15

7
,
16

7
,
17

7
, . . .

]
,

[
9

8
,
5

4
,
11

8
,
3

2
,
13

8
,
7

4
,
15

8
, 2,

17

8
,
9

4
, . . .

]
,

[
10

9
,
11

9
,
4

3
,
13

9
,
14

9
,
5

3
,
16

9
,
17

9
, 2,

19

9
, . . .

]
,

[
11

10
,
6

5
,
13

10
,
7

5
,
3

2
,
8

5
,
17

10
,
9

5
,
19

10
, 2, . . .

]
, . . .

]
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Type: Stream Stream Fraction Integer

You can use parallel iteration across lists and streams to create new lists.

[i/j for i in 3.. by 10 for j in 2..]

[
3

2
,
13

3
,
23

4
,
33

5
,
43

6
,
53

7
,
63

8
,
73

9
,
83

10
,
93

11
, . . .

]
Type: Stream Fraction Integer

Iteration stops if the end of a list or stream is reached.

[i**j for i in 1..7 for j in 2.. ]

[1, 8, 81, 1024, 15625, 279936, 5764801]

Type: Stream Integer

As with loops, you can combine these modifiers to make very complicated conditions.

[ [ [i,j] for i in 10..15 | prime? i] for j in 17..22 | j = squareFreePart

j]

[[[11, 17], [13, 17]], [[11, 19], [13, 19]], [[11, 21], [13, 21]], [[11, 22], [13, 22]]]

Type: List List List PositiveInteger

See List 9.54 on page 632 and Stream 9.88 on page 765 for more information on creating
and manipulating lists and streams, respectively.

5.6 An Example: Streams of Primes

We conclude this chapter with an example of the creation and manipulation of infinite
streams of prime integers. This might be useful for experiments with numbers or other
applications where you are using sequences of primes over and over again. As for all streams,
the stream of primes is only computed as far out as you need. Once computed, however, all
the primes up to that point are saved for future reference.

Two useful operations provided by the Axiom library are prime? and nextPrime. A
straight-forward way to create a stream of prime numbers is to start with the stream of
positive integers [2, ..] and filter out those that are prime.

Create a stream of primes.
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primes : Stream Integer := [i for i in 2.. | prime? i]

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .]

Type: Stream Integer

A more elegant way, however, is to use the generate operation from Stream. Given an
initial value a and a function f , generate constructs the stream [a, f(a), f(f(a)), ...]. This
function gives you the quickest method of getting the stream of primes.

This is how you use generate to generate an infinite stream of primes.

primes := generate(nextPrime,2)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .]

Type: Stream Integer

Once the stream is generated, you might only be interested in primes starting at a particular
value.

smallPrimes := [p for p in primes | p > 1000]

[1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, . . .]

Type: Stream Integer

Here are the first 11 primes greater than 1000.

[p for p in smallPrimes for i in 1..11]

[1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, . . .]

Type: Stream Integer

Here is a stream of primes between 1000 and 1200.

[p for p in smallPrimes while p < 1200]

[1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, . . .]

Type: Stream Integer

To get these expanded into a finite stream, you call complete on the stream.
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complete %

[1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, . . .]

Type: Stream Integer

Twin primes are consecutive odd number pairs which are prime. Here is the stream of twin
primes.

twinPrimes := [ [p,p+2] for p in primes | prime?(p + 2)]

[[3, 5], [5, 7], [11, 13], [17, 19], [29, 31], [41, 43], [59, 61], [71, 73],

[101, 103], [107, 109], . . .]

Type: Stream List Integer

Since we already have the primes computed we can avoid the call to prime? by using a
double iteration. This time we’ll just generate a stream of the first of the twin primes.

firstOfTwins:= [p for p in primes for q in rest primes | q=p+2]

[3, 5, 11, 17, 29, 41, 59, 71, 101, 107, . . .]

Type: Stream Integer

Let’s try to compute the infinite stream of triplet primes, the set of primes p such that
[p, p + 2, p + 4] are primes. For example, [3, 5, 7] is a triple prime. We could do this by a
triple for iteration. A more economical way is to use firstOfTwins. This time however,
put a semicolon at the end of the line.

Create the stream of firstTriplets. Put a semicolon at the end so that no elements are
computed.

firstTriplets := [p for p in firstOfTwins for q in rest firstOfTwins | q =

p+2];

Type: Stream Integer

What happened? As you know, by default Axiom displays the first ten elements of a stream
when you first display it. And, therefore, it needs to compute them! If you want no elements
computed, just terminate the expression by a semicolon (“;”). The semi-colon prevents the
display of the result of evaluating the expression. Since no stream elements are needed for
display (or anything else, so far), none are computed.

Compute the first triplet prime.
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firstTriplets.1

3

Type: PositiveInteger

If you want to compute another, just ask for it. But wait a second! Given three consecutive
odd integers, one of them must be divisible by 3. Thus there is only one triplet prime. But
suppose that you did not know this and wanted to know what was the tenth triplet prime.

firstTriples.10

To compute the tenth triplet prime, Axiom first must compute the second, the third, and so
on. But since there isn’t even a second triplet prime, Axiom will compute forever. Nonethe-

less, this effort can produce a useful result. After waiting a bit, hit Ctrl-c . The system
responds as follows.

>> System error:

Console interrupt.

You are being returned to the top level of

the interpreter.

If you want to know how many primes have been computed, type:

numberOfComputedEntries primes

and, for this discussion, let’s say that the result is 2045. How big is the 2045-th prime?

primes.2045

17837

Type: PositiveInteger

What you have learned is that there are no triplet primes between 5 and 17837. Although
this result is well known (some might even say trivial), there are many experiments you
could make where the result is not known. What you see here is a paradigm for testing of
hypotheses. Here our hypothesis could have been: “there is more than one triplet prime.”
We have tested this hypothesis for 17837 cases. With streams, you can let your machine
run, interrupt it to see how far it has progressed, then start it up and let it continue from
where it left off.



Chapter 6

User-Defined Functions, Macros
and Rules

In this chapter we show you how to write functions and macros, and we explain how Axiom
looks for and applies them. We show some simple one-line examples of functions, together
with larger ones that are defined piece-by-piece or through the use of piles.

6.1 Functions vs. Macros

A function is a program to perform some computation. Most functions have names so that
it is easy to refer to them. A simple example of a function is one named abs which computes
the absolute value of an integer.

This is a use of the “absolute value” library function for integers.

abs(-8)

8

Type: PositiveInteger

This is an unnamed function that does the same thing, using the “maps-to” syntax +-> that
we discuss in section 6.17 on page 196.

(x +-> if x < 0 then -x else x)(-8)

8

Type: PositiveInteger

153
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Functions can be used alone or serve as the building blocks for larger programs. Usually
they return a value that you might want to use in the next stage of a computation, but not
always (for example, see Exit 9.24 on page 492 and Void 9.100 on page 817. They may also
read data from your keyboard, move information from one place to another, or format and
display results on your screen.

In Axiom, as in mathematics, functions are usually parameterized. Each time you call (some
people say apply or invoke) a function, you give values to the parameters (variables). Such a
value is called an argument of the function. Axiom uses the arguments for the computation.
In this way you get different results depending on what you “feed” the function.

Functions can have local variables or refer to global variables in the workspace. Axiom can
often compile functions so that they execute very efficiently. Functions can be passed as
arguments to other functions.

Macros are textual substitutions. They are used to clarify the meaning of constants or ex-
pressions and to be templates for frequently used expressions. Macros can be parameterized
but they are not objects that can be passed as arguments to functions. In effect, macros are
extensions to the Axiom expression parser.

6.2 Macros

A macro provides general textual substitution of an Axiom expression for a name. You can
think of a macro as being a generalized abbreviation. You can only have one macro in your
workspace with a given name, no matter how many arguments it has.

The two general forms for macros are

macro name == body
macro name(arg1,...) == body

where the body of the macro can be any Axiom expression.

For example, suppose you decided that you like to use df for D. You define the macro df like
this.

macro df == D

Type: Void

Whenever you type df, the system expands it to D.

df(x**2 + x + 1,x)

2 x+ 1
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Type: Polynomial Integer

Macros can be parameterized and so can be used for many different kinds of objects.

macro ff(x) == x**2 + 1

Type: Void

Apply it to a number, a symbol, or an expression.

ff z

z2 + 1

Type: Polynomial Integer

Macros can also be nested, but you get an error message if you run out of space because of
an infinite nesting loop.

macro gg(x) == ff(2*x - 2/3)

Type: Void

This new macro is fine as it does not produce a loop.

gg(1/w)

13 w2 − 24 w + 36

9 w2

Type: Fraction Polynomial Integer

This, however, loops since gg is defined in terms of ff.

macro ff(x) == gg(-x)

Type: Void

The body of a macro can be a block.

macro next == (past := present; present := future; future := past + present)
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Type: Void

Before entering next, we need values for present and future.

present : Integer := 0

0

Type: Integer

future : Integer := 1

1

Type: Integer

Repeatedly evaluating next produces the next Fibonacci number.

next

1

Type: Integer

And the next one.

next

2

Type: Integer

Here is the infinite stream of the rest of the Fibonacci numbers.

[next for i in 1..]

[3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .]

Type: Stream Integer

Bundle all the above lines into a single macro.
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macro fibStream ==

present : Integer := 1

future : Integer := 1

[next for i in 1..] where

macro next ==

past := present

present := future

future := past + present

Type: Void

Use concat to start with the first two Fibonacci numbers.

concat([1,1],fibStream)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .]

Type: Stream Integer

The library operation fibonacci is an easier way to compute these numbers.

[fibonacci i for i in 1..]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .]

Type: Stream Integer

6.3 Introduction to Functions

Each name in your workspace can refer to a single object. This may be any kind of object
including a function. You can use interactively any function from the library or any that
you define in the workspace. In the library the same name can have very many functions,
but you can have only one function with a given name, although it can have any number of
arguments that you choose.

If you define a function in the workspace that has the same name and number of arguments as
one in the library, then your definition takes precedence. In fact, to get the library function
you must package-call it (see section 2.9 on page 89).

To use a function in Axiom, you apply it to its arguments. Most functions are applied by
entering the name of the function followed by its argument or arguments.

factor(12)

22 3
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Type: Factored Integer

Some functions like “+” have infix operators as names.

3 + 4

7

Type: PositiveInteger

The function “+” has two arguments. When you give it more than two arguments, Axiom
groups the arguments to the left. This expression is equivalent to (1 + 2) + 7.

1 + 2 + 7

10

Type: PositiveInteger

All operations, including infix operators, can be written in prefix form, that is, with the op-
eration name followed by the arguments in parentheses. For example, 2+3 can alternatively
be written as +(2, 3). But +(2, 3, 4) is an error since + takes only two arguments.

Prefix operations are generally applied before the infix operation.
Thus the form factorial 3+1 means factorial(3)+1 producing 7, and −2+5 means (−2)+5
producing 3. An example of a prefix operator is prefix “-”. For example, −2+5 converts to
(−2) + 5 producing the value 3. Any prefix function taking two arguments can be written
in an infix manner by putting an ampersand “&” before the name. Thus D(2 ∗ x, x) can be
written as 2 ∗ x &D x returning 2.

Every function in Axiom is identified by a name and type. (An exception is an “anonymous
function” discussed in section 6.17 on page 196.) The type of a function is always a mapping
of the form Source → Target where Source and Target are types. To enter a type from the
keyboard, enter the arrow by using a hyphen “-” followed by a greater-than sign “>”, e.g.
Integer -> Integer.

Let’s go back to “+”. There are many “+” functions in the Axiom library: one for integers,
one for floats, another for rational numbers, and so on. These “+” functions have different
types and thus are different functions. You’ve seen examples of this overloading before—using
the same name for different functions. Overloading is the rule rather than the exception.
You can add two integers, two polynomials, two matrices or two power series. These are all
done with the same function name but with different functions.

6.4 Declaring the Type of Functions

In section 2.3 on page 69 we discussed how to declare a variable to restrict the kind of values
that can be assigned to it. In this section we show how to declare a variable that refers to
function objects.
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A function is an object of type

Source → Type

where Source and Target can be any type. A common type for Source is
Tuple(T1, . . . , Tn), usually written (T1, . . . , Tn), to indicate a function of
n arguments.

If g takes an Integer, a Float and another Integer, and returns a String, the declaration
is written:

g: (Integer,Float,Integer) -> String

Type: Void

The types need not be written fully; using abbreviations, the above declaration is:

g: (INT,FLOAT,INT) -> STRING

Type: Void

It is possible for a function to take no arguments. If h takes no arguments but returns a
Polynomial Integer, any of the following declarations is acceptable.

h: () -> POLY INT

Type: Void

h: () -> Polynomial INT

Type: Void

h: () -> POLY Integer

Type: Void
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Functions can also be declared when they are being defined. The syntax for
combined declaration/definition is:

functionName(parm1: parmType1, ..., parmN: parmTypeN):

functionReturnType

The following definition fragments show how this can be done for the functions g and h
above.

g(arg1: INT, arg2: FLOAT, arg3: INT): STRING == ...

h(): POLY INT == ...

A current restriction on function declarations is that they must involve fully specified types
(that is, cannot include modes involving explicit or implicit “?”). For more information on
declaring things in general, see section 2.3 on page 69.

6.5 One-Line Functions

As you use Axiom, you will find that you will write many short functions to codify sequences
of operations that you often perform. In this section we write some simple one-line functions.

This is a simple recursive factorial function for positive integers.

fac n == if n < 3 then n else n * fac(n-1)

Type: Void

fac 10

3628800

Type: PositiveInteger

This function computes 1 + 1/2 + 1/3 + ...+ 1/n.

s n == reduce(+,[1/i for i in 1..n])

Type: Void

s 50
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13943237577224054960759

3099044504245996706400

Type: Fraction Integer

This function computes a Mersenne number, several of which are prime.

mersenne i == 2**i - 1

Type: Void

If you type mersenne, Axiom shows you the function definition.

mersenne

mersenne i == 2i − 1

Type: FunctionCalled mersenne

Generate a stream of Mersenne numbers.

[mersenne i for i in 1..]

[1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .]

Type: Stream Integer

Create a stream of those values of i such that mersenne(i) is prime.

mersenneIndex := [n for n in 1.. | prime?(mersenne(n))]

Compiling function mersenne with type PositiveInteger -> Integer

[2, 3, 5, 7, 13, 17, 19, 31, 61, 89, . . .]

Type: Stream PositiveInteger

Finally, write a function that returns the n-th Mersenne prime.

mersennePrime n == mersenne mersenneIndex(n)

Type: Void

mersennePrime 5

8191

Type: PositiveInteger
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6.6 Declared vs. Undeclared Functions

If you declare the type of a function, you can apply it to any data that can be converted to
the source type of the function.

Define f with type Integer → Integer.

f(x: Integer): Integer == x + 1

Function declaration f : Integer -> Integer has been added to

workspace.

Type: Void

The function f can be applied to integers, . . .

f 9

Compiling function f with type Integer -> Integer

10

Type: PositiveInteger

and to values that convert to integers, . . .

f(-2.0)

−1

Type: Integer

but not to values that cannot be converted to integers.

f(2/3)

Conversion failed in the compiled user function f .

Cannot convert from type Fraction Integer to Integer for value

2

-

3
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To make the function over a wide range of types, do not declare its type.

Give the same definition with no declaration.

g x == x + 1

Type: Void

If x+ 1 makes sense, you can apply g to x.

g 9

Compiling function g with type PositiveInteger -> PositiveInteger

10

Type: PositiveInteger

A version of g with different argument types get compiled for each new kind of argument
used.

g(2/3)

Compiling function g with type Fraction Integer -> Fraction Integer

5

3

Type: Fraction Integer

Here x+ 1 for x = “axiom′′ makes no sense.

g("axiom")

There are 11 exposed and 5 unexposed library operations named +

having 2 argument(s) but none was determined to be applicable.

Use HyperDoc Browse, or issue

)display op +

to learn more about the available operations. Perhaps

package-calling the operation or using coercions on the arguments

will allow you to apply the operation.

Cannot find a definition or applicable library operation named +

with argument type(s)

String
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PositiveInteger

Perhaps you should use "@" to indicate the required return type,

or "$" to specify which version of the function you need.

Axiom will attempt to step through and interpret the code.

There are 11 exposed and 5 unexposed library operations named +

having 2 argument(s) but none was determined to be applicable.

Use HyperDoc Browse, or issue

)display op +

to learn more about the available operations. Perhaps

package-calling the operation or using coercions on the arguments

will allow you to apply the operation.

Cannot find a definition or applicable library operation named +

with argument type(s)

String

PositiveInteger

Perhaps you should use "@" to indicate the required return type,

or "$" to specify which version of the function you need.

As you will see in section 12 on page 899, Axiom has a formal idea of categories for what
“makes sense.”

6.7 Functions vs. Operations

A function is an object that you can create, manipulate, pass to, and return from func-
tions (for some interesting examples of library functions that manipulate functions, see
MappingPackage1 9.58 on page 649. Yet, we often seem to use the term operation and
function interchangeably in Axiom. What is the distinction?

First consider values and types associated with some variable n in your workspace. You can
make the declaration n : Integer, then assign n an integer value. You then speak of the
integer n. However, note that the integer is not the name n itself, but the value that you
assign to n.

Similarly, you can declare a variable f in your workspace to have type Integer → Integer,
then assign f , through a definition or an assignment of an anonymous function. You then
speak of the function f . However, the function is not f , but the value that you assign to f .

A function is a value, in fact, some machine code for doing something. Doing what? Well,
performing some operation. Formally, an operation consists of the constituent parts of f in
your workspace, excluding the value; thus an operation has a name and a type. An operation
is what domains and packages export. Thus Ring exports one operation “+”. Every ring
also exports this operation. Also, the author of every ring in the system is obliged under
contract (see section 11.3 on page 887 to provide an implementation for this operation.

This chapter is all about functions—how you create them interactively and how you apply
them to meet your needs. In section 11 on page 885 you will learn how to create them for the
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Axiom library. Then in section 12 on page 899, you will learn about categories and exported
operations.

6.8 Delayed Assignments vs. Functions with No Argu-
ments

In section 5.1 on page 119 we discussed the difference between immediate and delayed as-
signments. In this section we show the difference between delayed assignments and functions
of no arguments.

A function of no arguments is sometimes called a nullary function.

sin24() == sin(24.0)

Type: Void

You must use the parentheses “()” to evaluate it. Like a delayed assignment, the right-
hand-side of a function evaluation is not evaluated until the left-hand-side is used.

sin24()

Compiling function sin24 with type () -> Float

−0.9055783620 0662384514

Type: Float

If you omit the parentheses, you just get the function definition.

sin24

sin24 () == sin (24.0)

Type: FunctionCalled sin24

You do not use the parentheses “()” in a delayed assignment. . .

cos24 == cos(24.0)

Type: Void
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nor in the evaluation.

cos24

Compiling body of rule cos24 to compute value of type Float

0.4241790073 3699697594

Type: Float

The only syntactic difference between delayed assignments and nullary functions is that you
use “()” in the latter case.

6.9 How Axiom Determines What Function to Use

What happens if you define a function that has the same name as a library function? Well,
if your function has the same name and number of arguments (we sometimes say arity) as
another function in the library, then your function covers up the library function. If you
want then to call the library function, you will have to package-call it. Axiom can use both
the functions you write and those that come from the library. Let’s do a simple example to
illustrate this.

Suppose you (wrongly!) define sin in this way.

sin x == 1.0

Type: Void

The value 1.0 is returned for any argument.

sin 4.3

Compiling function sin with type Float -> Float

1.0

Type: Float

If you want the library operation, we have to package-call it (see section 2.9 on page 89 for
more information).

sin(4.3)$Float
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−0.91616593674945498404

Type: Float

sin(34.6)$Float

−0.042468034716950101543

Type: Float

Even worse, say we accidentally used the same name as a library function in the function.

sin x == sin x

Compiled code for sin has been cleared.

1 old definition(s) deleted for function or rule sin

Type: Void

Then Axiom definitely does not understand us.

sin 4.3

Axiom cannot determine the type of sin because it cannot analyze

the non-recursive part, if that exists. This may be remedied

by declaring the function.

Again, we could package-call the inside function.

sin x == sin(x)$Float

1 old definition(s) deleted for function or rule sin

Type: Void

sin 4.3

Compiling function sin with type Float -> Float

+++ |*1;sin;1;G82322| redefined
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−0.91616593674945498404

Type: Float

Of course, you are unlikely to make such obvious errors. It is more probable that you would
write a function and in the body use a function that you think is a library function. If you
had also written a function by that same name, the library function would be invisible.

How does Axiom determine what library function to call? It very much depends on the
particular example, but the simple case of creating the polynomial x+ 2/3 will give you an
idea.

1. The x is analyzed and its default type is Variable(x).

2. The 2 is analyzed and its default type is PositiveInteger.

3. The 3 is analyzed and its default type is PositiveInteger.

4. Because the arguments to “/” are integers, Axiom gives the expression 2/3 a default
target type of Fraction(Integer).

5. Axiom looks in PositiveInteger for “/”. It is not found.

6. Axiom looks in Fraction(Integer) for “/”. It is found for arguments of type Integer.

7. The 2 and 3 are converted to objects of type Integer (this is trivial) and “/” is applied,
creating an object of type Fraction(Integer).

8. No “+” for arguments of types Variable(x) and Fraction(Integer) are found in
either domain.

9. Axiom resolves (see section 2.10 on page 93) the types and gets
Polynomial(Fraction(Integer)).

10. The x and the 2/3 are converted to objects of this type and + is applied, yielding the
answer, an object of type Polynomial (Fraction (Integer)).

6.10 Compiling vs. Interpreting

When possible, Axiom completely determines the type of every object in a function, then
translates the function definition to Common Lisp or to machine code (see the next section).
This translation, called compilation, happens the first time you call the function and results
in a computational delay. Subsequent function calls with the same argument types use the
compiled version of the code without delay.

If Axiom cannot determine the type of everything, the function may still be executed but in
interpret-code mode: each statement in the function is analyzed and executed as the control
flow indicates. This process is slower than executing a compiled function, but it allows the
execution of code that may involve objects whose types change.
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If Axiom decides that it cannot compile the code, it issues a message stating
the problem and then the following message:

We will attempt to step through and interpret the code.

This is not a time to panic. Rather, it just means that what you gave to
Axiom is somehow ambiguous: either it is not specific enough to be analyzed
completely, or it is beyond Axiom’s present interactive compilation abilities.

This function runs in interpret-code mode, but it does not compile.

varPolys(vars) ==

for var in vars repeat

output(1 :: UnivariatePolynomial(var,Integer))

Type: Void

For vars equal to [′x,′ y,′ z], this function displays 1 three times.

varPolys [’x,’y,’z]

Cannot compile conversion for types involving local variables.

In particular, could not compile the expression involving ::

UnivariatePolynomial(var,Integer)

Axiom will attempt to step through and interpret the code.

1

1

1

Type: Void

The type of the argument to output changes in each iteration, so Axiom cannot compile
the function. In this case, even the inner loop by itself would have a problem:

for var in [’x,’y,’z] repeat

output(1 :: UnivariatePolynomial(var,Integer))

Cannot compile conversion for types involving local variables.

In particular, could not compile the expression involving ::

UnivariatePolynomial(var,Integer)

Axiom will attempt to step through and interpret the code.

1

1

1

Type: Void
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Sometimes you can help a function to compile by using an extra conversion or by using
pretend. See section 2.8 on page 85 for details.

When a function is compilable, you have the choice of whether it is compiled to Common Lisp
and then interpreted by the Common Lisp interpreter or then further compiled from Common
Lisp to machine code. The option is controlled via )set functions compile. Issue )set

functions compile on to compile all the way to machine code. With the default setting
)set functions compile off, Axiom has its Common Lisp code interpreted because the
overhead of further compilation is larger than the run-time of most of the functions our users
have defined. You may find that selectively turning this option on and off will give you the
best performance in your particular application. For example, if you are writing functions
for graphics applications where hundreds of points are being computed, it is almost certainly
true that you will get the best performance by issuing )set functions compile on.

6.11 Piece-Wise Function Definitions

To move beyond functions defined in one line, we introduce in this section functions that are
defined piece-by-piece. That is, we say “use this definition when the argument is such-and-
such and use this other definition when the argument is that-and-that.”

A Basic Example

There are many other ways to define a factorial function for nonnegative integers. You might
say factorial of 0 is 1, otherwise factorial of n is n times factorial of n− 1. Here is one way
to do this in Axiom.

Here is the value for n = 0.

fact(0) == 1

Type: Void

Here is the value for n > 0. The vertical bar “|” means “such that”.

fact(n | n > 0) == n * fact(n - 1)

Type: Void

What is the value for n = 7?

fact(7)
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Compiling function fact with type Integer -> Integer

Compiling function fact as a recurrence relation.

5040

Type: PositiveInteger

What is the value for n = −3?

fact(-3)

You did not define fact for argument -3 .

Now for a second definition. Here is the value for n = 0.

facto(0) == 1

Type: Void

Give an error message if n < 0.

facto(n | n < 0) == error "arguments to facto must be non-negative"

Type: Void

Here is the value otherwise.

facto(n) == n * facto(n - 1)

Type: Void

What is the value for n = 7?

facto(3)

Compiling function facto with type Integer -> Integer

6

Type: PositiveInteger
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What is the value for n = −7?

facto(-7)

Error signalled from user code in function facto:

arguments to facto must be non-negative

Type: PositiveInteger

To see the current piece-wise definition of a function, use )display value.

)display value facto

Definition:

facto 0 == 1

facto (n | n < 0) ==

error(arguments to facto must be non-negative)

facto n == n facto(n - 1)

In general a piece-wise definition of a function consists of two or more parts. Each part
gives a “piece” of the entire definition. Axiom collects the pieces of a function as you enter
them. When you ask for a value of the function, it then “glues” the pieces together to form
a function.

The two piece-wise definitions for the factorial function are examples of recursive functions,
that is, functions that are defined in terms of themselves. Here is an interesting doubly-
recursive function. This function returns the value 11 for all positive integer arguments.

Here is the first of two pieces.

eleven(n | n < 1) == n + 11

Type: Void

And the general case.

eleven(m) == eleven(eleven(m - 12))

Type: Void

Compute elevens, the infinite stream of values of eleven.

elevens := [eleven(i) for i in 0..]
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[11, 11, 11, 11, 11, 11, 11, 11, 11, 11, . . .]

Type: Stream Integer

What is the value at n = 200?

elevens 200

11

Type: PositiveInteger

What is the Axiom’s definition of eleven?

)display value eleven

Definition:

eleven (m | m < 1) == m + 11

eleven m == eleven(eleven(m - 12))

Picking Up the Pieces

Here are the details about how Axiom creates a function from its pieces. Axiom converts the
i-th piece of a function definition into a conditional expression of the form: if predi then
expressioni. If any new piece has a predi that is identical (after all variables are uniformly
named) to an earlier predj , the earlier piece is removed. Otherwise, the new piece is always
added at the end.

If there are n pieces to a function definition for f , the function defined f is:
if pred1 then expression1 else

. . .
if predn then expressionn else

error "You did not define f for argument <arg>."

You can give definitions of any number of mutually recursive function definitions, piece-wise
or otherwise. No computation is done until you ask for a value. When you do ask for a value,
all the relevant definitions are gathered, analyzed, and translated into separate functions and
compiled.

Let’s recall the definition of eleven from the previous section.

eleven(n | n < 1) == n + 11

Type: Void
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eleven(m) == eleven(eleven(m - 12))

Type: Void

A similar doubly-recursive function below produces −11 for all negative positive integers. If
you haven’t worked out why or how eleven works, the structure of this definition gives a
clue.

This definition we write as a block.

minusEleven(n) ==

n >= 0 => n - 11

minusEleven (5 + minusEleven(n + 7))

Type: Void

Define s(n) to be the sum of plus and minus “eleven” functions divided by n. Since 11−11 =
0, we define s(0) to be 1.

s(0) == 1

Type: Void

And the general term.

s(n) == (eleven(n) + minusEleven(n))/n

Type: Void

What are the first ten values of s?

[s(n) for n in 0..]

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .]

Type: Stream Fraction Integer

Axiom can create infinite streams in the positive direction (for example, for index values
0, 1, . . .) or negative direction (for example, for 0,−1,−2, . . .). Here we would like a stream
of values of s(n) that is infinite in both directions. The function t(n) below returns the n-th
term of the infinite stream

[s(0), s(1), s(−1), s(2), s(−2), . . .]

Its definition has three pieces.

Define the initial term.
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t(1) == s(0)

Type: Void

The even numbered terms are the s(i) for positive i. We use “quo” rather than “/” since we
want the result to be an integer.

t(n | even?(n)) == s(n quo 2)

Type: Void

Finally, the odd numbered terms are the s(i) for negative i. In piece-wise definitions, you
can use different variables to define different pieces. Axiom will not get confused.

t(p) == s(- p quo 2)

Type: Void

Look at the definition of t. In the first piece, the variable n was used; in the second piece,
p. Axiom always uses your last variable to display your definitions back to you.

)display value t

Definition:

t 1 == s(0)

t (p | even?(p)) == s(p quo 2)

t p == s(- p quo 2)

Create a series of values of s applied to alternating positive and negative arguments.

[t(i) for i in 1..]

Compiling function s with type Integer -> Fraction Integer

Compiling function t with type PositiveInteger -> Fraction Integer

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .]

Type: Stream Fraction Integer

Evidently t(n) = 1 for all i. Check it at n = 100.

t(100)

1

Type: Fraction Integer
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Predicates

We have already seen some examples of predicates (section 6.11 on page 170. Predicates are
Boolean-valued expressions and Axiom uses them for filtering collections (see section 5.5 on
page 146 and for placing constraints on function arguments. In this section we discuss their
latter usage.

The simplest use of a predicate is one you don’t see at all.

opposite ’right == ’left

Type: Void

Here is a longer way to give the “opposite definition.”

opposite (x | x = ’left) == ’right

Type: Void

Try it out.

for x in [’right,’left,’inbetween] repeat output opposite x

Compiling function opposite with type

OrderedVariableList [right, left,inbetween] -> Symbol

left

right

The function opposite is not defined for the given argument(s).

Explicit predicates tell Axiom that the given function definition piece is to be applied if the
predicate evaluates to true for the arguments to the function. You can use such “constant”
arguments for integers, strings, and quoted symbols. The Boolean values true and false

can also be used if qualified with “@” or “$” and Boolean. The following are all valid
function definition fragments using constant arguments.

a(1) == ...

b("unramified") == ...

c(’untested) == ...

d(true@Boolean) == ...

If a function has more than one argument, each argument can have its own predicate. How-
ever, if a predicate involves two or more arguments, it must be given after all the arguments
mentioned in the predicate have been given. You are always safe to give a single predicate
at the end of the argument list.

A function involving predicates on two arguments.
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inFirstHalfQuadrant(x | x > 0,y | y < x) == true

Type: Void

This is incorrect as it gives a predicate on y before the argument y is given.

inFirstHalfQuadrant(x | x > 0 and y < x,y) == true

1 old definition(s) deleted for function or rule inFirstHalfQuadrant

Type: Void

It is always correct to write the predicate at the end.

inFirstHalfQuadrant(x,y | x > 0 and y < x) == true

1 old definition(s) deleted for function or rule inFirstHalfQuadrant

Type: Void

Here is the rest of the definition.

inFirstHalfQuadrant(x,y) == false

Type: Void

Try it out.

[inFirstHalfQuadrant(i,3) for i in 1..5]

Compiling function inFirstHalfQuadrant with type (PositiveInteger,

PositiveInteger) -> Boolean

[false, false, false, true, true]

Type: List Boolean
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6.12 Caching Previously Computed Results

By default, Axiom does not save the values of any function. You can cause it to save values
and not to recompute unnecessarily by using )set functions cache. This should be used
before the functions are defined or, at least, before they are executed. The word following
“cache” should be 0 to turn off caching, a positive integer n to save the last n computed
values or “all” to save all computed values. If you then give a list of names of functions,
the caching only affects those functions. Use no list of names or “all” when you want to
define the default behavior for functions not specifically mentioned in other )set functions

cache statements. If you give no list of names, all functions will have the caching behavior.
If you explicitly turn on caching for one or more names, you must explicitly turn off caching
for those names when you want to stop saving their values.

This causes the functions f and g to have the last three computed values saved.

)set functions cache 3 f g

function f will cache the last 3 values.

function g will cache the last 3 values.

This is a sample definition for f.

f x == factorial(2**x)

Type: Void

A message is displayed stating what f will cache.

f(4)

Compiling function f with type PositiveInteger -> Integer

f will cache 3 most recently computed value(s).

+++ |*1;f;1;G82322| redefined

20922789888000

Type: PositiveInteger

This causes all other functions to have all computed values saved by default.

)set functions cache all
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In general, interpreter functions will cache all values.

This causes all functions that have not been specifically cached in some way to have no
computed values saved.

)set functions cache 0

In general, functions will cache no returned values.

We also make f and g uncached.

)set functions cache 0 f g

Caching for function f is turned off

Caching for function g is turned off

Be careful about caching functions that have side effects. Such a function
might destructively modify the elements of an array or issue a draw
command, for example. A function that you expect to execute every time
it is called should not be cached. Also, it is highly unlikely that a function
with no arguments should be cached.

You should also be careful about caching functions that depend on free variables. See
section 6.16 on page 189 for an example.

6.13 Recurrence Relations

One of the most useful classes of function are those defined via a “recurrence relation.” A
recurrence relation makes each successive value depend on some or all of the previous values.
A simple example is the ordinary “factorial” function:

fact(0) == 1

fact(n | n > 0) == n * fact(n-1)

The value of fact(10) depends on the value of fact(9), fact(9) on fact(8), and so on.
Because it depends on only one previous value, it is usually called a first order recurrence
relation. You can easily imagine a function based on two, three or more previous values.
The Fibonacci numbers are probably the most famous function defined by a second order
recurrence relation.

The library function fibonacci computes Fibonacci numbers. It is obviously optimized for
speed.
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[fibonacci(i) for i in 0..]

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .]

Type: Stream Integer

Define the Fibonacci numbers ourselves using a piece-wise definition.

fib(1) == 1

Type: Void

fib(2) == 1

Type: Void

fib(n) == fib(n-1) + fib(n-2)

Type: Void

As defined, this recurrence relation is obviously doubly-recursive. To compute fib(10), we
need to compute fib(9) and fib(8). And to fib(9), we need to compute fib(8) and fib(7).
And so on. It seems that to compute fib(10) we need to compute fib(9) once, fib(8) twice,
fib(7) three times. Look familiar? The number of function calls needed to compute any
second order recurrence relation in the obvious way is exactly fib(n). These numbers grow!
For example, if Axiom actually did this, then fib(500) requires more than 10104 function
calls. And, given all this, our definition of fib obviously could not be used to calculate the
five-hundredth Fibonacci number.

Let’s try it anyway.

fib(500)

Compiling function fib with type Integer -> PositiveInteger

Compiling function fib as a recurrence relation.

13942322456169788013972438287040728395007025658769730726410_

8962948325571622863290691557658876222521294125

Type: PositiveInteger
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Since this takes a short time to compute, it obviously didn’t do as many as 10104 opera-
tions! By default, Axiom transforms any recurrence relation it recognizes into an iteration.
Iterations are efficient. To compute the value of the n-th term of a recurrence relation us-
ing an iteration requires only n function calls. Note that if you compare the speed of our
fib function to the library function, our version is still slower. This is because the library
fibonacci uses a “powering algorithm” with a computing time proportional to log3(n) to
compute fibonacci(n).

To turn off this special recurrence relation compilation, issue

)set functions recurrence off

To turn it back on, substitute “on” for “off”.

The transformations that Axiom uses for fib caches the last two values. For a more general
k-th order recurrence relation, Axiom caches the last k values. If, after computing a value
for fib, you ask for some larger value, Axiom picks up the cached values and continues
computing from there. See section 6.16 on page 189 for an example of a function definition
that has this same behavior. Also see section 6.12 on page 178 for a more general discussion
of how you can cache function values.

Recurrence relations can be used for defining recurrence relations involving polynomials,
rational functions, or anything you like. Here we compute the infinite stream of Legendre
polynomials.

The Legendre polynomial of degree 0.

p(0) == 1

Type: Void

The Legendre polynomial of degree 1.

p(1) == x

Type: Void

The Legendre polynomial of degree n.

p(n) == ((2*n-1)*x*p(n-1) - (n-1)*p(n-2))/n

Type: Void

Compute the Legendre polynomial of degree 6.

p(6)
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Compiling function p with type Integer -> Polynomial Fraction

Integer

Compiling function p as a recurrence relation.

231

16
x6 − 315

16
x4 +

105

16
x2 − 5

16

Type: Polynomial Fraction Integer

6.14 Making Functions from Objects

There are many times when you compute a complicated expression and then wish to use that
expression as the body of a function. Axiom provides an operation called function to do
this. It creates a function object and places it into the workspace. There are several versions,
depending on how many arguments the function has. The first argument to function is
always the expression to be converted into the function body, and the second is always the
name to be used for the function. For more information, see MakeFunction 9.57 on page 647.

Start with a simple example of a polynomial in three variables.

p := -x + y**2 - z**3

−z3 + y2 − x

Type: Polynomial Integer

To make this into a function of no arguments that simply returns the polynomial, use the
two argument form of function.

function(p,’f0)

f0

Type: Symbol

To avoid possible conflicts (see below), it is a good idea to quote always this second argument.

f0

f0 () == −z3 + y2 − x

Type: FunctionCalled f0

This is what you get when you evaluate the function.
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f0()

−z3 + y2 − x

Type: Polynomial Integer

To make a function in x, use a version of function that takes three arguments. The last
argument is the name of the variable to use as the parameter. Typically, this variable occurs
in the expression and, like the function name, you should quote it to avoid possible confusion.

function(p,’f1,’x)

f1

Type: Symbol

This is what the new function looks like.

f1

f1 x == −z3 + y2 − x

Type: FunctionCalled f1

This is the value of f1 at x = 3. Notice that the return type of the function is Polynomial
(Integer), the same as p.

f1(3)

Compiling function f1 with type PositiveInteger -> Polynomial

Integer

−z3 + y2 − 3

Type: Polynomial Integer

To use x and y as parameters, use the four argument form of function.

function(p,’f2,’x,’y)

f2

Type: Symbol
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f2

f2 (x, y) == −z3 + y2 − x

Type: FunctionCalled f2

Evaluate f2 at x = 3 and y = 0. The return type of f2 is still Polynomial(Integer) because
the variable z is still present and not one of the parameters.

f2(3,0)

−z3 − 3

Type: Polynomial Integer

Finally, use all three variables as parameters. There is no five argument form of function,
so use the one with three arguments, the third argument being a list of the parameters.

function(p,’f3,[’x,’y,’z])

f3

Type: Symbol

Evaluate this using the same values for x and y as above, but let z be −6. The result type
of f3 is Integer.

f3

f3 (x, y, z) == −z3 + y2 − x

Type: FunctionCalled f3

f3(3,0,-6)

Compiling function f3 with type (PositiveInteger,NonNegativeInteger,

Integer) -> Integer

213

Type: PositiveInteger
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The four functions we have defined via p have been undeclared. To declare a function whose
body is to be generated by function, issue the declaration before the function is created.

g: (Integer, Integer) -> Float

Type: Void

D(sin(x-y)/cos(x+y),x)

−sin (y − x) sin (y + x) + cos (y − x) cos (y + x)

cos (y + x)
2

Type: Expression Integer

function(%,’g,’x,’y)

g

Type: Symbol

g

g (x, y) ==
−sin (y − x) sin (y + x) + cos (y − x) cos (y + x)

cos (y + x)
2

Type: FunctionCalled g

It is an error to use g without the quote in the penultimate expression since g had been
declared but did not have a value. Similarly, since it is common to overuse variable names
like x, y, and so on, you avoid problems if you always quote the variable names for function.
In general, if x has a value and you use x without a quote in a call to function, then Axiom
does not know what you are trying to do.

What kind of object is allowable as the first argument to function? Let’s use the Browse
facility of HyperDoc to find out. At the main Browse menu, enter the string function and
then click on Operations. The exposed operations called function all take an object whose
type belongs to category ConvertibleTo InputForm. What domains are those? Go back to
the main Browse menu, erase function, enter ConvertibleTo in the input area, and click
on categories on the Constructors line. At the bottom of the page, enter InputForm in
the input area following S =. Click on Cross Reference and then on Domains. The list
you see contains over forty domains that belong to the category ConvertibleTo InputForm.
Thus you can use function for Integer, Float, Symbol, Complex, Expression, and so on.
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6.15 Functions Defined with Blocks

You need not restrict yourself to functions that only fit on one line or are written in a
piece-wise manner. The body of the function can be a block, as discussed in section 5.2 on
page 123.

Here is a short function that swaps two elements of a list, array or vector.

swap(m,i,j) ==

temp := m.i

m.i := m.j

m.j := temp

Type: Void

The significance of swap is that it has a destructive effect on its first argument.

k := [1,2,3,4,5]

[1, 2, 3, 4, 5]

Type: List PositiveInteger

swap(k,2,4)

Compiling function swap with type (List PositiveInteger,

PositiveInteger,PositiveInteger) -> PositiveInteger

2

Type: PositiveInteger

You see that the second and fourth elements are interchanged.

k

[1, 4, 3, 2, 5]

Type: List PositiveInteger

Using this, we write a couple of different sort functions. First, a simple bubble sort. The
operation “#” returns the number of elements in an aggregate.
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bubbleSort(m) ==

n := #m

for i in 1..(n-1) repeat

for j in n..(i+1) by -1 repeat

if m.j < m.(j-1) then swap(m,j,j-1)

m

Type: Void

Let this be the list we want to sort.

m := [8,4,-3,9]

[8, 4,−3, 9]

Type: List Integer

This is the result of sorting.

bubbleSort(m)

Compiling function swap with type (List Integer,Integer,Integer) ->

Integer

+++ |*3;swap;1;G82322| redefined

Compiling function bubbleSort with type List Integer -> List Integer

[−3, 4, 8, 9]

Type: List Integer

Moreover, m is destructively changed to be the sorted version.

m

[−3, 4, 8, 9]

Type: List Integer

This function implements an insertion sort. The basic idea is to traverse the list and insert
the i-th element in its correct position among the i− 1 previous elements. Since we start at
the beginning of the list, the list elements before the i-th element have already been placed
in ascending order.
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insertionSort(m) ==

for i in 2..#m repeat

j := i

while j > 1 and m.j < m.(j-1) repeat

swap(m,j,j-1)

j := j - 1

m

Type: Void

As with our bubble sort, this is a destructive function.

m := [8,4,-3,9]

[8, 4,−3, 9]

Type: List Integer

insertionSort(m)

Compiling function insertionSort with type List Integer -> List

Integer

[−3, 4, 8, 9]

Type: List Integer

m

[−3, 4, 8, 9]

Type: List Integer

Neither of the above functions is efficient for sorting large lists since they reference elements
by asking for the j-th element of the structure m.

Here is a more efficient bubble sort for lists.

bubbleSort2(m: List Integer): List Integer ==

null m => m

l := m

while not null (r := l.rest) repeat

r := bubbleSort2 r

x := l.first
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if x < r.first then

l.first := r.first

r.first := x

l.rest := r

l := l.rest

m

Function declaration bubbleSort2 : List Integer -> List Integer has

been added to workspace.

Type: Void

Try it out.

bubbleSort2 [3,7,2]

[7, 3, 2]

Type: List Integer

This definition is both recursive and iterative, and is tricky! Unless you are really curious
about this definition, we suggest you skip immediately to the next section.

Here are the key points in the definition. First notice that if you are sorting a list with
less than two elements, there is nothing to do: just return the list. This definition returns
immediately if there are zero elements, and skips the entire while loop if there is just one
element.

The second point to realize is that on each outer iteration, the bubble sort ensures that the
minimum element is propagated leftmost. Each iteration of the while loop calls bubble-
Sort2 recursively to sort all but the first element. When finished, the minimum element is
either in the first or second position. The conditional expression ensures that it comes first.
If it is in the second, then a swap occurs. In any case, the rest of the original list must be
updated to hold the result of the recursive call.

6.16 Free and Local Variables

When you want to refer to a variable that is not local to your function, use a “free” decla-
ration. Variables declared to be free are assumed to be defined globally in the workspace.

This is a global workspace variable.

counter := 0

0
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Type: NonNegativeInteger

This function refers to the global counter.

f() ==

free counter

counter := counter + 1

Type: Void

The global counter is incremented by 1.

f()

Compiling function f with type () -> NonNegativeInteger

+++ |*0;f;1;G82322| redefined

1

Type: PositiveInteger

counter

1

Type: NonNegativeInteger

Usually Axiom can tell that you mean to refer to a global variable and so free isn’t always
necessary. However, for clarity and the sake of self-documentation, we encourage you to use
it.

Declare a variable to be “local” when you do not want to refer to a global variable by the
same name.

This function uses counter as a local variable.

g() ==

local counter

counter := 7

Type: Void

Apply the function.
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g()

7

Type: PositiveInteger

Check that the global value of counter is unchanged.

counter

1

Type: NonNegativeInteger

Parameters to a function are local variables in the function. Even if you issue a free

declaration for a parameter, it is still local.

What happens if you do not declare that a variable x in the body of your function is local
or free? Well, Axiom decides on this basis:

1. Axiom scans your function line-by-line, from top-to-bottom. The right-hand side of an
assignment is looked at before the left-hand side.

2. If x is referenced before it is assigned a value, it is a free (global) variable.

3. If x is assigned a value before it is referenced, it is a local variable.

Set two global variables to 1.

a := b := 1

1

Type: PositiveInteger

Refer to a before it is assigned a value, but assign a value to b before it is referenced.

h() ==

b := a + 1

a := b + a

Type: Void

Can you predict this result?

h()
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Compiling function h with type () -> PositiveInteger

+++ |*0;h;1;G82322| redefined

3

Type: PositiveInteger

How about this one?

[a, b]

[3, 1]

Type: List PositiveInteger

What happened? In the first line of the function body for h, a is referenced on the right-hand
side of the assignment. Thus a is a free variable. The variable b is not referenced in that
line, but it is assigned a value. Thus b is a local variable and is given the value a+1 = 2. In
the second line, the free variable a is assigned the value b+ a which equals 2 + 1 = 3. This
is the value returned by the function. Since a was free in h, the global variable a has value
3. Since b was local in h, the global variable b is unchanged—it still has the value 1.

It is good programming practice always to declare global variables. However, by far the most
common situation is to have local variables in your functions. No declaration is needed for
this situation, but be sure to initialize their values.

Be careful if you use free variables and you cache the value of your function (see section 6.12
on page 178). Caching only checks if the values of the function arguments are the same as
in a function call previously seen. It does not check if any of the free variables on which the
function depends have changed between function calls.

Turn on caching for p.

)set fun cache all p

function p will cache all values.

Define p to depend on the free variable N .

p(i,x) == ( free N; reduce( + , [ (x-i)**n for n in 1..N ] ) )

Type: Void

Set the value of N .
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N := 1

1

Type: PositiveInteger

Evaluate p the first time.

p(0, x)

x

Type: Polynomial Integer

Change the value of N .

N := 2

2

Type: PositiveInteger

Evaluate p the second time.

p(0, x)

x

Type: Polynomial Integer

If caching had been turned off, the second evaluation would have reflected the changed value
of N .

Turn off caching for p.

)set fun cache 0 p

Caching for function p is turned off

Axiom does not allow fluid variables, that is, variables bound by a function f that can be
referenced by functions called by f .

Values are passed to functions by reference: a pointer to the value is passed rather than a
copy of the value or a pointer to a copy.

This is a global variable that is bound to a record object.
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r : Record(i : Integer) := [1]

[i = 1]

Type: Record(i: Integer)

This function first modifies the one component of its record argument and then rebinds the
parameter to another record.

resetRecord rr ==

rr.i := 2

rr := [10]

Type: Void

Pass r as an argument to resetRecord.

resetRecord r

[i = 10]

Type: Record(i: Integer)

The value of r was changed by the expression rr.i := 2 but not by rr := [10].

r

[i = 2]

Type: Record(i: Integer)

To conclude this section, we give an iterative definition of a function that computes Fi-
bonacci numbers. This definition approximates the definition into which Axiom transforms
the recurrence relation definition of fib in section 6.13 on page 179.

Global variables past and present are used to hold the last computed Fibonacci numbers.

past := present := 1

1

Type: PositiveInteger

Global variable index gives the current index of present.
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index := 2

2

Type: PositiveInteger

Here is a recurrence relation defined in terms of these three global variables.

fib(n) ==

free past, present, index

n < 3 => 1

n = index - 1 => past

if n < index-1 then

(past,present) := (1,1)

index := 2

while (index < n) repeat

(past,present) := (present, past+present)

index := index + 1

present

Type: Void

Compute the infinite stream of Fibonacci numbers.

fibs := [fib(n) for n in 1..]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .]

Type: Stream PositiveInteger

What is the 1000th Fibonacci number?

fibs 1000

434665576869374564356885276750406258025646605173717804024_

8172908953655541794905189040387984007925516929592259308_

0322634775209689623239873322471161642996440906533187938_

298969649928516003704476137795166849228875

Type: PositiveInteger

As an exercise, we suggest you write a function in an iterative style that computes the
value of the recurrence relation p(n) = p(n − 1) − 2 p(n − 2) + 4 p(n − 3) having the initial
values p(1) = 1, p(2) = 3 and p(3) = 9. How would you write the function using an element
OneDimensionalArray or Vector to hold the previously computed values?
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6.17 Anonymous Functions

An anonymous function is a function that is defined by giving a list of pa-
rameters, the “maps-to” compound symbol “+->” (from the mathematical
symbol 7→), and by an expression involving the parameters, the evaluation
of which determines the return value of the function.

( parm1, parm2, ..., parmN ) +-> expression

You can apply an anonymous function in several ways.

1. Place the anonymous function definition in parentheses directly followed by a list of
arguments.

2. Assign the anonymous function to a variable and then use the variable name when you
would normally use a function name.

3. Use “==” to use the anonymous function definition as the arguments and body of a
regular function definition.

4. Have a named function contain a declared anonymous function and use the result
returned by the named function.

Some Examples

Anonymous functions are particularly useful for defining functions “on the fly.” That is, they
are handy for simple functions that are used only in one place. In the following examples,
we show how to write some simple anonymous functions.

This is a simple absolute value function.

x +-> if x < 0 then -x else x

x 7→ if x < 0
then − x
else x

Type: AnonymousFunction

abs1 := %

x 7→ if x < 0
then − x
else x

Type: AnonymousFunction
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This function returns true if the absolute value of the first argument is greater than the
absolute value of the second, false otherwise.

(x,y) +-> abs1(x) > abs1(y)

(x, y) 7→ abs1 (y) < abs1 (x)

Type: AnonymousFunction

We use the above function to “sort” a list of integers.

sort(%,[3,9,-4,10,-3,-1,-9,5])

[10,−9, 9, 5,−4,−3, 3,−1]

Type: List Integer

This function returns 1 if i+ j is even, −1 otherwise.

ev := ( (i,j) +-> if even?(i+j) then 1 else -1)

(i, j) 7→ if even? (i+ j)
then 1
else − 1

Type: AnonymousFunction

We create a four-by-four matrix containing 1 or −1 depending on whether the row plus the
column index is even or not.

matrix([ [ev(row,col) for row in 1..4] for col in 1..4])
1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1


Type: Matrix Integer

This function returns true if a polynomial in x has multiple roots, false otherwise. It is
defined and applied in the same expression.

( p +-> not one?(gcd(p,D(p,x))) )(x**2+4*x+4)

true
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Type: Boolean

This and the next expression are equivalent.

g(x,y,z) == cos(x + sin(y + tan(z)))

Type: Void

The one you use is a matter of taste.

g == (x,y,z) +-> cos(x + sin(y + tan(z)))

1 old definition(s) deleted for function or rule g

Type: Void

Declaring Anonymous Functions

If you declare any of the arguments you must declare all of them. Thus,

(x: INT,y): FRAC INT +-> (x + 2*y)/(y - 1)

is not legal.

This is an example of a fully declared anonymous function. The output shown just indicates
that the object you created is a particular kind of map, that is, function.

(x: INT,y: INT): FRAC INT +-> (x + 2*y)/(y - 1)

theMap(...)

Type: ((Integer,Integer) -> Fraction Integer)

Axiom allows you to declare the arguments and not declare the return type.

(x: INT,y: INT) +-> (x + 2*y)/(y - 1)

theMap(...)

Type: ((Integer,Integer) -> Fraction Integer)

The return type is computed from the types of the arguments and the body of the function.
You cannot declare the return type if you do not declare the arguments. Therefore,
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(x,y): FRAC INT +-> (x + 2*y)/(y - 1)

is not legal. This and the next expression are equivalent.

h(x: INT,y: INT): FRAC INT == (x + 2*y)/(y - 1)

Function declaration h : (Integer,Integer) -> Fraction Integer

has been added to workspace.

Type: Void

The one you use is a matter of taste.

h == (x: INT,y: INT): FRAC INT +-> (x + 2*y)/(y - 1)

Function declaration h : (Integer,Integer) -> Fraction Integer

has been added to workspace.

1 old definition(s) deleted for function or rule h

Type: Void

When should you declare an anonymous function?

1. If you use an anonymous function and Axiom can’t figure out what you are trying to
do, declare the function.

2. If the function has nontrivial argument types or a nontrivial return type that Axiom
may be able to determine eventually, but you are not willing to wait that long, declare
the function.

3. If the function will only be used for arguments of specific types and it is not too much
trouble to declare the function, do so.

4. If you are using the anonymous function as an argument to another function (such as
map or sort), consider declaring the function.

5. If you define an anonymous function inside a named function, you must declare the
anonymous function.

This is an example of a named function for integers that returns a function.

addx x == ((y: Integer): Integer +-> x + y)

Type: Void
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We define g to be a function that adds 10 to its argument.

g := addx 10

Compiling function addx with type

PositiveInteger -> (Integer -> Integer)

theMap(...)

Type: (Integer -> Integer)

Try it out.

g 3

13

Type: PositiveInteger

g(-4)

6

Type: PositiveInteger

An anonymous function cannot be recursive: since it does not have a name, you cannot
even call it within itself! If you place an anonymous function inside a named function, the
anonymous function must be declared.

6.18 Example: A Database

This example shows how you can use Axiom to organize a database of lineage data and then
query the database for relationships.

The database is entered as “assertions” that are really pieces of a function definition.

children("albert") == ["albertJr","richard","diane"]

Type: Void

Each piece children(x) == y means “the children of x are y”.
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children("richard") == ["douglas","daniel","susan"]

Type: Void

This family tree thus spans four generations.

children("douglas") == ["dougie","valerie"]

Type: Void

Say “no one else has children.”

children(x) == []

Type: Void

We need some functions for computing lineage. Start with childOf.

childOf(x,y) == member?(x,children(y))

Type: Void

To find the parentOf someone, you have to scan the database of people applying children.

parentOf(x) ==

for y in people repeat

(if childOf(x,y) then return y)

"unknown"

Type: Void

And a grandparent of x is just a parent of a parent of x.

grandParentOf(x) == parentOf parentOf x

Type: Void

The grandchildren of x are the people y such that x is a grandparent of y.

grandchildren(x) == [y for y in people | grandParentOf(y) = x]
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Type: Void

Suppose you want to make a list of all great-grandparents. Well, a great-grandparent is a
grandparent of a person who has children.

greatGrandParents == [x for x in people |

reduce(_or,

[not empty? children(y) for y in grandchildren(x)],false)]

Type: Void

Define descendants to include the parent as well.

descendants(x) ==

kids := children(x)

null kids => [x]

concat(x,reduce(concat,[descendants(y)

for y in kids],[]))

Type: Void

Finally, we need a list of people. Since all people are descendants of “albert”, let’s say so.

people == descendants "albert"

Type: Void

We have used “==” to define the database and some functions to query the database. But no
computation is done until we ask for some information. Then, once and for all, the functions
are analyzed and compiled to machine code for run-time efficiency. Notice that no types are
given anywhere in this example. They are not needed.

Who are the grandchildren of “richard”?

grandchildren "richard"

Compiling function children with type String -> List String

Compiling function descendants with type String -> List String

Compiling body of rule people to compute value of type List String

Compiling function childOf with type (String,String) -> Boolean

Compiling function parentOf with type String -> String

Compiling function grandParentOf with type String -> String

Compiling function grandchildren with type String -> List String

["dougie", "valerie"]
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Type: List String

Who are the great-grandparents?

greatGrandParents

Compiling body of rule greatGrandParents to compute value of

type List String

["albert"]

Type: List String

6.19 Example: A Famous Triangle

In this example we write some functions that display Pascal’s triangle. It demonstrates the
use of piece-wise definitions and some output operations you probably haven’t seen before.

To make these output operations available, we have to expose the domain OutputForm. See
section 2.11 on page 94 for more information about exposing domains and packages.

)set expose add constructor OutputForm

OutputForm is now explicitly exposed in frame G82322

Define the values along the first row and any column i.

pascal(1,i) == 1

Type: Void

Define the values for when the row and column index i are equal. Repeating the argument
name indicates that the two index values are equal.

pascal(n,n) == 1

Type: Void

pascal(i,j | 1 < i and i < j) ==

pascal(i-1,j-1)+pascal(i,j-1)
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Type: Void

Now that we have defined the coefficients in Pascal’s triangle, let’s write a couple of one-liners
to display it.

First, define a function that gives the n-th row.

pascalRow(n) == [pascal(i,n) for i in 1..n]

Type: Void

Next, we write the function displayRow to display the row, separating entries by blanks
and centering.

displayRow(n) == output center blankSeparate pascalRow(n)

Type: Void

Here we have used three output operations. Operation output displays the printable form
of objects on the screen, center centers a printable form in the width of the screen, and
blankSeparate takes a list of n printable forms and inserts a blank between successive
elements.

Look at the result.

for i in 1..7 repeat displayRow i

Compiling function pascal with type (Integer,Integer) ->

PositiveInteger

Compiling function pascalRow with type PositiveInteger -> List

PositiveInteger

Compiling function displayRow with type PositiveInteger -> Void

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Type: Void
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Being purists, we find this less than satisfactory. Traditionally, elements of Pascal’s triangle
are centered between the left and right elements on the line above.

To fix this misalignment, we go back and redefine pascalRow to right adjust the entries
within the triangle within a width of four characters.

pascalRow(n) == [right(pascal(i,n),4) for i in 1..n]

Compiled code for pascalRow has been cleared.

Compiled code for displayRow has been cleared.

1 old definition(s) deleted for function or rule pascalRow

Type: Void

Finally let’s look at our purely reformatted triangle.

for i in 1..7 repeat displayRow i

Compiling function pascalRow with type PositiveInteger -> List

OutputForm

+++ |*1;pascalRow;1;G82322| redefined

Compiling function displayRow with type PositiveInteger -> Void

+++ |*1;displayRow;1;G82322| redefined

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Type: Void

Unexpose OutputForm so we don’t get unexpected results later.

)set expose drop constructor OutputForm

OutputForm is now explicitly hidden in frame G82322
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6.20 Example: Testing for Palindromes

In this section we define a function pal? that tests whether its argument is a palindrome,
that is, something that reads the same backwards and forwards. For example, the string
“Madam I’m Adam” is a palindrome (excluding blanks and punctuation) and so is the
number 123454321. The definition works for any datatype that has n components that are
accessed by the indices 1 . . . n.

Here is the definition for pal?. It is simply a call to an auxiliary function called palAux?.
We are following the convention of ending a function’s name with ? if the function returns
a Boolean value.

pal? s == palAux?(s,1,#s)

Type: Void

Here is palAux?. It works by comparing elements that are equidistant from the start and
end of the object.

palAux?(s,i,j) ==

j > i =>

(s.i = s.j) and palAux?(s,i+1,i-1)

true

Type: Void

Try pal? on some examples. First, a string.

pal? "Oxford"

Compiling function palAux? with type (String,Integer,Integer) ->

Boolean

Compiling function pal? with type String -> Boolean

false

Type: Boolean

A list of polynomials.

pal? [4,a,x-1,0,x-1,a,4]

Compiling function palAux? with type (List Polynomial Integer,

Integer,Integer) -> Boolean

Compiling function pal? with type List Polynomial Integer -> Boolean
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true

Type: Boolean

A list of integers from the example in the last section.

pal? [1,6,15,20,15,6,1]

Compiling function palAux? with type (List PositiveInteger,Integer,

Integer) -> Boolean

Compiling function pal? with type List PositiveInteger -> Boolean

true

Type: Boolean

To use pal? on an integer, first convert it to a string.

pal?(1441::String)

true

Type: Boolean

Compute an infinite stream of decimal numbers, each of which is an obvious palindrome.

ones := [reduce(+,[10**j for j in 0..i]) for i in 1..]

[11, 111, 1111, 11111, 111111, 1111111,

11111111, 111111111, 1111111111, 11111111111, . . .]

Type: Stream PositiveInteger

)set streams calculate 9

How about their squares?

squares := [x**2 for x in ones]

[121, 12321, 1234321, 123454321, 12345654321, 1234567654321,

123456787654321, 12345678987654321, 1234567900987654321,

123456790120987654321, . . .]
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Type: Stream PositiveInteger

Well, let’s test them all.

[pal?(x::String) for x in squares]

[true, true, true, true, true, true, true, true, true, true, . . .]

Type: Stream Boolean

)set streams calculate 7

6.21 Rules and Pattern Matching

A common mathematical formula is

log(x) + log(y) = log(xy) ∀x and y

The presence of “∀” indicates that x and y can stand for arbitrary mathematical expressions
in the above formula. You can use such mathematical formulas in Axiom to specify “rewrite
rules”. Rewrite rules are objects in Axiom that can be assigned to variables for later use,
often for the purpose of simplification. Rewrite rules look like ordinary function definitions
except that they are preceded by the reserved word rule. For example, a rewrite rule for the
above formula is:

rule log(x) + log(y) == log(x * y)

Like function definitions, no action is taken when a rewrite rule is issued. Think of rewrite
rules as functions that take one argument. When a rewrite rule A = B is applied to an
argument f , its meaning is: “rewrite every subexpression of f that matches A by B.” The
left-hand side of a rewrite rule is called a pattern; its right-hand side is called its substitution.

Create a rewrite rule named logrule. The generated symbol beginning with a “%” is a
place-holder for any other terms that might occur in the sum.

logrule := rule log(x) + log(y) == log(x * y)

log (y) + log (x) + %C== log (x y) + %C

Type: RewriteRule(Integer,Integer,Expression Integer)

Create an expression with logarithms.

f := log sin x + log x
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log (sin (x)) + log (x)

Type: Expression Integer

Apply logrule to f .

logrule f

log (x sin (x))

Type: Expression Integer

The meaning of our example rewrite rule is: “for all expressions x and y, rewrite log(x) +
log(y) by log(x ∗ y).” Patterns generally have both operation names (here, log and “+”)
and variables (here, x and y). By default, every operation name stands for itself. Thus log
matches only “log” and not any other operation such as sin. On the other hand, variables
do not stand for themselves. Rather, a variable denotes a pattern variable that is free to
match any expression whatsoever.

When a rewrite rule is applied, a process called pattern matching goes to work by system-
atically scanning the subexpressions of the argument. When a subexpression is found that
“matches” the pattern, the subexpression is replaced by the right-hand side of the rule. The
details of what happens will be covered later.

The customary Axiom notation for patterns is actually a shorthand for a longer, more general
notation. Pattern variables can be made explicit by using a percent “%” as the first character
of the variable name. To say that a name stands for itself, you can prefix that name with a
quote operator “’”. Although the current Axiom parser does not let you quote an operation
name, this more general notation gives you an alternate way of giving the same rewrite rule:

rule log(%x) + log(%y) == log(x * y)

This longer notation gives you patterns that the standard notation won’t handle. For exam-
ple, the rule

rule %f(c * ’x) == c*%f(x)

means “for all f and c, replace f(y) by c ∗ f(x) when y is the product of c and the explicit
variable x.”

Thus the pattern can have several adornments on the names that appear there. Normally,
all these adornments are dropped in the substitution on the right-hand side.

To summarize:
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To enter a single rule in Axiom, use the following syntax:

rule leftHandSide == rightHandSide

The leftHandSide is a pattern to be matched and the rightHandSide is
its substitution. The rule is an object of type RewriteRule that can be
assigned to a variable and applied to expressions to transform them.

Rewrite rules can be collected into rulesets so that a set of rules can be applied at once.
Here is another simplification rule for logarithms.

y log(x) = log(xy) ∀x and y

If instead of giving a single rule following the reserved word rule you give a “pile” of rules,
you create what is called a ruleset. Like rules, rulesets are objects in Axiom and can be
assigned to variables. You will find it useful to group commonly used rules into input files,
and read them in as needed.

Create a ruleset named logrules.

logrules := rule

log(x) + log(y) == log(x * y)

y * log x == log(x ** y)

{log (y) + log (x) + %B== log (x y) + %B, y log (x)== log (xy)}

Type: Ruleset(Integer,Integer,Expression Integer)

Again, create an expression f containing logarithms.

f := a * log(sin x) - 2 * log x

a log (sin (x))− 2 log (x)

Type: Expression Integer

Apply the ruleset logrules to f .

logrules f

log

(
sin (x)

a

x2

)
Type: Expression Integer



6.21. RULES AND PATTERN MATCHING 211

We have allowed pattern variables to match arbitrary expressions in the above examples.
Often you want a variable only to match expressions satisfying some predicate. For example,
we may want to apply the transformation

y log(x) = log(xy)

only when y is an integer.

The way to restrict a pattern variable y by a predicate f(y) is by using a vertical bar “|”,
which means “such that,” in much the same way it is used in function definitions. You do
this only once, but at the earliest (meaning deepest and leftmost) part of the pattern.

This restricts the logarithmic rule to create integer exponents only.

logrules2 := rule

log(x) + log(y) == log(x * y)

(y | integer? y) * log x == log(x ** y)

{log (y) + log (x) + %D== log (x y) + %D, y log (x)== log (xy)}

Type: Ruleset(Integer,Integer,Expression Integer)

Compare this with the result of applying the previous set of rules.

f

a log (sin (x))− 2 log (x)

Type: Expression Integer

logrules2 f

a log (sin (x)) + log

(
1

x2

)
Type: Expression Integer

You should be aware that you might need to apply a function like integer within your
predicate expression to actually apply the test function.

Here we use integer because n has type Expression Integer but even? is an operation
defined on integers.

evenRule := rule cos(x)**(n | integer? n and even? integer

n)==(1-sin(x)**2)**(n/2)

cos (x)
n
==

(
−sin (x)2 + 1

)n
2
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Type: RewriteRule(Integer,Integer,Expression Integer)

Here is the application of the rule.

evenRule( cos(x)**2 )

−sin (x)2 + 1

Type: Expression Integer

This is an example of some of the usual identities involving products of sines and cosines.

sinCosProducts == rule

sin(x) * sin(y) == (cos(x-y) - cos(x + y))/2

cos(x) * cos(y) == (cos(x-y) + cos(x+y))/2

sin(x) * cos(y) == (sin(x-y) + sin(x + y))/2

Type: Void

g := sin(a)*sin(b) + cos(b)*cos(a) + sin(2*a)*cos(2*a)

sin (a) sin (b) + cos (2 a) sin (2 a) + cos (a) cos (b)

Type: Expression Integer

sinCosProducts g

Compiling body of rule sinCosProducts to compute value of type

Ruleset(Integer,Integer,Expression Integer)

sin (4 a) + 2 cos (b− a)
2

Type: Expression Integer

Another qualification you will often want to use is to allow a pattern to match an identity
element. Using the pattern x + y, for example, neither x nor y matches the expression 0.
Similarly, if a pattern contains a product x ∗ y or an exponentiation x ∗ ∗y, then neither x
or y matches 1.

If identical elements were matched, pattern matching would generally loop. Here is an
expansion rule for exponentials.
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exprule := rule exp(a + b) == exp(a) * exp(b)

e(b+a)== ea eb

Type: RewriteRule(Integer,Integer,Expression Integer)

This rule would cause infinite rewriting on this if either a or b were allowed to match 0.

exprule exp x

ex

Type: Expression Integer

There are occasions when you do want a pattern variable in a sum or product to match 0
or 1. If so, prefix its name with a “?” whenever it appears in a left-hand side of a rule. For
example, consider the following rule for the exponential integral:∫ (

y + ex

x

)
dx =

∫
y

x
dx+ Ei(x) ∀x and y

This rule is valid for y = 0. One solution is to create a Ruleset with two rules, one with
and one without y. A better solution is to use an “optional” pattern variable.

Define rule eirule with a pattern variable ?y to indicate that an expression may or may not
occur.

eirule := rule integral((?y + exp x)/x,x) == integral(y/x,x) + Ei x

∫ x e%M + y

%M
d%M== ′integral

(y
x
, x
)
+ ′Ei (x)

Type: RewriteRule(Integer,Integer,Expression Integer)

Apply rule eirule to an integral without this term.

eirule integral(exp u/u, u)

Ei (u)

Type: Expression Integer

Apply rule eirule to an integral with this term.

eirule integral(sin u + exp u/u, u)



214 CHAPTER 6. USER-DEFINED FUNCTIONS, MACROS AND RULES

∫ u
sin (%M) d%M + Ei (u)

Type: Expression Integer

Here is one final adornment you will find useful. When matching a pattern of the form x+ y
to an expression containing a long sum of the form a + . . . + b, there is no way to predict
in advance which subset of the sum matches x and which matches y. Aside from efficiency,
this is generally unimportant since the rule holds for any possible combination of matches
for x and y. In some situations, however, you may want to say which pattern variable is a
sum (or product) of several terms, and which should match only a single term. To do this,
put a prefix colon “:” before the pattern variable that you want to match multiple terms.

The remaining rules involve operators u and v.

u := operator ’u

u

Type: BasicOperator

These definitions tell Axiom that u and v are formal operators to be used in expressions.

v := operator ’v

v

Type: BasicOperator

First define myRule with no restrictions on the pattern variables x and y.

myRule := rule u(x + y) == u x + v y

u (y + x)== ′v (y) + ′u (x)

Type: RewriteRule(Integer,Integer,Expression Integer)

Apply myRule to an expression.

myRule u(a + b + c + d)

v (d+ c+ b) + u (a)

Type: Expression Integer
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Define myOtherRule to match several terms so that the rule gets applied recursively.

myOtherRule := rule u(:x + y) == u x + v y

u (y + x)== ′v (y) + ′u (x)

Type: RewriteRule(Integer,Integer,Expression Integer)

Apply myOtherRule to the same expression.

myOtherRule u(a + b + c + d)

v (c) + v (b) + v (a) + u (d)

Type: Expression Integer

Summary of pattern variable adornments:

(x | predicate?(x)) means that the substutution s for x
must satisfy predicate(s) = true.

?x means that x can match an identity
element (0 or 1).

:x means that x can match several terms
in a sum.

Here are some final remarks on pattern matching. Pattern matching provides a very useful
paradigm for solving certain classes of problems, namely, those that involve transformations
of one form to another and back. However, it is important to recognize its limitations.

First, pattern matching slows down as the number of rules you have to apply increases. Thus
it is good practice to organize the sets of rules you use optimally so that irrelevant rules are
never included.

Second, careless use of pattern matching can lead to wrong answers. You should avoid using
pattern matching to handle hidden algebraic relationships that can go undetected by other
programs. As a simple example, a symbol such as “J” can easily be used to represent the
square root of −1 or some other important algebraic quantity. Many algorithms branch on
whether an expression is zero or not, then divide by that expression if it is not. If you fail to
simplify an expression involving powers of J to −1, algorithms may incorrectly assume an
expression is non-zero, take a wrong branch, and produce a meaningless result.

Pattern matching should also not be used as a substitute for a domain. In Axiom, objects
of one domain are transformed to objects of other domains using well-defined coerce oper-
ations. Pattern matching should be used on objects that are all the same type. Thus if your
application can be handled by type Expression in Axiom and you think you need pattern
matching, consider this choice carefully. You may well be better served by extending an
existing domain or by building a new domain of objects for your application.
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Chapter 7

Graphics

Figure 7.1: Torus knot of type (15,17).

This chapter shows how to use the Axiom graphics facilities under the X Window System.
Axiom has two-dimensional and three-dimensional drawing and rendering packages that al-
low the drawing, coloring, transforming, mapping, clipping, and combining of graphic output
from Axiom computations. This facility is particularly useful for investigating problems in
areas such as topology. The graphics package is capable of plotting functions of one or more
variables or plotting parametric surfaces and curves. Various coordinate systems are also
available, such as polar and spherical.

A graph is displayed in a viewport window and it has a control-panel that uses interactive

217
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mouse commands. PostScript and other output forms are available so that Axiom images
can be printed or used by other programs.

7.1 Two-Dimensional Graphics

The Axiom two-dimensional graphics package provides the ability to display

• curves defined by functions of a single real variable

• curves defined by parametric equations

• implicit non-singular curves defined by polynomial equations

• planar graphs generated from lists of point components.

These graphs can be modified by specifying various options, such as calculating points in
the polar coordinate system or changing the size of the graph viewport window.

Plotting Two-Dimensional Functions of One Variable

The first kind of two-dimensional graph is that of a curve defined by a function y = f(x)
over a finite interval of the x axis.

The general format for drawing a function defined by a formula f(x) is:

draw(f(x), x = a..b, options)

where a..b defines the range of x, and where options prescribes zero or more
options as described in section 7.1 on page 224. An example of an option is
curveColor == bright red(). An alternative format involving functions f
and g is also available.

A simple way to plot a function is to use a formula. The first argument is the formula. For
the second argument, write the name of the independent variable (here, x), followed by an
“=”, and the range of values.

Display this formula over the range 0 ≤ x ≤ 6. Axiom converts your formula to a compiled
function so that the results can be computed quickly and efficiently.

draw(sin(tan(x)) - tan(sin(x)),x = 0..6)
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sin(tan(x))− tan(sin(x)) x = 0 . . . 6

Notice that Axiom compiled the function before the graph was put on the screen.

Here is the same graph on a different interval.

draw(sin(tan(x)) - tan(sin(x)),x = 10..16)

sin(tan(x))− tan(sin(x)) x = 10 . . . 16

Once again the formula is converted to a compiled function before any points were computed.
If you want to graph the same function on several intervals, it is a good idea to define the
function first so that the function has to be compiled only once.

This time we first define the function.

f(x) == (x-1)*(x-2)*(x-3)

To draw the function, the first argument is its name and the second is just the range with
no independent variable.

draw(f, 0..4)
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f(x) == (x− 1)(x− 2)(x− 3)

Plotting Two-Dimensional Parametric Plane Curves

The second kind of two-dimensional graph is that of curves produced by parametric equa-
tions. Let x = f(t) and y = g(t) be formulas or two functions f and g as the parameter
t ranges over an interval [a, b]. The function curve takes the two functions f and g as its
parameters.

The general format for drawing a two-dimensional plane curve defined by
parametric formulas x = f(t) and y = g(t) is:

draw(curve(f(t), g(t)), t = a..b, options)

where a..b defines the range of the independent variable t, and where options
prescribes zero or more options as described in section 7.2 on page 260. An
example of an option is curveColor == bright red().

Here’s an example:

Define a parametric curve using a range involving %pi, Axiom’s way of saying π. For
parametric curves, Axiom compiles two functions, one for each of the functions f and g.

draw(curve(sin(t)*sin(2*t)*sin(3*t), sin(4*t)*sin(5*t)*sin(6*t)), t =

0..2*%pi)
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curve(sin(t) ∗ sin(2t) ∗ sin(3t), sin(4t) ∗ sin(5t) ∗ sin(6t))
The title may be an arbitrary string and is an optional argument to the draw command.

draw(curve(cos(t), sin(t)), t = 0..2*%pi)

curve(cos(t), sin(t)), t = 0..2π

If you plan on plotting x = f(t), y = g(t) as t ranges over several intervals, you may want
to define functions f and g first, so that they need not be recompiled every time you create
a new graph. Here’s an example:

As before, you can first define the functions you wish to draw.

f(t:DFLOAT):DFLOAT == sin(3*t/4)

Function declaration f : DoubleFloat -> DoubleFloat has been

added to workspace.

Type: Void

Axiom compiles them to map DoubleFloat values to DoubleFloat values.
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g(t:DFLOAT):DFLOAT == sin(t)

Function declaration f : DoubleFloat -> DoubleFloat has been added

to workspace.

Type: Void

Give to curve the names of the functions, then write the range without the name of the
independent variable.

draw(curve(f,g),0..%pi)

curve(f, g) 0..π

Here is another look at the same curve but over a different range. Notice that f and g are
not recompiled. Also note that Axiom provides a default title based on the first function
specified in curve.

draw(curve(f,g),-4*%pi..4*%pi)

curve(f, g) − 4π..4π
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Plotting Plane Algebraic Curves

A third kind of two-dimensional graph is a non-singular “solution curve” in a rectangular
region of the plane. A solution curve is a curve defined by a polynomial equation p(x, y) = 0.
Non-singular means that the curve is “smooth” in that it does not cross itself or come to
a point (cusp). Algebraically, this means that for any point (x, y) on the curve, that is, a
point such that p(x, y) = 0, the partial derivatives ∂p

∂x (x, y) and
∂p
∂y (x, y) are not both zero.

The general format for drawing a non-singular solution curve given by a
polynomial of the form p(x, y) = 0 is:

draw(p(x,y) = 0, x, y, range == [a..b, c..d], options)

where the second and third arguments name the first and second independent
variables of p. A range option is always given to designate a bounding
rectangular region of the plane a ≤ x ≤ b, c ≤ y ≤ d. Zero or more additional
options as described in section 7.1 on page 224 may be given.

We require that the polynomial has rational or integral coefficients. Here is an algebraic
curve example (“Cartesian ovals”):

p := ((x**2 + y**2 + 1) - 8*x)**2 - (8*(x**2 + y**2 + 1)-4*x-1)

y4 +
(
2 x2 − 16 x− 6

)
y2 + x4 − 16 x3 + 58 x2 − 12 x− 6

Type: Polynomial Integer

The first argument is always expressed as an equation of the form p = 0 where p is a
polynomial.

draw(p = 0, x, y, range == [-1..11, -7..7])

p = 0, x, y, range == [−1..11,−7..7]
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Two-Dimensional Options

The draw commands take an optional list of options, such as title shown above. Each
option is given by the syntax: name == value. Here is a list of the available options in the
order that they are described below.

adaptive clip unit
clip curveColor range
toScale pointColor coordinates

The adaptive option turns adaptive plotting on or off. Adaptive plotting uses an algorithm
that traverses a graph and computes more points for those parts of the graph with high
curvature. The higher the curvature of a region is, the more points the algorithm computes.

The adaptive option is normally on. Here we turn it off.

draw(sin(1/x),x=-2*%pi..2*%pi, adaptive == false)

sin(1/x), x = −2π..2π, adaptive == false

The clip option turns clipping on or off. If on, large values are cut off according to clip-
PointsDefault.

draw(tan(x),x=-2*%pi..2*%pi, clip == true)
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tan(x), x = −2π..2π, clip == true

Option toScale does plotting to scale if true or uses the entire viewport if false. The
default can be determined using drawToScale.

draw(sin(x),x=-%pi..%pi, toScale == true, unit == [1.0,1.0])

sin(x), x = −π..π, toScale == true, unit == [1.0, 1.0]

Option clip with a range sets point clipping of a graph within the ranges specified in the
list [xrange, yrange]. If only one range is specified, clipping applies to the y-axis.

draw(sec(x),x=-2*%pi..2*%pi, clip == [-2*%pi..2*%pi,-%pi..%pi], unit ==

[1.0,1.0])
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sec(x), x = −2π..2π, clip == [−2π..2π,−π..π], unit == [1.0, 1.0]

Option curveColor sets the color of the graph curves or lines to be the indicated palette
color (see section 7.1 on page 229 and section 7.1 on page 230).

draw(sin(x),x=-%pi..%pi, curveColor == bright red())

sin(x), x = −π..π, curveColor == brightred()

Option pointColor sets the color of the graph points to the indicated palette color (see
section 7.1 on page 229 and section 7.1 on page 230).

draw(sin(x),x=-%pi..%pi, pointColor == pastel yellow())
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sin(x), x = −π..π, pointColor == pastelyellow()

Option unit sets the intervals at which the axis units are plotted according to the indicated
steps [x interval, y interval].

draw(curve(9*sin(3*t/4),8*sin(t)), t = -4*%pi..4*%pi, unit == [2.0,1.0])

9sin(3t/4), 8sin(t)), t = −4π..4π, unit == [2.0, 1.0]

Option range sets the range of variables in a graph to be within the ranges for solving plane
algebraic curve plots.

draw(y**2 + y - (x**3 - x) = 0, x, y, range == [-2..2,-2..1],

unit==[1.0,1.0])



228 CHAPTER 7. GRAPHICS

y2 + y − (x3 − x) = 0, x, y, range == [−2..2,−2..1], unit == [1.0, 1.0]

A second example of a solution plot.

draw(x**2 + y**2 = 1, x, y, range == [-3/2..3/2,-3/2..3/2], unit==[0.5,0.5])

x2 + y2 = 1, x, y, range == [−3/2..3/2,−3/2..3/2], unit == [0.5, 0.5]

Option coordinates indicates the coordinate system in which the graph is plotted. The
default is to use the Cartesian coordinate system. For more details, see section 7.2 on
page 273 or CoordinateSystems.

draw(curve(sin(5*t),t),t=0..2*%pi, coordinates == polar)
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sin(5t), t), t = 0..2π, coordinates == polar

Color

The domain Color provides operations for manipulating colors in two-dimensional graphs.
Colors are objects of Color. Each color has a hue and a weight. Hues are represented by
integers that range from 1 to the numberOfHues(), normally 27. Weights are floats and
have the value 1.0 by default.

color (integer)

creates a color of hue integer and weight 1.0.

hue (color)

returns the hue of color as an integer.

red ()

blue(), green(), and yellow() create colors of that hue with weight 1.0.

color1 + color2 returns the color that results from additively combining the indicated color1
and color2. Color addition is not commutative: changing the order of the arguments
produces different results.

integer * color changes the weight of color by integer without affecting its hue. For example,
red() + 3 ∗ yellow() produces a color closer to yellow than to red. Color multiplication
is not associative: changing the order of grouping produces different results.

These functions can be used to change the point and curve colors for two- and three-dimen-
sional graphs. Use the pointColor option for points.

draw(x**2,x=-1..1,pointColor == green())
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x2, x = −1..1, pointColor == green()

Use the curveColor option for curves.

draw(x**2,x=-1..1,curveColor == color(13) + 2*blue())

x2, x = −1..1, curveColor == color(13) + 2 ∗ blue()

Palette

Domain Palette is the domain of shades of colors: dark, dim, bright, pastel, and light,
designated by the integers 1 through 5, respectively.

Colors are normally “bright.”

shade red()

3

Type: PositiveInteger

To change the shade of a color, apply the name of a shade to it.
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myFavoriteColor := dark blue()

[Hue: 22 Weight: 1.0] from the Dark palette

Type: Palette

The expression shade(color) returns the value of a shade of color.

shade myFavoriteColor

1

Type: PositiveInteger

The expression hue(color) returns its hue.

hue myFavoriteColor

Hue: 22 Weight: 1.0

Type: Color

Palettes can be used in specifying colors in two-dimensional graphs.

draw(x**2,x=-1..1,curveColor == dark blue())

x2, x = −1..1, curveColor == darkblue()
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Two-Dimensional Control-Panel

Once you have created a viewport, move your mouse to the viewport and click with your left
mouse button to display a control-panel. The panel is displayed on the side of the viewport
closest to where you clicked. Each of the buttons which toggle on and off show the current
state of the graph.

Two-dimensional control-panel.

Transformations

Object transformations are executed from the control-panel by mouse-activated potentiome-
ter windows.

Scale: To scale a graph, click on a mouse button within the Scale window in the upper left
corner of the control-panel. The axes along which the scaling is to occur are indicated
by setting the toggles above the arrow. With X On and Y On appearing, both axes are
selected and scaling is uniform. If either is not selected, for example, if X Off appears,
scaling is non-uniform.

Translate: To translate a graph, click the mouse in the Translate window in the direction
you wish the graph to move. This window is located in the upper right corner of the
control-panel. Along the top of the Translate window are two buttons for selecting
the direction of translation. Translation along both coordinate axes results when X
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On and Y On appear or along one axis when one is on, for example, X On and Y Off

appear.

Messages

The window directly below the transformation potentiometer windows is used to display
system messages relating to the viewport and the control-panel. The following format is
displayed:

[scaleX, scaleY] >graph< [translateX, translateY]

The two values to the left show the scale factor along the X and Y coordinate axes. The
two values to the right show the distance of translation from the center in the X and Y

directions. The number in the center shows which graph in the viewport this data pertains
to. When multiple graphs exist in the same viewport, the graph must be selected (see
“Multiple Graphs,” below) in order for its transformation data to be shown, otherwise the
number is 1.

Multiple Graphs

The Graphs window contains buttons that allow the placement of two-dimensional graphs
into one of nine available slots in any other two-dimensional viewport. In the center of the
window are numeral buttons from one to nine that show whether a graph is displayed in the
viewport. Below each number button is a button showing whether a graph that is present is
selected for application of some transformation. When the caret symbol is displayed, then
the graph in that slot will be manipulated. Initially, the graph for which the viewport is
created occupies the first slot, is displayed, and is selected.

Clear: The Clear button deselects every viewport graph slot. A graph slot is reselected by
selecting the button below its number.

Query: The Query button is used to display the scale and translate data for the indicated
graph. When this button is selected the message “Click on the graph to query” ap-
pears. Select a slot number button from the Graphs window. The scaling factor and
translation offset of the graph are then displayed in the message window.

Pick: The Pick button is used to select a graph to be placed or dropped into the indicated
viewport. When this button is selected, the message “Click on the graph to pick”
appears. Click on the slot with the graph number of the desired graph. The graph
information is held waiting for you to execute a Drop in some other graph.

Drop: Once a graph has been picked up using the Pick button, the Drop button places
it into a new viewport slot. The message “Click on the graph to drop” appears in
the message window when the Drop button is selected. By selecting one of the slot
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number buttons in the Graphs window, the graph currently being held is dropped
into this slot and displayed.

Buttons

Axes turns the coordinate axes on or off.

Units turns the units along the x and y axis on or off.

Box encloses the area of the viewport graph in a bounding box, or removes the box if already
enclosed.

Pts turns on or off the display of points.

Lines turns on or off the display of lines connecting points.

PS writes the current viewport contents to a file axiom2d.ps or to a name specified in the
user’s .Xdefaults file. The file is placed in the directory from which Axiom or the
viewalone program was invoked.

Reset resets the object transformation characteristics and attributes back to their initial
states.

Hide makes the control-panel disappear.

Quit queries whether the current viewport session should be terminated.

Operations for Two-Dimensional Graphics

Here is a summary of useful Axiom operations for two-dimensional graphics. Each operation
name is followed by a list of arguments. Each argument is written as a variable informally
named according to the type of the argument (for example, integer). If appropriate, a default
value for an argument is given in parentheses immediately following the name.

adaptive ([boolean(true)])

sets or indicates whether graphs are plotted according to the adaptive refinement al-
gorithm.

axesColorDefault ([color(dark blue())])

sets or indicates the default color of the axes in a two-dimensional graph viewport.

clipPointsDefault ([boolean(false)])

sets or indicates whether point clipping is to be applied as the default for graph plots.

drawToScale ([boolean(false)])

sets or indicates whether the plot of a graph is “to scale” or uses the entire viewport
space as the default.
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lineColorDefault ([color(pastel yellow())])

sets or indicates the default color of the lines or curves in a two-dimensional graph
viewport.

maxPoints ([integer(500)])

sets or indicates the default maximum number of possible points to be used when
constructing a two-dimensional graph.

minPoints ([integer(21)])

sets or indicates the default minimum number of possible points to be used when
constructing a two-dimensional graph.

pointColorDefault ([color(bright red())])

sets or indicates the default color of the points in a two-dimensional graph viewport.

pointSizeDefault ([integer(5)])

sets or indicates the default size of the dot used to plot points in a two-dimensional
graph.

screenResolution ([integer(600)])

sets or indicates the default screen resolution constant used in setting the computation
limit of adaptively generated curve plots.

unitsColorDefault ([color(dim green())])

sets or indicates the default color of the unit labels in a two-dimensional graph viewport.

viewDefaults ()

resets the default settings for the following attributes: point color, line color, axes color,
units color, point size, viewport upper left-hand corner position, and the viewport size.

viewPosDefault ([list([100,100])])

sets or indicates the default position of the upper left-hand corner of a two-dimension-
al viewport, relative to the display root window. The upper left-hand corner of the
display is considered to be at the (0, 0) position.

viewSizeDefault ([list([200,200])])

sets or indicates the default size in which two dimensional viewport windows are shown.
It is defined by a width and then a height.

viewWriteAvailable ([list(["pixmap","bitmap", "postscript", "image"])])

indicates the possible file types that can be created with the write function.

viewWriteDefault ([list([])])

sets or indicates the default types of files, in addition to the data file, that are created
when a write function is executed on a viewport.

units (viewport, integer(1), string("off"))

turns the units on or off for the graph with index integer.

axes (viewport, integer(1), string("on"))

turns the axes on or off for the graph with index integer.
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close (viewport)

closes viewport.

connect (viewport, integer(1), string("on"))

declares whether lines connecting the points are displayed or not.

controlPanel (viewport, string("off"))

declares whether the two-dimensional control-panel is automatically displayed or not.

graphs (viewport)

returns a list describing the state of each graph. If the graph state is not being used
this is shown by "undefined", otherwise a description of the graph’s contents is shown.

graphStates (viewport)

displays a list of all the graph states available for viewport, giving the values for every
property.

key (viewport)

returns the process ID number for viewport.

move (viewport, integerx(viewPosDefault), integery(viewPosDefault))

moves viewport on the screen so that the upper left-hand corner of viewport is at the
position (x,y).

options (viewport)

returns a list of all the DrawOptions used by viewport.

points (viewport, integer(1), string("on"))

specifies whether the graph points for graph integer are to be displayed or not.

region (viewport, integer(1), string("off"))

declares whether graph integer is or is not to be displayed with a bounding rectangle.

reset (viewport)

resets all the properties of viewport.

resize (viewport, integerwidth,integerheight)

resizes viewport with a new width and height.

scale (viewport, integern(1), integerx(0.9), integery(0.9))

scales values for the x and y coordinates of graph n.

show (viewport, integern(1), string("on"))

indicates if graph n is shown or not.

title (viewport, string("Axiom 2D"))

designates the title for viewport.

translate (viewport, integern(1), floatx(0.0), floaty(0.0))

causes graph n to be moved x and y units in the respective directions.
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write (viewport, stringdirectory, [strings])

if no third argument is given, writes the data file onto the directory with extension
data. The third argument can be a single string or a list of strings with some or all
the entries "pixmap", "bitmap", "postscript", and "image".

Addendum: Building Two-Dimensional Graphs

In this section we demonstrate how to create two-dimensional graphs from lists of points and
give an example showing how to read the lists of points from a file.

Creating a Two-Dimensional Viewport from a List of Points

Axiom creates lists of points in a two-dimensional viewport by utilizing the GraphImage

and TwoDimensionalViewport domains. In this example, the makeGraphImage function
takes a list of lists of points parameter, a list of colors for each point in the graph, a list of
colors for each line in the graph, and a list of sizes for each point in the graph.

The following expressions create a list of lists of points which will be read by Axiom and
made into a two-dimensional viewport.

p1 := point [1,1]$(Point DFLOAT)

[1.0, 1.0]

Type: Point DoubleFloat

p2 := point [0,1]$(Point DFLOAT)

[0.0, 1.0]

Type: Point DoubleFloat

p3 := point [0,0]$(Point DFLOAT)

[0.0, 0.0]

Type: Point DoubleFloat

p4 := point [1,0]$(Point DFLOAT)

[1.0, 0.0]
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Type: Point DoubleFloat

p5 := point [1,.5]$(Point DFLOAT)

[1.0, 0.5]

Type: Point DoubleFloat

p6 := point [.5,0]$(Point DFLOAT)

[0.5, 0.0]

Type: Point DoubleFloat

p7 := point [0,0.5]$(Point DFLOAT)

[0.0, 0.5]

Type: Point DoubleFloat

p8 := point [.5,1]$(Point DFLOAT)

[0.5, 1.0]

Type: Point DoubleFloat

p9 := point [.25,.25]$(Point DFLOAT)

[0.25, 0.25]

Type: Point DoubleFloat

p10 := point [.25,.75]$(Point DFLOAT)

[0.25, 0.75]

Type: Point DoubleFloat
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p11 := point [.75,.75]$(Point DFLOAT)

[0.75, 0.75]

Type: Point DoubleFloat

p12 := point [.75,.25]$(Point DFLOAT)

[0.75, 0.25]

Type: Point DoubleFloat

Finally, here is the list.

llp := [ [p1,p2], [p2,p3], [p3,p4], [p4,p1], [p5,p6], [p6,p7], [p7,p8],

[p8,p5], [p9,p10], [p10,p11], [p11,p12], [p12,p9] ]

[[[1.0, 1.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 0.0]], [[0.0, 0.0], [1.0, 0.0]], [[1.0, 0.0], [1.0, 1.0]],
[[1.0, 0.5], [0.5, 0.0], ], [[0.5, 0.0], [0.0, 0.5]], [[0.0, 0.5], [0.5, 1.0]],
[[0.5, 1.0], [1.0, 0.5]], [[0.25, 0.25], [0.25, 0.75], ], [[0.25, 0.75], [0.75, 0.75]],
[[0.75, 0.75], [0.75, 0.25]], [[0.75, 0.25], [0.25, 0.25]]]

Type: List List Point DoubleFloat

Now we set the point sizes for all components of the graph.

size1 := 6::PositiveInteger

6

Type: PositiveInteger

size2 := 8::PositiveInteger

8

Type: PositiveInteger

size3 := 10::PositiveInteger
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lsize := [size1, size1, size1, size1, size2, size2, size2, size2, size3,

size3, size3, size3]

[6, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 10]

Type: List Polynomial Integer

Here are the colors for the points.

pc1 := pastel red()

[Hue: 1Weight: 1.0] from the Pastelpalette

Type: Palette

pc2 := dim green()

[Hue: 14Weight: 1.0] from the Dimpalette

Type: Palette

pc3 := pastel yellow()

[Hue: 11Weight: 1.0] from the Pastelpalette

Type: Palette

lpc := [pc1, pc1, pc1, pc1, pc2, pc2, pc2, pc2, pc3, pc3, pc3, pc3]

[[Hue: 1Weight: 1.0] from the Pastelpalette, [Hue: 1Weight: 1.0] from the Pastelpalette,

[Hue: 1Weight: 1.0] from the Pastelpalette, [Hue: 1Weight: 1.0] from the Pastelpalette,

[Hue: 14Weight: 1.0] from the Dimpalette, [Hue: 14Weight: 1.0] from the Dimpalette,

[Hue: 14Weight: 1.0] from the Dimpalette, [Hue: 14Weight: 1.0] from the Dimpalette,

[Hue: 11Weight: 1.0] from the Pastelpalette, [Hue: 11Weight: 1.0] from the Pastelpalette,

[Hue: 11Weight: 1.0] from the Pastelpalette, [Hue: 11Weight: 1.0] from the Pastelpalette]
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Type: List Palette

Here are the colors for the lines.

lc := [pastel blue(), light yellow(), dim green(), bright red(), light

green(), dim yellow(), bright blue(), dark red(), pastel red(), light

blue(), dim green(), light yellow()]

+

[[Hue: 22Weight: 1.0] from the Pastelpalette, [Hue: 11Weight: 1.0] from the Lightpalette,

[Hue: 14Weight: 1.0] from the Dimpalette, [Hue: 1Weight: 1.0] from the Brightpalette,

[Hue: 14Weight: 1.0] from the Lightpalette, [Hue: 11Weight: 1.0] from the Dimpalette,

[Hue: 22Weight: 1.0] from the Brightpalette, [Hue: 1Weight: 1.0] from the Darkpalette,

[Hue: 1Weight: 1.0] from the Pastelpalette, [Hue: 22Weight: 1.0] from the Lightpalette,

[Hue: 14Weight: 1.0] from the Dimpalette, [Hue: 11Weight: 1.0] from the Lightpalette]

Type: List Palette

Now the GraphImage is created according to the component specifications indicated above.

g := makeGraphImage(llp,lpc,lc,lsize)$GRIMAGE

The makeViewport2D function now creates a TwoDimensionalViewport for this graph
according to the list of options specified within the brackets.

makeViewport2D(g,[title("Lines")])$VIEW2D

This example demonstrates the use of the GraphImage functions component and append-
Point in adding points to an empty GraphImage.

)clear all

g := graphImage()$GRIMAGE

Graph with 0point lists

Type: GraphImage
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p1 := point [0,0]$(Point DFLOAT)

[0.0, 0.0]

Type: Point DoubleFloat

p2 := point [.25,.25]$(Point DFLOAT)

[0.25, 0.25]

Type: Point DoubleFloat

p3 := point [.5,.5]$(Point DFLOAT)

[0.5, 0.5]

Type: Point DoubleFloat

p4 := point [.75,.75]$(Point DFLOAT)

[0.75, 0.75]

Type: Point DoubleFloat

p5 := point [1,1]$(Point DFLOAT)

[1.0, 1.0]

Type: Point DoubleFloat

component(g,p1)$GRIMAGE

Type: Void

component(g,p2)$GRIMAGE

Type: Void
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appendPoint(g,p3)$GRIMAGE

Type: Void

appendPoint(g,p4)$GRIMAGE

Type: Void

appendPoint(g,p5)$GRIMAGE

Type: Void

g1 := makeGraphImage(g)$GRIMAGE

Here is the graph.

makeViewport2D(g1,[title("Graph Points")])$VIEW2D

A list of points can also be made into a GraphImage by using the operation coerce. It is
equivalent to adding each point to g2 using component.

g2 := coerce([ [p1],[p2],[p3],[p4],[p5] ])$GRIMAGE

Now, create an empty TwoDimensionalViewport.

v := viewport2D()$VIEW2D

options(v,[title("Just Points")])$VIEW2D

Place the graph into the viewport.

putGraph(v,g2,1)$VIEW2D

Take a look.

makeViewport2D(v)$VIEW2D
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Creating a Two-Dimensional Viewport of a List of Points from a File

The following three functions read a list of points from a file and then draw the points and
the connecting lines. The points are stored in the file in readable form as floating point
numbers (specifically, DoubleFloat values) as an alternating stream of x- and y-values. For
example,

0.0 0.0 1.0 1.0 2.0 4.0

3.0 9.0 4.0 16.0 5.0 25.0

drawPoints(lp:List Point DoubleFloat):VIEW2D ==

g := graphImage()$GRIMAGE

for p in lp repeat

component(g,p,pointColorDefault(),lineColorDefault(),

pointSizeDefault())

gi := makeGraphImage(g)$GRIMAGE

makeViewport2D(gi,[title("Points")])$VIEW2D

drawLines(lp:List Point DoubleFloat):VIEW2D ==

g := graphImage()$GRIMAGE

component(g, lp, pointColorDefault(), lineColorDefault(),

pointSizeDefault())$GRIMAGE

gi := makeGraphImage(g)$GRIMAGE

makeViewport2D(gi,[title("Points")])$VIEW2D

plotData2D(name, title) ==

f:File(DFLOAT) := open(name,"input")

lp:LIST(Point DFLOAT) := empty()

while ((x := readIfCan!(f)) case DFLOAT) repeat

y : DFLOAT := read!(f)

lp := cons(point [x,y]$(Point DFLOAT), lp)

lp

close!(f)

drawPoints(lp)

drawLines(lp)

This command will actually create the viewport and the graph if the point data is in the file
“file.data′′.

plotData2D("file.data", "2D Data Plot")

Addendum: Appending a Graph to a Viewport Window Containing
a Graph

This section demonstrates how to append a two-dimensional graph to a viewport already con-
taining other graphs. The default draw command places a graph into the first GraphImage
slot position of the TwoDimensionalViewport.

This graph is in the first slot in its viewport.
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v1 := draw(sin(x),x=0..2*%pi)

So is this graph.

v2 := draw(cos(x),x=0..2*%pi, curveColor==light red())

The operation getGraph retrieves the GraphImage g1 from the first slot position in the
viewport v1.

g1 := getGraph(v1,1)

Now putGraph places g1 into the the second slot position of v2.

putGraph(v2,g1,2)

Display the new TwoDimensionalViewport containing both graphs.

makeViewport2D(v2)

7.2 Three-Dimensional Graphics

The Axiom three-dimensional graphics package provides the ability to

• generate surfaces defined by a function of two real variables

• generate space curves and tubes defined by parametric equations

• generate surfaces defined by parametric equations

These graphs can be modified by using various options, such as calculating points in the
spherical coordinate system or changing the polygon grid size of a surface.

Plotting Three-Dimensional Functions of Two Variables

The simplest three-dimensional graph is that of a surface defined by a function of two vari-
ables, z = f(x, y).

The general format for drawing a surface defined by a formula f(x, y) of two
variables x and y is:

draw(f(x,y), x = a..b, y = c..d, options)

where a..b and c..d define the range of x and y, and where options prescribes
zero or more options as described in section 7.2 on page 260. An example of
an option is title == “Title of Graph′′. An alternative format involving a
function f is also available.



246 CHAPTER 7. GRAPHICS

The simplest way to plot a function of two variables is to use a formula. With formulas you
always precede the range specifications with the variable name and an = sign.

draw(cos(x*y),x=-3..3,y=-3..3)

cos(xy), x = −3..3, y = −3..3
If you intend to use a function more than once, or it is long and complex, then first give its
definition to Axiom.

f(x,y) == sin(x)*cos(y)

Type: Void

To draw the function, just give its name and drop the variables from the range specifications.
Axiom compiles your function for efficient computation of data for the graph. Notice that
Axiom uses the text of your function as a default title.

draw(f,-%pi..%pi,-%pi..%pi)

f,−π..π,−π..π
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Plotting Three-Dimensional Parametric Space Curves

A second kind of three-dimensional graph is a three-dimensional space curve defined by the
parametric equations for x(t), y(t), and z(t) as a function of an independent variable t.

The general format for drawing a three-dimensional space curve defined by
parametric formulas x = f(t), y = g(t), and z = h(t) is:

draw(curve(f(t),g(t),h(t)), t = a..b, options)

where a..b defines the range of the independent variable t, and where options
prescribes zero or more options as described in section 7.2 on page 260. An
example of an option is title == “Title of Graph′′. An alternative format
involving functions f , g and h is also available.

If you use explicit formulas to draw a space curve, always precede the range specification
with the variable name and an = sign.

draw(curve(5*cos(t), 5*sin(t),t), t=-12..12)

curve(5cos(t), 5sin(t), t), t = −12..12
Alternatively, you can draw space curves by referring to functions.

i1(t:DFLOAT):DFLOAT == sin(t)*cos(3*t/5)

Function declaration i1 : DoubleFloat -> DoubleFloat has been added

to workspace.

Type: Void

This is useful if the functions are to be used more than once . . .
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i2(t:DFLOAT):DFLOAT == cos(t)*cos(3*t/5)

Function declaration i2 : DoubleFloat -> DoubleFloat has been added

to workspace.

Type: Void

or if the functions are long and complex.

i3(t:DFLOAT):DFLOAT == cos(t)*sin(3*t/5)

Function declaration i3 : DoubleFloat -> DoubleFloat has been added

to workspace.

Type: Void

Give the names of the functions and drop the variable name specification in the second
argument. Again, Axiom supplies a default title.

draw(curve(i1,i2,i3),0..15*%pi)

curve(i1, i2, i3), 0..15π

Plotting Three-Dimensional Parametric Surfaces

A third kind of three-dimensional graph is a surface defined by parametric equations for
x(u, v), y(u, v), and z(u, v) of two independent variables u and v.



7.2. THREE-DIMENSIONAL GRAPHICS 249

The general format for drawing a three-dimensional graph defined by para-
metric formulas x = f(u, v), y = g(u, v), and z = h(u, v) is:

draw(surface(f(u,v),g(u,v),h(u,v)), u = a..b, v = c..d, options)

where a..b and c..d define the range of the independent variables u and v,
and where options prescribes zero or more options as described in section 7.2
on page 260. An example of an option is title == “Title of Graph′′. An
alternative format involving functions f , g and h is also available.

This example draws a graph of a surface plotted using the parabolic cylindrical coordinate
system option. The values of the functions supplied to surface are interpreted in coordinates
as given by a coordinates option, here as parabolic cylindrical coordinates (see section 7.2
on page 273.

draw(surface(u*cos(v), u*sin(v), v*cos(u)), u=-4..4, v=0..%pi, coordinates==

parabolicCylindrical)

surface(ucos(v), usin(v), vcos(u)), u = −4..4, v = 0..π, coordinates ==
parabolicCylindrical

Again, you can graph these parametric surfaces using functions, if the functions are long and
complex.

Here we declare the types of arguments and values to be of type DoubleFloat.

n1(u:DFLOAT,v:DFLOAT):DFLOAT == u*cos(v)

Function declaration n1 : DoubleFloat -> DoubleFloat has been added

to workspace.

Type: Void
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As shown by previous examples, these declarations are necessary.

n2(u:DFLOAT,v:DFLOAT):DFLOAT == u*sin(v)

Function declaration n2 : DoubleFloat -> DoubleFloat has been added

to workspace.

Type: Void

In either case, Axiom compiles the functions when needed to graph a result.

n3(u:DFLOAT,v:DFLOAT):DFLOAT == u

Function declaration n3 : DoubleFloat -> DoubleFloat has been added

to workspace.

Type: Void

Without these declarations, you have to suffix floats with @DFLOAT to get a DoubleFloat

result. However, a call here with an unadorned float produces a DoubleFloat.

n3(0.5,1.0)

Compiling function n3 with type (DoubleFloat,DoubleFloat) ->

DoubleFloat

Type: DoubleFloat

Draw the surface by referencing the function names, this time choosing the toroidal coordi-
nate system.

draw(surface(n1,n2,n3), 1..4, 1..2*%pi, coordinates == toroidal(1$DFLOAT))
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surface(n1, n2, n3), 1..4, 1..2π, coordinates == toroidal(1$DFLOAT )

Axiom Images
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Three-Dimensional Options

The draw commands optionally take an optional list of options such as coordinates as
shown in the last example. Each option is given by the syntax: name == value. Here is a
list of the available options in the order that they are described below:

title coordinates var1Steps
style tubeRadius var2Steps
colorFunction tubePoints space

The option title gives your graph a title.

draw(cos(x*y),x=0..2*%pi,y=0..%pi,title == "Title of Graph")

cos(xy), x = 0..2π, y = 0..π, title == ”Title of Graph”

The style determines which of four rendering algorithms is used for the graph. The choices
are "wireMesh", "solid", "shade", and "smooth".

draw(cos(x*y),x=-3..3,y=-3..3, style=="smooth", title=="Smooth Option")

cos(xy), x = −3..3, y = −3..3, style == ”smooth”, title == ”Smooth Option”
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In all but the wire-mesh style, polygons in a surface or tube plot are normally colored in
a graph according to their z-coordinate value. Space curves are colored according to their
parametric variable value. To change this, you can give a coloring function. The coloring
function is sampled across the range of its arguments, then normalized onto the standard
Axiom colormap.

A function of one variable makes the color depend on the value of the parametric variable
specified for a tube plot.

color1(t) == t

Type: Void

draw(curve(sin(t), cos(t),0), t=0..2*%pi, tubeRadius == .3, colorFunction ==

color1)

curve(sin(t), cos(t), 0), t = 0..2π, tubeRadius == .3, colorFunction == color1

A function of two variables makes the color depend on the values of the independent variables.

color2(u,v) == u**2 - v**2

Type: Void

Use the option colorFunction for special coloring.

draw(cos(u*v), u=-3..3, v=-3..3, colorFunction == color2)



262 CHAPTER 7. GRAPHICS

cos(uv), u = −3..3, v = −3..3, colorFunction == color2

With a three variable function, the color also depends on the value of the function.

color3(x,y,fxy) == sin(x*fxy) + cos(y*fxy)

Type: Void

draw(cos(x*y), x=-3..3, y=-3..3, colorFunction == color3)

cos(xy), x = −3..3, y = −3..3, colorFunction == color3

Normally the Cartesian coordinate system is used. To change this, use the coordinates

option. For details, see section 7.2 on page 273.

m(u:DFLOAT,v:DFLOAT):DFLOAT == 1

Function declaration m : (DoubleFloat,DoubleFloat) -> DoubleFloat

has been added to workspace.
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Type: Void

Use the spherical coordinate system.

draw(m, 0..2*%pi,0..%pi, coordinates == spherical, style=="shade")

m, 0..2π, 0..π, coordinates == spherical, style == ”shade”

Space curves may be displayed as tubes with polygonal cross sections.
Two options, tubeRadius and tubePoints,
control the size and shape of this cross section.

The tubeRadius option specifies the radius of the tube that encircles the specified space
curve.

draw(curve(sin(t),cos(t),0),t=0..2*%pi, style=="shade", tubeRadius == .3)

curve(sin(t), cos(t), 0), t = 0..2π, style == ”shade”, tubeRadius == .3
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The tubePoints option specifies the number of vertices defining the polygon that is used
to create a tube around the specified space curve. The larger this number is, the more
cylindrical the tube becomes.

draw(curve(sin(t), cos(t), 0), t=0..2*%pi, style=="shade", tubeRadius ==

.25, tubePoints == 3)

curve(sin(t), cos(t), 0), t = 0..2π, style == ”shade”, tubeRadius == .25, tubePoints == 3

Options var1Steps and var2Steps specify the number of intervals into which the grid
defining a surface plot is subdivided with respect to the first and second parameters of the
surface function(s).

draw(cos(x*y),x=-3..3,y=-3..3, style=="shade", var1Steps == 30, var2Steps ==

30)

cos(xy), x = −3..3, y = −3..3, style == ”shade”, var1Steps == 30, var2Steps == 30

The space option of a draw command lets you build multiple graphs in three space. To use
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this option, first create an empty three-space object, then use the space option thereafter.
There is no restriction as to the number or kinds of graphs that can be combined this way.

Create an empty three-space object.

s := create3Space()$(ThreeSpace DFLOAT)

3− Spacewith0components

Type: ThreeSpace DoubleFloat

m(u:DFLOAT,v:DFLOAT):DFLOAT == 1

Function declaration m : (DoubleFloat,DoubleFloat) -> DoubleFloat

has been added to workspace.

Type: Void

Add a graph to this three-space object. The new graph destructively inserts the graph into
s.

draw(m,0..%pi,0..2*%pi, coordinates == spherical, space == s)

m, 0..π, 0..2π, coordinates == spherical, space == s

Add a second graph to s.

v := draw(curve(1.5*sin(t), 1.5*cos(t),0), t=0..2*%pi, tubeRadius == .25,

space == s)
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curve(1.5sin(t), 1.5cos(t), 0), t = 0..2π, tubeRadius == .25, space == s

A three-space object can also be obtained from an existing three-dimensional viewport using
the subspace command. You can then usemakeViewport3D to create a viewport window.

Assign to subsp the three-space object in viewport v.

subsp := subspace v

Reset the space component of v to the value of subsp.

subspace(v, subsp)

Create a viewport window from a three-space object.

makeViewport3D(subsp,"Graphs")

The makeObject Command

An alternate way to create multiple graphs is to use makeObject. The makeObject
command is similar to the draw command, except that it returns a three-space object
rather than a ThreeDimensionalViewport. In fact, makeObject is called by the draw
command to create the ThreeSpace then makeViewport3D to create a viewport window.

m(u:DFLOAT,v:DFLOAT):DFLOAT == 1

Function declaration m : (DoubleFloat,DoubleFloat) -> DoubleFloat

has been added to workspace.

Type: Void
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Do the last example a new way. First use makeObject to create a three-space object sph.

sph := makeObject(m, 0..%pi, 0..2*%pi, coordinates==spherical)

Compiling function m with type (DoubleFloat,DoubleFloat) ->

DoubleFloat

3− Spacewith1component

Type: ThreeSpace DoubleFloat

Add a second object to sph.

makeObject(curve(1.5*sin(t), 1.5*cos(t), 0), t=0..2*%pi, space == sph,

tubeRadius == .25)

Compiling function %D with type DoubleFloat -> DoubleFloat

Compiling function %F with type DoubleFloat -> DoubleFloat

Compiling function %H with type DoubleFloat -> DoubleFloat

3− Spacewith2components

Type: ThreeSpace DoubleFloat

Create and display a viewport containing sph.

makeViewport3D(sph,"Multiple Objects")

Note that an undefined ThreeSpace parameter declared in a makeObject or draw com-
mand results in an error. Use the create3Space function to define a ThreeSpace, or obtain
a ThreeSpace that has been previously generated before including it in a command line.

Building Three-Dimensional Objects From Primitives

Rather than using the draw and makeObject commands, you can create three-dimension-
al graphs from primitives. Operation create3Space creates a three-space object to which
points, curves and polygons can be added using the operations from the ThreeSpace domain.
The resulting object can then be displayed in a viewport using makeViewport3D.

Create the empty three-space object space.

space := create3Space()$(ThreeSpace DFLOAT)
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3− Spacewith0components

Type: ThreeSpace DoubleFloat

Objects can be sent to this space using the operations exported by the ThreeSpace domain.
The following examples place curves into space.

Add these eight curves to the space.

closedCurve(space,[ [0,30,20], [0,30,30], [0,40,30], [0,40,100],

[0,30,100],[0,30,110], [0,60,110], [0,60,100], [0,50,100], [0,50,30],

[0,60,30], [0,60,20] ])

3− Spacewith1component

Type: ThreeSpace DoubleFloat

closedCurve(space,[ [80,0,30], [80,0,100], [70,0,110], [40,0,110],

[30,0,100], [30,0,90], [40,0,90], [40,0,95], [45,0,100], [65,0,100],

[70,0,95], [70,0,35] ])

3− Spacewith2components

Type: ThreeSpace DoubleFloat

closedCurve(space,[ [70,0,35], [65,0,30], [45,0,30], [40,0,35], [40,0,60],

[50,0,60], [50,0,70], [30,0,70], [30,0,30], [40,0,20], [70,0,20], [80,0,30]

])

3− Spacewith3components

Type: ThreeSpace DoubleFloat

closedCurve(space,[ [0,70,20], [0,70,110], [0,110,110], [0,120,100],

[0,120,70], [0,115,65], [0,120,60], [0,120,30], [0,110,20], [0,80,20],

[0,80,30], [0,80,20] ])

3− Spacewith4components

Type: ThreeSpace DoubleFloat
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closedCurve(space,[ [0,105,30], [0,110,35], [0,110,55], [0,105,60],

[0,80,60], [0,80,70], [0,105,70], [0,110,75], [0,110,95], [0,105,100],

[0,80,100], [0,80,20], [0,80,30] ])

3− Spacewith5components

Type: ThreeSpace DoubleFloat

closedCurve(space,[ [140,0,20], [140,0,110], [130,0,110], [90,0,20],

[101,0,20],[114,0,50], [130,0,50], [130,0,60], [119,0,60], [130,0,85],

[130,0,20] ])

3− Spacewith6components

Type: ThreeSpace DoubleFloat

closedCurve(space,[ [0,140,20], [0,140,110], [0,150,110], [0,170,50],

[0,190,110], [0,200,110], [0,200,20], [0,190,20], [0,190,75], [0,175,35],

[0,165,35],[0,150,75], [0,150,20] ])

3− Spacewith7components

Type: ThreeSpace DoubleFloat

closedCurve(space,[ [200,0,20], [200,0,110], [189,0,110], [160,0,45],

[160,0,110], [150,0,110], [150,0,20], [161,0,20], [190,0,85], [190,0,20] ])

3− Spacewith8components

Type: ThreeSpace DoubleFloat

Create and display the viewport using makeViewport3D. Options may also be given but
here are displayed as a list with values enclosed in parentheses.

makeViewport3D(space, title == "Letters")
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makeV iewport3D(space, title == ”Letters”)

Cube Example

As a second example of the use of primitives, we generate a cube using a polygon mesh.
It is important to use a consistent orientation of the polygons for correct generation of
three-dimensional objects.

Again start with an empty three-space object.

spaceC := create3Space()$(ThreeSpace DFLOAT)

3− Spacewith0components

Type: ThreeSpace DoubleFloat

For convenience, give DoubleFloat values +1 and −1 names.

x: DFLOAT := 1

1.0

Type: DoubleFloat

y: DFLOAT := -1

−1.0

Type: DoubleFloat



7.2. THREE-DIMENSIONAL GRAPHICS 271

Define the vertices of the cube.

a := point [x,x,y,1::DFLOAT]$(Point DFLOAT)

[1.0, 1.0,−1.0, 1.0]

Type: Point DoubleFloat

b := point [y,x,y,4::DFLOAT]$(Point DFLOAT)

[−1.0, 1.0,−1.0, 4.0]

Type: Point DoubleFloat

c := point [y,x,x,8::DFLOAT]$(Point DFLOAT)

[−1.0, 1.0, 1.0, 8.0]

Type: Point DoubleFloat

d := point [x,x,x,12::DFLOAT]$(Point DFLOAT)

[1.0, 1.0, 1.0, 12.0]

Type: Point DoubleFloat

e := point [x,y,y,16::DFLOAT]$(Point DFLOAT)

[1.0,−1.0,−1.0, 16.0]

Type: Point DoubleFloat

f := point [y,y,y,20::DFLOAT]$(Point DFLOAT)

[−1.0,−1.0,−1.0, 20.0]

Type: Point DoubleFloat

g := point [y,y,x,24::DFLOAT]$(Point DFLOAT)
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[−1.0,−1.0, 1.0, 24.0]

Type: Point DoubleFloat

h := point [x,y,x,27::DFLOAT]$(Point DFLOAT)

[1.0,−1.0, 1.0, 27.0]

Type: Point DoubleFloat

Add the faces of the cube as polygons to the space using a consistent orientation.

polygon(spaceC,[d,c,g,h])

3− Spacewith1component

Type: ThreeSpace DoubleFloat

polygon(spaceC,[d,h,e,a])

3− Spacewith2components

Type: ThreeSpace DoubleFloat

polygon(spaceC,[c,d,a,b])

3− Spacewith3components

Type: ThreeSpace DoubleFloat

polygon(spaceC,[g,c,b,f])

3− Spacewith4components

Type: ThreeSpace DoubleFloat

polygon(spaceC,[h,g,f,e])

3− Spacewith5components
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Type: ThreeSpace DoubleFloat

polygon(spaceC,[e,f,b,a])

3− Spacewith6components

Type: ThreeSpace DoubleFloat

Create and display the viewport.

makeViewport3D(spaceC, title == "Cube")

makeV iewport3D(spaceC, title == ”Cube”)

Coordinate System Transformations

The CoordinateSystems package provides coordinate transformation functions that map a
given data point from the coordinate system specified into the Cartesian coordinate system.
The default coordinate system, given a triplet (f(u, v), u, v), assumes that z = f(u, v), x = u
and y = v, that is, reads the coordinates in (z, x, y) order.

m(u:DFLOAT,v:DFLOAT):DFLOAT == u**2

Function declaration m : (DoubleFloat,DoubleFloat) -> DoubleFloat

has been added to workspace.

Type: Void
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Graph plotted in default coordinate system.

draw(m,0..3,0..5)

m, 0..3, 0..5

The z coordinate comes first since the first argument of the draw command gives its values.
In general, the coordinate systems Axiom provides, or any that you make up, must provide
a map to an (x, y, z) triplet in order to be compatible with the coordinates DrawOption.
Here is an example.

Define the identity function.

cartesian(point:Point DFLOAT):Point DFLOAT == point

Function declaration cartesian : Point DoubleFloat -> Point

DoubleFloat has been added to workspace.

Type: Void

Pass cartesian as the coordinates parameter to the draw command.

draw(m,0..3,0..5,coordinates==cartesian)
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m, 0..3, 0..5, coordinates == cartesian

What happened? The option coordinates == cartesian directs Axiom to treat the depen-
dent variable m defined by m = u2 as the x coordinate. Thus the triplet of values (m,u, v)
is transformed to coordinates (x, y, z) and so we get the graph of x = y2.

Here is another example. The cylindrical transform takes input of the form (w, u, v),
interprets it in the order (r,θ,z) and maps it to the Cartesian coordinates x = r cos(θ),
y = r sin(θ), z = z in which r is the radius, θ is the angle and z is the z-coordinate.

An example using the cylindrical coordinates for the constant r = 3.

f(u:DFLOAT,v:DFLOAT):DFLOAT == 3

Function declaration f : (DoubleFloat,DoubleFloat) -> DoubleFloat

has been added to workspace.

Type: Void

Graph plotted in cylindrical coordinates.

draw(f,0..%pi,0..6,coordinates==cylindrical)
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f, 0..π, 0..6, coordinates == cylindrical

Suppose you would like to specify z as a function of r and θ instead of just r? Well, you
still can use the cylindrical Axiom transformation but we have to reorder the triplet before
passing it to the transformation.

First, let’s create a point to work with and call it pt with some color col.

col := 5

5

Type: PositiveInteger

pt := point[1,2,3,col]$(Point DFLOAT)

[1.0, 2.0, 3.0, 5.0]

Type: Point DoubleFloat

The reordering you want is (z, r, θ) to (r, θ, z) so that the first element is moved to the third
element, while the second and third elements move forward and the color element does not
change.

Define a function reorder to reorder the point elements.

reorder(p:Point DFLOAT):Point DFLOAT == point[p.2, p.3, p.1, p.4]

Function declaration reorder : Point DoubleFloat -> Point

DoubleFloat has been added to workspace.

Type: Void
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The function moves the second and third elements forward but the color does not change.

reorder pt

[2.0, 3.0, 1.0, 5.0]

Type: Point DoubleFloat

The function newmap converts our reordered version of the cylindrical coordinate system
to the standard (x, y, z) Cartesian system.

newmap(pt:Point DFLOAT):Point DFLOAT == cylindrical(reorder pt)

Function declaration newmap : Point DoubleFloat -> Point DoubleFloat

has been added to workspace.

Type: Void

newmap pt

[−1.9799849932008908, 0.28224001611973443, 1.0, 5.0]

Type: Point DoubleFloat

Graph the same function f using the coordinate mapping of the function newmap, so it is
now interpreted as z = 3:

draw(f,0..3,0..2*%pi,coordinates==newmap)

f, 0..3, 0..2π, coordinates == newmap



278 CHAPTER 7. GRAPHICS

The CoordinateSystems package exports the following operations:
bipolar, bipolarCylindrical, cartesian,
conical, cylindrical, elliptic,
ellipticCylindrical, oblateSpheroidal, parabolic,
parabolicCylindrical, paraboloidal, polar,
prolateSpheroidal, spherical, and toroidal.
Use Browse or the )show system command to get more information.

Three-Dimensional Clipping

A three-dimensional graph can be explicitly clipped within the draw command by indicating
a minimum and maximum threshold for the given function definition. These thresholds can
be defined using the Axiom min and max functions.

gamma(x,y) ==

g := Gamma complex(x,y)

point [x, y, max( min(real g, 4), -4), argument g]

Here is an example that clips the gamma function in order to eliminate the extreme diver-
gence it creates.

draw(gamma,-%pi..%pi,-%pi..%pi,var1Steps==50,var2Steps==50)

gamma,−π..π,−π..π, var1Steps == 50, var2Steps == 50

Three-Dimensional Control-Panel

Once you have created a viewport, move your mouse to the viewport and click with your
left mouse button. This displays a control-panel on the side of the viewport that is closest
to where you clicked.
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Three-dimensional control-panel.

Transformations

We recommend you first select the Bounds button while executing transformations since
the bounding box displayed indicates the object’s position as it changes.

Rotate: A rotation transformation occurs by clicking the mouse within the Rotate window
in the upper left corner of the control-panel. The rotation is computed in spherical
coordinates, using the horizontal mouse position to increment or decrement the value
of the longitudinal angle θ within the range of 0 to 2π and the vertical mouse position
to increment or decrement the value of the latitudinal angle ϕ within the range of -π
to π. The active mode of rotation is displayed in green on a color monitor or in clear
text on a black and white monitor, while the inactive mode is displayed in red for color
display or a mottled pattern for black and white.

origin: The origin button indicates that the rotation is to occur with respect to the
origin of the viewing space, that is indicated by the axes.

object: The object button indicates that the rotation is to occur with respect to the
center of volume of the object, independent of the axes’ origin position.

Scale: A scaling transformation occurs by clicking the mouse within the Scale window in
the upper center of the control-panel, containing a zoom arrow. The axes along which
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the scaling is to occur are indicated by selecting the appropriate button above the
zoom arrow window. The selected axes are displayed in green on a color monitor or
in clear text on a black and white monitor, while the unselected axes are displayed in
red for a color display or a mottled pattern for black and white.

uniform: Uniform scaling along the x, y and z axes occurs when all the axes buttons
are selected.

non-uniform: If any of the axes buttons are not selected, non-uniform scaling occurs,
that is, scaling occurs only in the direction of the axes that are selected.

Translate: Translation occurs by indicating with the mouse in the Translate window the
direction you want the graph to move. This window is located in the upper right corner
of the control-panel and contains a potentiometer with crossed arrows pointing up,
down, left and right. Along the top of the Translate window are three buttons (XY,
XZ, and YZ) indicating the three orthographic projection planes. Each orientates the
group as a view into that plane. Any translation of the graph occurs only along this
plane.

Messages

The window directly below the potentiometer windows for transformations is used to display
system messages relating to the viewport, the control-panel and the current graph displaying
status.

Colormap

Directly below the message window is the colormap range indicator window. The Axiom
Colormap shows a sampling of the spectrum from which hues can be drawn to represent the
colors of a surface. The Colormap is composed of five shades for each of the hues along this
spectrum. By moving the markers above and below the Colormap, the range of hues that are
used to color the existing surface are set. The bottom marker shows the hue for the low end
of the color range and the top marker shows the hue for the upper end of the range. Setting
the bottom and top markers at the same hue results in monochromatic smooth shading of the
graph when Smooth mode is selected. At each end of the Colormap are + and - buttons.
When clicked on, these increment or decrement the top or bottom marker.

Buttons

Below the Colormap window and to the left are located various buttons that determine the
characteristics of a graph. The buttons along the bottom and right hand side all have special
meanings; the remaining buttons in the first row indicate the mode or style used to display
the graph. The second row are toggles that turn on or off a property of the graph. On a
color monitor, the property is on if green (clear text, on a monochrome monitor) and off if
red (mottled pattern, on a monochrome monitor). Here is a list of their functions.
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Wire displays surface and tube plots as a wireframe image in a single color (blue) with
no hidden surfaces removed, or displays space curve plots in colors based upon their
parametric variables. This is the fastest mode for displaying a graph. This is very
useful when you want to find a good orientation of your graph.

Solid displays the graph with hidden surfaces removed, drawing each polygon beginning
with the furthest from the viewer. The edges of the polygons are displayed in the hues
specified by the range in the Colormap window.

Shade displays the graph with hidden surfaces removed and with the polygons shaded,
drawing each polygon beginning with the furthest from the viewer. Polygons are
shaded in the hues specified by the range in the Colormap window using the Phong
illumination model.

Smooth displays the graph using a renderer that computes the graph one line at a time.
The location and color of the graph at each visible point on the screen are determined
and displayed using the Phong illumination model. Smooth shading is done in one of
two ways, depending on the range selected in the colormap window and the number
of colors available from the hardware and/or window manager. When the top and
bottom markers of the colormap range are set to different hues, the graph is rendered
by dithering between the transitions in color hue. When the top and bottom markers
of the colormap range are set to the same hue, the graph is rendered using the Phong
smooth shading model. However, if enough colors cannot be allocated for this purpose,
the renderer reverts to the color dithering method until a sufficient color supply is
available. For this reason, it may not be possible to render multiple Phong smooth
shaded graphs at the same time on some systems.

Bounds encloses the entire volume of the viewgraph within a bounding box, or removes the
box if previously selected. The region that encloses the entire volume of the viewport
graph is displayed.

Axes displays Cartesian coordinate axes of the space, or turns them off if previously selected.

Outline causes quadrilateral polygons forming the graph surface to be outlined in black
when the graph is displayed in Shade mode.

BW converts a color viewport to black and white, or vice-versa. When this button is
selected the control-panel and viewport switch to an immutable colormap composed
of a range of grey scale patterns or tiles that are used wherever shading is necessary.

Light takes you to a control-panel described below.

ViewVolume takes you to another control-panel as described below.

Save creates a menu of the possible file types that can be written using the control-panel.
The Exit button leaves the save menu. The Pixmap button writes an Axiom pixmap
of the current viewport contents. The file is called axiom3D.pixmap and is located in
the directory from which Axiom or viewalone was started. The PS button writes the
current viewport contents to PostScript output rather than to the viewport window.
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By default the file is called axiom3D.ps; however, if a file name is specified in the
user’s .Xdefaults file it is used. The file is placed in the directory from which the
Axiom or viewalone session was begun. See also the write function.

Reset returns the object transformation characteristics back to their initial states.

Hide causes the control-panel for the corresponding viewport to disappear from the screen.

Quit queries whether the current viewport session should be terminated.

Light

The Light button changes the control-panel into the Lighting Control-Panel. At the top
of this panel, the three axes are shown with the same orientation as the object. A light
vector from the origin of the axes shows the current position of the light source relative to
the object. At the bottom of the panel is an Abort button that cancels any changes to the
lighting that were made, and a Return button that carries out the current set of lighting
changes on the graph.

XY: The XY lighting axes window is below the Lighting Control-Panel title and to the
left. This changes the light vector within the XY view plane.

Z: The Z lighting axis window is below the Lighting Control-Panel title and in the center.
This changes the Z location of the light vector.

Intensity: Below the Lighting Control-Panel title and to the right is the light intensity
meter. Moving the intensity indicator down decreases the amount of light emitted from
the light source.

When the indicator is at the top of the meter the light source is emitting at 100%
intensity. At the bottom of the meter the light source is emitting at a level slightly
above ambient lighting.

View Volume

The View Volume button changes the control-panel into the Viewing Volume Panel.
At the bottom of the viewing panel is an Abort button that cancels any changes to the
viewing volume that were made and a Return button that carries out the current set of
viewing changes to the graph.

Eye Reference: At the top of this panel is the Eye Reference window. It shows a planar
projection of the viewing pyramid from the eye of the viewer relative to the location of
the object. This has a bounding region represented by the rectangle on the left. Below
the object rectangle is the Hither window. By moving the slider in this window the
hither clipping plane sets the front of the view volume. As a result of this depth
clipping all points of the object closer to the eye than this hither plane are not shown.
The Eye Distance slider to the right of the Hither slider is used to change the degree
of perspective in the image.
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Clip Volume: The Clip Volume window is at the bottom of the Viewing Volume
Panel. On the right is a Settings menu. In this menu are buttons to select viewing
attributes. Selecting the Perspective button computes the image using perspective
projection. The Show Region button indicates whether the clipping region of the
volume is to be drawn in the viewport and the Clipping On button shows whether
the view volume clipping is to be in effect when the image is drawn. The left side of the
Clip Volume window shows the clipping boundary of the graph. Moving the knobs
along the X, Y, and Z sliders adjusts the volume of the clipping region accordingly.

Operations for Three-Dimensional Graphics

Here is a summary of useful Axiom operations for three-dimensional graphics. Each operation
name is followed by a list of arguments. Each argument is written as a variable informally
named according to the type of the argument (for example, integer). If appropriate, a default
value for an argument is given in parentheses immediately following the name.

adaptive3D? ()

tests whether space curves are to be plotted according to the adaptive refinement
algorithm.

axes (viewport, string("on"))

turns the axes on and off.

close (viewport)

closes the viewport.

colorDef (viewport, color1(1), color2(27))

sets the colormap range to be from color1 to color2.

controlPanel (viewport, string("off"))

declares whether the control-panel for the viewport is to be displayed or not.

diagonals (viewport, string("off"))

declares whether the polygon outline includes the diagonals or not.

drawStyle (viewport, style)

selects which of four drawing styles are used: "wireMesh", "solid", "shade", or
"smooth".

eyeDistance (viewport,float(500))

sets the distance of the eye from the origin of the object for use in the perspective.

key (viewport)

returns the operating system process ID number for the viewport.

lighting (viewport, floatx(-0.5), floaty(0.5), floatz(0.5))

sets the Cartesian coordinates of the light source.
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modifyPointData (viewport,integer,point)

replaces the coordinates of the point with the index integer with point.

move (viewport, integerx(viewPosDefault), integery(viewPosDefault))

moves the upper left-hand corner of the viewport to screen position (integerx, integery).

options (viewport)

returns a list of all current draw options.

outlineRender (viewport, string("off"))

turns polygon outlining off or on when drawing in "shade" mode.

perspective (viewport, string("on"))

turns perspective viewing on and off.

reset (viewport)

resets the attributes of a viewport to their initial settings.

resize (viewport, integerwidth (viewSizeDefault), integerheight (viewSizeDefault))

resets the width and height values for a viewport.

rotate (viewport, numberθ(viewThetaDefapult), numberϕ(viewPhiDefault))

rotates the viewport by rotation angles for longitude (θ) and latitude (ϕ). Angles
designate radians if given as floats, or degrees if given as integers.

setAdaptive3D (boolean(true))

sets whether space curves are to be plotted according to the adaptive refinement algo-
rithm.

setMaxPoints3D (integer(1000))

sets the default maximum number of possible points to be used when constructing a
three-dimensional space curve.

setMinPoints3D (integer(49))

sets the default minimum number of possible points to be used when constructing a
three-dimensional space curve.

setScreenResolution3D (integer(49))

sets the default screen resolution constant used in setting the computation limit of
adaptively generated three-dimensional space curve plots.

showRegion (viewport, string("off"))

declares whether the bounding box of a graph is shown or not.

subspace (viewport)

returns the space component.

subspace (viewport, subspace)

resets the space component to subspace.
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title (viewport, string)

gives the viewport the title string.

translate (viewport, floatx(viewDeltaXDefault), floaty(viewDeltaYDefault))

translates the object horizontally and vertically relative to the center of the viewport.

intensity (viewport,float(1.0))

resets the intensity I of the light source, 0 ≤ I ≤ 1.

tubePointsDefault ([integer(6)])

sets or indicates the default number of vertices defining the polygon that is used to
create a tube around a space curve.

tubeRadiusDefault ([float(0.5)])

sets or indicates the default radius of the tube that encircles a space curve.

var1StepsDefault ([integer(27)])

sets or indicates the default number of increments into which the grid defining a surface
plot is subdivided with respect to the first parameter declared in the surface function.

var2StepsDefault ([integer(27)])

sets or indicates the default number of increments into which the grid defining a surface
plot is subdivided with respect to the second parameter declared in the surface function.

viewDefaults ([integerpoint, integerline, integeraxes, integerunits, floatpoint, listposition,

listsize])

resets the default settings for the point color, line color, axes color, units color, point
size, viewport upper left-hand corner position, and the viewport size.

viewDeltaXDefault ([float(0)])

resets the default horizontal offset from the center of the viewport, or returns the
current default offset if no argument is given.

viewDeltaYDefault ([float(0)])

resets the default vertical offset from the center of the viewport, or returns the current
default offset if no argument is given.

viewPhiDefault ([float(-π/4)])

resets the default latitudinal view angle, or returns the current default angle if no
argument is given. ϕ is set to this value.

viewpoint (viewport, floatx, floaty, floatz)

sets the viewing position in Cartesian coordinates.

viewpoint (viewport, floatθ, Floatϕ)

sets the viewing position in spherical coordinates.

viewpoint (viewport, Floatθ, Floatϕ, FloatscaleFactor, FloatxOffset, FloatyOffset)

sets the viewing position in spherical coordinates, the scale factor, and offsets. θ
(longitude) and ϕ (latitude) are in radians.
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viewPosDefault ([list([0,0])])

sets or indicates the position of the upper left-hand corner of a two-dimensional view-
port, relative to the display root window (the upper left-hand corner of the display is
[0, 0]).

viewSizeDefault ([list([400,400])])

sets or indicates the width and height dimensions of a viewport.

viewThetaDefault ([float(π/4)])

resets the default longitudinal view angle, or returns the current default angle if no
argument is given. When a parameter is specified, the default longitudinal view angle
θ is set to this value.

viewWriteAvailable ([list(["pixmap", "bitmap", "postscript", "image"])])

indicates the possible file types that can be created with the write function.

viewWriteDefault ([list([])])

sets or indicates the default types of files that are created in addition to the data file
when a write command is executed on a viewport.

viewScaleDefault ([float])

sets the default scaling factor, or returns the current factor if no argument is given.

write (viewport, directory, [option])

writes the file data for viewport in the directory directory. An optional third argument
specifies a file type (one of pixmap, bitmap, postscript, or image), or a list of file
types. An additional file is written for each file type listed.

scale (viewport, float(2.5))

specifies the scaling factor.

Customization using .Xdefaults

Both the two-dimensional and three-dimensional drawing facilities consult the .Xdefaults
file for various defaults. The list of defaults that are recognized by the graphing routines is
discussed in this section. These defaults are preceded by Axiom.3D. for three-dimensional
viewport defaults, Axiom.2D. for two-dimensional viewport defaults, or Axiom* (no dot) for
those defaults that are acceptable to either viewport type.

Axiom*buttonFont: font
This indicates which font type is used for the button text on the control-panel. Rom11

Axiom.2D.graphFont: font (2D only)
This indicates which font type is used for displaying the graph numbers and slots in
the Graphs section of the two-dimensional control-panel. Rom22

Axiom.3D.headerFont: font
This indicates which font type is used for the axes labels and potentiometer header
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names on three-dimensional viewport windows. This is also used for two-dimensional
control-panels for indicating which font type is used for potentionmeter header names
and multiple graph title headers. Itl14

Axiom*inverse: switch
This indicates whether the background color is to be inverted from white to black. If
on, the graph viewports use black as the background color. If off or no declaration is
made, the graph viewports use a white background. off

Axiom.3D.lightingFont: font (3D only)
This indicates which font type is used for the x, y, and z labels of the two lighting axes
potentiometers, and for the Intensity title on the lighting control-panel. Rom10

Axiom.2D.messageFont, Axiom.3D.messageFont: font
These indicate the font type to be used for the text in the control-panel message
window. Rom14

Axiom*monochrome: switch
This indicates whether the graph viewports are to be displayed as if the monitor is
black and white, that is, a 1 bit plane. If on is specified, the viewport display is black
and white. If off is specified, or no declaration for this default is given, the viewports
are displayed in the normal fashion for the monitor in use. off

Axiom.2D.postScript: filename
This specifies the name of the file that is generated when a 2D PostScript graph is
saved. axiom2d.ps

Axiom.3D.postScript: filename
This specifies the name of the file that is generated when a 3D PostScript graph is
saved. axiom3D.ps

Axiom*titleFont font
This indicates which font type is used for the title text and, for three-dimensional
graphs, in the lighting and viewing-volume control-panel windows. Rom14

Axiom.2D.unitFont: font (2D only)
This indicates which font type is used for displaying the unit labels on two-dimensional
viewport graphs. 6x10

Axiom.3D.volumeFont: font (3D only)
This indicates which font type is used for the x, y, and z labels of the clipping re-
gion sliders; for the Perspective, Show Region, and Clipping On buttons under
Settings, and above the windows for the Hither and Eye Distance sliders in the
Viewing Volume Panel of the three-dimensional control-panel. Rom8
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Chapter 8

Advanced Problem Solving

In this chapter we describe techniques useful in solving advanced problems with Axiom.

8.1 Numeric Functions

Axiom provides two basic floating-point types: Float and DoubleFloat. This section de-
scribes how to use numerical operations defined on these types and the related complex
types. As we mentioned in Chapter section 1 on page 1, the Float type is a software im-
plementation of floating-point numbers in which the exponent and the significand may have
any number of digits. See Float 9.31 on page 517 for detailed information about this do-
main. The DoubleFloat 9.20 on page 485 is usually a hardware implementation of floating
point numbers, corresponding to machine double precision. The types Complex Float and
Complex DoubleFloat are the corresponding software implementations of complex floating-
point numbers. In this section the term floating-point type means any of these four types.
The floating-point types implement the basic elementary functions. These include (where $
means DoubleFloat, Float, Complex DoubleFloat, or Complex Float):

exp, log: $− > $
sin, cos, tan, cot, sec, csc: $− > $
asin, acos, atan, acot, asec, acsc: $− > $
sinh, cosh, tanh, coth, sech, csch: $− > $
asinh, acosh, atanh, acoth, asech, acsch: $− > $
pi: ()− > $
sqrt: $− > $
nthRoot: ($, Integer)− > $
**: ($, F ractionInteger)− > $
**: ($, $)− > $

The handling of roots depends on whether the floating-point type is real or complex: for
the real floating-point types, DoubleFloat and Float, if a real root exists the one with the

289
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same sign as the radicand is returned; for the complex floating-point types, the principal
value is returned. Also, for real floating-point types the inverse functions produce errors if
the results are not real. This includes cases such as asin(1.2), log(−3.2), sqrt(−1.1).
The default floating-point type is Float so to evaluate functions using Float or Complex

Float, just use normal decimal notation.

exp(3.1)

22.197951281441633405

Type: Float

exp(3.1 + 4.5 * %i)

−4.6792348860969899118− 21.699165928071731864 i

Type: Complex Float

To evaluate functions using DoubleFloat or Complex DoubleFloat, a declaration or con-
version is required.

r: DFLOAT := 3.1; t: DFLOAT := 4.5; exp(r + t*%i)

−4.6792348860969906− 21.699165928071732 i

Type: Complex DoubleFloat

exp(3.1::DFLOAT + 4.5::DFLOAT * %i)

−4.6792348860969906− 21.699165928071732 i

Type: Complex DoubleFloat

A number of special functions are provided by the package DoubleFloatSpecialFunctions
for the machine-precision floating-point types. The special functions provided are listed
below, where F stands for the types DoubleFloat and Complex DoubleFloat. The real
versions of the functions yield an error if the result is not real.

Gamma: F− > F
Gamma(z) is the Euler gamma function, Γ(z), defined by

Γ(z) =

∫ ∞

0

tz−1e−tdt.
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Beta: F− > F
Beta(u, v) is the Euler Beta function, Beta(u, v), defined by

Beta(u, v) =

∫ 1

0

tu−1(1− t)v−1dt.

This is related to Γ(z) by

Beta(u, v) =
Γ(u)Γ(v)

Γ(u+ v)
.

logGamma: F− > F
logGamma(z) is the natural logarithm of Γ(z). This can often be computed even if Γ(z)
cannot.

digamma: F− > F
digamma(z), also called psi(z), is the function ψ(z), defined by

ψ(z) = Γ′(z)/Γ(z).

polygamma: (NonNegativeInteger, F )− > F
polygamma(n, z) is the n-th derivative of ψ(z), written ψ(n)(z).

E1: (DoubleF loat)− > OnePointCompletionDoubleF loat
E1(x) is the Exponential Integral function The current implementation is a piecewise ap-
proximation involving one poly from −4..4 and a second poly for x > 4

En: (PI,DFLOAT )− > OnePointCompletionDoubleF loat
En(PI,R) is the nth Exponential Integral

Ei: (OnePointCompletionDFLOAT )− > OnePointCompletionDFLOAT
Ei is the Exponential Integral function. This is computed using a 6 part piecewise approx-
imation. DoubleFloat can only preserve about 16 digits but the Chebyshev approximation
used can give 30 digits.

Ei1: (DoubleF loat)− > DoubleF loat
Ei1 is the first approximation of Ei where the result is x ∗ e−x ∗ Ei(x) from -infinity to -10
(preserves digits)

Ei2: (DoubleF loat)− > DoubleF loat
Ei2 is the first approximation of Ei where the result is x∗e−x∗Ei(x) from -10 to -4 (preserves
digits)

Ei3: (DoubleF loat)− > DoubleF loat
Ei3 is the first approximation of Ei where the result is (Ei(x)− log|x| − gamma)/x from -4
to 4 (preserves digits)

Ei4: (DoubleF loat)− > DoubleF loat
Ei4 is the first approximation of Ei where the result is x∗e−x ∗Ei(x) from 4 to 12 (preserves
digits)

Ei5: (DoubleF loat)− > DoubleF loat
Ei5 is the first approximation of Ei where the result is x∗e−x∗Ei(x) from 12 to 32 (preserves
digits)
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Ei6: (DoubleF loat)− > DoubleF loat
Ei6 is the first approximation of Ei where the result is x ∗ e−x ∗ Ei(x) from 32 to infinity
(preserves digits)

besselJ: (F, F )− > F
besselJ(v, z) is the Bessel function of the first kind, Jν(z). This function satisfies the differ-
ential equation

z2w′′(z) + zw′(z) + (z2 − ν2)w(z) = 0.

besselY: (F, F )− > F
besselY (v, z) is the Bessel function of the second kind, Yν(z). This function satisfies the
same differential equation as besselJ. The implementation simply uses the relation

Yν(z) =
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)
.

besselI: (F, F )− > F
besselI(v, z) is the modified Bessel function of the first kind, Iν(z). This function satisfies
the differential equation

z2w′′(z) + zw′(z)− (z2 + ν2)w(z) = 0.

besselK: (F, F )− > F
besselK(v, z) is the modified Bessel function of the second kind, Kν(z). This function satis-
fies the same differential equation as besselI. The implementation simply uses the relation

Kν(z) = π
I−ν(z)− Iν(z)

2 sin(νπ)
.

airyAi: F− > F
airyAi(z) is the Airy function Ai(z). This function satisfies the differential equation w′′(z)−
zw(z) = 0. The implementation simply uses the relation

Ai(−z) = 1

3

√
z(J−1/3(

2

3
z3/2) + J1/3(

2

3
z3/2)).

airyBi: F− > F
airyBi(z) is the Airy function Bi(z). This function satisfies the same differential equation
as airyAi. The implementation simply uses the relation

Bi(−z) = 1

3

√
3z(J−1/3(

2

3
z3/2)− J1/3(

2

3
z3/2)).

hypergeometric0F1: (F, F )− > F
hypergeometric0F1(c, z) is the hypergeometric function 0F1(; c; z).

The above special functions are defined only for small floating-point types. If you give Float
arguments, they are converted to DoubleFloat by Axiom.
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Gamma(0.5)**2

3.14159265358979

Type: DoubleFloat

a := 2.1; b := 1.1; besselI(a + %i*b, b*a + 1)

2.489481690673867− 2.365846713181643 i

Type: Complex DoubleFloat

A number of additional operations may be used to compute numerical values. These are
special polynomial functions that can be evaluated for values in any commutative ring R,
and in particular for values in any floating-point type. The following operations are provided
by the package OrthogonalPolynomialFunctions:

chebyshevT: (NonNegativeInteger,R)− > R
chebyshevT (n, z) is the n-th Chebyshev polynomial of the first kind, Tn(z). These are
defined by

1− tz
1− 2tz + t2

=

∞∑
n=0

Tn(z)t
n.

chebyshevU: (NonNegativeInteger,R)− > R
chebyshevU(n, z) is the n-th Chebyshev polynomial of the second kind, Un(z). These are
defined by

1

1− 2tz + t2
=

∞∑
n=0

Un(z)t
n.

hermiteH: (NonNegativeInteger,R)− > R
hermiteH(n, z) is the n-th Hermite polynomial, Hn(z). These are defined by

e2tz−t2 =
∞∑

n=0

Hn(z)
tn

n!
.

laguerreL: (NonNegativeInteger,R)− > R
laguerreL(n, z) is the n-th Laguerre polynomial, Ln(z). These are defined by

e−
tz

1−t

1− t
=

∞∑
n=0

Ln(z)
tn

n!
.

laguerreL: (NonNegativeInteger,NonNegativeInteger,R)− > R
laguerreL(m,n, z) is the associated Laguerre polynomial, Lm

n (z). This is them-th derivative
of Ln(z).
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legendreP: (NonNegativeInteger,R)− > R
legendreP (n, z) is the n-th Legendre polynomial, Pn(z). These are defined by

1√
1− 2tz + t2

=

∞∑
n=0

Pn(z)t
n.

These operations require non-negative integers for the indices, but otherwise the argument
can be given as desired.

[chebyshevT(i, z) for i in 0..5]

[
1, z, 2 z2 − 1, 4 z3 − 3 z, 8 z4 − 8 z2 + 1, 16 z5 − 20 z3 + 5 z

]
Type: List Polynomial Integer

The expression chebyshevT (n, z) evaluates to the n-th Chebyshev polynomial of the first
kind.

chebyshevT(3, 5.0 + 6.0*%i)

−1675.0 + 918.0 i

Type: Complex Float

chebyshevT(3, 5.0::DoubleFloat)

485.0

Type: DoubleFloat

The expression chebyshevU(n, z) evaluates to the n-th Chebyshev polynomial of the second
kind.

[chebyshevU(i, z) for i in 0..5]

[
1, 2 z, 4 z2 − 1, 8 z3 − 4 z, 16 z4 − 12 z2 + 1, 32 z5 − 32 z3 + 6 z

]
Type: List Polynomial Integer

chebyshevU(3, 0.2)

−0.736
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Type: Float

The expression hermiteH(n, z) evaluates to the n-th Hermite polynomial.

[hermiteH(i, z) for i in 0..5]

[
1, 2 z, 4 z2 − 2, 8 z3 − 12 z, 16 z4 − 48 z2 + 12, 32 z5 − 160 z3 + 120 z

]
Type: List Polynomial Integer

hermiteH(100, 1.0)

−0.1448706729337934088E93

Type: Float

The expression laguerreL(n, z) evaluates to the n-th Laguerre polynomial.

[laguerreL(i, z) for i in 0..4]

[
1,−z + 1, z2 − 4 z + 2,−z3 + 9 z2 − 18 z + 6, z4 − 16 z3 + 72 z2 − 96 z + 24

]
Type: List Polynomial Integer

laguerreL(4, 1.2)

−13.0944

Type: Float

[laguerreL(j, 3, z) for j in 0..4]

[
−z3 + 9 z2 − 18 z + 6,−3 z2 + 18 z − 18,−6 z + 18,−6, 0

]
Type: List Polynomial Integer

laguerreL(1, 3, 2.1)

6.57
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Type: Float

The expression legendreP (n, z) evaluates to the n-th Legendre polynomial,

[legendreP(i,z) for i in 0..5]

[
1, z,

3

2
z2 − 1

2
,
5

2
z3 − 3

2
z,

35

8
z4 − 15

4
z2 +

3

8
,
63

8
z5 − 35

4
z3 +

15

8
z

]
Type: List Polynomial Fraction Integer

legendreP(3, 3.0*%i)

−72.0 i

Type: Complex Float

Finally, three number-theoretic polynomial operations may be evaluated. The following
operations are provided by the package NumberTheoreticPolynomialFunctions.

bernoulliB: (NonNegativeInteger,R)− > R
bernoulliB(n, z) is the n-th Bernoulli polynomial, Bn(z). These are defined by

tezt

et − 1
=

∞∑
n=0

Bn(z)
tn

n!
.

eulerE: (NonNegativeInteger,R)− > R
eulerE(n, z) is the n-th Euler polynomial, En(z). These are defined by

2ezt

et + 1
=

∞∑
n=0

En(z)
tn

n!
.

cyclotomic: (NonNegativeInteger,R)− > R
cyclotomic(n, z) is the n-th cyclotomic polynomial Φn(z). This is the polynomial whose
roots are precisely the primitive n-th roots of unity. This polynomial has degree given by
the Euler totient function ϕ(n).

The expression bernoulliB(n, z) evaluates to the n-th Bernoulli polynomial.

bernoulliB(3, z)

z3 − 3

2
z2 +

1

2
z
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Type: Polynomial Fraction Integer

bernoulliB(3, 0.7 + 0.4 * %i)

−0.138− 0.116 i

Type: Complex Float

The expression eulerE(n, z) evaluates to the n-th Euler polynomial.

eulerE(3, z)

z3 − 3

2
z2 +

1

4

Type: Polynomial Fraction Integer

eulerE(3, 0.7 + 0.4 * %i)

−0.238− 0.316 i

Type: Complex Float

The expression cyclotomic(n, z) evaluates to the n-th cyclotomic polynomial.

cyclotomic(3, z)

z2 + z + 1

Type: Polynomial Integer

cyclotomic(3, (-1.0 + 0.0 * %i)**(2/3))

0.0

Type: Complex Float

Drawing complex functions in Axiom is presently somewhat awkward compared to drawing
real functions. It is necessary to use the draw operations that operate on functions rather
than expressions.

This is the complex exponential function (rotated interactively). When this is displayed in
color, the height is the value of the real part of the function and the color is the imaginary
part. Red indicates large negative imaginary values, green indicates imaginary values near
zero and blue/violet indicates large positive imaginary values.
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draw((x,y)+-> real exp complex(x,y), -2..2, -2*%pi..2*%pi, colorFunction ==

(x, y) +-> imag exp complex(x,y), title=="exp(x+%i*y)", style=="smooth")

(x, y) +− > realexpcomplex(x, y),−2..2,−2π..2π,
colorFunction == (x, y) +− > imagexpcomplex(x, y),

title == ”exp(x+%i ∗ y)”, style == ”smooth”

This is the complex arctangent function. Again, the height is the real part of the function
value but here the color indicates the function value’s phase. The position of the branch
cuts are clearly visible and one can see that the function is real only for a real argument.

vp := draw((x,y) +-> real atan complex(x,y), -%pi..%pi, -%pi..%pi,

colorFunction==(x,y) +->argument atan complex(x,y), title=="atan(x+%i*y)",

style=="shade"); rotate(vp,-160,-45); vp

(x, y) +− > realatancomplex(x, y),−π..π,−π..π,
colorFunction == (x, y) +− > argumentatancomplex(x, y),

title == ”atan(x+%i ∗ y)”, style == ”shade”

This is the complex Gamma function.
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draw((x,y) +-> max(min(real Gamma complex(x,y),4),-4), -%pi..%pi, -%pi..%pi,

style=="shade", colorFunction == (x,y) +-> argument Gamma complex(x,y),

title == "Gamma(x+%i*y)", var1Steps == 50, var2Steps== 50)

(x, y) +− > max(min(realGammacomplex(x, y), 4),−4),−π..π,−π..π,
style == ”shade”, colorFunction == (x, y) +− > argumentGammacomplex(x, y),

title == ”Gamma(x+%i ∗ y)”, var1Steps == 50, var2Steps == 50

This shows the real Beta function near the origin.

draw(Beta(x,y)/100, x=-1.6..1.7, y = -1.6..1.7, style=="shade",

title=="Beta(x,y)", var1Steps==40, var2Steps==40)

Beta(x, y)/100, x = −1.6..1.7, y = −1.6..1.7,
style == ”shade”, title == ”Beta(x, y)”, var1Steps == 40, var2Steps == 40

This is the Bessel function Jα(x) for index α in the range −6..4 and argument x in the range
2..14.

draw((alpha,x) +-> min(max(besselJ(alpha, x+8), -6), 6), -6..4, -6..6,

title=="besselJ(alpha,x)", style=="shade", var1Steps==40, var2Steps==40)
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(alpha, x) +− > min(max(besselJ(alpha, x+ 8),−6), 6),−6..4,−6..6,
title == ”besselJ(alpha, x)”, style == ”shade”, var1Steps == 40, var2Steps == 40

This is the modified Bessel function Iα(x) evaluated for various real values of the index α
and fixed argument x = 5.

draw(besselI(alpha, 5), alpha = -12..12, unit==[5,20])

besselI(alpha, 5), alpha = −12..12, unit == [5, 20]

This is similar to the last example except the index α takes on complex values in a 6 × 6
rectangle centered on the origin.

draw((x,y) +-> real besselI(complex(x/20, y/20),5), -60..60, -60..60,

colorFunction == (x,y)+-> argument besselI(complex(x/20,y/20),5),

title=="besselI(x+i*y,5)", style=="shade")
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(x, y) +− > realbesselI(complex(x/20, y/20), 5),−60..60,−60..60,
colorFunction == (x, y) +− > argumentbesselI(complex(x/20, y/20), 5),

title == ”besselI(x+ i ∗ y, 5)”, style == ”shade”

8.2 Polynomial Factorization

The Axiom polynomial factorization facilities are available for all polynomial types and a
wide variety of coefficient domains. Here are some examples.

Integer and Rational Number Coefficients

Polynomials with integer coefficients can be be factored.

v := (4*x**3+2*y**2+1)*(12*x**5-x**3*y+12)

−2 x3 y3 +
(
24 x5 + 24

)
y2 +

(
−4 x6 − x3

)
y + 48 x8 + 12 x5 + 48 x3 + 12

Type: Polynomial Integer

factor v

−
(
x3 y − 12 x5 − 12

) (
2 y2 + 4 x3 + 1

)
Type: Factored Polynomial Integer

Also, Axiom can factor polynomials with rational number coefficients.

w := (4*x**3+(2/3)*x**2+1)*(12*x**5-(1/2)*x**3+12)
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48 x8 + 8 x7 − 2 x6 +
35

3
x5 +

95

2
x3 + 8 x2 + 12

Type: Polynomial Fraction Integer

factor w

48

(
x3 +

1

6
x2 +

1

4

) (
x5 − 1

24
x3 + 1

)
Type: Factored Polynomial Fraction Integer

Finite Field Coefficients

Polynomials with coefficients in a finite field can be also be factored.

u : POLY(PF(19)) :=3*x**4+2*x**2+15*x+18

3 x4 + 2 x2 + 15 x+ 18

Type: Polynomial PrimeField 19

These include the integers mod p, where p is prime, and extensions of these fields.

factor u

3 (x+ 18)
(
x3 + x2 + 8 x+ 13

)
Type: Factored Polynomial PrimeField 19

Convert this to have coefficients in the finite field with 193 elements. See section 8.11 on
page 358 for more information about finite fields.

factor(u :: POLY FFX(PF 19,3))

3 (x+ 18)
(
x+ 5 %I2 + 3 %I + 13

) (
x+ 16 %I2 + 14 %I + 13

) (
x+ 17 %I2 + 2 %I + 13

)
Type: Factored Polynomial FiniteFieldExtension(PrimeField 19,3)
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Simple Algebraic Extension Field Coefficients

Polynomials with coefficients in simple algebraic extensions of the rational numbers can be
factored.

Here, aa and bb are symbolic roots of polynomials.

aa := rootOf(aa**2+aa+1)

aa

Type: AlgebraicNumber

p:=(x**3+aa**2*x+y)*(aa*x**2+aa*x+aa*y**2)**2

(−aa− 1) y5 +
(
(−aa− 1) x3 + aa x

)
y4+(

(−2 aa− 2) x2 + (−2 aa− 2) x
)
y3+(

(−2 aa− 2) x5 + (−2 aa− 2) x4 + 2 aa x3 + 2 aa x2
)
y2+(

(−aa− 1) x4 + (−2 aa− 2) x3 + (−aa− 1) x2
)
y+

(−aa− 1) x7 + (−2 aa− 2) x6 − x5 + 2 aa x4 + aa x3

Type: Polynomial AlgebraicNumber

Note that the second argument to factor can be a list of algebraic extensions to factor over.

factor(p,[aa])

(−aa− 1)
(
y + x3 + (−aa− 1) x

) (
y2 + x2 + x

)2
Type: Factored Polynomial AlgebraicNumber

This factors x ∗ ∗2 + 3 over the integers.

factor(x**2+3)

x2 + 3

Type: Factored Polynomial Integer

Factor the same polynomial over the field obtained by adjoining aa to the rational numbers.
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factor(x**2+3,[aa])

(x− 2 aa− 1) (x+ 2 aa+ 1)

Type: Factored Polynomial AlgebraicNumber

Factor x ∗ ∗6 + 108 over the same field.

factor(x**6+108,[aa])

(
x3 − 12 aa− 6

) (
x3 + 12 aa+ 6

)
Type: Factored Polynomial AlgebraicNumber

bb:=rootOf(bb**3-2)

bb

Type: AlgebraicNumber

factor(x**6+108,[bb])

(
x2 − 3 bb x+ 3 bb2

) (
x2 + 3 bb2

) (
x2 + 3 bb x+ 3 bb2

)
Type: Factored Polynomial AlgebraicNumber

Factor again over the field obtained by adjoining both aa and bb to the rational numbers.

factor(x**6+108,[aa,bb])

(x+ (−2 aa− 1) bb) (x+ (−aa− 2) bb) (x+ (−aa+ 1) bb)

(x+ (aa− 1) bb) (x+ (aa+ 2) bb) (x+ (2 aa+ 1) bb)

Type: Factored Polynomial AlgebraicNumber
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Factoring Rational Functions

Since fractions of polynomials form a field, every element (other than zero) divides any
other, so there is no useful notion of irreducible factors. Thus the factor operation is not
very useful for fractions of polynomials.

There is, instead, a specific operation factorFraction that separately factors the numerator
and denominator and returns a fraction of the factored results.

factorFraction((x**2-4)/(y**2-4))

(x− 2) (x+ 2)

(y − 2) (y + 2)

Type: Fraction Factored Polynomial Integer

You can also use map. This expression applies the factor operation to the numerator and
denominator.

map(factor,(x**2-4)/(y**2-4))

(x− 2) (x+ 2)

(y − 2) (y + 2)

Type: Fraction Factored Polynomial Integer

8.3 Manipulating Symbolic Roots of a Polynomial

In this section we show you how to work with one root or all roots of a polynomial. These
roots are represented symbolically (as opposed to being numeric approximations). See sec-
tion 8.5 on page 315 and section 8.5 on page 317 for information about solving for the roots
of one or more polynomials.

Using a Single Root of a Polynomial

Use rootOf to get a symbolic root of a polynomial: rootOf(p, x) returns a root of p(x).

This creates an algebraic number a.

a := rootOf(a**4+1,a)

a

Type: Expression Integer
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To find the algebraic relation that defines a, use definingPolynomial.

definingPolynomial a

a4 + 1

Type: Expression Integer

You can use a in any further expression, including a nested rootOf.

b := rootOf(b**2-a-1,b)

b

Type: Expression Integer

Higher powers of the roots are automatically reduced during calculations.

a + b

b+ a

Type: Expression Integer

% ** 5

(
10 a3 + 11 a2 + 2 a− 4

)
b+ 15 a3 + 10 a2 + 4 a− 10

Type: Expression Integer

The operation zeroOf is similar to rootOf, except that it may express the root using radicals
in some cases.

rootOf(c**2+c+1,c)

c

Type: Expression Integer

zeroOf(d**2+d+1,d)
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√
−3− 1

2

Type: Expression Integer

rootOf(e**5-2,e)

e

Type: Expression Integer

zeroOf(f**5-2,f)

5
√
2

Type: Expression Integer

Using All Roots of a Polynomial

Use rootsOf to get all symbolic roots of a polynomial: rootsOf(p, x) returns a list of all the
roots of p(x). If p(x) has a multiple root of order n, then that root appears n times in the
list.

Compute all the roots of x ∗ ∗4 + 1.

l := rootsOf(x**4+1,x)

[%x0,%x0 %x1,−%x0,−%x0 %x1]

Type: List Expression Integer

As a side effect, the variables %x0 and %x1 are bound to the first two roots of x ∗ ∗4 + 1.

%x0**5

−%x0

Type: Expression Integer

Although they all satisfy x ∗ ∗4 + 1 = 0,%x0 and %x1 are different algebraic numbers. To
find the algebraic relation that defines each of them, use definingPolynomial.
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definingPolynomial %x0

%x04 + 1

Type: Expression Integer

definingPolynomial %x1

%x12 + 1

Type: Expression Integer

[t1:=l.1, t2:=l.2, t3:=l.3, t4:=l.4]

[%x0,%x0 %x1,−%x0,−%x0 %x1]

Type: List Expression Integer

We can check that the sum and product of the roots of x ∗ ∗4 + 1 are its trace and norm.

t1+t2+t3+t4

0

Type: Expression Integer

t1*t2*t3*t4

1

Type: Expression Integer

Corresponding to the pair of operations rootOf/zeroOf in section 8.5 on page 315, there is
an operation zerosOf that, like rootsOf, computes all the roots of a given polynomial, but
which expresses some of them in terms of radicals.

zerosOf(y**4+1,y)

[√
−1 + 1√

2
,

√
−1− 1√

2
,
−
√
−1− 1√
2

,
−
√
−1 + 1√
2

]
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Type: List Expression Integer

As you see, only one implicit algebraic number was created (%y1), and its defining equation
is this. The other three roots are expressed in radicals.

definingPolynomial %y1

%%var2 + 1

Type: Expression Integer

8.4 Computation of Eigenvalues and Eigenvectors

In this section we show you some of Axiom’s facilities for computing and manipulating
eigenvalues and eigenvectors, also called characteristic values and characteristic vectors, re-
spectively.

Let’s first create a matrix with integer entries.

m1 := matrix [ [1,2,1],[2,1,-2],[1,-2,4] ]

 1 2 1
2 1 −2
1 −2 4


Type: Matrix Integer

To get a list of the rational eigenvalues, use the operation eigenvalues.

leig := eigenvalues(m1)

[
5,
(
%K | %K2 −%K − 5

)]
Type: List Union(Fraction Polynomial Integer,SuchThat(Symbol,Polynomial

Integer))

Given an explicit eigenvalue, eigenvector computes the eigenvectors corresponding to it.

eigenvector(first(leig),m1)
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− 1

2
1


Type: List Matrix Fraction Polynomial Fraction Integer

The operation eigenvectors returns a list of pairs of values and vectors. When an eigenvalue
is rational, Axiom gives you the value explicitly; otherwise, its minimal polynomial is given,
(the polynomial of lowest degree with the eigenvalues as roots), together with a parametric
representation of the eigenvector using the eigenvalue.

This means that if you ask Axiom to solve the minimal polynomial, then you can substitute
these roots into the parametric form of the corresponding eigenvectors.

You must be aware that unless an exact eigenvalue has been computed, the eigenvector may
be badly in error.

eigenvectors(m1)eigval = 5, eigmult = 1, eigvec =

 0
− 1

2
1

,
eigval = (%L | %L2 −%L− 5

)
, eigmult = 1, eigvec =

 %L
2
1


Type: List Record(eigval: Union(Fraction Polynomial

Integer,SuchThat(Symbol,Polynomial Integer)),eigmult:

NonNegativeInteger,eigvec: List Matrix Fraction Polynomial Integer)

Another possibility is to use the operation radicalEigenvectors tries to compute explicitly
the eigenvectors in terms of radicals.

radicalEigenvectors(m1)

radval = √
21+1
2 , radmult = 1, radvect =


√
21+1
2
2
1

,
radval = −√21 + 1

2
, radmult = 1, radvect =

 −
√
21+1
2
2
1

 ,
radval = 5, radmult = 1, radvect =

 0
−1

2
1


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Type: List Record(radval: Expression Integer,radmult: Integer,radvect:

List Matrix Expression Integer)

Alternatively, Axiom can compute real or complex approximations to the eigenvectors and
eigenvalues using the operations realEigenvectors or complexEigenvectors. They each
take an additional argument ϵ to specify the “precision” required. In the real case, this
means that each approximation will be within ±ϵ of the actual result. In the complex case,
this means that each approximation will be within ±ϵ of the actual result in each of the real
and imaginary parts.

The precision can be specified as a Float if the results are desired in floating-point notation,
or as Fraction Integer if the results are to be expressed using rational (or complex rational)
numbers.

realEigenvectors(m1,1/1000)

outval = 5, outmult = 1, outvect =

 0
−1

2
1

,
outval = 5717

2048
, outmult = 1, outvect =

 5717
2048
2
1

,
outval = −3669

2048
, outmult = 1, outvect =

 − 3669
2048
2
1


Type: List Record(outval: Fraction Integer,outmult: Integer,outvect:

List Matrix Fraction Integer)

If an n by n matrix has n distinct eigenvalues (and therefore n eigenvectors) the operation
eigenMatrix gives you a matrix of the eigenvectors.

eigenMatrix(m1)


√
21+1
2

−
√
21+1
2 0

2 2 −1
2

1 1 1


Type: Union(Matrix Expression Integer,...)

m2 := matrix [ [-5,-2],[18,7] ]
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−5 −2
18 7

]
Type: Matrix Integer

eigenMatrix(m2)

"failed"

Type: Union("failed",...)

If a symmetric matrix has a basis of orthonormal eigenvectors, then orthonormalBasis
computes a list of these vectors.

m3 := matrix [ [1,2],[2,1] ]

[
1 2
2 1

]
Type: Matrix Integer

orthonormalBasis(m3)

[[
− 1√

2
1√
2

]
,

[
1√
2
1√
2

]]

Type: List Matrix Expression Integer

8.5 Solution of Linear and Polynomial Equations

In this section we discuss the Axiom facilities for solving systems of linear equations, finding
the roots of polynomials and solving systems of polynomial equations. For a discussion of
the solution of differential equations, see section 8.10 on page 348.

Solution of Systems of Linear Equations

You can use the operation solve to solve systems of linear equations.

The operation solve takes two arguments, the list of equations and the list of the unknowns
to be solved for. A system of linear equations need not have a unique solution.
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To solve the linear system:

x + y + z = 8
3x − 2y + z = 0
x + 2y + 2z = 17

evaluate this expression.

solve([x+y+z=8,3*x-2*y+z=0,x+2*y+2*z=17],[x,y,z])

[[x = −1, y = 2, z = 7]]

Type: List List Equation Fraction Polynomial Integer

Parameters are given as new variables starting with a percent sign and % and the variables
are expressed in terms of the parameters. If the system has no solutions then the empty list
is returned.

When you solve the linear system

x + 2y + 3z = 2
2x + 3y + 4z = 2
3x + 4y + 5z = 2

with this expression you get a solution involving a parameter.

solve([x+2*y+3*z=2,2*x+3*y+4*z=2,3*x+4*y+5*z=2],[x,y,z])

[[x = %Q− 2, y = −2 %Q+ 2, z = %Q]]

Type: List List Equation Fraction Polynomial Integer

The system can also be presented as a matrix and a vector. The matrix contains the co-
efficients of the linear equations and the vector contains the numbers appearing on the
right-hand sides of the equations. You may input the matrix as a list of rows and the vector
as a list of its elements.

To solve the system:
x + y + z = 8

3x − 2y + z = 0
x + 2y + 2z = 17

in matrix form you would evaluate this expression.

solve([ [1,1,1],[3,-2,1],[1,2,2] ],[8,0,17])

[particular = [−1, 2, 7], basis = [[0, 0, 0]]]
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Type: Record(particular: Union(Vector Fraction Integer,"failed"), basis:

List Vector Fraction Integer)

The solutions are presented as a Record with two components: the component particular
contains a particular solution of the given system or the item "failed" if there are no
solutions, the component basis contains a list of vectors that are a basis for the space of
solutions of the corresponding homogeneous system. If the system of linear equations does
not have a unique solution, then the basis component contains non-trivial vectors.

This happens when you solve the linear system

x + 2y + 3z = 2
2x + 3y + 4z = 2
3x + 4y + 5z = 2

with this command.

solve([ [1,2,3],[2,3,4],[3,4,5] ],[2,2,2])

[particular = [−2, 2, 0], basis = [[1,−2, 1]]]

Type: Record(particular: Union(Vector Fraction Integer,"failed"), basis:

List Vector Fraction Integer)

All solutions of this system are obtained by adding the particular solution with a linear
combination of the basis vectors.

When no solution exists then "failed" is returned as the particular component, as follows:

solve([ [1,2,3],[2,3,4],[3,4,5] ],[2,3,2])

[particular = "failed", basis = [[1,−2, 1]]]

Type: Record(particular: Union(Vector Fraction Integer,"failed"), basis:

List Vector Fraction Integer)

When you want to solve a system of homogeneous equations (that is, a system where the
numbers on the right-hand sides of the equations are all zero) in the matrix form you can
omit the second argument and use the nullSpace operation.

This computes the solutions of the following system of equations:

x + 2y + 3z = 0
2x + 3y + 4z = 0
3x + 4y + 5z = 0

The result is given as a list of vectors and these vectors form a basis for the solution space.



8.5. SOLUTION OF LINEAR AND POLYNOMIAL EQUATIONS 315

nullSpace([ [1,2,3],[2,3,4],[3,4,5] ])

[[1,−2, 1]]

Type: List Vector Integer

Solution of a Single Polynomial Equation

Axiom can solve polynomial equations producing either approximate or exact solutions.
Exact solutions are either members of the ground field or can be presented symbolically as
roots of irreducible polynomials.

This returns the one rational root along with an irreducible polynomial describing the other
solutions.

solve(x**3 = 8,x)

[
x = 2, x2 + 2 x+ 4 = 0

]
Type: List Equation Fraction Polynomial Integer

If you want solutions expressed in terms of radicals you would use this instead.

radicalSolve(x**3 = 8,x)

[
x = −

√
−3− 1, x =

√
−3− 1, x = 2

]
Type: List Equation Expression Integer

The solve command always returns a value but radicalSolve returns only the solutions
that it is able to express in terms of radicals.

If the polynomial equation has rational coefficients you can ask for approximations to its real
roots by calling solve with a second argument that specifies the “precision” ϵ. This means
that each approximation will be within ±ϵ of the actual result.

Notice that the type of second argument controls the type of the result.

solve(x**4 - 10*x**3 + 35*x**2 - 50*x + 25,.0001)

[x = 3.618011474609375, x = 1.381988525390625]

Type: List Equation Polynomial Float
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If you give a floating-point precision you get a floating-point result; if you give the precision
as a rational number you get a rational result.

solve(x**3-2,1/1000) [
x =

2581

2048

]
Type: List Equation Polynomial Fraction Integer

If you want approximate complex results you should use the command complexSolve that
takes the same precision argument ϵ.

complexSolve(x**3-2,.0001)

[x = 1.259918212890625,

x = −0.62989432795395613131− 1.091094970703125 i,

x = −0.62989432795395613131 + 1.091094970703125 i]

Type: List Equation Polynomial Complex Float

Each approximation will be within ±ϵ of the actual result in each of the real and imaginary
parts.

complexSolve(x**2-2*%i+1,1/100)[
x = −13028925

16777216
− 325

256
i, x =

13028925

16777216
+

325

256
i

]
Type: List Equation Polynomial Complex Fraction Integer

Note that if you omit the = from the first argument Axiom generates an equation by equating
the first argument to zero. Also, when only one variable is present in the equation, you do
not need to specify the variable to be solved for, that is, you can omit the second argument.

Axiom can also solve equations involving rational functions. Solutions where the denominator
vanishes are discarded.

radicalSolve(1/x**3 + 1/x**2 + 1/x = 0,x)[
x =

−
√
−3− 1

2
, x =

√
−3− 1

2

]
Type: List Equation Expression Integer
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Solution of Systems of Polynomial Equations

Given a system of equations of rational functions with exact coefficients:

p1(x1, . . . , xn)
...

pm(x1, . . . , xn)

Axiom can find numeric or symbolic solutions. The system is first split into irreducible
components, then for each component, a triangular system of equations is found that reduces
the problem to sequential solution of univariate polynomials resulting from substitution of
partial solutions from the previous stage.

q1(x1, . . . , xn)
...

qm(xn)

Symbolic solutions can be presented using “implicit” algebraic numbers defined as roots of
irreducible polynomials or in terms of radicals. Axiom can also find approximations to the
real or complex roots of a system of polynomial equations to any user-specified accuracy.

The operation solve for systems is used in a way similar to solve for single equations.
Instead of a polynomial equation, one has to give a list of equations and instead of a single
variable to solve for, a list of variables. For solutions of single equations see section 8.5 on
page 315.

Use the operation solve if you want implicitly presented solutions.

solve([3*x**3 + y + 1,y**2 -4],[x,y])

[
[x = −1, y = 2],

[
x2 − x+ 1 = 0, y = 2

]
,
[
3 x3 − 1 = 0, y = −2

]]
Type: List List Equation Fraction Polynomial Integer

solve([x = y**2-19,y = z**2+x+3,z = 3*x],[x,y,z])

[[
x =

z

3
, y =

3 z2 + z + 9

3
, 9 z4 + 6 z3 + 55 z2 + 15 z − 90 = 0

]]
Type: List List Equation Fraction Polynomial Integer

Use radicalSolve if you want your solutions expressed in terms of radicals.

radicalSolve([3*x**3 + y + 1,y**2 -4],[x,y])
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x =

√
−3+1
2 , y = 2

]
,
[
x = −

√
−3+1
2 , y = 2

]
,

[
x =

−
√
−1
√
3− 1

2 3
√
3

, y = −2

]
,

[
x =

√
−1
√
3− 1

2 3
√
3

, y = −2

]
,

[
x =

1
3
√
3
, y = −2

]
, [x = −1, y = 2]

]
Type: List List Equation Expression Integer

To get numeric solutions you only need to give the list of equations and the precision desired.
The list of variables would be redundant information since there can be no parameters for
the numerical solver.

If the precision is expressed as a floating-point number you get results expressed as floats.

solve([x**2*y - 1,x*y**2 - 2],.01)

[[y = 1.5859375, x = 0.79296875]]

Type: List List Equation Polynomial Float

To get complex numeric solutions, use the operation complexSolve, which takes the same
arguments as in the real case.

complexSolve([x**2*y - 1,x*y**2 - 2],1/1000)

[[
y = 1625

1024 , x = 1625
2048

]
,[

y = −435445573689

549755813888
− 1407

1024
i, x = − 435445573689

1099511627776
− 1407

2048
i

]
,

[
y = −435445573689

549755813888
+

1407

1024
i, x = − 435445573689

1099511627776
+

1407

2048
i

]]
Type: List List Equation Polynomial Complex Fraction Integer

It is also possible to solve systems of equations in rational functions over the rational numbers.
Note that [x = 0.0, a = 0.0] is not returned as a solution since the denominator vanishes
there.

solve([x**2/a = a,a = a*x],.001)

[[x = 1.0, a = −1.0], [x = 1.0, a = 1.0]]
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Type: List List Equation Polynomial Float

When solving equations with denominators, all solutions where the denominator vanishes
are discarded.

radicalSolve([x**2/a + a + y**3 - 1,a*y + a + 1],[x,y])

[[
x = −

√
−a4+2 a3+3 a2+3 a+1

a2 , y = −a−1
a

]
,

[
x =

√
−a4 + 2 a3 + 3 a2 + 3 a+ 1

a2
, y =

−a− 1

a

]]

Type: List List Equation Expression Integer

8.6 Limits

To compute a limit, you must specify a functional expression, a variable, and a limiting value
for that variable. If you do not specify a direction, Axiom attempts to compute a two-sided
limit.

Issue this to compute the limit

lim
x→1

x2 − 3x+ 2

x2 − 1
.

limit((x**2 - 3*x + 2)/(x**2 - 1),x = 1)

−1

2

Type: Union(OrderedCompletion Fraction Polynomial Integer,...)

Sometimes the limit when approached from the left is different from the limit from the right
and, in this case, you may wish to ask for a one-sided limit. Also, if you have a function
that is only defined on one side of a particular value, you can compute a one-sided limit.

The function log(x) is only defined to the right of zero, that is, for x > 0. Thus, when
computing limits of functions involving log(x), you probably want a “right-hand” limit.

limit(x * log(x),x = 0,"right")

0

Type: Union(OrderedCompletion Expression Integer,...)
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When you do not specify “right” or “left” as the optional fourth argument, limit tries to
compute a two-sided limit. Here the limit from the left does not exist, as Axiom indicates
when you try to take a two-sided limit.

limit(x * log(x),x = 0)

[leftHandLimit = "failed", rightHandLimit = 0]

Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression

Integer,"failed"), rightHandLimit: Union(OrderedCompletion Expression

Integer,"failed")),...)

A function can be defined on both sides of a particular value, but tend to different limits
as its variable approaches that value from the left and from the right. We can construct an
example of this as follows: Since

√
y2 is simply the absolute value of y, the function

√
y2/y

is simply the sign (+1 or −1) of the nonzero real number y. Therefore,
√
y2/y = −1 for

y < 0 and
√
y2/y = +1 for y > 0.

This is what happens when we take the limit at y = 0. The answer returned by Axiom gives
both a “left-hand” and a “right-hand” limit.

limit(sqrt(y**2)/y,y = 0)

[leftHandLimit = −1, rightHandLimit = 1]

Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression

Integer,"failed"), rightHandLimit: Union(OrderedCompletion Expression

Integer,"failed")),...)

Here is another example, this time using a more complicated function.

limit(sqrt(1 - cos(t))/t,t = 0)

[
leftHandLimit = − 1√

2
, rightHandLimit =

1√
2

]
Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression

Integer,"failed"), rightHandLimit: Union(OrderedCompletion Expression

Integer,"failed")),...)

You can compute limits at infinity by passing either +∞ or −∞ as the third argument of
limit.

To do this, use the constants %plusInfinity and %minusInfinity.
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limit(sqrt(3*x**2 + 1)/(5*x),x = %plusInfinity)

√
3

5

Type: Union(OrderedCompletion Expression Integer,...)

limit(sqrt(3*x**2 + 1)/(5*x),x = %minusInfinity)

−
√
3

5

Type: Union(OrderedCompletion Expression Integer,...)

You can take limits of functions with parameters. As you can see, the limit is expressed in
terms of the parameters.

limit(sinh(a*x)/tan(b*x),x = 0)

a

b

Type: Union(OrderedCompletion Expression Integer,...)

When you use limit, you are taking the limit of a real function of a real variable.

When you compute this, Axiom returns 0 because, as a function of a real variable, sin(1/z)
is always between −1 and 1, so z ∗ sin(1/z) tends to 0 as z tends to 0.

limit(z * sin(1/z),z = 0)

0

Type: Union(OrderedCompletion Expression Integer,...)

However, as a function of a complex variable, sin(1/z) is badly behaved near 0 (one says
that sin(1/z) has an essential singularity at z = 0).

When viewed as a function of a complex variable, z ∗ sin(1/z) does not approach any limit
as z tends to 0 in the complex plane. Axiom indicates this when we call complexLimit.

complexLimit(z * sin(1/z),z = 0)

"failed"
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Type: Union("failed",...)

Here is another example. As x approaches 0 along the real axis, exp(−1/x ∗ ∗2) tends to 0.

limit(exp(-1/x**2),x = 0)

0

Type: Union(OrderedCompletion Expression Integer,...)

However, if x is allowed to approach 0 along any path in the complex plane, the limiting
value of exp(−1/x ∗ ∗2) depends on the path taken because the function has an essential
singularity at x = 0. This is reflected in the error message returned by the function.

complexLimit(exp(-1/x**2),x = 0)

"failed"

Type: Union("failed",...)

You can also take complex limits at infinity, that is, limits of a function of z as z approaches
infinity on the Riemann sphere. Use the symbol %infinity to denote “complex infinity.”

As above, to compute complex limits rather than real limits, use complexLimit.

complexLimit((2 + z)/(1 - z),z = %infinity)

−1

Type: OnePointCompletion Fraction Polynomial Integer

In many cases, a limit of a real function of a real variable exists when the corresponding
complex limit does not. This limit exists.

limit(sin(x)/x,x = %plusInfinity)

0

Type: Union(OrderedCompletion Expression Integer,...)

But this limit does not.

complexLimit(sin(x)/x,x = %infinity)

"failed"

Type: Union("failed",...)
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8.7 Laplace Transforms

Axiom can compute some forward Laplace transforms, mostly of elementary functions not
involving logarithms, although some cases of special functions are handled.

To compute the forward Laplace transform of F (t) with respect to t and express the result
as f(s), issue the command laplace(F (t), t, s).

laplace(sin(a*t)*cosh(a*t)-cos(a*t)*sinh(a*t), t, s)

4 a3

s4 + 4 a4

Type: Expression Integer

Here are some other non-trivial examples.

laplace((exp(a*t) - exp(b*t))/t, t, s)

−log (s− a) + log (s− b)

Type: Expression Integer

laplace(2/t * (1 - cos(a*t)), t, s)

log
(
s2 + a2

)
− 2 log (s)

Type: Expression Integer

laplace(exp(-a*t) * sin(b*t) / b**2, t, s)

1

b s2 + 2 a b s+ b3 + a2 b

Type: Expression Integer

laplace((cos(a*t) - cos(b*t))/t, t, s)

log
(
s2 + b2

)
− log

(
s2 + a2

)
2

Type: Expression Integer
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Axiom also knows about a few special functions.

laplace(exp(a*t+b)*Ei(c*t), t, s)

eb log
(
s+c−a

c

)
s− a

Type: Expression Integer

laplace(a*Ci(b*t) + c*Si(d*t), t, s)

a log
(

s2+b2

b2

)
+ 2 c arctan

(
d
s

)
2 s

Type: Expression Integer

When Axiom does not know about a particular transform, it keeps it as a formal transform
in the answer.

laplace(sin(a*t) - a*t*cos(a*t) + exp(t**2), t, s)

(
s4 + 2 a2 s2 + a4

)
laplace

(
et

2

, t, s
)
+ 2 a3

s4 + 2 a2 s2 + a4

Type: Expression Integer

8.8 Integration

Integration is the reverse process of differentiation, that is, an integral of a function f with
respect to a variable x is any function g such that D(g, x) is equal to f .

The package FunctionSpaceIntegration provides the top-level integration operation, in-
tegrate, for integrating real-valued elementary functions.

integrate(cosh(a*x)*sinh(a*x), x)

sinh (a x)
2
+ cosh (a x)

2

4 a

Type: Union(Expression Integer,...)
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Unfortunately, antiderivatives of most functions cannot be expressed in terms of elementary
functions.

integrate(log(1 + sqrt(a * x + b)) / x, x)

∫ x log
(√

b+%M a+ 1
)

%M
d%M

Type: Union(Expression Integer,...)

Given an elementary function to integrate, Axiom returns a formal integral as above only
when it can prove that the integral is not elementary and not when it cannot determine
the integral. In this rare case it prints a message that it cannot determine if an elementary
integral exists.

Similar functions may have antiderivatives that look quite different because the form of the
antiderivative depends on the sign of a constant that appears in the function.

integrate(1/(x**2 - 2),x)

log

(
(x2+2)

√
2−4 x

x2−2

)
2
√
2

Type: Union(Expression Integer,...)

integrate(1/(x**2 + 2),x)

arctan
(

x
√
2

2

)
√
2

Type: Union(Expression Integer,...)

If the integrand contains parameters, then there may be several possible antiderivatives,
depending on the signs of expressions of the parameters.

In this case Axiom returns a list of answers that cover all the possible cases. Here you use
the answer involving the square root of a when a > 0 and the answer involving the square
root of −a when a < 0.

integrate(x**2 / (x**4 - a**2), x)
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 log
(
(x2+a)

√
a−2 a x

x2−a

)
+ 2 arctan

(
x

√
a

a

)
4
√
a

,

log

(
(x2−a)

√
−a+2 a x

x2+a

)
− 2 arctan

(
x

√
−a

a

)
4
√
−a


Type: Union(List Expression Integer,...)

If the parameters and the variables of integration can be complex numbers rather than real,
then the notion of sign is not defined. In this case all the possible answers can be expressed
as one complex function. To get that function, rather than a list of real functions, use
complexIntegrate, which is provided by the package FunctionSpaceComplexIntegration.

This operation is used for integrating complex-valued elementary functions.

complexIntegrate(x**2 / (x**4 - a**2), x)


√
4 a log

(
x
√
−4 a+ 2 a√
−4 a

)
−
√
−4 a log

(
x
√
4 a+ 2 a√
4 a

)
+

√
−4 a log

(
x
√
4 a− 2 a√
4 a

)
−
√
4 a log

(
x
√
−4 a− 2 a√
−4 a

)


2
√
−4 a

√
4 a

Type: Expression Integer

As with the real case, antiderivatives for most complex-valued functions cannot be expressed
in terms of elementary functions.

complexIntegrate(log(1 + sqrt(a * x + b)) / x, x)

∫ x log
(√

b+%M a+ 1
)

%M
d%M

Type: Expression Integer

Sometimes integrate can involve symbolic algebraic numbers such as those returned by
rootOf. To see how to work with these strange generated symbols (such as %%a0), see
section 8.3 on page 307.
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Definite integration is the process of computing the area between the x-axis and the curve
of a function f(x). The fundamental theorem of calculus states that if f is continuous on
an interval a..b and if there exists a function g that is differentiable on a..b and such that
D(g, x) is equal to f , then the definite integral of f for x in the interval a..b is equal to
g(b)− g(a).
The package RationalFunctionDefiniteIntegration provides the top-level definite inte-
gration operation, integrate, for integrating real-valued rational functions.

integrate((x**4 - 3*x**2 + 6)/(x**6-5*x**4+5*x**2+4), x = 1..2)

2 arctan (8) + 2 arctan (5) + 2 arctan (2) + 2 arctan
(
1
2

)
− π

2

Type: Union(f1: OrderedCompletion Expression Integer,...)

Axiom checks beforehand that the function you are integrating is defined on the interval
a..b, and prints an error message if it finds that this is not case, as in the following example:

integrate(1/(x**2-2), x = 1..2)

>> Error detected within library code:

Pole in path of integration

You are being returned to the top level

of the interpreter.

When parameters are present in the function, the function may or may not be defined on
the interval of integration.

If this is the case, Axiom issues a warning that a pole might lie in the path of integration,
and does not compute the integral.

integrate(1/(x**2-a), x = 1..2)

potentialPole

Type: Union(pole: potentialPole,...)

If you know that you are using values of the parameter for which the function has no pole
in the interval of integration, use the string "noPole" as a third argument to integrate:

The value here is, of course, incorrect if sqrt(a) is between 1 and 2.

integrate(1/(x**2-a), x = 1..2, "noPole")
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


−log

(
(−4 a2−4 a)

√
a+a3+6 a2+a

a2−2 a+1

)
+

log

((
−8 a2 − 32 a

) √
a+ a3 + 24 a2 + 16 a

a2 − 8 a+ 16

)


4
√
a

,

−arctan
(

2
√
−a

a

)
+ arctan

(√
−a
a

)
√
−a


Type: Union(f2: List OrderedCompletion Expression Integer,...)

8.9 Working with Power Series

Axiom has very sophisticated facilities for working with power series.

Infinite series are represented by a list of the coefficients that have already been determined,
together with a function for computing the additional coefficients if needed.

The system command that determines how many terms of a series is displayed is )set

streams calculate. For the purposes of this book, we have used this system command to
display fewer than ten terms. Series can be created from expressions, from functions for the
series coefficients, and from applications of operations on existing series. The most general
function for creating a series is called series, although you can also use taylor, laurent and
puiseux in situations where you know what kind of exponents are involved.

For information about solving differential equations in terms of power series, see section 8.10
on page 356.

Creation of Power Series

This is the easiest way to create a power series. This tells Axiom that x is to be treated as
a power series, so functions of x are again power series.

x := series ’x

x

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
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We didn’t say anything about the coefficients of the power series, so the coefficients are
general expressions over the integers. This allows us to introduce denominators, symbolic
constants, and other variables as needed.

Here the coefficients are integers (note that the coefficients are the Fibonacci numbers).

1/(1 - x - x**2)

1 + x+ 2 x2 + 3 x3 + 5 x4 + 8 x5 + 13 x6 + 21 x7 + 34 x8 + 55 x9 + 89 x10 +O
(
x11
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

This series has coefficients that are rational numbers.

sin(x)

x− 1

6
x3 +

1

120
x5 − 1

5040
x7 +

1

362880
x9 − 1

39916800
x11 +O

(
x12
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

When you enter this expression you introduce the symbolic constants sin(1) and cos(1).

sin(1 + x)

sin (1) + cos (1) x− sin (1)

2
x2 − cos (1)

6
x3 +

sin (1)

24
x4 +

cos (1)

120
x5 − sin (1)

720
x6−

cos (1)

5040
x7 +

sin (1)

40320
x8 +

cos (1)

362880
x9 − sin (1)

3628800
x10 +O

(
x11
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

When you enter the expression the variable a appears in the resulting series expansion.

sin(a * x)

a x− a3

6
x3 +

a5

120
x5 − a7

5040
x7 +

a9

362880
x9 − a11

39916800
x11 +O

(
x12
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

You can also convert an expression into a series expansion. This expression creates the
series expansion of 1/log(y) about y = 1. For details and more examples, see section 8.9 on
page 336.
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series(1/log(y),y = 1)

(y − 1)
(−1)

+
1

2
− 1

12
(y − 1) +

1

24
(y − 1)

2 − 19

720
(y − 1)

3
+

3

160
(y − 1)

4−

863

60480
(y − 1)

5
+

275

24192
(y − 1)

6 − 33953

3628800
(y − 1)

7
+

8183

1036800
(y − 1)

8 − 3250433

479001600
(y − 1)

9
+O

(
(y − 1)

10
)

Type: UnivariatePuiseuxSeries(Expression Integer,y,1)

You can create power series with more general coefficients. You normally accomplish this
via a type declaration (see section 2.3 on page 69). See section 8.9 on page 333 for some
warnings about working with declared series.

We declare that y is a one-variable Taylor series (UTS is the abbreviation for Univariate-
TaylorSeries) in the variable z with FLOAT (that is, floating-point) coefficients, centered
about 0. Then, by assignment, we obtain the Taylor expansion of exp(z) with floating-point
coefficients.

y : UTS(FLOAT,’z,0) := exp(z)

1.0 + z + 0.5 z2 + 0.1666666666 6666666667 z3+

0.0416666666 66666666667 z4 + 0.0083333333 333333333334 z5+

0.0013888888 888888888889 z6 + 0.0001984126 984126984127 z7+

0.0000248015 87301587301587 z8 + 0.0000027557 319223985890653 z9+

0.2755731922 3985890653E − 6 z10 +O
(
z11
)

Type: UnivariateTaylorSeries(Float,z,0.0)

You can also create a power series by giving an explicit formula for its n-th coefficient. For
details and more examples, see section 8.9 on page 340.

To create a series about w = 0 whose n-th Taylor coefficient is 1/n!, you can evaluate this
expression. This is the Taylor expansion of exp(w) at w = 0.

series(1/factorial(n),n,w = 0)

1 + w +
1

2
w2 +

1

6
w3 +

1

24
w4 +

1

120
w5 +

1

720
w6 +

1

5040
w7+

1

40320
w8 +

1

362880
w9 +

1

3628800
w10 +O

(
w11

)
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Type: UnivariatePuiseuxSeries(Expression Integer,w,0)

Coefficients of Power Series

You can extract any coefficient from a power series—even one that hasn’t been computed yet.
This is possible because in Axiom, infinite series are represented by a list of the coefficients
that have already been determined, together with a function for computing the additional
coefficients. (This is known as lazy evaluation.) When you ask for a coefficient that hasn’t yet
been computed, Axiom computes whatever additional coefficients it needs and then stores
them in the representation of the power series.

Here’s an example of how to extract the coefficients of a power series.

x := series(x)

x

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

y := exp(x) * sin(x)

x+ x2 +
1

3
x3 − 1

30
x5 − 1

90
x6 − 1

630
x7 +

1

22680
x9+

1

113400
x10 +

1

1247400
x11 +O

(
x12
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

This coefficient is readily available.

coefficient(y,6)

− 1

90

Type: Expression Integer

But let’s get the fifteenth coefficient of y.

coefficient(y,15)

− 1

10216206000
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Type: Expression Integer

If you look at y then you see that the coefficients up to order 15 have all been computed.

y

x+ x2 +
1

3
x3 − 1

30
x5 − 1

90
x6 − 1

630
x7 +

1

22680
x9 +

1

113400
x10+

1

1247400
x11 − 1

97297200
x13 − 1

681080400
x14 − 1

10216206000
x15 +O

(
x16
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Power Series Arithmetic

You can manipulate power series using the usual arithmetic operations +, −, ∗, and / (from
UnivariatePuiseuxSeries)

The results of these operations are also power series.

x := series x

x

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

(3 + x) / (1 + 7*x)

3− 20 x+ 140 x2 − 980 x3 + 6860 x4 − 48020 x5 + 336140 x6 − 2352980 x7+

16470860 x8 − 115296020 x9 + 807072140 x10 +O
(
x11
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

You can also compute f(x) ∗ ∗g(x), where f(x) and g(x) are two power series.

base := 1 / (1 - x)

1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +O
(
x11
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)



8.9. WORKING WITH POWER SERIES 333

expon := x * base

x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 +O
(
x12
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

base ** expon

1 + x2 +
3

2
x3 +

7

3
x4 +

43

12
x5 +

649

120
x6 +

241

30
x7 +

3706

315
x8+

85763

5040
x9 +

245339

10080
x10 +O

(
x11
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Functions on Power Series

Once you have created a power series, you can apply transcendental functions (for example,
exp, log, sin, tan, cosh, etc.) to it.

To demonstrate this, we first create the power series expansion of the rational function

x2

1− 6x+ x2

about x = 0.

x := series ’x

x

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

rat := x**2 / (1 - 6*x + x**2)

x2 + 6 x3 + 35 x4 + 204 x5 + 1189 x6 + 6930 x7 + 40391 x8 + 235416 x9+

1372105 x10 + 7997214 x11 + 46611179 x12 +O
(
x13
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
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If you want to compute the series expansion of

sin

(
x2

1− 6x+ x2

)
you simply compute the sine of rat.

sin(rat)

x2 + 6 x3 + 35 x4 + 204 x5 +
7133

6
x6 + 6927 x7 +

80711

2
x8 + 235068 x9+

164285281

120
x10 +

31888513

4
x11 +

371324777

8
x12 +O

(
x13
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Warning: the type of the coefficients of a power series may affect the kind
of computations that you can do with that series. This can only happen
when you have made a declaration to specify a series domain with a certain
type of coefficient.

If you evaluate then you have declared that y is a one variable Taylor series (UTS is the ab-
breviation for UnivariateTaylorSeries) in the variable y with FRAC INT (that is, fractions
of integer) coefficients, centered about 0.

y : UTS(FRAC INT,y,0) := y

y

Type: UnivariateTaylorSeries(Fraction Integer,y,0)

You can now compute certain power series in y, provided that these series have rational
coefficients.

exp(y)

1 + y +
1

2
y2 +

1

6
y3 +

1

24
y4 +

1

120
y5 +

1

720
y6 +

1

5040
y7 +

1

40320
y8+

1

362880
y9 +

1

3628800
y10 +O

(
y11
)

Type: UnivariateTaylorSeries(Fraction Integer,y,0)
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You can get examples of such series by applying transcendental functions to series in y that
have no constant terms.

tan(y**2)

y2 +
1

3
y6 +

2

15
y10 +O

(
y11
)

Type: UnivariateTaylorSeries(Fraction Integer,y,0)

cos(y + y**5)

1− 1

2
y2 +

1

24
y4 − 721

720
y6 +

6721

40320
y8 − 1844641

3628800
y10 +O

(
y11
)

Type: UnivariateTaylorSeries(Fraction Integer,y,0)

Similarly, you can compute the logarithm of a power series with rational coefficients if the
constant coefficient is 1.

log(1 + sin(y))

y − 1

2
y2 +

1

6
y3 − 1

12
y4 +

1

24
y5 − 1

45
y6 +

61

5040
y7 − 17

2520
y8 +

277

72576
y9−

31

14175
y10 +O

(
y11
)

Type: UnivariateTaylorSeries(Fraction Integer,y,0)

If you wanted to apply, say, the operation exp to a power series with a nonzero constant
coefficient a0, then the constant coefficient of the result would be ea0 , which is not a rational
number. Therefore, evaluating exp(2 + tan(y)) would generate an error message.

If you want to compute the Taylor expansion of exp(2 + tan(y)), you must ensure that the
coefficient domain has an operation exp defined for it. An example of such a domain is
Expression Integer, the type of formal functional expressions over the integers.

When working with coefficients of this type,

z : UTS(EXPR INT,z,0) := z

z

Type: UnivariateTaylorSeries(Expression Integer,z,0)
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this presents no problems.

exp(2 + tan(z))

e2 + e2 z +
e2

2
z2 +

e2

2
z3 +

3 e2

8
z4 +

37 e2

120
z5 +

59 e2

240
z6 +

137 e2

720
z7+

871 e2

5760
z8 +

41641 e2

362880
z9 +

325249 e2

3628800
z10 +O

(
z11
)

Type: UnivariateTaylorSeries(Expression Integer,z,0)

Another way to create Taylor series whose coefficients are expressions over the integers is to
use taylor which works similarly to series.

This is equivalent to the previous computation, except that now we are using the variable w
instead of z.

w := taylor ’w

w

Type: UnivariateTaylorSeries(Expression Integer,w,0)

exp(2 + tan(w))

e2 + e2 w +
e2

2
w2 +

e2

2
w3 +

3 e2

8
w4 +

37 e2

120
w5 +

59 e2

240
w6 +

137 e2

720
w7+

871 e2

5760
w8 +

41641 e2

362880
w9 +

325249 e2

3628800
w10 +O

(
w11

)
Type: UnivariateTaylorSeries(Expression Integer,w,0)

Converting to Power Series

The ExpressionToUnivariatePowerSeries package provides operations for computing se-
ries expansions of functions.

Evaluate this to compute the Taylor expansion of sin(x) about x = 0. The first argument,
sin(x), specifies the function whose series expansion is to be computed and the second
argument, x = 0, specifies that the series is to be expanded in power of (x − 0), that is, in
power of x.

taylor(sin(x),x = 0)
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x− 1

6
x3 +

1

120
x5 − 1

5040
x7 +

1

362880
x9 +O

(
x11
)

Type: UnivariateTaylorSeries(Expression Integer,x,0)

Here is the Taylor expansion of sinx about x = π
6 :

taylor(sin(x),x = %pi/6)

1

2
+

√
3

2

(
x− π

6

)
− 1

4

(
x− π

6

)2
−
√
3

12

(
x− π

6

)3
+

1

48

(
x− π

6

)4
+

√
3

240

(
x− π

6

)5
− 1

1440

(
x− π

6

)6
−
√
3

10080

(
x− π

6

)7
+

1

80640

(
x− π

6

)8
+

√
3

725760

(
x− π

6

)9
− 1

7257600

(
x− π

6

)10
+O

((
x− π

6

)11)
Type: UnivariateTaylorSeries(Expression Integer,x,pi/6)

The function to be expanded into a series may have variables other than the series variable.

For example, we may expand tan(x ∗ y) as a Taylor series in x

taylor(tan(x*y),x = 0)

y x+
y3

3
x3 +

2 y5

15
x5 +

17 y7

315
x7 +

62 y9

2835
x9 +O

(
x11
)

Type: UnivariateTaylorSeries(Expression Integer,x,0)

or as a Taylor series in y.

taylor(tan(x*y),y = 0)

x y +
x3

3
y3 +

2 x5

15
y5 +

17 x7

315
y7 +

62 x9

2835
y9 +O

(
y11
)

Type: UnivariateTaylorSeries(Expression Integer,y,0)

A more interesting function is
text

et − 1

When we expand this function as a Taylor series in t the n-th order coefficient is the n-th
Bernoulli polynomial divided by n!.
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bern := taylor(t*exp(x*t)/(exp(t) - 1),t = 0)

1 +
2 x− 1

2
t+

6 x2 − 6 x+ 1

12
t2 +

2 x3 − 3 x2 + x

12
t3+

30 x4 − 60 x3 + 30 x2 − 1

720
t4 +

6 x5 − 15 x4 + 10 x3 − x
720

t5+

42 x6 − 126 x5 + 105 x4 − 21 x2 + 1

30240
t6 +

6 x7 − 21 x6 + 21 x5 − 7 x3 + x

30240
t7+

30 x8 − 120 x7 + 140 x6 − 70 x4 + 20 x2 − 1

1209600
t8+

10 x9 − 45 x8 + 60 x7 − 42 x5 + 20 x3 − 3 x

3628800
t9+

66 x10 − 330 x9 + 495 x8 − 462 x6 + 330 x4 − 99 x2 + 5

239500800
t10 +O

(
t11
)

Type: UnivariateTaylorSeries(Expression Integer,t,0)

Therefore, this and the next expression produce the same result.

factorial(6) * coefficient(bern,6)

42 x6 − 126 x5 + 105 x4 − 21 x2 + 1

42

Type: Expression Integer

bernoulliB(6,x)

x6 − 3 x5 +
5

2
x4 − 1

2
x2 +

1

42

Type: Polynomial Fraction Integer

Technically, a series with terms of negative degree is not considered to be a Taylor series,
but, rather, a Laurent series. If you try to compute a Taylor series expansion of x

log x at

x = 1 via taylor(x/log(x), x = 1) you get an error message. The reason is that the function
has a pole at x = 1, meaning that its series expansion about this point has terms of negative
degree. A series with finitely many terms of negative degree is called a Laurent series.

You get the desired series expansion by issuing this.
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laurent(x/log(x),x = 1)

(x− 1)
(−1)

+
3

2
+

5

12
(x− 1)− 1

24
(x− 1)

2
+

11

720
(x− 1)

3 − 11

1440
(x− 1)

4
+

271

60480
(x− 1)

5 − 13

4480
(x− 1)

6
+

7297

3628800
(x− 1)

7 − 425

290304
(x− 1)

8
+

530113

479001600
(x− 1)

9
+O

(
(x− 1)

10
)

Type: UnivariateLaurentSeries(Expression Integer,x,1)

Similarly, a series with terms of fractional degree is neither a Taylor series nor a Laurent
series. Such a series is called a Puiseux series. The expression laurent(sqrt(sec(x)), x =
3 ∗ %pi/2) results in an error message because the series expansion about this point has
terms of fractional degree.

However, this command produces what you want.

puiseux(sqrt(sec(x)),x = 3 * %pi/2)

(
x− 3 π

2

)(− 1
2 )

+
1

12

(
x− 3 π

2

) 3
2

+
1

160

(
x− 3 π

2

) 7
2

+O

((
x− 3 π

2

)5
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,(3*pi)/2)

Finally, consider the case of functions that do not have Puiseux expansions about certain
points. An example of this is xx about x = 0. puiseux(x ∗ ∗x, x = 0) produces an error
message because of the type of singularity of the function at x = 0.

The general function series can be used in this case. Notice that the series returned is not,
strictly speaking, a power series because of the log(x) in the expansion.

series(x**x,x=0)

1 + log (x) x+
log (x)

2

2
x2 +

log (x)
3

6
x3 +

log (x)
4

24
x4 +

log (x)
5

120
x5 +

log (x)
6

720
x6+

log (x)
7

5040
x7 +

log (x)
8

40320
x8 +

log (x)
9

362880
x9 +

log (x)
10

3628800
x10 +O

(
x11
)

Type: GeneralUnivariatePowerSeries(Expression Integer,x,0)

The operation series returns the most general type of infinite series. The
user who is not interested in distinguishing between various types of infinite
series may wish to use this operation exclusively.
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Power Series from Formulas

The GenerateUnivariatePowerSeries package enables you to create power series from
explicit formulas for their n-th coefficients. In what follows, we construct series expansions
for certain transcendental functions by giving formulas for their coefficients. You can also
compute such series expansions directly simply by specifying the function and the point
about which the series is to be expanded. See section 8.9 on page 336 for more information.

Consider the Taylor expansion of ex about x = 0:

ex = 1 + x+
x2

2
+
x3

6
+ · · ·

=
∞∑

n=0

xn

n!

The n-th Taylor coefficient is 1/n!.

This is how you create this series in Axiom.

series(n +-> 1/factorial(n),x = 0)

1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5 +

1

720
x6 +

1

5040
x7 +

1

40320
x8+

1

362880
x9 +

1

3628800
x10 +O

(
x11
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

The first argument specifies a formula for the n-th coefficient by giving a function that maps
n to 1/n!. The second argument specifies that the series is to be expanded in powers of
(x − 0), that is, in powers of x. Since we did not specify an initial degree, the first term in
the series was the term of degree 0 (the constant term). Note that the formula was given as
an anonymous function. These are discussed in section 6.17 on page 196.

Consider the Taylor expansion of logx about x = 1:

log(x) = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · ·

=
∞∑

n=1

(−1)n−1 (x− 1)n

n

If you were to evaluate the expression series(n + − > (−1) ∗ ∗(n − 1)/n, x = 1) you would
get an error message because Axiom would try to calculate a term of degree 0 and therefore
divide by 0.
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Instead, evaluate this. The third argument, 1.., indicates that only terms of degree n = 1, ...
are to be computed.

series(n +-> (-1)**(n-1)/n,x = 1,1..)

(x− 1)− 1

2
(x− 1)

2
+

1

3
(x− 1)

3 − 1

4
(x− 1)

4
+

1

5
(x− 1)

5 − 1

6
(x− 1)

6
+

1

7
(x− 1)

7 − 1

8
(x− 1)

8
+

1

9
(x− 1)

9 − 1

10
(x− 1)

10
+

1

11
(x− 1)

11
+

O
(
(x− 1)

12
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,1)

Next consider the Taylor expansion of an odd function, say, sin(x):

sin(x) = x− x3

3!
+
x5

5!
− · · ·

Here every other coefficient is zero and we would like to give an explicit formula only for the
odd Taylor coefficients.

This is one way to do it. The third argument, 1.., specifies that the first term to be computed
is the term of degree 1. The fourth argument, 2, specifies that we increment by 2 to find
the degrees of subsequent terms, that is, the next term is of degree 1 + 2, the next of degree
1 + 2 + 2, etc.

series(n +-> (-1)**((n-1)/2)/factorial(n),x = 0,1..,2)

x− 1

6
x3 +

1

120
x5 − 1

5040
x7 +

1

362880
x9 − 1

39916800
x11 +O

(
x12
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

The initial degree and the increment do not have to be integers. For example, this expression
produces a series expansion of sin(x

1
3 ).

series(n +-> (-1)**((3*n-1)/2)/factorial(3*n),x = 0,1/3..,2/3)

x
1
3 − 1

6
x+

1

120
x

5
3 − 1

5040
x

7
3 +

1

362880
x3 − 1

39916800
x

11
3 +O

(
x4
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
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While the increment must be positive, the initial degree may be negative. This yields the
Laurent expansion of csc(x) at x = 0. (bernoulli(numer(n+1)) is necessary because bernoulli
takes integer arguments.)

cscx := series(n +-> (-1)**((n-1)/2) * 2 * (2**n-1) * bernoulli(numer(n+1))

/ factorial(n+1), x=0, -1..,2)

x(−1) +
1

6
x+

7

360
x3 +

31

15120
x5 +

127

604800
x7 +

73

3421440
x9 +O

(
x10
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Of course, the reciprocal of this power series is the Taylor expansion of sin(x).

1/cscx

x− 1

6
x3 +

1

120
x5 − 1

5040
x7 +

1

362880
x9 − 1

39916800
x11 +O

(
x12
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

As a final example,here is the Taylor expansion of asin(x) about x = 0.

asinx := series(n +-> binomial(n-1,(n-1)/2)/(n*2**(n-1)),x=0,1..,2)

x+
1

6
x3 +

3

40
x5 +

5

112
x7 +

35

1152
x9 +

63

2816
x11 +O

(
x12
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

When we compute the sin of this series, we get x (in the sense that all higher terms computed
so far are zero).

sin(asinx)

x+O
(
x12
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
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Axiom isn’t sufficiently “symbolic” in the sense we might wish. It is an open
problem to decide that “x” is the only surviving term. Two attacks on the
problem might be:
(1) Notice that all of the higher terms are identically zero but Axiom can’t
decide that from the information it knows. Presumably we could attack this
problem by looking at the sin function as a taylor series around x=0 and
seeing the term cancellation occur. This uses a term-difference mechanism.
(2) Notice that there is no way to decide that the stream for asinx is actually
the definition of asin(x). But we could recognize that the stream for asin(x)
has a generator term and so will a taylor series expansion of sin(x). From
these two generators it may be possible in certain cases to decide that the
application of one generator to the other will yield only “x”. This trick
involves finding the correct inverse for the stream functions. If we can find an
inverse for the “remaining tail” of the stream we could conclude cancellation
and thus turn an infinite stream into a finite object.
In general this is the zero-equivalence problem and is undecidable.

As we discussed in section 8.9 on page 336, you can also use the operations taylor, laurent
and puiseux instead of series if you know ahead of time what kind of exponents a series
has. You can’t go wrong using series, though.

Substituting Numerical Values in Power Series

Use eval to substitute a numerical value for a variable in a power series. For example, here’s
a way to obtain numerical approximations of %e from the Taylor series expansion of exp(x).

First you create the desired Taylor expansion.

f := taylor(exp(x))

1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5 +

1

720
x6 +

1

5040
x7+

1

40320
x8 +

1

362880
x9 +

1

3628800
x10 +O

(
x11
)

Type: UnivariateTaylorSeries(Expression Integer,x,0)

Then you evaluate the series at the value 1.0. The result is a sequence of the partial sums.

eval(f,1.0)

[1.0, 2.0, 2.5, 2.6666666666 666666667, 2.7083333333 333333333,

2.7166666666 666666667, 2.7180555555 555555556, 2.7182539682 53968254,

2.7182787698 412698413, 2.7182815255 731922399, . . .]
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Type: Stream Expression Float

Example: Bernoulli Polynomials and Sums of Powers

Axiom provides operations for computing definite and indefinite sums.

You can compute the sum of the first ten fourth powers by evaluating this. This creates a
list whose entries are m4 as m ranges from 1 to 10, and then computes the sum of the entries
of that list.

reduce(+,[m**4 for m in 1..10])

25333

Type: PositiveInteger

You can also compute a formula for the sum of the first k fourth powers, where k is an
unspecified positive integer.

sum4 := sum(m**4, m = 1..k)

6 k5 + 15 k4 + 10 k3 − k
30

Type: Fraction Polynomial Integer

This formula is valid for any positive integer k. For instance, if we replace k by 10, we obtain
the number we computed earlier.

eval(sum4, k = 10)

25333

Type: Fraction Polynomial Integer

You can compute a formula for the sum of the first k n-th powers in a similar fashion. Just
replace the 4 in the definition of sum4 by any expression not involving k. Axiom computes
these formulas using Bernoulli polynomials; we use the rest of this section to describe this
method.

First consider this function of t and x.

f := t*exp(x*t) / (exp(t) - 1)
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t e(t x)

et − 1

Type: Expression Integer

Since the expressions involved get quite large, we tell Axiom to show us only terms of degree
up to 5.

)set streams calculate 5

If we look at the Taylor expansion of f(x, t) about t = 0, we see that the coefficients of the
powers of t are polynomials in x.

ff := taylor(f,t = 0)

1 +
2 x− 1

2
t+

6 x2 − 6 x+ 1

12
t2 +

2 x3 − 3 x2 + x

12
t3+

30 x4 − 60 x3 + 30 x2 − 1

720
t4 +

6 x5 − 15 x4 + 10 x3 − x
720

t5 +O
(
t6
)

Type: UnivariateTaylorSeries(Expression Integer,t,0)

In fact, the n-th coefficient in this series is essentially the n-th Bernoulli polynomial: the
n-th coefficient of the series is 1

n!Bn(x), where Bn(x) is the n-th Bernoulli polynomial. Thus,
to obtain the n-th Bernoulli polynomial, we multiply the n-th coefficient of the series ff by
n!.

For example, the sixth Bernoulli polynomial is this.

factorial(6) * coefficient(ff,6)

42 x6 − 126 x5 + 105 x4 − 21 x2 + 1

42

Type: Expression Integer

We derive some properties of the function f(x, t). First we compute f(x+ 1, t)− f(x, t).

g := eval(f, x = x + 1) - f

t e(t x+t) − t e(t x)

et − 1

Type: Expression Integer
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If we normalize g, we see that it has a particularly simple form.

normalize(g)

t e(t x)

Type: Expression Integer

From this it follows that the n-th coefficient in the Taylor expansion of g(x, t) at t = 0 is

1

(n− 1)!
xn−1

.

If you want to check this, evaluate the next expression.

taylor(g,t = 0)

t+ x t2 +
x2

2
t3 +

x3

6
t4 +

x4

24
t5 +O

(
t6
)

Type: UnivariateTaylorSeries(Expression Integer,t,0)

However, since
g(x, t) = f(x+ 1, t)− f(x, t)

it follows that the n-th coefficient is

1

n!
(Bn(x+ 1)−Bn(x))

Equating coefficients, we see that

1

(n− 1)!
xn−1 =

1

n!
(Bn(x+ 1)−Bn(x))

and, therefore,

xn−1 =
1

n
(Bn(x+ 1)−Bn(x))

Let’s apply this formula repeatedly, letting x vary between two integers a and b, with a < b:

an−1 = 1
n (Bn(a+ 1)−Bn(a))

(a+ 1)n−1 = 1
n (Bn(a+ 2)−Bn(a+ 1))

(a+ 2)n−1 = 1
n (Bn(a+ 3)−Bn(a+ 2))

...
(b− 1)n−1 = 1

n (Bn(b)−Bn(b− 1))
bn−1 = 1

n (Bn(b+ 1)−Bn(b))
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When we add these equations we find that the sum of the left-hand sides is

b∑
m=a

mn−1,

the sum of the
(n− 1)st

powers from a to b. The sum of the right-hand sides is a “telescoping series.” After cancel-
lation, the sum is simply

1

n
(Bn(b+ 1)−Bn(a))

Replacing n by n+ 1, we have shown that

b∑
m=a

mn =
1

n+ 1
(Bn+1(b+ 1)−Bn+1(a))

Let’s use this to obtain the formula for the sum of fourth powers.

First we obtain the Bernoulli polynomial B5.

B5 := factorial(5) * coefficient(ff,5)

6 x5 − 15 x4 + 10 x3 − x
6

Type: Expression Integer

To find the sum of the first k 4th powers, we multiply 1/5 by B5(k + 1)−B5(1).

1/5 * (eval(B5, x = k + 1) - eval(B5, x = 1))

6 k5 + 15 k4 + 10 k3 − k
30

Type: Expression Integer

This is the same formula that we obtained via sum(m ∗ ∗4,m = 1..k).

sum4

6 k5 + 15 k4 + 10 k3 − k
30

Type: Fraction Polynomial Integer

At this point you may want to do the same computation, but with an exponent other than
4. For example, you might try to find a formula for the sum of the first k 20th powers.
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8.10 Solution of Differential Equations

In this section we discuss Axiom’s facilities for solving differential equations in closed-form
and in series.

Axiom provides facilities for closed-form solution of single differential equations of the fol-
lowing kinds:

• linear ordinary differential equations, and

• non-linear first order ordinary differential equations when integrating factors can be
found just by integration.

For a discussion of the solution of systems of linear and polynomial equations, see section 8.5
on page 312.

Closed-Form Solutions of Linear Differential Equations

A differential equation is an equation involving an unknown function and one or more of
its derivatives. The equation is called ordinary if derivatives with respect to only one
dependent variable appear in the equation (it is called partial otherwise). The package
ElementaryFunctionODESolver provides the top-level operation solve for finding closed-
form solutions of ordinary differential equations.

To solve a differential equation, you must first create an operator for the unknown function.

We let y be the unknown function in terms of x.

y := operator ’y

y

Type: BasicOperator

You then type the equation using D to create the derivatives of the unknown function y(x)
where x is any symbol you choose (the so-called dependent variable).

This is how you enter the equation y′′ + y′ + y = 0.

deq := D(y x, x, 2) + D(y x, x) + y x = 0

y,, (x) + y, (x) + y (x) = 0

Type: Equation Expression Integer

The simplest way to invoke the solve command is with three arguments.
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• the differential equation,

• the operator representing the unknown function,

• the dependent variable.

So, to solve the above equation, we enter this.

solve(deq, y, x)

[
particular = 0, basis =

[
cos

(
x
√
3

2

)
e(−

x
2 ), e(−

x
2 ) sin

(
x
√
3

2

)]]

Type: Union(Record(particular: Expression Integer,basis: List Expression

Integer),...)

Since linear ordinary differential equations have infinitely many solutions, solve returns a
particular solution fp and a basis f1, . . . , fn for the solutions of the corresponding homogen-
uous equation. Any expression of the form

fp + c1f1 + . . . cnfn

where the ci do not involve the dependent variable is also a solution. This is similar to what
you get when you solve systems of linear algebraic equations.

A way to select a unique solution is to specify initial conditions: choose a value a for the
dependent variable and specify the values of the unknown function and its derivatives at a.
If the number of initial conditions is equal to the order of the equation, then the solution is
unique (if it exists in closed form!) and solve tries to find it. To specify initial conditions to
solve, use an Equation of the form x = a for the third parameter instead of the dependent
variable, and add a fourth parameter consisting of the list of values y(a), y′(a), ....

To find the solution of y′′ + y = 0 satisfying y(0) = y′(0) = 1, do this.

deq := D(y x, x, 2) + y x

y,, (x) + y (x)

Type: Expression Integer

You can omit the = 0 when you enter the equation to be solved.

solve(deq, y, x = 0, [1, 1])

sin (x) + cos (x)
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Type: Union(Expression Integer,...)

Axiom is not limited to linear differential equations with constant coefficients. It can also find
solutions when the coefficients are rational or algebraic functions of the dependent variable.
Furthermore, Axiom is not limited by the order of the equation.

Axiom can solve the following third order equations with polynomial coefficients.

deq := x**3 * D(y x, x, 3) + x**2 * D(y x, x, 2) - 2 * x * D(y x, x) + 2 * y

x = 2 * x**4

x3 y,,, (x) + x2 y,, (x)− 2 x y, (x) + 2 y (x) = 2 x4

Type: Equation Expression Integer

solve(deq, y, x)

[
particular =

x5 − 10 x3 + 20 x2 + 4

15 x
,

basis =

[
2 x3 − 3 x2 + 1

x
,
x3 − 1

x
,
x3 − 3 x2 − 1

x

]]
Type: Union(Record(particular: Expression Integer,basis: List Expression

Integer),...)

Here we are solving a homogeneous equation.

deq := (x**9+x**3) * D(y x, x, 3) + 18 * x**8 * D(y x, x, 2) - 90 * x * D(y

x, x) - 30 * (11 * x**6 - 3) * y x

(
x9 + x3

)
y,,, (x) + 18 x8 y,, (x)− 90 x y, (x) +

(
−330 x6 + 90

)
y (x)

Type: Expression Integer

solve(deq, y, x)

[
particular = 0, basis =

[
x

x6 + 1
,
x e(−

√
91 log(x))

x6 + 1
,
x e(

√
91 log(x))

x6 + 1

]]

Type: Union(Record(particular: Expression Integer,basis: List Expression

Integer),...)
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On the other hand, and in contrast with the operation integrate, it can happen that Axiom
finds no solution and that some closed-form solution still exists. While it is mathematically
complicated to describe exactly when the solutions are guaranteed to be found, the following
statements are correct and form good guidelines for linear ordinary differential equations:

• If the coefficients are constants, Axiom finds a complete basis of solutions (i,e. all
solutions).

• If the coefficients are rational functions in the dependent variable, Axiom at least finds
all solutions that do not involve algebraic functions.

Note that this last statement does not mean that Axiom does not find the solutions that are
algebraic functions. It means that it is not guaranteed that the algebraic function solutions
will be found.

This is an example where all the algebraic solutions are found.

deq := (x**2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) + y x = 0

(
x2 + 1

)
y,, (x) + 3 x y, (x) + y (x) = 0

Type: Equation Expression Integer

solve(deq, y, x)

[
particular = 0, basis =

[
1√

x2 + 1
,
log
(√
x2 + 1− x

)
√
x2 + 1

]]

Type: Union(Record(particular: Expression Integer,basis: List Expression

Integer),...)

Closed-Form Solutions of Non-Linear Differential Equations

This is an example that shows how to solve a non-linear first order ordinary differential
equation manually when an integrating factor can be found just by integration. At the end,
we show you how to solve it directly.

Let’s solve the differential equation y′ = y/(x+ ylogy).

Using the notation m(x, y) + n(x, y)y′ = 0, we have m = −y and n = x+ ylogy.

m := -y

−y
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Type: Polynomial Integer

n := x + y * log y

y log (y) + x

Type: Expression Integer

We first check for exactness, that is, does dm/dy = dn/dx?

D(m, y) - D(n, x)

−2

Type: Expression Integer

This is not zero, so the equation is not exact. Therefore we must look for an integrating
factor: a function mu(x, y) such that d(mum)/dy = d(mun)/dx. Normally, we first search
for mu(x, y) depending only on x or only on y.

Let’s search for such a mu(x) first.

mu := operator ’mu

mu

Type: BasicOperator

a := D(mu(x) * m, y) - D(mu(x) * n, x)

(−y log (y)− x) mu, (x)− 2 mu (x)

Type: Expression Integer

If the above is zero for a functionmu that does not depend on y, thenmu(x) is an integrating
factor.

solve(a = 0, mu, x)

[
particular = 0, basis =

[
1

y2 log (y)
2
+ 2 x y log (y) + x2

]]
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Type: Union(Record(particular: Expression Integer,basis: List Expression

Integer),...)

The solution depends on y, so there is no integrating factor that depends on x only.

Let’s look for one that depends on y only.

b := D(mu(y) * m, y) - D(mu(y) * n, x)

−y mu, (y)− 2 mu (y)

Type: Expression Integer

sb := solve(b = 0, mu, y)

[
particular = 0, basis =

[
1

y2

]]
Type: Union(Record(particular: Expression Integer,basis: List Expression

Integer),...)

We’ve found one!

The above mu(y) is an integrating factor. We must multiply our initial equation (that is, m
and n) by the integrating factor.

intFactor := sb.basis.1

1

y2

Type: Expression Integer

m := intFactor * m

−1

y

Type: Expression Integer

n := intFactor * n

y log (y) + x

y2



354 CHAPTER 8. ADVANCED PROBLEM SOLVING

Type: Expression Integer

Let’s check for exactness.

D(m, y) - D(n, x)

0

Type: Expression Integer

We must solve the exact equation, that is, find a function s(x, y) such that ds/dx = m and
ds/dy = n.

We start by writing s(x, y) = h(y) + integrate(m,x) where h(y) is an unknown function of
y. This guarantees that ds/dx = m.

h := operator ’h

h

Type: BasicOperator

sol := h y + integrate(m, x)

y h (y)− x
y

Type: Expression Integer

All we want is to find h(y) such that ds/dy = n.

dsol := D(sol, y)

y2 h, (y) + x

y2

Type: Expression Integer

nsol := solve(dsol = n, h, y)

[
particular =

log (y)
2

2
, basis = [1]

]
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Type: Union(Record(particular: Expression Integer,basis: List Expression

Integer),...)

The above particular solution is the h(y) we want, so we just replace h(y) by it in the implicit
solution.

eval(sol, h y = nsol.particular)

y log (y)
2 − 2 x

2 y

Type: Expression Integer

A first integral of the initial equation is obtained by setting this result equal to an arbitrary
constant.

Now that we’ve seen how to solve the equation “by hand,” we show you how to do it with
the solve operation.

First define y to be an operator.

y := operator ’y

y

Type: BasicOperator

Next we create the differential equation.

deq := D(y x, x) = y(x) / (x + y(x) * log y x)

y, (x) =
y (x)

y (x) log (y (x)) + x

Type: Equation Expression Integer

Finally, we solve it.

solve(deq, y, x)

y (x) log (y (x))
2 − 2 x

2 y (x)

Type: Union(Expression Integer,...)
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Power Series Solutions of Differential Equations

The command to solve differential equations in power series around a particular initial point
with specific initial conditions is called seriesSolve. It can take a variety of parameters, so
we illustrate its use with some examples.

Since the coefficients of some solutions are quite large, we reset the default to compute only
seven terms.

)set streams calculate 7

You can solve a single nonlinear equation of any order. For example, we solve

y′′′ = sin(y′′) ∗ exp(y) + cos(x)

subject to
y(0) = 1, y′(0) = 0, y′′(0) = 0

We first tell Axiom that the symbol ′y denotes a new operator.

y := operator ’y

y

Type: BasicOperator

Enter the differential equation using y like any system function.

eq := D(y(x), x, 3) - sin(D(y(x), x, 2))*exp(y(x)) = cos(x)

y,,, (x)− ey(x) sin (y,, (x)) = cos (x)

Type: Equation Expression Integer

Solve it around x = 0 with the initial conditions y(0) = 1, y′(0) = y′′(0) = 0.

seriesSolve(eq, y, x = 0, [1, 0, 0])

1 +
1

6
x3 +

e

24
x4 +

e2 − 1

120
x5 +

e3 − 2 e

720
x6 +

e4 − 8 e2 + 4 e+ 1

5040
x7 +O

(
x8
)

Type: UnivariateTaylorSeries(Expression Integer,x,0)

You can also solve a system of nonlinear first order equations. For example, we solve a
system that has tan(t) and sec(t) as solutions.

We tell Axiom that x is also an operator.
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x := operator ’x

x

Type: BasicOperator

Enter the two equations forming our system.

eq1 := D(x(t), t) = 1 + x(t)**2

x, (t) = x (t)
2
+ 1

Type: Equation Expression Integer

eq2 := D(y(t), t) = x(t) * y(t)

y, (t) = x (t) y (t)

Type: Equation Expression Integer

Solve the system around t = 0 with the initial conditions x(0) = 0 and y(0) = 1. Notice that
since we give the unknowns in the order [x, y], the answer is a list of two series in the order

[series for x(t), series for y(t)]

seriesSolve([eq2, eq1], [x, y], t = 0, [y(0) = 1, x(0) = 0])

Compiling function %BZ with type List UnivariateTaylorSeries(

Expression Integer,t,0) -> UnivariateTaylorSeries(Expression

Integer,t,0)

Compiling function %CA with type List UnivariateTaylorSeries(

Expression Integer,t,0) -> UnivariateTaylorSeries(Expression

Integer,t,0)[
t+

1

3
t3 +

2

15
t5 +

17

315
t7 +O

(
t8
)
, 1 +

1

2
t2 +

5

24
t4 +

61

720
t6 +O

(
t8
)]

Type: List UnivariateTaylorSeries(Expression Integer,t,0)

The order in which we give the equations and the initial conditions has no effect on the order
of the solution.
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8.11 Finite Fields

A finite field (also called a Galois field) is a finite algebraic structure where one can add,
multiply and divide under the same laws (for example, commutativity, associativity or dis-
tributivity) as apply to the rational, real or complex numbers. Unlike those three fields, for
any finite field there exists a positive prime integer p, called the characteristic, such that
p x = 0 for any element x in the finite field. In fact, the number of elements in a finite field is
a power of the characteristic and for each prime p and positive integer n there exists exactly
one finite field with pn elements, up to isomorphism.1

When n = 1, the field has p elements and is called a prime field, discussed in the next section.
There are several ways of implementing extensions of finite fields, and Axiom provides quite
a bit of freedom to allow you to choose the one that is best for your application. Moreover,
we provide operations for converting among the different representations of extensions and
different extensions of a single field. Finally, note that you usually need to package-call
operations from finite fields if the operations do not take as an argument an object of the
field. See section 2.9 on page 89 for more information on package-calling.

Modular Arithmetic and Prime Fields

Let n be a positive integer. It is well known that you can get the same result if you perform
addition, subtraction or multiplication of integers and then take the remainder on dividing
by n as if you had first done such remaindering on the operands, performed the arithmetic
and then (if necessary) done remaindering again. This allows us to speak of arithmetic
modulo n or, more simply mod n.

In Axiom, you use IntegerMod to do such arithmetic.

(a,b) : IntegerMod 12

Type: Void

(a, b) := (16, 7)

7

Type: IntegerMod 12

[a - b, a * b]

1For more information about the algebraic structure and properties of finite fields, see, for example, S.
Lang, Algebra, Second Edition, New York: Addison-Wesley Publishing Company, Inc., 1984, ISBN 0 201
05487 6; or R. Lidl, H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and Its Applications, Vol.
20, Cambridge: Cambridge Univ. Press, 1983, ISBN 0 521 30240 4.
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[9, 4]

Type: List IntegerMod 12

If n is not prime, there is only a limited notion of reciprocals and division.

a / b

There are 12 exposed and 13 unexposed library operations named /

having 2 argument(s) but none was determined to be applicable.

Use HyperDoc Browse, or issue

)display op /

to learn more about the available operations. Perhaps

package-calling the operation or using coercions on the arguments

will allow you to apply the operation.

Cannot find a definition or applicable library operation named /

with argument type(s)

IntegerMod 12

IntegerMod 12

Perhaps you should use "@" to indicate the required return type,

or "$" to specify which version of the function you need.

recip a

"failed"

Type: Union("failed",...)

Here 7 and 12 are relatively prime, so 7 has a multiplicative inverse modulo 12.

recip b

7

Type: Union(IntegerMod 12,...)

If we take n to be a prime number p, then taking inverses and, therefore, division are generally
defined.

Use PrimeField instead of IntegerMod for n prime.

c : PrimeField 11 := 8
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8

Type: PrimeField 11

inv c

7

Type: PrimeField 11

You can also use 1/c and c ∗ ∗(−1) for the inverse of c.

9/c

8

Type: PrimeField 11

PrimeField (abbreviation PF) checks if its argument is prime when you try to use an opera-
tion from it. If you know the argument is prime (particularly if it is large), InnerPrimeField
(abbreviation IPF) assumes the argument has already been verified to be prime. If you do
use a number that is not prime, you will eventually get an error message, most likely a
division by zero message. For computer science applications, the most important finite fields
are PrimeField 2 and its extensions.

In the following examples, we work with the finite field with p = 101 elements.

GF101 := PF 101

PrimeField 101

Type: Domain

Like many domains in Axiom, finite fields provide an operation for returning a random
element of the domain.

x := random()$GF101

8

Type: PrimeField 101
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y : GF101 := 37

37

Type: PrimeField 101

z := x/y

63

Type: PrimeField 101

z * y - x

0

Type: PrimeField 101

The element 2 is a primitive element of this field,

pe := primitiveElement()$GF101

2

Type: PrimeField 101

in the sense that its powers enumerate all nonzero elements.

[pe**i for i in 0..99]

[1, 2, 4, 8, 16, 32, 64, 27, 54, 7, 14, 28, 56, 11, 22, 44, 88, 75, 49, 98,
95, 89, 77, 53, 5, 10, 20, 40, 80, 59, 17, 34, 68, 35, 70, 39, 78, 55, 9,
18, 36, 72, 43, 86, 71, 41, 82, 63, 25, 50, 100, 99, 97, 93, 85, 69, 37,
74, 47, 94, 87, 73, 45, 90, 79, 57, 13, 26, 52, 3, 6, 12, 24, 48, 96, 91,
81, 61, 21, 42, 84, 67, 33, 66, 31, 62, 23, 46, 92, 83, 65, 29, 58, 15, 30,
60, 19, 38, 76, 51]

Type: List PrimeField 101

If every nonzero element is a power of a primitive element, how do you determine what the
exponent is? Use discreteLog.
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ex := discreteLog(y)

56

Type: PositiveInteger

pe ** ex

37

Type: PrimeField 101

The order of a nonzero element x is the smallest positive integer t such xt = 1.

order y

25

Type: PositiveInteger

The order of a primitive element is the defining p− 1.

order pe

100

Type: PositiveInteger

Extensions of Finite Fields

When you want to work with an extension of a finite field in Axiom, you have three choices
to make:

1. Do you want to generate an extension of the prime field (for example, PrimeField 2)
or an extension of a given field?

2. Do you want to use a representation that is particularly efficient for multiplication,
exponentiation and addition but uses a lot of computer memory (a representation that
models the cyclic group structure of the multiplicative group of the field extension
and uses a Zech logarithm table), one that uses a normal basis for the vector space
structure of the field extension, or one that performs arithmetic modulo an irreducible
polynomial? The cyclic group representation is only usable up to “medium” (relative
to your machine’s performance) sized fields. If the field is large and the normal basis is
relatively simple, the normal basis representation is more efficient for exponentiation
than the irreducible polynomial representation.
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3. Do you want to provide a polynomial explicitly, a root of which “generates” the exten-
sion in one of the three senses in (2), or do you wish to have the polynomial generated
for you?

This illustrates one of the most important features of Axiom: you can choose exactly the
right data-type and representation to suit your application best.

We first tell you what domain constructors to use for each case above, and then give some
examples.

Constructors that automatically generate extensions of the prime field:
FiniteField

FiniteFieldCyclicGroup

FiniteFieldNormalBasis

Constructors that generate extensions of an arbitrary field:
FiniteFieldExtension

FiniteFieldExtensionByPolynomial

FiniteFieldCyclicGroupExtension

FiniteFieldCyclicGroupExtensionByPolynomial

FiniteFieldNormalBasisExtension

FiniteFieldNormalBasisExtensionByPolynomial

Constructors that use a cyclic group representation:
FiniteFieldCyclicGroup

FiniteFieldCyclicGroupExtension

FiniteFieldCyclicGroupExtensionByPolynomial

Constructors that use a normal basis representation:
FiniteFieldNormalBasis

FiniteFieldNormalBasisExtension

FiniteFieldNormalBasisExtensionByPolynomial

Constructors that use an irreducible modulus polynomial representation:
FiniteField

FiniteFieldExtension

FiniteFieldExtensionByPolynomial

Constructors that generate a polynomial for you:
FiniteField

FiniteFieldExtension

FiniteFieldCyclicGroup

FiniteFieldCyclicGroupExtension

FiniteFieldNormalBasis

FiniteFieldNormalBasisExtension

Constructors for which you provide a polynomial:
FiniteFieldExtensionByPolynomial

FiniteFieldCyclicGroupExtensionByPolynomial

FiniteFieldNormalBasisExtensionByPolynomial
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These constructors are discussed in the following sections where we collect together descrip-
tions of extension fields that have the same underlying representation.2

If you don’t really care about all this detail, just use FiniteField. As your knowledge of
your application and its Axiom implementation grows, you can come back and choose an
alternative constructor that may improve the efficiency of your code. Note that the exported
operations are almost the same for all constructors of finite field extensions and include the
operations exported by PrimeField.

Irreducible Modulus Polynomial Representations

All finite field extension constructors discussed in this section use a representation that
performs arithmetic with univariate (one-variable) polynomials modulo an irreducible poly-
nomial. This polynomial may be given explicitly by you or automatically generated. The
ground field may be the prime field or one you specify. See section 8.11 on page 362 for
general information about finite field extensions.

For FiniteField (abbreviation FF) you provide a prime number p and an extension degree
n. This degree can be 1.

Axiom uses the prime field PrimeField(p), here PrimeField 2, and it chooses an irreducible
polynomial of degree n, here 12, over the ground field.

GF4096 := FF(2,12);

Type: Domain

The objects in the generated field extension are polynomials of degree at most n − 1 with
coefficients in the prime field. The polynomial indeterminate is automatically chosen by
Axiom and is typically something like %A or %D. These (strange) variables are only for
output display; there are several ways to construct elements of this field.

The operation index enumerates the elements of the field extension and accepts as argument
the integers from 1 to pn.

The expression index(p) always gives the indeterminate.

a := index(2)$GF4096

%A

Type: FiniteField(2,12)

You can build polynomials in a and calculate in GF4096.

2For more information on the implementation aspects of finite fields, see J. Grabmeier, A. Scheerhorn,
Finite Fields in Axiom, Technical Report, IBM Heidelberg Scientific Center, 1992.
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b := a**12 - a**5 + a

%A5 +%A3 +%A+ 1

Type: FiniteField(2,12)

b ** 1000

%A10 +%A9 +%A7 +%A5 +%A4 +%A3 +%A

Type: FiniteField(2,12)

c := a/b

%A11 +%A8 +%A7 +%A5 +%A4 +%A3 +%A2

Type: FiniteField(2,12)

Among the available operations are norm and trace.

norm c

1

Type: PrimeField 2

trace c

0

Type: PrimeField 2

Since any nonzero element is a power of a primitive element, how do we discover what the
exponent is?

The operation discreteLog calculates the exponent and, if it is called with only one argu-
ment, always refers to the primitive element returned by primitiveElement.

dL := discreteLog a

1729
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Type: PositiveInteger

g ** dL

g1729

Type: Polynomial Integer

FiniteFieldExtension (abbreviation FFX) is similar to
FiniteField except that the ground-field for
FiniteFieldExtension is arbitrary and chosen by you.

In case you select the prime field as ground field, there is essentially no difference between
the constructed two finite field extensions.

GF16 := FF(2,4);

Type: Domain

GF4096 := FFX(GF16,3);

Type: Domain

r := (random()$GF4096) ** 20

(
%B2 + 1

)
%C2 +

(
%B3 +%B2 + 1

)
%C +%B3 +%B2 +%B + 1

Type: FiniteFieldExtension(FiniteField(2,4),3)

norm(r)

%B2 +%B

Type: FiniteField(2,4)

FiniteFieldExtensionByPolynomial (abbreviation FFP) is similar to FiniteField and
FiniteFieldExtension but is more general.

GF4 := FF(2,2);
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Type: Domain

f := nextIrreduciblePoly(random(6)$FFPOLY(GF4))$FFPOLY(GF4)

?6 + (%D + 1) ?5 + (%D + 1) ?4 + (%D + 1) ? + 1

Type: Union(SparseUnivariatePolynomial FiniteField(2,2),...)

For FFP you choose both the ground field and the irreducible polynomial used in the repre-
sentation. The degree of the extension is the degree of the polynomial.

GF4096 := FFP(GF4,f);

Type: Domain

discreteLog random()$GF4096

582

Type: PositiveInteger

Cyclic Group Representations

In every finite field there exist elements whose powers are all the nonzero elements of the
field. Such an element is called a primitive element.

In FiniteFieldCyclicGroup (abbreviation FFCG) the nonzero elements are represented by
the powers of a fixed primitive element of the field (that is, a generator of its cyclic mul-
tiplicative group). Multiplication (and hence exponentiation) using this representation is
easy. To do addition, we consider our primitive element as the root of a primitive polyno-
mial (an irreducible polynomial whose roots are all primitive). See section 8.11 on page 376
for examples of how to compute such a polynomial.

To use FiniteFieldCyclicGroup you provide a prime number and an extension degree.

GF81 := FFCG(3,4);

Type: Domain

Axiom uses the prime field, here PrimeField 3, as the ground field and it chooses a primitive
polynomial of degree n, here 4, over the prime field.
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a := primitiveElement()$GF81

%F 1

Type: FiniteFieldCyclicGroup(3,4)

You can calculate in GF81.

b := a**12 - a**5 + a

%F 72

Type: FiniteFieldCyclicGroup(3,4)

In this representation of finite fields the discrete logarithm of an element can be seen directly
in its output form.

b

%F 72

Type: FiniteFieldCyclicGroup(3,4)

discreteLog b

72

Type: PositiveInteger

FiniteFieldCyclicGroupExtension (abbreviation FFCGX) is similar to
FiniteFieldCyclicGroup except that the ground field for
FiniteFieldCyclicGroupExtension is arbitrary and chosen by you. In case you select the
prime field as ground field, there is essentially no difference between the constructed two
finite field extensions.

GF9 := FF(3,2);

Type: Domain

GF729 := FFCGX(GF9,3);
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Type: Domain

r := (random()$GF729) ** 20

%H420

Type: FiniteFieldCyclicGroupExtension(FiniteField(3,2),3)

trace(r)

0

Type: FiniteField(3,2)

FiniteFieldCyclicGroupExtensionByPolynomial (abbreviation FFCGP) is similar to
FiniteFieldCyclicGroup and FiniteFieldCyclicGroupExtension

but is more general. For
FiniteFieldCyclicGroupExtensionByPolynomial you choose both the ground field and
the irreducible polynomial used in the representation. The degree of the extension is the
degree of the polynomial.

GF3 := PrimeField 3;

Type: Domain

We use a utility operation to generate an irreducible primitive polynomial (see section 8.11
on page 376). The polynomial has one variable that is “anonymous”: it displays as a question
mark.

f := createPrimitivePoly(4)$FFPOLY(GF3)

?4+? + 2

Type: SparseUnivariatePolynomial PrimeField 3

GF81 := FFCGP(GF3,f);

Type: Domain

Let’s look at a random element from this field.

random()$GF81

%K13

Type: FiniteFieldCyclicGroupExtensionByPolynomial(PrimeField 3,?**4+?+2)
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Normal Basis Representations

Let K be a finite extension of degree n of the finite field F and let F have q elements. An
element x of K is said to be normal over F if the elements

1, xq, xq
2

, . . . , xq
n−1

form a basis of K as a vector space over F . Such a basis is called a normal basis.3

If x is normal over F , its minimal polynomial is also said to be normal over F . There exist
normal bases for all finite extensions of arbitrary finite fields.

In FiniteFieldNormalBasis (abbreviation FFNB), the elements of the finite field are repre-
sented by coordinate vectors with respect to a normal basis.

You provide a prime p and an extension degree n.

K := FFNB(3,8)

FiniteF ieldNormalBasis(3, 8)

Type: Domain

Axiom uses the prime field PrimeField(p), here PrimeField 3, and it chooses a normal
polynomial of degree n, here 8, over the ground field. The remainder class of the indetermi-
nate is used as the normal element. The polynomial indeterminate is automatically chosen
by Axiom and is typically something like %A or %D. These (strange) variables are only for
output display; there are several ways to construct elements of this field. The output of the
basis elements is something like %Aqi .

a := normalElement()$K

%I

Type: FiniteFieldNormalBasis(3,8)

You can calculate in K using a.

b := a**12 - a**5 + a

2 %Iq
7

+%Iq
5

+%Iq

Type: FiniteFieldNormalBasis(3,8)

3This agrees with the general definition of a normal basis because the n distinct powers of the automor-
phism x 7→ xq constitute the Galois group of K/F .
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FiniteFieldNormalBasisExtension (abbreviation FFNBX) is similar to
FiniteFieldNormalBasis except that the groundfield for
FiniteFieldNormalBasisExtension is arbitrary and chosen by you. In case you select the
prime field as ground field, there is essentially no difference between the constructed two
finite field extensions.

GF9 := FFNB(3,2);

Type: Domain

GF729 := FFNBX(GF9,3);

Type: Domain

r := random()$GF729

2 %K %Lq

Type: FiniteFieldNormalBasisExtension(FiniteFieldNormalBasis(3,2),3)

r + r**3 + r**9 + r**27

2 %K %Lq2 + (2 %Kq + 2 %K) %Lq + 2 %Kq %L

Type: FiniteFieldNormalBasisExtension(FiniteFieldNormalBasis(3,2),3)

FiniteFieldNormalBasisExtensionByPolynomial (abbreviation FFNBP)
is similar to FiniteFieldNormalBasis and
FiniteFieldNormalBasisExtension but is more general. For
FiniteFieldNormalBasisExtensionByPolynomial you choose both the ground field and
the irreducible polynomial used in the representation. The degree of the extension is the
degree of the polynomial.

GF3 := PrimeField 3;

Type: Domain

We use a utility operation to generate an irreducible normal polynomial (see section 8.11 on
page 376). p The polynomial has one variable that is “anonymous”: it displays as a question
mark.
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f := createNormalPoly(4)$FFPOLY(GF3)

?4 + 2 ?3 + 2

Type: SparseUnivariatePolynomial PrimeField 3

GF81 := FFNBP(GF3,f);

Type: Domain

Let’s look at a random element from this field.

r := random()$GF81

%Mq2 + 2 %Mq + 2 %M

Type: FiniteFieldNormalBasisExtensionByPolynomial(PrimeField

3,?**4+2*?**3+2)

r * r**3 * r**9 * r**27

2 %Mq3 + 2 %Mq2 + 2 %Mq + 2 %M

Type: FiniteFieldNormalBasisExtensionByPolynomial(PrimeField

3,?**4+2*?**3+2)

norm r

2

Type: PrimeField 3

Conversion Operations for Finite Fields

Let K be a finite field.

K := PrimeField 3

PrimeField 3
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Type: Domain

An extension field Km of degree m over K is a subfield of an extension field Kn of degree n
over K if and only if m divides n.

Kn

|
Km ⇐⇒ m|n
|
K

FiniteFieldHomomorphisms provides conversion operations between different extensions of
one fixed finite ground field and between different representations of these finite fields.

Let’s choose m and n,

(m,n) := (4,8)

8

Type: PositiveInteger

build the field extensions,

Km := FiniteFieldExtension(K,m)

FiniteFieldExtension(PrimeField 3,4)

Type: Domain

and pick two random elements from the smaller field.

Kn := FiniteFieldExtension(K,n)

FiniteFieldExtension(PrimeField 3,8)

Type: Domain

a1 := random()$Km

2 %A3 +%A2

Type: FiniteFieldExtension(PrimeField 3,4)
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b1 := random()$Km

%A3 +%A2 + 2 %A+ 1

Type: FiniteFieldExtension(PrimeField 3,4)

Since m divides n, Km is a subfield of Kn.

a2 := a1 :: Kn

%B4

Type: FiniteFieldExtension(PrimeField 3,8)

Therefore we can convert the elements of Km into elements of Kn.

b2 := b1 :: Kn

2 %B6 + 2 %B4 +%B2 + 1

Type: FiniteFieldExtension(PrimeField 3,8)

To check this, let’s do some arithmetic.

a1+b1 - ((a2+b2) :: Km)

0

Type: FiniteFieldExtension(PrimeField 3,4)

a1*b1 - ((a2*b2) :: Km)

0

Type: FiniteFieldExtension(PrimeField 3,4)

There are also conversions available for the situation, when Km and Kn are represented in
different ways (see section 8.11 on page 362). For example let’s choose Km where the repre-
sentation is 0 plus the cyclic multiplicative group and Kn with a normal basis representation.

Km := FFCGX(K,m)
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FiniteFieldCyclicGroupExtension(PrimeField 3,4)

Type: Domain

Kn := FFNBX(K,n)

FiniteFieldNormalBasisExtension(PrimeField 3,8)

Type: Domain

(a1,b1) := (random()$Km,random()$Km)

%C13

Type: FiniteFieldCyclicGroupExtension(PrimeField 3,4)

a2 := a1 :: Kn

2 %Dq6 + 2 %Dq5 + 2 %Dq4 + 2 %Dq2 + 2 %Dq + 2 %D

Type: FiniteFieldNormalBasisExtension(PrimeField 3,8)

b2 := b1 :: Kn

2 %Dq7 +%Dq6 +%Dq5 +%Dq4 + 2 %Dq3 +%Dq2 +%Dq +%D

Type: FiniteFieldNormalBasisExtension(PrimeField 3,8)

Check the arithmetic again.

a1+b1 - ((a2+b2) :: Km)

0

Type: FiniteFieldCyclicGroupExtension(PrimeField 3,4)

a1*b1 - ((a2*b2) :: Km)

0

Type: FiniteFieldCyclicGroupExtension(PrimeField 3,4)
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Utility Operations for Finite Fields

FiniteFieldPolynomialPackage (abbreviation FFPOLY) provides operations for generating,
counting and testing polynomials over finite fields. Let’s start with a couple of definitions:

• A polynomial is primitive if its roots are primitive elements in an extension of the
coefficient field of degree equal to the degree of the polynomial.

• A polynomial is normal over its coefficient field if its roots are linearly independent
elements in an extension of the coefficient field of degree equal to the degree of the
polynomial.

In what follows, many of the generated polynomials have one “anonymous” variable. This
indeterminate is displayed as a question mark ("?").

To fix ideas, let’s use the field with five elements for the first few examples.

GF5 := PF 5;

Type: Domain

You can generate irreducible polynomials of any (positive) degree (within the storage capa-
bilities of the computer and your ability to wait) by using createIrreduciblePoly.

f := createIrreduciblePoly(8)$FFPOLY(GF5)

?8 + ?4 + 2

Type: SparseUnivariatePolynomial PrimeField 5

Does this polynomial have other important properties? Use primitive? to test whether it
is a primitive polynomial.

primitive?(f)$FFPOLY(GF5)

false

Type: Boolean

Use normal? to test whether it is a normal polynomial.

normal?(f)$FFPOLY(GF5)

false
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Type: Boolean

Note that this is actually a trivial case, because a normal polynomial of degree n must have
a nonzero term of degree n− 1. We will refer back to this later.

To get a primitive polynomial of degree 8 just issue this.

p := createPrimitivePoly(8)$FFPOLY(GF5)

?8 + ?3 + ?2+? + 2

Type: SparseUnivariatePolynomial PrimeField 5

primitive?(p)$FFPOLY(GF5)

true

Type: Boolean

This polynomial is not normal,

normal?(p)$FFPOLY(GF5)

false

Type: Boolean

but if you want a normal one simply write this.

n := createNormalPoly(8)$FFPOLY(GF5)

?8 + 4 ?7 + ?3 + 1

Type: SparseUnivariatePolynomial PrimeField 5

This polynomial is not primitive!

primitive?(n)$FFPOLY(GF5)

false

Type: Boolean
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This could have been seen directly, as the constant term is 1 here, which is not a primitive
element up to the factor (−1) raised to the degree of the polynomial.4

What about polynomials that are both primitive and normal? The existence of such a
polynomial is by no means obvious. 5

If you really need one use either createPrimitiveNormalPoly or createNormalPrimi-
tivePoly.

createPrimitiveNormalPoly(8)$FFPOLY(GF5)

?8 + 4 ?7 + 2 ?5 + 2

Type: SparseUnivariatePolynomial PrimeField 5

If you want to obtain additional polynomials of the various types above as given by the
create... operations above, you can use the next... operations. For instance, nextIrre-
duciblePoly yields the next monic irreducible polynomial with the same degree as the input
polynomial. By “next” we mean “next in a natural order using the terms and coefficients.”
This will become more clear in the following examples.

This is the field with five elements.

GF5 := PF 5;

Type: Domain

Our first example irreducible polynomial, say of degree 3, must be “greater” than this.

h := monomial(1,8)$SUP(GF5)

?8

Type: SparseUnivariatePolynomial PrimeField 5

You can generate it by doing this.

nh := nextIrreduciblePoly(h)$FFPOLY(GF5)

?8 + 2

4Cf. Lidl, R. & Niederreiter, H., Finite Fields, Encycl. of Math. 20, (Addison-Wesley, 1983), p.90, Th.
3.18.

5The existence of such polynomials is proved in Lenstra, H. W. & Schoof, R. J., Primitive Normal Bases
for Finite Fields, Math. Comp. 48, 1987, pp. 217-231.
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Type: Union(SparseUnivariatePolynomial PrimeField 5,...)

Notice that this polynomial is not the same as the one createIrreduciblePoly.

createIrreduciblePoly(3)$FFPOLY(GF5)

?3+? + 1

Type: SparseUnivariatePolynomial PrimeField 5

You can step through all irreducible polynomials of degree 8 over the field with 5 elements
by repeatedly issuing this.

nh := nextIrreduciblePoly(nh)$FFPOLY(GF5)

?8 + 3

Type: Union(SparseUnivariatePolynomial PrimeField 5,...)

You could also ask for the total number of these.

numberOfIrreduciblePoly(5)$FFPOLY(GF5)

624

Type: PositiveInteger

We hope that “natural order” on polynomials is now clear: first we compare the number
of monomials of two polynomials (“more” is “greater”); then, if necessary, the degrees of
these monomials (lexicographically), and lastly their coefficients (also lexicographically, and
using the operation lookup if our field is not a prime field). Also note that we make both
polynomials monic before looking at the coefficients: multiplying either polynomial by a
nonzero constant produces the same result.

The package FiniteFieldPolynomialPackage also provides similar operations for primitive
and normal polynomials. With the exception of the number of primitive normal polynomials;
we’re not aware of any known formula for this.

numberOfPrimitivePoly(3)$FFPOLY(GF5)

20

Type: PositiveInteger
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Take these,

m := monomial(1,1)$SUP(GF5)

?

Type: SparseUnivariatePolynomial PrimeField 5

f := m**3 + 4*m**2 + m + 2

?3 + 4 ?2+? + 2

Type: SparseUnivariatePolynomial PrimeField 5

and then we have:

f1 := nextPrimitivePoly(f)$FFPOLY(GF5)

?3 + 4 ?2 + 4 ? + 2

Type: Union(SparseUnivariatePolynomial PrimeField 5,...)

What happened?

nextPrimitivePoly(f1)$FFPOLY(GF5)

?3 + 2 ?2 + 3

Type: Union(SparseUnivariatePolynomial PrimeField 5,...)

Well, for the ordering used in nextPrimitivePoly we use as first criterion a comparison of
the constant terms of the polynomials. Analogously, in nextNormalPoly we first compare
the monomials of degree 1 less than the degree of the polynomials (which is nonzero, by an
earlier remark).

f := m**3 + m**2 + 4*m + 1

?3 + ?2 + 4 ? + 1

Type: SparseUnivariatePolynomial PrimeField 5
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f1 := nextNormalPoly(f)$FFPOLY(GF5)

?3 + ?2 + 4 ? + 3

Type: Union(SparseUnivariatePolynomial PrimeField 5,...)

nextNormalPoly(f1)$FFPOLY(GF5)

?3 + 2 ?2 + 1

Type: Union(SparseUnivariatePolynomial PrimeField 5,...)

We don’t have to restrict ourselves to prime fields.

Let’s consider, say, a field with 16 elements.

GF16 := FFX(FFX(PF 2,2),2);

Type: Domain

We can apply any of the operations described above.

createIrreduciblePoly(5)$FFPOLY(GF16)

?5 +%G

Type: SparseUnivariatePolynomial

FiniteFieldExtension(FiniteFieldExtension(PrimeField 2,2),2)

Axiom also provides operations for producing random polynomials of a given degree

random(5)$FFPOLY(GF16)

?5 + (%F %G+ 1) ?4 +%F %G ?3 + (%G+%F + 1) ?2+

((%F + 1) %G+%F ) ? + 1

Type: SparseUnivariatePolynomial

FiniteFieldExtension(FiniteFieldExtension(PrimeField 2,2),2)

or with degree between two given bounds.
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random(3,9)$FFPOLY(GF16)

?3 + (%F %G+ 1) ?2 + (%G+%F + 1) ? + 1

Type: SparseUnivariatePolynomial

FiniteFieldExtension(FiniteFieldExtension(PrimeField 2,2),2)

FiniteFieldPolynomialPackage2 (abbreviation FFPOLY2) exports an operation rootOf-
IrreduciblePoly for finding one root of an irreducible polynomial f in an extension field of
the coefficient field. The degree of the extension has to be a multiple of the degree of f . It
is not checked whether f actually is irreducible.

To illustrate this operation, we fix a ground field GF

GF2 := PrimeField 2;

Type: Domain

and then an extension field.

F := FFX(GF2,12)

FiniteFieldExtension(PrimeField 2,12)

Type: Domain

We construct an irreducible polynomial over GF2.

f := createIrreduciblePoly(6)$FFPOLY(GF2)

?6+? + 1

Type: SparseUnivariatePolynomial PrimeField 2

We compute a root of f .

root := rootOfIrreduciblePoly(f)$FFPOLY2(F,GF2)

%H11 +%H8 +%H7 +%H5 +%H + 1

Type: FiniteFieldExtension(PrimeField 2,12)
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and check the result

eval(f, monomial(1,1)$SUP(F) = root)

0

Type: SparseUnivariatePolynomial FiniteFieldExtension(PrimeField 2,12)

8.12 Primary Decomposition of Ideals

Axiom provides a facility for the primary decomposition of polynomial ideals over fields of
characteristic zero. The algorithm works in essentially two steps:

1. the problem is solved for 0-dimensional ideals by “generic” projection on the last co-
ordinate

2. a “reduction process” uses localization and ideal quotients to reduce the general case
to the 0-dimensional one.

The Axiom constructor PolynomialIdeals represents ideals with coefficients in any field
and supports the basic ideal operations, including intersection, sum and quotient. Ideal-

DecompositionPackage contains the specific operations for the primary decomposition and
the computation of the radical of an ideal with polynomial coefficients in a field of charac-
teristic 0 with an effective algorithm for factoring polynomials.

The following examples illustrate the capabilities of this facility.

First consider the ideal generated by x2 + y2 − 1 (which defines a circle in the (x, y)-plane)
and the ideal generated by x2 − y2 (corresponding to the straight lines x = y and x = −y.

(n,m) : List DMP([x,y],FRAC INT)

Type: Void

m := [x**2+y**2-1]

[
x2 + y2 − 1

]
Type: List DistributedMultivariatePolynomial([x,y],Fraction Integer)

n := [x**2-y**2]
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[
x2 − y2

]
Type: List DistributedMultivariatePolynomial([x,y],Fraction Integer)

We find the equations defining the intersection of the two loci. This correspond to the sum
of the associated ideals.

id := ideal m + ideal n [
x2 − 1

2
, y2 − 1

2

]
Type: PolynomialIdeals(Fraction Integer,

DirectProduct(2,NonNegativeInteger),OrderedVariableList [x,y],

DistributedMultivariatePolynomial([x,y],Fraction Integer))

We can check if the locus contains only a finite number of points, that is, if the ideal is
zero-dimensional.

zeroDim? id

true

Type: Boolean

zeroDim?(ideal m)

false

Type: Boolean

dimension ideal m

1

Type: PositiveInteger

We can find polynomial relations among the generators (f and g are the parametric equations
of the knot).

(f,g):DMP([x,y],FRAC INT)
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Type: Void

f := x**2-1

x2 − 1

Type: DistributedMultivariatePolynomial([x,y],Fraction Integer)

g := x*(x**2-1)

x3 − x

Type: DistributedMultivariatePolynomial([x,y],Fraction Integer)

relationsIdeal [f,g]

[
−%B2 +%A3 +%A2

]
|
[
%A = x2 − 1,%B = x3 − x

]
Type: SuchThat(List Polynomial Fraction Integer, List Equation Polynomial

Fraction Integer)

We can compute the primary decomposition of an ideal.

l: List DMP([x,y,z],FRAC INT)

Type: Void

l:=[x**2+2*y**2,x*z**2-y*z,z**2-4]

[
x2 + 2 y2, x z2 − y z, z2 − 4

]
Type: List DistributedMultivariatePolynomial([x,y,z],Fraction Integer)

ld:=primaryDecomp ideal l

[[
x+

1

2
y, y2, z + 2

]
,

[
x− 1

2
y, y2, z − 2

]]
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Type: List PolynomialIdeals(Fraction Integer,

DirectProduct(3,NonNegativeInteger), OrderedVariableList [x,y,z],

DistributedMultivariatePolynomial([x,y,z],Fraction Integer))

We can intersect back.

reduce(intersect,ld)

[
x− 1

4
y z, y2, z2 − 4

]
Type: PolynomialIdeals(Fraction Integer,

DirectProduct(3,NonNegativeInteger), OrderedVariableList [x,y,z],

DistributedMultivariatePolynomial([x,y,z],Fraction Integer))

We can compute the radical of every primary component.

reduce(intersect,[radical ld.i for i in 1..2])

[
x, y, z2 − 4

]
Type: PolynomialIdeals(Fraction Integer,

DirectProduct(3,NonNegativeInteger), OrderedVariableList [x,y,z],

DistributedMultivariatePolynomial([x,y,z],Fraction Integer))

Their intersection is equal to the radical of the ideal of l.

radical ideal l

[
x, y, z2 − 4

]
Type: PolynomialIdeals(Fraction Integer,

DirectProduct(3,NonNegativeInteger), OrderedVariableList [x,y,z],

DistributedMultivariatePolynomial([x,y,z],Fraction Integer))

8.13 Computation of Galois Groups

As a sample use of Axiom’s algebraic number facilities, we compute the Galois group of the
polynomial p(x) = x5 − 5x+ 12.

p := x**5 - 5*x + 12
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x5 − 5 x+ 12

Type: Polynomial Integer

We would like to construct a polynomial f(x) such that the splitting field of p(x) is generated
by one root of f(x). First we construct a polynomial r = r(x) such that one root of r(x)
generates the field generated by two roots of the polynomial p(x). (As it will turn out, the
field generated by two roots of p(x) is, in fact, the splitting field of p(x).)

From the proof of the primitive element theorem we know that if a and b are algebraic
numbers, then the field Q(a, b) is equal to Q(a+ kb) for an appropriately chosen integer k.
In our case, we construct the minimal polynomial of ai − aj , where ai and aj are two roots
of p(x). We construct this polynomial using resultant. The main result we need is the
following: If f(x) is a polynomial with roots ai . . . am and g(x) is a polynomial with roots
bi . . . bn, then the polynomial h(x) = resultant(f(y), g(x − y), y) is a polynomial of degree
m ∗ n with roots ai + bj , i = 1 . . .m, j = 1 . . . n.

For f(x) we use the polynomial p(x). For g(x) we use the polynomial −p(−x). Thus, the
polynomial we first construct is resultant(p(y),−p(y − x), y).

q := resultant(eval(p,x,y),-eval(p,x,y-x),y)

x25 − 50 x21 − 2375 x17 + 90000 x15 − 5000 x13 + 2700000 x11 + 250000 x9+

18000000 x7 + 64000000 x5

Type: Polynomial Integer

The roots of q(x) are ai − aj , i ≤ 1, j ≤ 5. Of course, there are five pairs (i, j) with i = j, so
0 is a 5-fold root of q(x).

Let’s get rid of this factor.

q1 := exquo(q, x**5)

x20 − 50 x16 − 2375 x12 + 90000 x10 − 5000 x8 + 2700000 x6+

250000 x4 + 18000000 x2 + 64000000

Type: Union(Polynomial Integer,...)

Factor the polynomial q1.

factoredQ := factor q1(
x10 − 10 x8 − 75 x6 + 1500 x4 − 5500 x2 + 16000

)
∗(

x10 + 10 x8 + 125 x6 + 500 x4 + 2500 x2 + 4000
)
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Type: Factored Polynomial Integer

We see that q1 has two irreducible factors, each of degree 10. (The fact that the polynomial
q1 has two factors of degree 10 is enough to show that the Galois group of p(x) is the
dihedral group of order 10.6 Note that the type of factoredQ is FR POLY INT, that is,
Factored Polynomial Integer. This is a special data type for recording factorizations of
polynomials with integer coefficients.

We can access the individual factors using the operation nthFactor.

r := nthFactor(factoredQ,1)

x10 − 10 x8 − 75 x6 + 1500 x4 − 5500 x2 + 16000

Type: Polynomial Integer

Consider the polynomial r = r(x). This is the minimal polynomial of the difference of two
roots of p(x). Thus, the splitting field of p(x) contains a subfield of degree 10. We show that
this subfield is, in fact, the splitting field of p(x) by showing that p(x) factors completely
over this field.

First we create a symbolic root of the polynomial r(x). (We replaced x by b in the polynomial
r so that our symbolic root would be printed as b.)

beta:AN := rootOf(eval(r,x,b))

b

Type: AlgebraicNumber

We next tell Axiom to view p(x) as a univariate polynomial in x with algebraic number
coefficients. This is accomplished with this type declaration.

p := p::UP(x,INT)::UP(x,AN)

x5 − 5 x+ 12

Type: UnivariatePolynomial(x,AlgebraicNumber)

Factor p(x) over the field Q(β). (This computation will take some time!)

algFactors := factor(p,[beta])

6See McKay, Soicher, Computing Galois Groups over the Rationals, Journal of Number Theory 20, 273-
281 (1983). We do not assume the results of this paper, however, and we continue with the computation.
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x+


−85 b9 − 116 b8 + 780 b7 + 2640 b6 + 14895 b5−

8820 b4 − 127050 b3 − 327000 b2 − 405200 b+ 2062400


1339200


(
x+
−17 b8 + 156 b6 + 2979 b4 − 25410 b2 − 14080

66960

)
(
x+

143 b8 − 2100 b6 − 10485 b4 + 290550 b2 − 334800 b− 960800

669600

)
(
x+

143 b8 − 2100 b6 − 10485 b4 + 290550 b2 + 334800 b− 960800

669600

)
x+

85 b9 − 116 b8 − 780 b7 + 2640 b6 − 14895 b5−

8820 b4 + 127050 b3 − 327000 b2 + 405200 b+ 2062400


1339200


Type: Factored UnivariatePolynomial(x,AlgebraicNumber)

When factoring over number fields, it is important to specify the field over which the poly-
nomial is to be factored, as polynomials have different factorizations over different fields.
When you use the operation factor, the field over which the polynomial is factored is the
field generated by

1. the algebraic numbers that appear in the coefficients of the polynomial, and

2. the algebraic numbers that appear in a list passed as an optional second argument of
the operation.

In our case, the coefficients of p are all rational integers and only beta appears in the list, so
the field is simply Q(β).

It was necessary to give the list [beta] as a second argument of the operation because otherwise
the polynomial would have been factored over the field generated by its coefficients, namely
the rational numbers.

factor(p)

x5 − 5 x+ 12
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Type: Factored UnivariatePolynomial(x,AlgebraicNumber)

We have shown that the splitting field of p(x) has degree 10. Since the symmetric group of
degree 5 has only one transitive subgroup of order 10, we know that the Galois group of p(x)
must be this group, the dihedral group of order 10. Rather than stop here, we explicitly
compute the action of the Galois group on the roots of p(x).

First we assign the roots of p(x) as the values of five variables.

We can obtain an individual root by negating the constant coefficient of one of the factors
of p(x).

factor1 := nthFactor(algFactors,1)

x+

−85 b9 − 116 b8 + 780 b7 + 2640 b6 + 14895 b5−

8820 b4 − 127050 b3 − 327000 b2 − 405200 b+ 2062400


1339200

Type: UnivariatePolynomial(x,AlgebraicNumber)

root1 := -coefficient(factor1,0)

85 b9 + 116 b8 − 780 b7 − 2640 b6 − 14895 b5+

8820 b4 + 127050 b3 + 327000 b2 + 405200 b− 2062400


1339200

Type: AlgebraicNumber

We can obtain a list of all the roots in this way.

roots := [-coefficient(nthFactor(algFactors,i),0) for i in 1..5]
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

85 b9 + 116 b8 − 780 b7 − 2640 b6 − 14895 b5 + 8820 b4+

127050 b3 + 327000 b2 + 405200 b− 2062400


1339200

,

17 b8 − 156 b6 − 2979 b4 + 25410 b2 + 14080

66960
,

−143 b8 + 2100 b6 + 10485 b4 − 290550 b2 + 334800 b+ 960800

669600
,

−143 b8 + 2100 b6 + 10485 b4 − 290550 b2 − 334800 b+ 960800

669600
,

−85 b9 + 116 b8 + 780 b7 − 2640 b6 + 14895 b5 + 8820 b4−

127050 b3 + 327000 b2 − 405200 b− 2062400


1339200


Type: List AlgebraicNumber

The expression

- coefficient(nthFactor(algFactors, i), 0)

is the i-th root of p(x) and the elements of roots are the i-th roots of p(x) as i ranges from
1 to 5.

Assign the roots as the values of the variables a1, ..., a5.

(a1,a2,a3,a4,a5) := (roots.1,roots.2,roots.3,roots.4,roots.5)

−85 b9 + 116 b8 + 780 b7 − 2640 b6 + 14895 b5 + 8820 b4−

127050 b3 + 327000 b2 − 405200 b− 2062400


1339200

Type: AlgebraicNumber

Next we express the roots of r(x) as polynomials in beta. We could obtain these roots by
calling the operation factor: factor(r, [beta]) factors r(x) over Q(β). However, this is a
lengthy computation and we can obtain the roots of r(x) as differences of the roots a1, ..., a5
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of p(x). Only ten of these differences are roots of r(x) and the other ten are roots of the other
irreducible factor of q1. We can determine if a given value is a root of r(x) by evaluating r(x)
at that particular value. (Of course, the order in which factors are returned by the operation
factor is unimportant and may change with different implementations of the operation.
Therefore, we cannot predict in advance which differences are roots of r(x) and which are
not.)

Let’s look at four examples (two are roots of r(x) and two are not).

eval(r,x,a1 - a2)

0

Type: Polynomial AlgebraicNumber

eval(r,x,a1 - a3)

47905 b9 + 66920 b8 − 536100 b7 − 980400 b6 − 3345075 b5 − 5787000 b4+

75572250 b3 + 161688000 b2 − 184600000 b− 710912000


4464

Type: Polynomial AlgebraicNumber

eval(r,x,a1 - a4)

0

Type: Polynomial AlgebraicNumber

eval(r,x,a1 - a5)

405 b8 + 3450 b6 − 19875 b4 − 198000 b2 − 588000

31

Type: Polynomial AlgebraicNumber

Take one of the differences that was a root of r(x) and assign it to the variable bb.

For example, if eval(r, x, a1− a4) returned 0, you would enter this.

bb := a1 - a4
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127050 b3 + 908100 b2 + 1074800 b− 3984000


1339200

Type: AlgebraicNumber

Of course, if the difference is, in fact, equal to the root beta, you should choose another root
of r(x).

Automorphisms of the splitting field are given by mapping a generator of the field, namely
beta, to other roots of its minimal polynomial. Let’s see what happens when beta is mapped
to bb.

We compute the images of the roots a1, ..., a5 under this automorphism:

aa1 := subst(a1,beta = bb)

−143 b8 + 2100 b6 + 10485 b4 − 290550 b2 + 334800 b+ 960800

669600

Type: AlgebraicNumber

aa2 := subst(a2,beta = bb)

−85 b9 + 116 b8 + 780 b7 − 2640 b6 + 14895 b5 + 8820 b4−

127050 b3 + 327000 b2 − 405200 b− 2062400


1339200

Type: AlgebraicNumber

aa3 := subst(a3,beta = bb)

85 b9 + 116 b8 − 780 b7 − 2640 b6 − 14895 b5 + 8820 b4+

127050 b3 + 327000 b2 + 405200 b− 2062400


1339200

Type: AlgebraicNumber

aa4 := subst(a4,beta = bb)

−143 b8 + 2100 b6 + 10485 b4 − 290550 b2 − 334800 b+ 960800

669600
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Type: AlgebraicNumber

aa5 := subst(a5,beta = bb)

17 b8 − 156 b6 − 2979 b4 + 25410 b2 + 14080

66960

Type: AlgebraicNumber

Of course, the values aa1, ..., aa5 are simply a permutation of the values a1, ..., a5.

Let’s find the value of aa1 (execute as many of the following five commands as necessary).

(aa1 = a1) :: Boolean

false

Type: Boolean

(aa1 = a2) :: Boolean

false

Type: Boolean

(aa1 = a3) :: Boolean

true

Type: Boolean

(aa1 = a4) :: Boolean

false

Type: Boolean

(aa1 = a5) :: Boolean

false
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Type: Boolean

Proceeding in this fashion, you can find the values of aa2, ...aa5. You have represented the
automorphism beta− > bb as a permutation of the roots a1, ..., a5. If you wish, you can
repeat this computation for all the roots of r(x) and represent the Galois group of p(x) as a
subgroup of the symmetric group on five letters.

Here are two other problems that you may attack in a similar fashion:

1. Show that the Galois group of p(x) = x4 + 2x3 − 2x2 − 3x + 1 is the dihedral group
of order eight. (The splitting field of this polynomial is the Hilbert class field of the
quadratic field Q(

√
145).)

2. Show that the Galois group of p(x) = x6+108 has order 6 and is isomorphic to S3, the
symmetric group on three letters. (The splitting field of this polynomial is the splitting
field of x3 − 2.)

8.14 Non-Associative Algebras and Modelling Genetic
Laws

Many algebraic structures of mathematics and Axiom have a multiplication operation * that
satisfies the associativity law a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b and c. The octonions are a
well known exception. There are many other interesting non-associative structures, such as
the class of Lie algebras.7 Lie algebras can be used, for example, to analyse Lie symmetry
algebras of partial differential equations. In this section we show a different application of
non-associative algebras, the modelling of genetic laws.

The Axiom library contains several constructors for creating non-associative structures, rang-
ing from the categories Monad, NonAssociativeRng, and FramedNonAssociativeAlgebra, to
the domains AlgebraGivenByStructuralConstants and GenericNonAssociativeAlgebra.
Furthermore, the package AlgebraPackage provides operations for analysing the structure
of such algebras.8

Mendel’s genetic laws are often written in a form like

Aa×Aa =
1

4
AA+

1

2
Aa+

1

4
aa

The implementation of general algebras in Axiom allows us to use this as the definition for
multiplication in an algebra. Hence, it is possible to study questions of genetic inheritance
using Axiom. To demonstrate this more precisely, we discuss one example from a monograph
of A. Wörz-Busekros, where you can also find a general setting of this theory.9

7Two Axiom implementations of Lie algebras are LieSquareMatrix and FreeNilpotentLie.
8these aspects of the Axiom library from the paper “Computations in Algebras of Finite Rank,” by

Johannes Grabmeier and Robert Wisbauer, Technical Report, IBM Heidelberg Scientific Center, 1992.
9Springer Lectures Notes in Biomathematics 36, Berlin e.a. (1980). In particular, see example 1.3.
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We assume that there is an infinitely large random mating population. Random mating of
two gametes ai and aj gives zygotes aiaj , which produce new gametes. In classical Mendelian
segregation we have aiaj =

1
2ai +

1
2aj . In general, we have

aiaj =
n∑

k=1

γki,j ak.

The segregation rates γi,j are the structural constants of an n-dimensional algebra. This is
provided in Axiom by the constructor AlgebraGivenByStructuralConstants (abbreviation
ALGSC).

Consider two coupled autosomal loci with alleles A, a, B, and b, building four different
gametes a1 = AB, a2 = Ab, a3 = aB, and a4 = ab a1 := AB, a2 := Ab, a3 := aB, and
a4 := ab. The zygotes aiaj produce gametes ai and aj with classical Mendelian segregation.
Zygote a1a4 undergoes transition to a2a3 and vice versa with probability 0 ≤ θ ≤ 1

2 .

Define a list [(γki,j)1 ≤ k ≤ 4] of four four-by-four matrices giving the segregation rates. We
use the value 1/10 for θ.

segregationRates : List SquareMatrix(4,FRAC INT) := [matrix [ [1, 1/2, 1/2,

9/20], [1/2, 0, 1/20, 0], [1/2, 1/20, 0, 0], [9/20, 0, 0, 0] ], matrix [ [0,

1/2, 0, 1/20], [1/2, 1, 9/20, 1/2], [0, 9/20, 0, 0], [1/20, 1/2, 0, 0] ],

matrix [ [0, 0, 1/2, 1/20], [0, 0, 9/20, 0], [1/2, 9/20, 1, 1/2], [1/20, 0,

1/2, 0] ], matrix [ [0, 0, 0, 9/20], [0, 0, 1/20, 1/2], [0, 1/20, 0, 1/2],

[9/20, 1/2, 1/2, 1] ] ]




1 1
2

1
2

9
20

1
2 0 1

20 0
1
2

1
20 0 0

9
20 0 0 0

,


0 1
2 0 1

20
1
2 1 9

20
1
2

0 9
20 0 0

1
20

1
2 0 0

,


0 0 1
2

1
20

0 0 9
20 0

1
2

9
20 1 1

2
1
20 0 1

2 0

,


0 0 0 9
20

0 0 1
20

1
2

0 1
20 0 1

2
9
20

1
2

1
2 1




Type: List SquareMatrix(4,Fraction Integer)

Choose the appropriate symbols for the basis of gametes,

gametes := [’AB,’Ab,’aB,’ab]

[AB,Ab, aB, ab]

Type: List OrderedVariableList [AB,Ab,aB,ab]
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Define the algebra.

A := ALGSC(FRAC INT, 4, gametes, segregationRates)

AlgebraGivenByStructuralConstants(FractionInteger, 4,
[AB,Ab, aB, ab], [MATRIX,MATRIX,MATRIX,MATRIX])

Type: Domain

What are the probabilities for zygote a1a4 to produce the different gametes?

a := basis()$A

[AB,Ab, aB, ab]

Type: Vector AlgebraGivenByStructuralConstants(Fraction

Integer,4,[AB,Ab,aB,ab], [MATRIX,MATRIX,MATRIX,MATRIX])

a.1*a.4

9

20
ab+

1

20
aB +

1

20
Ab+

9

20
AB

Type: AlgebraGivenByStructuralConstants(Fraction Integer,4,[AB,Ab,aB,ab],

[MATRIX,MATRIX,MATRIX,MATRIX])

Elements in this algebra whose coefficients sum to one play a distinguished role. They
represent a population with the distribution of gametes reflected by the coefficients with
respect to the basis of gametes.

Random mating of different populations x and y is described by their product x ∗ y.
This product is commutative only if the gametes are not sex-dependent, as in our example.

commutative?()$A

true

Type: Boolean

In general, it is not associative.

associative?()$A
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false

Type: Boolean

Random mating within a population x is described by x ∗x. The next generation is (x ∗x) ∗
(x ∗ x).
Use decimal numbers to compare the distributions more easily.

x : ALGSC(DECIMAL, 4, gametes, segregationRates) := convert [3/10, 1/5,

1/10, 2/5]

0.4 ab+ 0.1 aB + 0.2 Ab+ 0.3 AB

Type: AlgebraGivenByStructuralConstants(DecimalExpansion,4,[AB,Ab,aB,ab],

[MATRIX,MATRIX,MATRIX,MATRIX])

To compute directly the gametic distribution in the fifth generation, we use plenaryPower.

plenaryPower(x,5)

0.36561 ab+ 0.13439 aB + 0.23439 Ab+ 0.26561 AB

Type: AlgebraGivenByStructuralConstants(DecimalExpansion,4,[AB,Ab,aB,ab],

[MATRIX,MATRIX,MATRIX,MATRIX])

We now ask two questions: Does this distribution converge to an equilibrium state? What
are the distributions that are stable?

This is an invariant of the algebra and it is used to answer the first question. The new
indeterminates describe a symbolic distribution.

q := leftRankPolynomial()$GCNAALG(FRAC INT, 4, gametes, segregationRates) ::

UP(Y, POLY FRAC INT)

Y 3 +
(
−29

20 %x4− 29
20 %x3− 29

20 %x2− 29
20 %x1

)
Y 2+

(
9
20 %x42 +

(
9
10 %x3 + 9

10 %x2 + 9
10 %x1

)
%x4+

9

20
%x32 +

(
9

10
%x2 +

9

10
%x1

)
%x3 +

9

20
%x22+

9

10
%x1 %x2 +

9

20
%x12

)


Y
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Type: UnivariatePolynomial(Y,Polynomial Fraction Integer)

Because the coefficient 9
20 has absolute value less than 1, all distributions do converge, by a

theorem of this theory.

factor(q :: POLY FRAC INT)

(Y −%x4−%x3−%x2−%x1)∗(
Y − 9

20
%x4− 9

20
%x3− 9

20
%x2− 9

20
%x1

)
Y

Type: Factored Polynomial Fraction Integer

The second question is answered by searching for idempotents in the algebra.

cI := conditionsForIdempotents()$GCNAALG(FRAC INT, 4, gametes,

segregationRates)

[
9
10 %x1 %x4 +

(
1
10 %x2 + %x1

)
%x3 + %x1 %x2 + %x12 −%x1,(

%x2 +
1

10
%x1

)
%x4 +

9

10
%x2 %x3 + %x22 + (%x1− 1) %x2,

(
%x3 +

1

10
%x1

)
%x4 + %x32 +

(
9

10
%x2 + %x1− 1

)
%x3,

%x42 +

(
%x3 + %x2 +

9

10
%x1− 1

)
%x4 +

1

10
%x2 %x3

]
Type: List Polynomial Fraction Integer

Solve these equations and look at the first solution.

gbs:= groebnerFactorize cI

[
[%x4 + %x3 + %x2 + %x1− 1,
(%x2 + %x1) %x3 + %x1 %x2 + %x12 −%x1

]
,

[1], [%x4 + %x3− 1,%x2,%x1],

[%x4 + %x2− 1,%x3,%x1], [%x4,%x3,%x2,%x1],

[%x4− 1,%x3,%x2,%x1],

[
%x4− 1

2
,%x3− 1

2
,%x2,%x1

]]
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Type: List List Polynomial Fraction Integer

gbs.1

[%x4 + %x3 + %x2 + %x1− 1,
(%x2 + %x1) %x3 + %x1 %x2 + %x12 −%x1

]
Type: List Polynomial Fraction Integer

Further analysis using the package PolynomialIdeals shows that there is a two-dimensional
variety of equilibrium states and all other solutions are contained in it.

Choose one equilibrium state by setting two indeterminates to concrete values.

sol := solve concat(gbs.1,[%x1-1/10,%x2-1/10])

[[
%x4 =

2

5
,%x3 =

2

5
,%x2 =

1

10
,%x1 =

1

10

]]
Type: List List Equation Fraction Polynomial Integer

e : A := represents reverse (map(rhs, sol.1) :: List FRAC INT)

2

5
ab+

2

5
aB +

1

10
Ab+

1

10
AB

Type: AlgebraGivenByStructuralConstants(Fraction Integer,4,[AB,Ab,aB,ab],

[MATRIX,MATRIX,MATRIX,MATRIX])

Verify the result.

e*e-e

0

Type: AlgebraGivenByStructuralConstants(Fraction Integer,4,[AB,Ab,aB,ab],

[MATRIX,MATRIX,MATRIX,MATRIX])



Chapter 9

Some Examples of Domains and
Packages

In this chapter we show examples of many of the most commonly used Axiom domains and
packages. The sections are organized by constructor names.

9.1 ApplicationProgramInterface

The ApplicationProgramInterface exposes Axiom internal functions which might be useful
for understanding, debugging, or creating tools.

The getDomains function takes the name of a category and returns a set of domains which
inherit from that category:

getDomains ’Collection

{AssociationList, Bits, CharacterClass, DataList, EqTable,

FlexibleArray, GeneralPolynomialSet, GeneralSparseTable,

GeneralTriangularSet, HashTable, IndexedBits,

IndexedFlexibleArray, IndexedList, IndexedOneDimensionalArray,

IndexedString, IndexedVector, InnerTable, KeyedAccessFile,

Library, List, ListMultiDictionary, Multiset, OneDimensionalArray,

Point, PrimitiveArray, RegularChain, RegularTriangularSet,

Result, RoutinesTable, Set, SparseTable,

SquareFreeRegularTriangularSet, Stream, String, StringTable,

Table, Vector, WuWenTsunTriangularSet}

Type: Set Symbol

This can be used to form the set-difference of two categories:

401
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difference(getDomains ’IndexedAggregate, getDomains ’Collection)

{DirectProduct, DirectProductMatrixModule, DirectProductModule,

HomogeneousDirectProduct, OrderedDirectProduct,

SplitHomogeneousDirectProduct}

Type: Set Symbol

The credits function prints a list of the people who have contributed to the development of
Axiom. This is equivalent to the )credits command.

The summary function prints a short list of useful console commands.

9.2 ArrayStack

An ArrayStack object is represented as a list ordered by last-in, first-out. It operates like a
pile of books, where the “next” book is the one on the top of the pile.

Here we create an array stack of integers from a list. Notice that the order in the list is the
order in the stack.

a:ArrayStack INT:= arrayStack [1,2,3,4,5]

[1,2,3,4,5]

We can remove the top of the stack using pop!:

pop! a

1

Notice that the use of pop! is destructive (destructive operations in Axiom usually end with
! to indicate that the underylying data structure is changed).

a

[2,3,4,5]

The extract! operation is another name for the pop! operation and has the same effect. This
operation treats the stack as a BagAggregate:

extract! a

2

and you can see that it also has destructively modified the stack:

a

[3,4,5]
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Next we push a new element on top of the stack:

push!(9,a)

9

Again, the push! operation is destructive so the stack is changed:

a

[9,3,4,5]

Another name for push! is insert!, which treats the stack as a BagAggregate:

insert!(8,a)

[8,9,3,4,5]

and it modifies the stack:

a

[8,9,3,4,5]

The inspect function returns the top of the stack without modification, viewed as a BagAg-
gregate:

inspect a

8

The empty? operation returns true only if there are no element on the stack, otherwise it
returns false:

empty? a

false

The top operation returns the top of stack without modification, viewed as a Stack:

top a

8

The depth operation returns the number of elements on the stack:

depth a

5

which is the same as the # (length) operation:

#a

5

The less? predicate will compare the stack length to an integer:
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less?(a,9)

true

The more? predicate will compare the stack length to an integer:

more?(a,9)

false

The size? operation will compare the stack length to an integer:

size?(a,#a)

true

and since the last computation must alwasy be true we try:

size?(a,9)

false

The parts function will return the stack as a list of its elements:

parts a

[8,9,3,4,5]

If we have a BagAggregate of elements we can use it to construct a stack. Notice that the
elements are pushed in reverse order:

bag([1,2,3,4,5])$ArrayStack(INT)

[5,4,3,2,1]

The empty function will construct an empty stack of a given type:

b:=empty()$(ArrayStack INT)

[]

and the empty? predicate allows us to find out if a stack is empty:

empty? b

true

The sample function returns a sample, empty stack:

sample()$ArrayStack(INT)

[]

We can copy a stack and it does not share storage so subsequent modifications of the original
stack will not affect the copy:

c:=copy a

[8,9,3,4,5]
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The eq? function is only true if the lists are the same reference, so even though c is a copy
of a, they are not the same:

eq?(a,c)

false

However, a clearly shares a reference with itself:

eq?(a,a)

true

But we can compare a and c for equality:

(a=c)@Boolean

true

and clearly a is equal to itself:

(a=a)@Boolean

true

and since a and c are equal, they are clearly NOT not-equal:

a~=c

false

We can use the any? function to see if a predicate is true for any element:

any?(x+->(x=4),a)

true

or false for every element:

any?(x+->(x=11),a)

false

We can use the every? function to check every element satisfies a predicate:

every?(x+->(x=11),a)

false

We can count the elements that are equal to an argument of this type:

count(4,a)

1

or we can count against a boolean function:
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count(x+->(x>2),a)

5

You can also map a function over every element, returning a new stack:

map(x+->x+10,a)

[18,19,13,14,15]

Notice that the orignal stack is unchanged:

a

[8,9,3,4,5]

You can use map! to map a function over every element and change the original stack since
map! is destructive:

map!(x+->x+10,a)

[18,19,13,14,15]

Notice that the orignal stack has been changed:

a

[18,19,13,14,15]

The member function can also get the element of the stack as a list:

members a

[18,19,13,14,15]

and using member? we can test if the stack holds a given element:

member?(14,a)

true

Also see Stack 9.87 on page 763, Queue 9.74 on page 706, Dequeue 9.18 on page 476 and
Heap 9.38 on page 539.

9.3 AssociationList

The AssociationList constructor provides a general structure for associative storage. This
type provides association lists in which data objects can be saved according to keys of any
type. For a given association list, specific types must be chosen for the keys and entries. You
can think of the representation of an association list as a list of records with key and entry
fields.

Association lists are a form of table and so most of the operations available for Table are also
available for AssociationList. They can also be viewed as lists and can be manipulated
accordingly.

This is a Record type with age and gender fields.
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Data := Record(monthsOld : Integer, gender : String)

Record(monthsOld: Integer,gender: String)

Type: Domain

In this expression, al is declared to be an association list whose keys are strings and whose
entries are the above records.

al : AssociationList(String,Data)

Type: Void

The table operation is used to create an empty association list.

al := table()

table()

Type: AssociationList(String,Record(monthsOld: Integer,gender: String))

You can use assignment syntax to add things to the association list.

al."bob" := [407,"male"]$Data

[monthsOld = 407, gender = "male"]

Type: Record(monthsOld: Integer,gender: String)

al."judith" := [366,"female"]$Data

[monthsOld = 366, gender = "female"]

Type: Record(monthsOld: Integer,gender: String)

al."katie" := [24,"female"]$Data

[monthsOld = 24, gender = "female"]

Type: Record(monthsOld: Integer,gender: String)
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Perhaps we should have included a species field.

al."smokie" := [200,"female"]$Data

[monthsOld = 200, gender = "female"]

Type: Record(monthsOld: Integer,gender: String)

Now look at what is in the association list. Note that the last-added (key, entry) pair is at
the beginning of the list.

al

table ("smokie" = [monthsOld = 200, gender = "female"],

"katie" = [monthsOld = 24, gender = "female"],

"judith" = [monthsOld = 366, gender = "female"],

"bob" = [monthsOld = 407, gender = "male"])

Type: AssociationList(String,Record(monthsOld: Integer,gender: String))

You can reset the entry for an existing key.

al."katie" := [23,"female"]$Data

[monthsOld = 23, gender = "female"]

Type: Record(monthsOld: Integer,gender: String)

Use delete! to destructively remove an element of the association list. Use delete to return
a copy of the association list with the element deleted. The second argument is the index of
the element to delete.

delete!(al,1)

table ("katie" = [monthsOld = 23, gender = "female"],

"judith" = [monthsOld = 366, gender = "female"],

"bob" = [monthsOld = 407, gender = "male"])

Type: AssociationList(String,Record(monthsOld: Integer,gender: String))

For more information about tables, see Table 9.92 on page 780. For more information about
lists, see List 9.54 on page 632.
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9.4 BalancedBinaryTree

BalancedBinaryTrees(S) is the domain of balanced binary trees with elements of type S at
the nodes. A binary tree is either empty or else consists of a node having a value and two
branches, each branch a binary tree. A balanced binary tree is one that is balanced with
respect its leaves. One with 2k leaves is perfectly “balanced”: the tree has minimum depth,
and the left and right branch of every interior node is identical in shape.

Balanced binary trees are useful in algebraic computation for so-called “divide-and-conquer”
algorithms. Conceptually, the data for a problem is initially placed at the root of the
tree. The original data is then split into two subproblems, one for each subtree. And so on.
Eventually, the problem is solved at the leaves of the tree. A solution to the original problem
is obtained by some mechanism that can reassemble the pieces. In fact, an implementation of
the Chinese Remainder Algorithm using balanced binary trees was first proposed by David
Y. Y. Yun at the IBM T. J. Watson Research Center in Yorktown Heights, New York, in
1978. It served as the prototype for polymorphic algorithms in Axiom.

In what follows, rather than perform a series of computations with a single expression,
the expression is reduced modulo a number of integer primes, a computation is done with
modular arithmetic for each prime, and the Chinese Remainder Algorithm is used to obtain
the answer to the original problem. We illustrate this principle with the computation of
122 = 144.

A list of moduli.

lm := [3,5,7,11]

[3, 5, 7, 11]

Type: List PositiveInteger

The expression modTree(n, lm) creates a balanced binary tree with leaf values n mod m for
each modulus m in lm.

modTree(12,lm)

[0, 2, 5, 1]

Type: List Integer

Operation modTree does this using operations on balanced binary trees. We trace its steps.
Create a balanced binary tree t of zeros with four leaves.

t := balancedBinaryTree(#lm, 0)

[[0, 0, 0], 0, [0, 0, 0]]
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Type: BalancedBinaryTree NonNegativeInteger

The leaves of the tree are set to the individual moduli.

setleaves!(t,lm)

[[3, 0, 5], 0, [7, 0, 11]]

Type: BalancedBinaryTree NonNegativeInteger

Use mapUp! to do a bottom-up traversal of t, setting each interior node to the product of
the values at the nodes of its children.

mapUp!(t, *)

1155

Type: PositiveInteger

The value at the node of every subtree is the product of the moduli of the leaves of the
subtree.

t

[[3, 15, 5], 1155, [7, 77, 11]]

Type: BalancedBinaryTree NonNegativeInteger

Operation mapDown!(t,a,fn) replaces the value v at each node of t by fn(a,v).

mapDown!(t,12, rem)

[[0, 12, 2], 12, [5, 12, 1]]

Type: BalancedBinaryTree NonNegativeInteger

The operation leaves returns the leaves of the resulting tree. In this case, it returns the list
of 12 mod m for each modulus m.

leaves %

[0, 2, 5, 1]
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Type: List NonNegativeInteger

Compute the square of the images of 12 modulo each m.

squares := [x**2 rem m for x in % for m in lm]

[0, 4, 4, 1]

Type: List NonNegativeInteger

Call the Chinese Remainder Algorithm to get the answer for 122.

chineseRemainder(%,lm)

144

Type: PositiveInteger

9.5 BasicOperator

A basic operator is an object that can be symbolically applied to a list of arguments from a
set, the result being a kernel over that set or an expression. In addition to this section, please
see Expression 9.25 on page 493 and Kernel 9.44 on page 562 for additional information
and examples.

You create an object of type BasicOperator by using the operator operation. This first
form of this operation has one argument and it must be a symbol. The symbol should be
quoted in case the name has been used as an identifier to which a value has been assigned.

A frequent application of BasicOperator is the creation of an operator to represent the
unknown function when solving a differential equation.

Let y be the unknown function in terms of x.

y := operator ’y

y

Type: BasicOperator

This is how you enter the equation y’’ + y’ + y = 0.

deq := D(y x, x, 2) + D(y x, x) + y x = 0
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y,, (x) + y, (x) + y (x) = 0

Type: Equation Expression Integer

To solve the above equation, enter this.

solve(deq, y, x)

[
particular = 0, basis =

[
cos

(
x
√
3

2

)
e(−

x
2 ), e(−

x
2 ) sin

(
x
√
3

2

)]]

Type: Union(Record(particular: Expression Integer, basis: List Expression

Integer),...)

See section 8.10 on page 348 for this kind of use of BasicOperator.

Use the single argument form of operator (as above) when you intend to use the operator
to create functional expressions with an arbitrary number of arguments

Nary means an arbitrary number of arguments can be used in the functional expressions.

nary? y

true

Type: Boolean

unary? y

false

Type: Boolean

Use the two-argument form when you want to restrict the number of arguments in the
functional expressions created with the operator.

This operator can only be used to create functional expressions with one argument.

opOne := operator(’opOne, 1)

opOne

Type: BasicOperator
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nary? opOne

false

Type: Boolean

unary? opOne

true

Type: Boolean

Use arity to learn the number of arguments that can be used. It returns "false" if the
operator is nary.

arity opOne

1

Type: Union(NonNegativeInteger,...)

Use name to learn the name of an operator.

name opOne

opOne

Type: Symbol

Use is? to learn if an operator has a particular name.

is?(opOne, ’z2)

false

Type: Boolean

You can also use a string as the name to be tested against.

is?(opOne, "opOne")

true
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Type: Boolean

You can attached named properties to an operator. These are rarely used at the top-level of
the Axiom interactive environment but are used with Axiom library source code.

By default, an operator has no properties.

properties y

table()

Type: AssociationList(String,None)

The interface for setting and getting properties is somewhat awkward because the property
values are stored as values of type None.

Attach a property by using setProperty.

setProperty(y, "use", "unknown function" :: None )

y

Type: BasicOperator

properties y

table ("use" = NONE)

Type: AssociationList(String,None)

We know the property value has type String.

property(y, "use") :: None pretend String

"unknown function"

Type: String

Use deleteProperty! to destructively remove a property.

deleteProperty!(y, "use")

y
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Type: BasicOperator

properties y

table()

Type: AssociationList(String,None)

9.6 BinaryExpansion

All rational numbers have repeating binary expansions. Operations to access the individual
bits of a binary expansion can be obtained by converting the value to RadixExpansion(2).
More examples of expansions are available in DecimalExpansion 9.17 on page 475,
HexadecimalExpansion 9.39 on page 541, and RadixExpansion 9.75 on page 708.

The expansion (of type BinaryExpansion) of a rational number is returned by the binary
operation.

r := binary(22/7)

11.001

Type: BinaryExpansion

Arithmetic is exact.

r + binary(6/7)

100

Type: BinaryExpansion

The period of the expansion can be short or long . . .

[binary(1/i) for i in 102..106]

[
0.000000101, 0.000000100111110001000101100101111001110010010101001,

0.000000100111011, 0.000000100111,

0.00000010011010100100001110011111011001010110111100011
]
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Type: List BinaryExpansion

or very long.

binary(1/1007)

0.000000000100000100010100100101111000001111110000101111110010110001111101
000100111001001100110001100100101010111101101001100000000110000110011110
111000110100010111101001000111101100001010111011100111010101110011001010
010111000000011100011110010000001001001001101110010101001110100011011101
101011100010010000011001011011000000101100101111100010100000101010101101
011000001101101110100101011111110101110101001100100001010011011000100110
001000100001000011000111010011110001

Type: BinaryExpansion

These numbers are bona fide algebraic objects.

p := binary(1/4)*x**2 + binary(2/3)*x + binary(4/9)

0.01 x2 + 0.10 x+ 0.011100

Type: Polynomial BinaryExpansion

q := D(p, x)

0.1 x+ 0.10

Type: Polynomial BinaryExpansion

g := gcd(p, q)

x+ 1.01

Type: Polynomial BinaryExpansion
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9.7 BinarySearchTree

BinarySearchTree(R) is the domain of binary trees with elements of type R, ordered across
the nodes of the tree. A non-empty binary search tree has a value of type R, and right and
left binary search subtrees. If a subtree is empty, it is displayed as a period (“.”).

Define a list of values to be placed across the tree. The resulting tree has 8 at the root; all
other elements are in the left subtree.

lv := [8,3,5,4,6,2,1,5,7]

[8, 3, 5, 4, 6, 2, 1, 5, 7]

Type: List PositiveInteger

A convenient way to create a binary search tree is to apply the operation binarySearchTree

to a list of elements.

t := binarySearchTree lv

[[[1, 2, .], 3, [4, 5, [5, 6, 7]]], 8, .]

Type: BinarySearchTree PositiveInteger

Another approach is to first create an empty binary search tree of integers.

emptybst := empty()$BSTREE(INT)

[ ]

Type: BinarySearchTree Integer

Insert the value 8. This establishes 8 as the root of the binary search tree. Values inserted
later that are less than 8 get stored in the left subtree, others in the right subtree.

t1 := insert!(8,emptybst)

8

Type: BinarySearchTree Integer

Insert the value 3. This number becomes the root of the left subtree of t1. For optimal
retrieval, it is thus important to insert the middle elements first.
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insert!(3,t1)

[3, 8, .]

Type: BinarySearchTree Integer

We go back to the original tree t. The leaves of the binary search tree are those which have
empty left and right subtrees.

leaves t

[1, 4, 5, 7]

Type: List PositiveInteger

The operation split(k,t) returns a containing the two subtrees: one with all elements
“less” than k, another with elements “greater” than k.

split(3,t)

[less = [1, 2, .], greater = [[., 3, [4, 5, [5, 6, 7]]], 8, .]]

Type: Record(less: BinarySearchTree PositiveInteger,greater:

BinarySearchTree PositiveInteger)

Define insertRoot to insert new elements by creating a new node.

insertRoot: (INT,BSTREE INT) -> BSTREE INT

Type: Void

The new node puts the inserted value between its “less” tree and “greater” tree.

insertRoot(x, t) ==

a := split(x, t)

node(a.less, x, a.greater)

Function buildFromRoot builds a binary search tree from a list of elements ls and the empty
tree emptybst.

buildFromRoot ls == reduce(insertRoot,ls,emptybst)
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Type: Void

Apply this to the reverse of the list lv.

rt := buildFromRoot reverse lv

[[[1, 2, .], 3, [4, 5, [5, 6, 7]]], 8, .]

Type: BinarySearchTree Integer

Have Axiom check that these are equal.

(t = rt)@Boolean

true

Type: Boolean

9.8 CardinalNumber

The CardinalNumber domain can be used for values indicating the cardinality of sets, both
finite and infinite. For example, the dimension operation in the category VectorSpace

returns a cardinal number.

The non-negative integers have a natural construction as cardinals

0 = #{ }, 1 = {0}, 2 = {0, 1}, ..., n = {i | 0 <= i < n}.

The fact that 0 acts as a zero for the multiplication of cardinals is equivalent to the axiom
of choice.

Cardinal numbers can be created by conversion from non-negative integers.

c0 := 0 :: CardinalNumber

0

Type: CardinalNumber

c1 := 1 :: CardinalNumber

1
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Type: CardinalNumber

c2 := 2 :: CardinalNumber

2

Type: CardinalNumber

c3 := 3 :: CardinalNumber

3

Type: CardinalNumber

They can also be obtained as the named cardinal Aleph(n).

A0 := Aleph 0

Aleph (0)

Type: CardinalNumber

A1 := Aleph 1

Aleph (1)

Type: CardinalNumber

The finite? operation tests whether a value is a finite cardinal, that is, a non-negative
integer.

finite? c2

true

Type: Boolean

finite? A0

false
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Type: Boolean

Similarly, the countable? operation determines whether a value is a countable cardinal,
that is, finite or Aleph(0).

countable? c2

true

Type: Boolean

countable? A0

true

Type: Boolean

countable? A1

false

Type: Boolean

Arithmetic operations are defined on cardinal numbers as follows: If x = #X and y = #Y

then

x+ y = #(X+ Y) cardinalityofthedisjointunion
x− y = #(X− Y) cardinalityoftherelativecomplement
x ∗ y = #(X ∗ Y) cardinalityoftheCartesianproduct
x ∗ ∗y = #(X ∗ ∗Y) cardinalityofthesetofmapsfromYtoX

Here are some arithmetic examples.

[c2 + c2, c2 + A1]

[4, Aleph (1)]

Type: List CardinalNumber

[c0*c2, c1*c2, c2*c2, c0*A1, c1*A1, c2*A1, A0*A1]

[0, 2, 4, 0, Aleph (1), Aleph (1), Aleph (1)]
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Type: List CardinalNumber

[c2**c0, c2**c1, c2**c2, A1**c0, A1**c1, A1**c2]

[1, 2, 4, 1, Aleph (1), Aleph (1)]

Type: List CardinalNumber

Subtraction is a partial operation: it is not defined when subtracting a larger cardinal from
a smaller one, nor when subtracting two equal infinite cardinals.

[c2-c1, c2-c2, c2-c3, A1-c2, A1-A0, A1-A1]

[1, 0, "failed", Aleph (1), Aleph (1), "failed"]

Type: List Union(CardinalNumber,"failed")

The generalized continuum hypothesis asserts that

2**Aleph i = Aleph(i+1)

and is independent of the axioms of set theory.1

The CardinalNumber domain provides an operation to assert whether the hypothesis is to
be assumed.

generalizedContinuumHypothesisAssumed true

When the generalized continuum hypothesis is assumed, exponentiation to a transfinite
power is allowed.

[c0**A0, c1**A0, c2**A0, A0**A0, A0**A1, A1**A0, A1**A1]

[0, 1, Aleph (1), Aleph (1), Aleph (2), Aleph (1), Aleph (2)]

Type: List CardinalNumber

Three commonly encountered cardinal numbers are

a = #Z countableinfinity
c = #R thecontinuum
f = #{g|g : [0, 1]− > R}
In this domain, these values are obtained under the generalized continuum hypothesis in this
way.

1Goedel, The consistency of the continuum hypothesis, Ann. Math. Studies, Princeton Univ. Press,
1940.
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a := Aleph 0

Aleph (0)

Type: CardinalNumber

c := 2**a

Aleph (1)

Type: CardinalNumber

f := 2**c

Aleph (2)

Type: CardinalNumber

9.9 CartesianTensor

CartesianTensor(i0,dim,R) provides Cartesian tensors with components belonging to a
commutative ring R. Tensors can be described as a generalization of vectors and matrices.
This gives a concise tensor algebra for multilinear objects supported by the CartesianTensor
domain. You can form the inner or outer product of any two tensors and you can add or
subtract tensors with the same number of components. Additionally, various forms of traces
and transpositions are useful.

The CartesianTensor constructor allows you to specify the minimum index for subscripting.
In what follows we discuss in detail how to manipulate tensors.

Here we construct the domain of Cartesian tensors of dimension 2 over the integers, with
indices starting at 1.

CT := CARTEN(i0 := 1, 2, Integer)

CartesianTensor(1, 2, Integer)

Type: Domain
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Forming tensors

Scalars can be converted to tensors of rank zero.

t0: CT := 8

8

Type: CartesianTensor(1,2,Integer)

rank t0

0

Type: NonNegativeInteger

Vectors (mathematical direct products, rather than one dimensional array structures) can
be converted to tensors of rank one.

v: DirectProduct(2, Integer) := directProduct [3,4]

[3, 4]

Type: DirectProduct(2,Integer)

Tv: CT := v

[3, 4]

Type: CartesianTensor(1,2,Integer)

Matrices can be converted to tensors of rank two.

m: SquareMatrix(2, Integer) := matrix [ [1,2],[4,5] ]

[
1 2
4 5

]
Type: SquareMatrix(2,Integer)

Tm: CT := m
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1 2
4 5

]
Type: CartesianTensor(1,2,Integer)

n: SquareMatrix(2, Integer) := matrix [ [2,3],[0,1] ]

[
2 3
0 1

]
Type: SquareMatrix(2,Integer)

Tn: CT := n [
2 3
0 1

]
Type: CartesianTensor(1,2,Integer)

In general, a tensor of rank k can be formed by making a list of rank k-1 tensors or,
alternatively, a k-deep nested list of lists.

t1: CT := [2, 3]

[2, 3]

Type: CartesianTensor(1,2,Integer)

rank t1

1

Type: PositiveInteger

t2: CT := [t1, t1]

[
2 3
2 3

]
Type: CartesianTensor(1,2,Integer)
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t3: CT := [t2, t2]

[[
2 3
2 3

]
,

[
2 3
2 3

]]
Type: CartesianTensor(1,2,Integer)

tt: CT := [t3, t3]; tt := [tt, tt]



[

2 3
2 3

] [
2 3
2 3

]
[

2 3
2 3

] [
2 3
2 3

]
,

[

2 3
2 3

] [
2 3
2 3

]
[

2 3
2 3

] [
2 3
2 3

]



Type: CartesianTensor(1,2,Integer)

rank tt

5

Type: PositiveInteger

Multiplication

Given two tensors of rank k1 and k2, the outer product forms a new tensor of rank k1+k2.
Here

Tmn(i, j, k, l) = Tm(i, j) Tn(k, l)

Tmn := product(Tm, Tn)


[

2 3
0 1

] [
4 6
0 2

]
[

8 12
0 4

] [
10 15
0 5

]


Type: CartesianTensor(1,2,Integer)

The inner product (contract) forms a tensor of rank k1+k2-2. This product generalizes the
vector dot product and matrix-vector product by summing component products along two
indices.
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Here we sum along the second index of Tm and the first index of Tv. Here

Tmv =

dim∑
j=1

Tm(i, j) Tv(j)

Tmv := contract(Tm,2,Tv,1)

[11, 32]

Type: CartesianTensor(1,2,Integer)

The multiplication operator “*” is scalar multiplication or an inner product depending on
the ranks of the arguments.

If either argument is rank zero it is treated as scalar multiplication. Otherwise, a*b is the
inner product summing the last index of a with the first index of b.

Tm*Tv

[11, 32]

Type: CartesianTensor(1,2,Integer)

This definition is consistent with the inner product on matrices and vectors.

Tmv = m * v

[11, 32] = [11, 32]

Type: Equation CartesianTensor(1,2,Integer)

Selecting Components

For tensors of low rank (that is, four or less), components can be selected by applying the
tensor to its indices.

t0()

8

Type: PositiveInteger
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t1(1+1)

3

Type: PositiveInteger

t2(2,1)

2

Type: PositiveInteger

t3(2,1,2)

3

Type: PositiveInteger

Tmn(2,1,2,1)

0

Type: NonNegativeInteger

A general indexing mechanism is provided for a list of indices.

t0[]

8

Type: PositiveInteger

t1[2]

3

Type: PositiveInteger

t2[2,1]
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2

Type: PositiveInteger

The general mechanism works for tensors of arbitrary rank, but is somewhat less efficient
since the intermediate index list must be created.

t3[2,1,2]

3

Type: PositiveInteger

Tmn[2,1,2,1]

0

Type: NonNegativeInteger

Contraction

A “contraction” between two tensors is an inner product, as we have seen above. You can
also contract a pair of indices of a single tensor. This corresponds to a “trace” in linear
algebra. The expression contract(t,k1,k2) forms a new tensor by summing the diagonal
given by indices in position k1 and k2.

This is the tensor given by

xTmn =
dim∑
k=1

Tmn(k, k, i, j)

cTmn := contract(Tmn,1,2) [
12 18
0 6

]
Type: CartesianTensor(1,2,Integer)

Since Tmn is the outer product of matrix m and matrix n, the above is equivalent to this.

trace(m) * n [
12 18
0 6

]
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Type: SquareMatrix(2,Integer)

In this and the next few examples, we show all possible contractions of Tmn and their matrix
algebra equivalents.

contract(Tmn,1,2) = trace(m) * n[
12 18
0 6

]
=

[
12 18
0 6

]
Type: Equation CartesianTensor(1,2,Integer)

contract(Tmn,1,3) = transpose(m) * n[
2 7
4 11

]
=

[
2 7
4 11

]
Type: Equation CartesianTensor(1,2,Integer)

contract(Tmn,1,4) = transpose(m) * transpose(n)[
14 4
19 5

]
=

[
14 4
19 5

]
Type: Equation CartesianTensor(1,2,Integer)

contract(Tmn,2,3) = m * n [
2 5
8 17

]
=

[
2 5
8 17

]
Type: Equation CartesianTensor(1,2,Integer)

contract(Tmn,2,4) = m * transpose(n)[
8 2
23 5

]
=

[
8 2
23 5

]
Type: Equation CartesianTensor(1,2,Integer)

contract(Tmn,3,4) = trace(n) * m[
3 6
12 15

]
=

[
3 6
12 15

]
Type: Equation CartesianTensor(1,2,Integer)
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Transpositions

You can exchange any desired pair of indices using the transpose operation.

Here the indices in positions one and three are exchanged, that is,

tTmn(i, j, k, l) = Tmn(k, j, i, l).

tTmn := transpose(Tmn,1,3)
[

2 3
8 12

] [
4 6
10 15

]
[

0 1
0 4

] [
0 2
0 5

]


Type: CartesianTensor(1,2,Integer)

If no indices are specified, the first and last index are exchanged.

transpose Tmn 
[

2 8
0 0

] [
4 10
0 0

]
[

3 12
1 4

] [
6 15
2 5

]


Type: CartesianTensor(1,2,Integer)

This is consistent with the matrix transpose.

transpose Tm = transpose m [
1 4
2 5

]
=

[
1 4
2 5

]
Type: Equation CartesianTensor(1,2,Integer)

If a more complicated reordering of the indices is required, then the reindex operation can
be used. This operation allows the indices to be arbitrarily permuted.

This defines rTmn(i, j, k, l) = Tmn(i, l, j, k).

rTmn := reindex(Tmn, [1,4,2,3])
[

2 0
4 0

] [
3 1
6 2

]
[

8 0
10 0

] [
12 4
15 5

]


Type: CartesianTensor(1,2,Integer)
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Arithmetic

Tensors of equal rank can be added or subtracted so arithmetic expressions can be used to
produce new tensors.

tt := transpose(Tm)*Tn - Tn*transpose(Tm)

[
−6 −16
2 6

]
Type: CartesianTensor(1,2,Integer)

Tv*(tt+Tn)

[−4,−11]

Type: CartesianTensor(1,2,Integer)

reindex(product(Tn,Tn),[4,3,2,1])+3*Tn*product(Tm,Tm)


[

46 84
174 212

] [
57 114
228 285

]
[

18 24
57 63

] [
17 30
63 76

]


Type: CartesianTensor(1,2,Integer)

Specific Tensors

Two specific tensors have properties which depend only on the dimension.

The Kronecker delta satisfies

+-

| 1 if i = j

delta(i,j) = |

| 0 if i ^= j

+-

delta: CT := kroneckerDelta() [
1 0
0 1

]
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Type: CartesianTensor(1,2,Integer)

This can be used to reindex via contraction.

contract(Tmn, 2, delta, 1) = reindex(Tmn, [1,3,4,2])
[

2 4
3 6

] [
0 0
1 2

]
[

8 10
12 15

] [
0 0
4 5

]
 =


[

2 4
3 6

] [
0 0
1 2

]
[

8 10
12 15

] [
0 0
4 5

]


Type: Equation CartesianTensor(1,2,Integer)

The Levi Civita symbol determines the sign of a permutation of indices.

epsilon:CT := leviCivitaSymbol() [
0 1
−1 0

]
Type: CartesianTensor(1,2,Integer)

Here we have:

epsilon(i1,...,idim)

= +1 if i1,...,idim is an even permutation of i0,...,i0+dim-1

= -1 if i1,...,idim is an odd permutation of i0,...,i0+dim-1

= 0 if i1,...,idim is not a permutation of i0,...,i0+dim-1

This property can be used to form determinants.

contract(epsilon*Tm*epsilon, 1,2) = 2 * determinant m

−6 = −6

Type: Equation CartesianTensor(1,2,Integer)

Properties of the CartesianTensor domain

GradedModule(R,E) denotes “E-graded R-module”, that is, a collection of R-modules indexed
by an abelian monoid E. An element g of G[s] for some specific s in E is said to be an element
of G with degree s. Sums are defined in each module G[s] so two elements of G can be
added if they have the same degree. Morphisms can be defined and composed by degree to
give the mathematical category of graded modules.

GradedAlgebra(R,E) denotes “E-graded R-algebra.” A graded algebra is a graded module
together with a degree preserving R-bilinear map, called the product.
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degree(product(a,b)) = degree(a) + degree(b)

product(r*a,b) = product(a,r*b) = r*product(a,b)

product(a1+a2,b) = product(a1,b) + product(a2,b)

product(a,b1+b2) = product(a,b1) + product(a,b2)

product(a,product(b,c)) = product(product(a,b),c)

The domain CartesianTensor(i0, dim, R) belongs to the category GradedAlgebra(R,

NonNegativeInteger). The non-negative integer degree is the tensor rank and the graded
algebra product is the tensor outer product. The graded module addition captures the
notion that only tensors of equal rank can be added.

If V is a vector space of dimension dim over R, then the tensor module T[k](V) is defined as

T[0](V) = R

T[k](V) = T[k-1](V) * V

where * denotes the R-module tensor product. CartesianTensor(i0,dim,R) is the graded
algebra in which the degree k module is T[k](V).

Tensor Calculus

It should be noted here that often tensors are used in the context of tensor-valued manifold
maps. This leads to the notion of covariant and contravariant bases with tensor component
functions transforming in specific ways under a change of coordinates on the manifold. This
is no more directly supported by the CartesianTensor domain than it is by the Vector

domain. However, it is possible to have the components implicitly represent component
maps by choosing a polynomial or expression type for the components. In this case, it is up
to the user to satisfy any constraints which arise on the basis of this interpretation.

9.10 Character

The members of the domain Character are values representing letters, numerals and other
text elements. For more information on related topics, see CharacterClass 9.11 on page 437
and String 9.89 on page 768.

Characters can be obtained using String notation.

chars := [char "a", char "A", char "X", char "8", char "+"]

[a,A,X, 8,+]

Type: List Character

Certain characters are available by name. This is the blank character.
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space()

Type: Character

This is the quote that is used in strings.

quote()

"

Type: Character

This is the escape character that allows quotes and other characters within strings.

escape()

Type: Character

Characters are represented as integers in a machine-dependent way. The integer value can
be obtained using the ord operation. It is always true that char(ord c) = c and ord(char

i) = i, provided that i is in the range 0..size()$Character-1.

[ord c for c in chars]

[97, 65, 88, 56, 43]

Type: List Integer

The lowerCase operation converts an upper case letter to the corresponding lower case
letter. If the argument is not an upper case letter, then it is returned unchanged.

[upperCase c for c in chars]

[A,A,X, 8,+]

Type: List Character

Likewise, the upperCase operation converts lower case letters to upper case.



436 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

[lowerCase c for c in chars]

[a, a, x, 8,+]

Type: List Character

A number of tests are available to determine whether characters belong to certain families.

[alphabetic? c for c in chars]

[true, true, true, false, false]

Type: List Boolean

[upperCase? c for c in chars]

[false, true, true, false, false]

Type: List Boolean

[lowerCase? c for c in chars]

[true, false, false, false, false]

Type: List Boolean

[digit? c for c in chars]

[false, false, false, true, false]

Type: List Boolean

[hexDigit? c for c in chars]

[true, true, false, true, false]

Type: List Boolean

[alphanumeric? c for c in chars]

[true, true, true, true, false]

Type: List Boolean
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9.11 CharacterClass

The CharacterClass domain allows classes of characters to be defined and manipulated
efficiently.

Character classes can be created by giving either a string or a list of characters.

cl1 := charClass [char "a", char "e", char "i", char "o", char "u", char

"y"]

"aeiouy"

Type: CharacterClass

cl2 := charClass "bcdfghjklmnpqrstvwxyz"

"bcdfghjklmnpqrstvwxyz"

Type: CharacterClass

A number of character classes are predefined for convenience.

digit()

"0123456789"

Type: CharacterClass

hexDigit()

"0123456789ABCDEFabcdef"

Type: CharacterClass

upperCase()

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

Type: CharacterClass

lowerCase()
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"abcdefghijklmnopqrstuvwxyz"

Type: CharacterClass

alphabetic()

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

Type: CharacterClass

alphanumeric()

"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

Type: CharacterClass

You can quickly test whether a character belongs to a class.

member?(char "a", cl1)

true

Type: Boolean

member?(char "a", cl2)

false

Type: Boolean

Classes have the usual set operations because the CharacterClass domain belongs to the
category FiniteSetAggregate(Character).

intersect(cl1, cl2)

"y"

Type: CharacterClass

union(cl1,cl2)
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"abcdefghijklmnopqrstuvwxyz"

Type: CharacterClass

difference(cl1,cl2)

"aeiou"

Type: CharacterClass

intersect(complement(cl1),cl2)

"bcdfghjklmnpqrstvwxz"

Type: CharacterClass

You can modify character classes by adding or removing characters.

insert!(char "a", cl2)

"abcdfghjklmnpqrstvwxyz"

Type: CharacterClass

remove!(char "b", cl2)

"acdfghjklmnpqrstvwxyz"

Type: CharacterClass

For more information on related topics, see Character 9.10 on page 434 and String 9.89 on
page 768.

9.12 CliffordAlgebra

CliffordAlgebra(n,K,Q) defines a vector space of dimension 2n over the field K with a
given quadratic form Q. If {e1, . . . , en} is a basis for Kn then
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{ 1,

e(i) 1 <= i <= n,

e(i1)*e(i2) 1 <= i1 < i2 <=n,

...,

e(1)*e(2)*...*e(n) }

is a basis for the Clifford algebra. The algebra is defined by the relations

e(i)*e(i) = Q(e(i))

e(i)*e(j) = -e(j)*e(i), i ^= j

Examples of Clifford Algebras are gaussians (complex numbers), quaternions, exterior alge-
bras and spin algebras.

The Complex Numbers as a Clifford Algebra

This is the field over which we will work, rational functions with integer coefficients.

K := Fraction Polynomial Integer

Fraction Polynomial Integer

Type: Domain

We use this matrix for the quadratic form.

m := matrix [ [-1] ]

[
−1

]
Type: Matrix Integer

We get complex arithmetic by using this domain.

C := CliffordAlgebra(1, K, quadraticForm m)

CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)

Type: Domain

Here is i, the usual square root of -1.

i: C := e(1)
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e1

Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)

Here are some examples of the arithmetic.

x := a + b * i

a+ b e1

Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)

y := c + d * i

c+ d e1

Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)

See Complex 9.13 on page 447 for examples of Axiom’s constructor implementing complex
numbers.

x * y

−b d+ a c+ (a d+ b c) e1

Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)

The Quaternion Numbers as a Clifford Algebra

This is the field over which we will work, rational functions with integer coefficients.

K := Fraction Polynomial Integer

Fraction Polynomial Integer

Type: Domain

We use this matrix for the quadratic form.

m := matrix [ [-1,0],[0,-1] ]
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−1 0
0 −1

]
Type: Matrix Integer

The resulting domain is the quaternions.

H := CliffordAlgebra(2, K, quadraticForm m)

CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

Type: Domain

We use Hamilton’s notation for i,j,k.

i: H := e(1)

e1

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

j: H := e(2)

e2

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

k: H := i * j

e1 e2

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

x := a + b * i + c * j + d * k

a+ b e1 + c e2 + d e1 e2

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

y := e + f * i + g * j + h * k
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e+ f e1 + g e2 + h e1 e2

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

x + y

e+ a+ (f + b) e1 + (g + c) e2 + (h+ d) e1 e2

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

x * y

−d h− c g − b f + a e+ (c h− d g + a f + b e) e1+

(−b h+ a g + d f + c e) e2 + (a h+ b g − c f + d e) e1 e2

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

See Quaternion 9.73 on page 703 for examples of Axiom’s constructor implementing quater-
nions.

y * x

−d h− c g − b f + a e+ (−c h+ d g + a f + b e) e1+

(b h+ a g − d f + c e) e2 + (a h− b g + c f + d e) e1 e2

Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)

The Exterior Algebra on a Three Space

This is the field over which we will work, rational functions with integer coefficients.

K := Fraction Polynomial Integer

Fraction Polynomial Integer

Type: Domain

If we chose the three by three zero quadratic form, we obtain the exterior algebra on
e(1),e(2),e(3).
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Ext := CliffordAlgebra(3, K, quadraticForm 0)

CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

Type: Domain

This is a three dimensional vector algebra. We define i, j, k as the unit vectors.

i: Ext := e(1)

e1

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

j: Ext := e(2)

e2

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

k: Ext := e(3)

e3

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

Now it is possible to do arithmetic.

x := x1*i + x2*j + x3*k

x1 e1 + x2 e2 + x3 e3

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

y := y1*i + y2*j + y3*k

y1 e1 + y2 e2 + y3 e3

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)
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x + y

(y1 + x1) e1 + (y2 + x2) e2 + (y3 + x3) e3

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

x * y + y * x

0

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

On an n space, a grade p form has a dual n-p form. In particular, in three space the dual of
a grade two element identifies e1*e2->e3, e2*e3->e1, e3*e1->e2.

dual2 a == coefficient(a,[2,3]) * i + coefficient(a,[3,1]) * j +

coefficient(a,[1,2]) * k

Type: Void

The vector cross product is then given by this.

dual2(x*y)

Compiling function dual2 with type CliffordAlgebra(3,Fraction

Polynomial Integer,MATRIX) -> CliffordAlgebra(3,Fraction

Polynomial Integer,MATRIX)

(x2 y3− x3 y2) e1 + (−x1 y3 + x3 y1) e2 + (x1 y2− x2 y1) e3

Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)

The Dirac Spin Algebra

In this section we will work over the field of rational numbers.

K := Fraction Integer

Fraction Integer
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Type: Domain

We define the quadratic form to be the Minkowski space-time metric.

g := matrix [ [1,0,0,0], [0,-1,0,0], [0,0,-1,0], [0,0,0,-1] ]


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


Type: Matrix Integer

We obtain the Dirac spin algebra used in Relativistic Quantum Field Theory.

D := CliffordAlgebra(4,K, quadraticForm g)

CliffordAlgebra(4,Fraction Integer,MATRIX)

Type: Domain

The usual notation for the basis is γ with a superscript. For Axiom input we will use gam(i):

gam := [e(i)$D for i in 1..4]

[e1, e2, e3, e4]

Type: List CliffordAlgebra(4,Fraction Integer,MATRIX)

There are various contraction identities of the form

g(l,t)*gam(l)*gam(m)*gam(n)*gam(r)*gam(s)*gam(t) =

2*(gam(s)gam(m)gam(n)gam(r) + gam(r)*gam(n)*gam(m)*gam(s))

where a sum over l and t is implied.

Verify this identity for particular values of m,n,r,s.

m := 1; n:= 2; r := 3; s := 4;

Type: PositiveInteger
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lhs := reduce(+, [reduce(+, [

g(l,t)*gam(l)*gam(m)*gam(n)*gam(r)*gam(s)*gam(t) for l in 1..4]) for t in

1..4])

−4 e1 e2 e3 e4

Type: CliffordAlgebra(4,Fraction Integer,MATRIX)

rhs := 2*(gam s * gam m*gam n*gam r + gam r*gam n*gam m*gam s)

−4 e1 e2 e3 e4

Type: CliffordAlgebra(4,Fraction Integer,MATRIX)

9.13 Complex

The Complex constructor implements complex objects over a commutative ring R. Typically,
the ring R is Integer, Fraction Integer, Float or DoubleFloat. R can also be a symbolic
type, like Polynomial Integer. For more information about the numerical and graphical
aspects of complex numbers, see section 8.1 on page 289.

Complex objects are created by the complex operation.

a := complex(4/3,5/2)

4

3
+

5

2
i

Type: Complex Fraction Integer

b := complex(4/3,-5/2)

4

3
− 5

2
i

Type: Complex Fraction Integer

The standard arithmetic operations are available.

a + b

8

3



448 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: Complex Fraction Integer

a - b

5 i

Type: Complex Fraction Integer

a * b

289

36

Type: Complex Fraction Integer

If R is a field, you can also divide the complex objects.

a / b

−161

289
+

240

289
i

Type: Complex Fraction Integer

Use a conversion (see section 2.7 on page 82) to view the last object as a fraction of complex
integers.

% :: Fraction Complex Integer

−15 + 8 i

15 + 8 i

Type: Fraction Complex Integer

The predefined macro %i is defined to be complex(0,1).

3.4 + 6.7 * %i

3.4 + 6.7 i

Type: Complex Float

You can also compute the conjugate and norm of a complex number.
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conjugate a

4

3
− 5

2
i

Type: Complex Fraction Integer

norm a

289

36

Type: Fraction Integer

The real and imag operations are provided to extract the real and imaginary parts, respec-
tively.

real a

4

3

Type: Fraction Integer

imag a

5

2

Type: Fraction Integer

The domain Complex Integer is also called the Gaussian integers. If R is the integers (or,
more generally, a EuclideanDomain), you can compute greatest common divisors.

gcd(13 - 13*%i,31 + 27*%i)

5 + i

Type: Complex Integer

You can also compute least common multiples.

lcm(13 - 13*%i,31 + 27*%i)
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143− 39 i

Type: Complex Integer

You can factor Gaussian integers.

factor(13 - 13*%i)

−(1 + i) (2 + 3 i) (3 + 2 i)

Type: Factored Complex Integer

factor complex(2,0)

−i (1 + i)
2

Type: Factored Complex Integer

9.14 ContinuedFraction

Continued fractions have been a fascinating and useful tool in mathematics for well over
three hundred years. Axiom implements continued fractions for fractions of any Euclidean
domain. In practice, this usually means rational numbers. In this section we demonstrate
some of the operations available for manipulating both finite and infinite continued fractions.
It may be helpful if you review Stream 9.88 on page 765 to remind yourself of some of the
operations with streams.

The ContinuedFraction domain is a field and therefore you can add, subtract, multiply
and divide the fractions.

The continuedFraction operation converts its fractional argument to a continued fraction.

c := continuedFraction(314159/100000)

3 +
1|
|7

+
1|
|15

+
1|
|1

+
1|
|25

+
1|
|1

+
1|
|7

+
1|
|4

Type: ContinuedFraction Integer

This display is a compact form of the bulkier
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3 + 1

-------------------------------

7 + 1

---------------------------

15 + 1

----------------------

1 + 1

------------------

25 + 1

-------------

1 + 1

---------

7 + 1

-----

4

You can write any rational number in a similar form. The fraction will be finite and you
can always take the “numerators” to be 1. That is, any rational number can be written as
a simple, finite continued fraction of the form

a(1) + 1

-------------------------

a(2) + 1

--------------------

a(3) +

.

.

.

1

-------------

a(n-1) + 1

----

a(n)

The ai are called partial quotients and the operation partialQuotients creates a stream of
them.

partialQuotients c

[3, 7, 15, 1, 25, 1, 7, . . .]

Type: Stream Integer

By considering more and more of the fraction, you get the convergents. For example, the
first convergent is a1, the second is a1 + 1/a2 and so on.

convergents c



452 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES[
3,

22

7
,
333

106
,
355

113
,
9208

2931
,
9563

3044
,
76149

24239
, . . .

]
Type: Stream Fraction Integer

Since this is a finite continued fraction, the last convergent is the original rational number,
in reduced form. The result of approximants is always an infinite stream, though it may
just repeat the “last” value.

approximants c

[
3,

22

7
,
333

106
,
355

113
,
9208

2931
,
9563

3044
,
76149

24239
, . . .

]
Type: Stream Fraction Integer

Inverting c only changes the partial quotients of its fraction by inserting a 0 at the beginning
of the list.

pq := partialQuotients(1/c)

[0, 3, 7, 15, 1, 25, 1, . . .]

Type: Stream Integer

Do this to recover the original continued fraction from this list of partial quotients. The
three-argument form of the continuedFraction operation takes an element which is the
whole part of the fraction, a stream of elements which are the numerators of the fraction,
and a stream of elements which are the denominators of the fraction.

continuedFraction(first pq,repeating [1],rest pq)

1|
|3

+
1|
|7

+
1|
|15

+
1|
|1

+
1|
|25

+
1|
|1

+
1|
|7

+ . . .

Type: ContinuedFraction Integer

The streams need not be finite for continuedFraction. Can you guess which irrational
number has the following continued fraction? See the end of this section for the answer.

z:=continuedFraction(3,repeating [1],repeating [3,6])

3 +
1|
|3

+
1|
|6

+
1|
|3

+
1|
|6

+
1|
|3

+
1|
|6

+
1|
|3

+ . . .
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Type: ContinuedFraction Integer

In 1737 Euler discovered the infinite continued fraction expansion

e - 1 1

----- = ---------------------

2 1 + 1

-----------------

6 + 1

-------------

10 + 1

--------

14 + ...

We use this expansion to compute rational and floating point approximations of e.2

By looking at the above expansion, we see that the whole part is 0 and the numerators are
all equal to 1. This constructs the stream of denominators.

dens:Stream Integer := cons(1,generate((x+->x+4),6))

[1, 6, 10, 14, 18, 22, 26, . . .]

Type: Stream Integer

Therefore this is the continued fraction expansion for (e− 1)/2.

cf := continuedFraction(0,repeating [1],dens)

1|
|1

+
1|
|6

+
1|
|10

+
1|
|14

+
1|
|18

+
1|
|22

+
1|
|26

+ . . .

Type: ContinuedFraction Integer

These are the rational number convergents.

ccf := convergents cf

[
0, 1,

6

7
,
61

71
,
860

1001
,
15541

18089
,
342762

398959
, . . .

]
Type: Stream Fraction Integer

2For this and other interesting expansions, see C. D. Olds, Continued Fractions, New Mathematical
Library, (New York: Random House, 1963), pp. 134–139.
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You can get rational convergents for e by multiplying by 2 and adding 1.

eConvergents := [2*e + 1 for e in ccf]

[
1, 3,

19

7
,
193

71
,
2721

1001
,
49171

18089
,
1084483

398959
, . . .

]
Type: Stream Fraction Integer

You can also compute the floating point approximations to these convergents.

eConvergents :: Stream Float

[1.0, 3.0, 2.7142857142857142857, 2.7183098591549295775,

2.7182817182817182817, 2.7182818287356957267,

2.7182818284 585634113, . . .]

Type: Stream Float

Compare this to the value of e computed by the exp operation in Float.

exp 1.0

2.7182818284 590452354

Type: Float

In about 1658, Lord Brouncker established the following expansion for 4/π,

1 + 1

-----------------------

2 + 9

-------------------

2 + 25

---------------

2 + 49

-----------

2 + 81

-------

2 + ...

Let’s use this expansion to compute rational and floating point approximations for π.
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cf := continuedFraction(1,[(2*i+1)**2 for i in 0..],repeating [2])

1 +
1|
|2

+
9|
|2

+
25|
|2

+
49|
|2

+
81|
|2

+
121|
|2

+
169|
|2

+ . . .

Type: ContinuedFraction Integer

ccf := convergents cf

[
1,

3

2
,
15

13
,
105

76
,
315

263
,
3465

2578
,
45045

36979
, . . .

]
Type: Stream Fraction Integer

piConvergents := [4/p for p in ccf]

[
4,

8

3
,
52

15
,
304

105
,
1052

315
,
10312

3465
,
147916

45045
, . . .

]
Type: Stream Fraction Integer

As you can see, the values are converging to π = 3.14159265358979323846..., but not very
quickly.

piConvergents :: Stream Float

[4.0, 2.6666666666 666666667, 3.4666666666 666666667,

2.8952380952 380952381, 3.3396825396 825396825,

2.9760461760 461760462, 3.2837384837 384837385, . . .]

Type: Stream Float

You need not restrict yourself to continued fractions of integers. Here is an expansion for a
quotient of Gaussian integers.

continuedFraction((- 122 + 597*%i)/(4 - 4*%i))

−90 + 59 i+
1|

|1− 2 i
+

1|
|−1 + 2 i

Type: ContinuedFraction Complex Integer
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This is an expansion for a quotient of polynomials in one variable with rational number
coefficients.

r : Fraction UnivariatePolynomial(x,Fraction Integer)

Type: Void

r := ((x - 1) * (x - 2)) / ((x-3) * (x-4))

x2 − 3 x+ 2

x2 − 7 x+ 12

Type: Fraction UnivariatePolynomial(x,Fraction Integer)

continuedFraction r

1 +
1|∣∣ 1

4 x−
9
8

+
1|∣∣ 16

3 x− 40
3

Type: ContinuedFraction UnivariatePolynomial(x,Fraction Integer)

To conclude this section, we give you evidence that

z = 3 + 1

-----------------------

3 + 1

-------------------

6 + 1

---------------

3 + 1

-----------

6 + 1

-------

3 + ...

is the expansion of
√
11.

[i*i for i in convergents(z) :: Stream Float]

[9.0, 11.1111111111 11111111, 10.9944598337 9501385,

11.0002777777 77777778, 10.9999860763 98799786,

11.0000006979 29731039, 10.9999999650 15834446, . . .]

Type: Stream Float
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9.15 CycleIndicators

This section is based upon the paper J. H. Redfield, “The Theory of Group-Reduced Dis-
tributions”, American J. Math.,49 (1927) 433-455, and is an application of group theory
to enumeration problems. It is a development of the work by P. A. MacMahon on the
application of symmetric functions and Hammond operators to combinatorial theory.

The theory is based upon the power sum symmetric functions si which are the sum of the
i-th powers of the variables. The cycle index of a permutation is an expression that specifies
the sizes of the cycles of a permutation, and may be represented as a partition. A partition
of a non-negative integer n is a collection of positive integers called its parts whose sum is n.
For example, the partition (32 2 12) will be used to represent s23s2s

2
1 and will indicate that

the permutation has two cycles of length 3, one of length 2 and two of length 1. The cycle
index of a permutation group is the sum of the cycle indices of its permutations divided by
the number of permutations. The cycle indices of certain groups are provided.

The operation complete returns the cycle index of the symmetric group of order n for ar-
gument n. Alternatively, it is the n-th complete homogeneous symmetric function expressed
in terms of power sum symmetric functions.

complete 1

(1)

Type: SymmetricPolynomial Fraction Integer

complete 2

1

2
(2) +

1

2

(
12
)

Type: SymmetricPolynomial Fraction Integer

complete 3

1

3
(3) +

1

2
(2 1) +

1

6

(
13
)

Type: SymmetricPolynomial Fraction Integer

complete 7
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1
7 (7) + 1

6 (6 1) + 1
10 (5 2) + 1

10

(
5 12

)
+ 1

12 (4 3) + 1
8 (4 2 1)+

1

24

(
4 13

)
+

1

18

(
32 1

)
+

1

24

(
3 22

)
+

1

12

(
3 2 12

)
+

1

72

(
3 14

)
+

1

48

(
23 1

)
+

1

48

(
22 13

)
+

1

240

(
2 15

)
+

1

5040

(
17
)

Type: SymmetricPolynomial Fraction Integer

The operation elementary computes the n-th elementary symmetric function for argument
n.

elementary 7

1
7 (7)− 1

6 (6 1)− 1
10 (5 2) + 1

10

(
5 12

)
− 1

12 (4 3) + 1
8 (4 2 1)

− 1

24

(
4 13

)
+

1

18

(
32 1

)
+

1

24

(
3 22

)
− 1

12

(
3 2 12

)
+

1

72

(
3 14

)
− 1

48

(
23 1

)
+

1

48

(
22 13

)
− 1

240

(
2 15

)
+

1

5040

(
17
)

Type: SymmetricPolynomial Fraction Integer

The operation alternating returns the cycle index of the alternating group having an even
number of even parts in each cycle partition.

alternating 7

2
7 (7) + 1

5

(
5 12

)
+ 1

4 (4 2 1) + 1
9

(
32 1

)
+ 1

12

(
3 22

)
+ 1

36

(
3 14

)
+

1

24

(
22 13

)
+

1

2520

(
17
)

Type: SymmetricPolynomial Fraction Integer

The operation cyclic returns the cycle index of the cyclic group.

cyclic 7

6

7
(7) +

1

7

(
17
)

Type: SymmetricPolynomial Fraction Integer
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The operation dihedral is the cycle index of the dihedral group.

dihedral 7

3

7
(7) +

1

2

(
23 1

)
+

1

14

(
17
)

Type: SymmetricPolynomial Fraction Integer

The operation graphs for argument n returns the cycle index of the group of permutations
on the edges of the complete graph with n nodes induced by applying the symmetric group
to the nodes.

graphs 5

1
6 (6 3 1) + 1

5

(
52
)
+ 1

4

(
42 2

)
+ 1

6

(
33 1

)
+ 1

8

(
24 12

)
+

1

12

(
23 14

)
+

1

120

(
110
)
Type: SymmetricPolynomial Fraction Integer

The cycle index of a direct product of two groups is the product of the cycle indices of the
groups. Redfield provided two operations on two cycle indices which will be called “cup”
and “cap” here. The cup of two cycle indices is a kind of scalar product that combines
monomials for permutations with the same cycles. The cap operation provides the sum of
the coefficients of the result of the cup operation which will be an integer that enumerates
what Redfield called group-reduced distributions.

We can, for example, represent complete 2 * complete 2 as the set of objects a a b b

and complete 2 * complete 1 * complete 1 as c c d e.

This integer is the number of different sets of four pairs.

cap(complete 2**2, complete 2*complete 1**2)

4

Type: Fraction Integer

For example,

a a b b a a b b a a b b a a b b

c c d e c d c e c e c d d e c c

This integer is the number of different sets of four pairs no two pairs being equal.
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cap(elementary 2**2, complete 2*complete 1**2)

2

Type: Fraction Integer

For example,

a a b b a a b b

c d c e c e c d

In this case the configurations enumerated are easily constructed, however the theory merely
enumerates them providing little help in actually constructing them.

Here are the number of 6-pairs, first from a a a b b c, second from d d e e f g.

cap(complete 3*complete 2*complete 1,complete 2**2*complete 1**2)

24

Type: Fraction Integer

Here it is again, but with no equal pairs.

cap(elementary 3*elementary 2*elementary 1,complete 2**2*complete 1**2)

8

Type: Fraction Integer

cap(complete 3*complete 2*complete 1,elementary 2**2*elementary 1**2)

8

Type: Fraction Integer

The number of 6-triples, first from a a a b b c, second from d d e e f g, third from h

h i i j j.

eval(cup(complete 3*complete 2*complete 1, cup(complete 2**2*complete

1**2,complete 2**3)))

1500
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Type: Fraction Integer

The cycle index of vertices of a square is dihedral 4.

square:=dihedral 4

1

4
(4) +

3

8

(
22
)
+

1

4

(
2 12

)
+

1

8

(
14
)

Type: SymmetricPolynomial Fraction Integer

The number of different squares with 2 red vertices and 2 blue vertices.

cap(complete 2**2,square)

2

Type: Fraction Integer

The number of necklaces with 3 red beads, 2 blue beads and 2 green beads.

cap(complete 3*complete 2**2,dihedral 7)

18

Type: Fraction Integer

The number of graphs with 5 nodes and 7 edges.

cap(graphs 5,complete 7*complete 3)

4

Type: Fraction Integer

The cycle index of rotations of vertices of a cube.

s(x) == powerSum(x)

Type: Void
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cube:=(1/24)*(s 1**8+9*s 2**4 + 8*s 3**2*s 1**2+6*s 4**2)

Compiling function s with type PositiveInteger ->

SymmetricPolynomial Fraction Integer

1

4

(
42
)
+

1

3

(
32 12

)
+

3

8

(
24
)
+

1

24

(
18
)

Type: SymmetricPolynomial Fraction Integer

The number of cubes with 4 red vertices and 4 blue vertices.

cap(complete 4**2,cube)

7

Type: Fraction Integer

The number of labeled graphs with degree sequence 2 2 2 1 1 with no loops or multiple
edges.

cap(complete 2**3*complete 1**2,wreath(elementary 4,elementary 2))

7

Type: Fraction Integer

Again, but with loops allowed but not multiple edges.

cap(complete 2**3*complete 1**2,wreath(elementary 4,complete 2))

17

Type: Fraction Integer

Again, but with multiple edges allowed, but not loops

cap(complete 2**3*complete 1**2,wreath(complete 4,elementary 2))

10

Type: Fraction Integer
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Again, but with both multiple edges and loops allowed

cap(complete 2**3*complete 1**2,wreath(complete 4,complete 2))

23

Type: Fraction Integer

Having constructed a cycle index for a configuration we are at liberty to evaluate the si com-
ponents any way we please. For example we can produce enumerating generating functions.
This is done by providing a function f on an integer i to the value required of si, and then
evaluating eval(f, cycleindex).

x: ULS(FRAC INT,’x,0) := ’x

x

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

ZeroOrOne: INT -> ULS(FRAC INT, ’x, 0)

Type: Void

Integers: INT -> ULS(FRAC INT, ’x, 0)

Type: Void

For the integers 0 and 1, or two colors.

ZeroOrOne n == 1+x**n

Type: Void

ZeroOrOne 5

Compiling function ZeroOrOne with type Integer ->

UnivariateLaurentSeries(Fraction Integer,x,0)
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1 + x5

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

For the integers 0, 1, 2, ... we have this.

Integers n == 1/(1-x**n)

Type: Void

Integers 5

Compiling function Integers with type Integer ->

UnivariateLaurentSeries(Fraction Integer,x,0)

1 + x5 +O
(
x8
)

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The coefficient of xn is the number of graphs with 5 nodes and n edges.

Note that there is an eval function that takes two arguments. It has the signature:

((Integer -> D1),SymmetricPolynomial Fraction Integer) -> D1

from EvaluateCycleIndicators D1 if D1 has ALGEBRA FRAC INT

This function is not normally exposed (it will not normally be considered in the list of eval
functions) as it is only useful for this particular domain. To use it we ask that it be considered
thus:

)expose EVALCYC

and now we can use it:

eval(ZeroOrOne, graphs 5)

1 + x+ 2 x2 + 4 x3 + 6 x4 + 6 x5 + 6 x6 + 4 x7 +O
(
x8
)

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The coefficient of xn is the number of necklaces with n red beads and n-8 green beads.
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eval(ZeroOrOne,dihedral 8)

1 + x+ 4 x2 + 5 x3 + 8 x4 + 5 x5 + 4 x6 + x7 +O
(
x8
)

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The coefficient of xn is the number of partitions of n into 4 or fewer parts.

eval(Integers,complete 4)

1 + x+ 2 x2 + 3 x3 + 5 x4 + 6 x5 + 9 x6 + 11 x7 +O
(
x8
)

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The coefficient of xn is the number of partitions of n into 4 boxes containing ordered distinct
parts.

eval(Integers,elementary 4)

x6 + x7 + 2 x8 + 3 x9 + 5 x10 + 6 x11 + 9 x12 + 11 x13 +O
(
x14
)

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The coefficient of xn is the number of different cubes with n red vertices and 8-n green ones.

eval(ZeroOrOne,cube)

1 + x+ 3 x2 + 3 x3 + 7 x4 + 3 x5 + 3 x6 + x7 +O
(
x8
)

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The coefficient of xn is the number of different cubes with integers on the vertices whose
sum is n.

eval(Integers,cube)

1 + x+ 4 x2 + 7 x3 + 21 x4 + 37 x5 + 85 x6 + 151 x7 +O
(
x8
)

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The coefficient of xn is the number of graphs with 5 nodes and with integers on the edges
whose sum is n. In other words, the enumeration is of multigraphs with 5 nodes and n edges.
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eval(Integers,graphs 5)

1 + x+ 3 x2 + 7 x3 + 17 x4 + 35 x5 + 76 x6 + 149 x7 +O
(
x8
)

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

Graphs with 15 nodes enumerated with respect to number of edges.

eval(ZeroOrOne ,graphs 15)

1 + x+ 2 x2 + 5 x3 + 11 x4 + 26 x5 + 68 x6 + 177 x7 +O
(
x8
)

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

Necklaces with 7 green beads, 8 white beads, 5 yellow beads and 10 red beads.

cap(dihedral 30,complete 7*complete 8*complete 5*complete 10)

49958972383320

Type: Fraction Integer

The operation SFunction is the S-function or Schur function of a partition written as a
descending list of integers expressed in terms of power sum symmetric functions.

In this case the argument partition represents a tableau shape. For example 3,2,2,1 repre-
sents a tableau with three boxes in the first row, two boxes in the second and third rows, and
one box in the fourth row. SFunction [3,2,2,1] counts the number of different tableaux
of shape 3, 2, 2, 1 filled with objects with an ascending order in the columns and a non-
descending order in the rows.

sf3221:= SFunction [3,2,2,1]

1
12 (6 2)− 1

12

(
6 12

)
− 1

16

(
42
)
+ 1

12 (4 3 1) + 1
24

(
4 14

)
− 1

36

(
32 2

)
+

1

36

(
32 12

)
− 1

24

(
3 22 1

)
− 1

36

(
3 2 13

)
− 1

72

(
3 15

)
− 1

192

(
24
)
+

1

48

(
23 12

)
+

1

96

(
22 14

)
− 1

144

(
2 16

)
+

1

576

(
18
)

Type: SymmetricPolynomial Fraction Integer

This is the number filled with a a b b c c d d.
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cap(sf3221,complete 2**4)

3

Type: Fraction Integer

The configurations enumerated above are:

a a b a a c a a d

b c b b b b

c d c d c c

d d d

This is the number of tableaux filled with 1..8.

cap(sf3221, powerSum 1**8)

70

Type: Fraction Integer

The coefficient of xn is the number of column strict reverse plane partitions of n of shape 3
2 2 1.

eval(Integers, sf3221)

x9 + 3 x10 + 7 x11 + 14 x12 + 27 x13 + 47 x14 +O
(
x15
)

Type: UnivariateLaurentSeries(Fraction Integer,x,0)

The smallest is

0 0 0

1 1

2 2

3

9.16 DeRhamComplex

The domain constructor DeRhamComplex creates the class of differential forms of arbitrary
degree over a coefficient ring. The De Rham complex constructor takes two arguments: a
ring, coefRing, and a list of coordinate variables.

This is the ring of coefficients.
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coefRing := Integer

Integer

Type: Domain

These are the coordinate variables.

lv : List Symbol := [x,y,z]

[x, y, z]

Type: List Symbol

This is the De Rham complex of Euclidean three-space using coordinates x, y and z.

der := DERHAM(coefRing,lv)

DeRhamComplex(Integer, [x, y, z])

Type: Domain

This complex allows us to describe differential forms having expressions of integers as coeffi-
cients. These coefficients can involve any number of variables, for example, f(x,t,r,y,u,z).
As we’ve chosen to work with ordinary Euclidean three-space, expressions involving these
forms are treated as functions of x, y and z with the additional arguments t, r and u

regarded as symbolic constants.

Here are some examples of coefficients.

R := Expression coefRing

Expression Integer

Type: Domain

f : R := x**2*y*z-5*x**3*y**2*z**5

−5 x3 y2 z5 + x2 y z

Type: Expression Integer
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g : R := z**2*y*cos(z)-7*sin(x**3*y**2)*z**2

−7 z2 sin
(
x3 y2

)
+ y z2 cos (z)

Type: Expression Integer

h : R :=x*y*z-2*x**3*y*z**2

−2 x3 y z2 + x y z

Type: Expression Integer

We now define the multiplicative basis elements for the exterior algebra over R.

dx : der := generator(1)

dx

Type: DeRhamComplex(Integer,[x,y,z])

dy : der := generator(2)

dy

Type: DeRhamComplex(Integer,[x,y,z])

dz : der := generator(3)

dz

Type: DeRhamComplex(Integer,[x,y,z])

This is an alternative way to give the above assignments.

[dx,dy,dz] := [generator(i)$der for i in 1..3]

[dx, dy, dz]

Type: List DeRhamComplex(Integer,[x,y,z])
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Now we define some one-forms.

alpha : der := f*dx + g*dy + h*dz

(
−2 x3 y z2 + x y z

)
dz+(

−7 z2 sin
(
x3 y2

)
+ y z2 cos (z)

)
dy+(

−5 x3 y2 z5 + x2 y z
)
dx

Type: DeRhamComplex(Integer,[x,y,z])

beta : der := cos(tan(x*y*z)+x*y*z)*dx + x*dy

x dy + cos (tan (x y z) + x y z) dx

Type: DeRhamComplex(Integer,[x,y,z])

A well-known theorem states that the composition of exteriorDifferential with itself is the
zero map for continuous forms. Let’s verify this theorem for alpha.

exteriorDifferential alpha

(
y z2 sin (z) + 14 z sin

(
x3 y2

)
− 2 y z cos (z)− 2 x3 z2 + x z

)
dy dz+(

25 x3 y2 z4 − 6 x2 y z2 + y z − x2 y
)
dx dz+(

−21 x2 y2 z2 cos
(
x3 y2

)
+ 10 x3 y z5 − x2 z

)
dx dy

Type: DeRhamComplex(Integer,[x,y,z])

We see a lengthy output of the last expression, but nevertheless, the composition is zero.

exteriorDifferential %

0

Type: DeRhamComplex(Integer,[x,y,z])

Now we check that exteriorDifferential is a “graded derivation” D, that is, D satisfies:

D(a*b) = D(a)*b + (-1)**degree(a)*a*D(b)
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gamma := alpha * beta

(
2 x4 y z2 − x2 y z

)
dy dz+(

2 x3 y z2 − x y z
)
cos (tan (x y z) + x y z) dx dz+((

7 z2 sin
(
x3 y2

)
− y z2 cos (z)

)
cos (tan (x y z) + x y z)−

5 x4 y2 z5 + x3 y z
)
dx dy

Type: DeRhamComplex(Integer,[x,y,z])

We try this for the one-forms alpha and beta.

exteriorDifferential(gamma) - (exteriorDifferential(alpha)*beta - alpha *

exteriorDifferential(beta))

0

Type: DeRhamComplex(Integer,[x,y,z])

Now we define some “basic operators” (see Operator 9.66 on page 676).

a : BOP := operator(’a)

a

Type: BasicOperator

b : BOP := operator(’b)

b

Type: BasicOperator

c : BOP := operator(’c)

c

Type: BasicOperator

We also define some indeterminate one- and two-forms using these operators.
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sigma := a(x,y,z) * dx + b(x,y,z) * dy + c(x,y,z) * dz

c (x, y, z) dz + b (x, y, z) dy + a (x, y, z) dx

Type: DeRhamComplex(Integer,[x,y,z])

theta := a(x,y,z) * dx * dy + b(x,y,z) * dx * dz + c(x,y,z) * dy * dz

c (x, y, z) dy dz + b (x, y, z) dx dz + a (x, y, z) dx dy

Type: DeRhamComplex(Integer,[x,y,z])

This allows us to get formal definitions for the “gradient” . . .

totalDifferential(a(x,y,z))$der

a,3 (x, y, z) dz + a,2 (x, y, z) dy + a,1 (x, y, z) dx

Type: DeRhamComplex(Integer,[x,y,z])

the “curl” . . .

exteriorDifferential sigma

(c,2 (x, y, z)− b,3 (x, y, z)) dy dz+

(c,1 (x, y, z)− a,3 (x, y, z)) dx dz+

(b,1 (x, y, z)− a,2 (x, y, z)) dx dy

Type: DeRhamComplex(Integer,[x,y,z])

and the “divergence.”

exteriorDifferential theta

(c,1 (x, y, z)− b,2 (x, y, z) + a,3 (x, y, z)) dx dy dz

Type: DeRhamComplex(Integer,[x,y,z])

Note that the De Rham complex is an algebra with unity. This element 1 is the basis for
elements for zero-forms, that is, functions in our space.
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one : der := 1

1

Type: DeRhamComplex(Integer,[x,y,z])

To convert a function to a function lying in the De Rham complex, multiply the function by
“one.”

g1 : der := a([x,t,y,u,v,z,e]) * one

a (x, t, y, u, v, z, e)

Type: DeRhamComplex(Integer,[x,y,z])

A current limitation of Axiom forces you to write functions with more than four arguments
using square brackets in this way.

h1 : der := a([x,y,x,t,x,z,y,r,u,x]) * one

a (x, y, x, t, x, z, y, r, u, x)

Type: DeRhamComplex(Integer,[x,y,z])

Now note how the system keeps track of where your coordinate functions are located in
expressions.

exteriorDifferential g1

a,6 (x, t, y, u, v, z, e) dz+

a,3 (x, t, y, u, v, z, e) dy+

a,1 (x, t, y, u, v, z, e) dx

Type: DeRhamComplex(Integer,[x,y,z])

exteriorDifferential h1
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a,6 (x, y, x, t, x, z, y, r, u, x) dz+

(a,7 (x, y, x, t, x, z, y, r, u, x)+

a,2 (x, y, x, t, x, z, y, r, u, x)) dy+

(a,10 (x, y, x, t, x, z, y, r, u, x)+

a,5 (x, y, x, t, x, z, y, r, u, x)+

a,3 (x, y, x, t, x, z, y, r, u, x)+

a,1 (x, y, x, t, x, z, y, r, u, x)) dx

Type: DeRhamComplex(Integer,[x,y,z])

In this example of Euclidean three-space, the basis for the De Rham complex consists of the
eight forms: 1, dx, dy, dz, dx*dy, dx*dz, dy*dz, and dx*dy*dz.

coefficient(gamma, dx*dy)

(
7 z2 sin

(
x3 y2

)
− y z2 cos (z)

)
cos (tan (x y z) + x y z)

−5 x4 y2 z5 + x3 y z

Type: Expression Integer

coefficient(gamma, one)

0

Type: Expression Integer

coefficient(g1,one)

a (x, t, y, u, v, z, e)

Type: Expression Integer
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9.17 DecimalExpansion

All rationals have repeating decimal expansions. Operations to access the individual digits
of a decimal expansion can be obtained by converting the value to RadixExpansion(10).
More examples of expansions are available in BinaryExpansion 9.6 on page 415,
HexadecimalExpansion 9.39 on page 541, and RadixExpansion 9.75 on page 708.

The operation decimal is used to create this expansion of type DecimalExpansion.

r := decimal(22/7)

3.142857

Type: DecimalExpansion

Arithmetic is exact.

r + decimal(6/7)

4

Type: DecimalExpansion

The period of the expansion can be short or long . . .

[decimal(1/i) for i in 350..354][
0.00285714, 0.002849, 0.0028409, 0.00283286118980169971671388101983,

0.00282485875706214689265536723163841807909604519774011299435
]

Type: List DecimalExpansion

or very long.

decimal(1/2049)

0.000488042947779404587603709126403123474865788189360663738408979990239

141044411908247925817471937530502684236212786725231820400195217179111

761835041483650561249389946315275744265495363591996095656417764763299

170326988775012201073694485114690092728160078086871644704734016593460

22449975597852611029770619814543679843826256710590531966813079551
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Type: DecimalExpansion

These numbers are bona fide algebraic objects.

p := decimal(1/4)*x**2 + decimal(2/3)*x + decimal(4/9)

0.25 x2 + 0.6 x+ 0.4

Type: Polynomial DecimalExpansion

q := differentiate(p, x)

0.5 x+ 0.6

Type: Polynomial DecimalExpansion

g := gcd(p, q)

x+ 1.3

Type: Polynomial DecimalExpansion

9.18 Dequeue

A Dequeue is a double-ended queue so elements can be added to either end.

Here we create an dequeue of integers from a list. Notice that the order in the list is the
order in the dequeue.

a:Dequeue INT:= dequeue [1,2,3,4,5]

[1,2,3,4,5]

We can remove the top of the dequeue using dequeue!:

dequeue! a

1

Notice that the use of dequeue! is destructive (destructive operations in Axiom usually end
with ! to indicate that the underylying data structure is changed).

a

[2,3,4,5]
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The extract! operation is another name for the dequeue! operation and has the same effect.
This operation treats the dequeue as a BagAggregate:

extract! a

2

and you can see that it also has destructively modified the dequeue:

a

[3,4,5]

Next we use enqueue! to add a new element to the end of the dequeue:

enqueue!(9,a)

9

Again, the enqueue! operation is destructive so the dequeue is changed:

a

[3,4,5,9]

Another name for enqueue! is insert!, which treats the dequeue as a BagAggregate:

insert!(8,a)

[3,4,5,9,8]

and it modifies the dequeue:

a

[3,4,5,9,8]

The front operation returns the item at the front of the dequeue:

front a

3

The back operation returns the item at the back of the dequeue:

back a

8

The bottom! operation returns the item at the back of the dequeue:

bottom! a

8

and it modifies the dequeue:
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a

[3,4,5,9]

The depth function returns the number of elements in the dequeue:

depth a

4

The height function returns the number of elements in the dequeue:

height a

4

The insertBottom! function adds the element at the end:

insertBottom!(6,a)

6

and it modifies the dequeue:

a

[3,4,5,9,6]

The extractBottom! function removes the element at the end:

extractBottom! a

6

and it modifies the dequeue:

a

[3,4,5,9]

The insertTop! function adds the element at the top:

insertTop!(7,a)

7

and it modifies the dequeue:

a

[7,3,4,5,9]

The extractTop! function adds the element at the top:

extractTop! a

7
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and it modifies the dequeue:

a

[3,4,5,9]

The top function returns the top element:

top a

3

and it does not modifies the dequeue:

a

[3,4,5,9]

The top! function returns the top element:

top! a

3

and it modifies the dequeue:

a

[4,5,9]

The reverse! operation destructively reverses the elements of the dequeue:

reverse! a

[9,5,4]

The rotate! operation moves the top element to the bottom:

rotate! a

[5,4,9]

The inspect function returns the top of the dequeue without modification, viewed as a
BagAggregate:

inspect a

5

The empty? operation returns true only if there are no element on the dequeue, otherwise
it returns false:

empty? a

false

The # (length) operation:
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#a

3

The length operation does the same thing:

length a

3

The less? predicate will compare the dequeue length to an integer:

less?(a,9)

true

The more? predicate will compare the dequeue length to an integer:

more?(a,9)

false

The size? operation will compare the dequeue length to an integer:

size?(a,#a)

true

and since the last computation must alwasy be true we try:

size?(a,9)

false

The parts function will return the dequeue as a list of its elements:

parts a

[5,4,9]

If we have a BagAggregate of elements we can use it to construct a dequeue:

bag([1,2,3,4,5])$Dequeue(INT)

[1,2,3,4,5]

The empty function will construct an empty dequeue of a given type:

b:=empty()$(Dequeue INT)

[]

and the empty? predicate allows us to find out if a dequeue is empty:

empty? b

true
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The sample function returns a sample, empty dequeue:

sample()$Dequeue(INT)

[]

We can copy a dequeue and it does not share storage so subsequent modifications of the
original dequeue will not affect the copy:

c:=copy a

[5,4,9]

The eq? function is only true if the lists are the same reference, so even though c is a copy
of a, they are not the same:

eq?(a,c)

false

However, a clearly shares a reference with itself:

eq?(a,a)

true

But we can compare a and c for equality:

(a=c)@Boolean

true

and clearly a is equal to itself:

(a=a)@Boolean

true

and since a and c are equal, they are clearly NOT not-equal:

a~=c

false

We can use the any? function to see if a predicate is true for any element:

any?(x+->(x=4),a)

true

or false for every element:

any?(x+->(x=11),a)

false

We can use the every? function to check every element satisfies a predicate:
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every?(x+->(x=11),a)

false

We can count the elements that are equal to an argument of this type:

count(4,a)

1

or we can count against a boolean function:

count(x+->(x>2),a)

3

You can also map a function over every element, returning a new dequeue:

map(x+->x+10,a)

[15,14,19]

Notice that the orignal dequeue is unchanged:

a

[5,4,9]

You can use map! to map a function over every element and change the original dequeue
since map! is destructive:

map!(x+->x+10,a)

[15,14,19]

Notice that the orignal dequeue has been changed:

a

[15,14,19]

The member function can also get the element of the dequeue as a list:

members a

[15,14,19]

and using member? we can test if the dequeue holds a given element:

member?(14,a)

true

See Stack 9.87 on page 763, ArrayStack 9.2 on page 402, Queue 9.74 on page 706, Dequeue
9.18 on page 476, Heap 9.38 on page 539.
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9.19 DistributedMultivariatePolynomial

DistributedMultivariatePolynomial which is abbreviated as DMP
and HomogeneousDistributedMultivariatePolynomial,
which is abbreviated as HDMP, are very similar to MultivariatePolynomial except that they
are represented and displayed in a non-recursive manner.

(d1,d2,d3) : DMP([z,y,x],FRAC INT)

Type: Void

The constructor DMP orders its monomials lexicographically while HDMP orders them by total
order refined by reverse lexicographic order.

d1 := -4*z + 4*y**2*x + 16*x**2 + 1

−4 z + 4 y2 x+ 16 x2 + 1

Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)

d2 := 2*z*y**2 + 4*x + 1

2 z y2 + 4 x+ 1

Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)

d3 := 2*z*x**2 - 2*y**2 - x

2 z x2 − 2 y2 − x

Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)

These constructors are mostly used in Gröbner basis calculations.

groebner [d1,d2,d3][
z − 1568

2745
x6 − 1264

305
x5 +

6

305
x4 +

182

549
x3 − 2047

610
x2 − 103

2745
x− 2857

10980
,

y2 +
112

2745
x6 − 84

305
x5 − 1264

305
x4 − 13

549
x3 +

84

305
x2 +

1772

2745
x+

2

2745
,

x7 +
29

4
x6 − 17

16
x4 − 11

8
x3 +

1

32
x2 +

15

16
x+

1

4

]
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Type: List DistributedMultivariatePolynomial([z,y,x],Fraction Integer)

(n1,n2,n3) : HDMP([z,y,x],FRAC INT)

Type: Void

n1 := d1

4 y2 x+ 16 x2 − 4 z + 1

Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction

Integer)

n2 := d2

2 z y2 + 4 x+ 1

Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction

Integer)

n3 := d3

2 z x2 − 2 y2 − x

Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction

Integer)

Note that we get a different Gröbner basis when we use the HDMP polynomials, as expected.

groebner [n1,n2,n3]
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y4 + 2 x3 − 3

2
x2 +

1

2
z − 1

8
,

x4 +
29

4
x3 − 1

8
y2 − 7

4
z x− 9

16
x− 1

4
,

z y2 + 2 x+
1

2
,

y2 x+ 4 x2 − z + 1

4
,

z x2 − y2 − 1

2
x,

z2 − 4 y2 + 2 x2 − 1

4
z − 3

2
x

]
Type: List HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction

Integer)

GeneralDistributedMultivariatePolynomial is somewhat more flexible in the sense that
as well as accepting a list of variables to specify the variable ordering, it also takes a predicate
on exponent vectors to specify the term ordering. With this polynomial type the user can
experiment with the effect of using completely arbitrary term orderings. This flexibility
is mostly important for algorithms such as Gröbner basis calculations which can be very
sensitive to term ordering.

For more information on related topics, see
section 1.8 on page 35, section 2.7 on page 82,
Polynomial 9.72 on page 693, UnivariatePolynomial 9.96 on page 800,
and MultivariatePolynomial 9.61 on page 666.

9.20 DoubleFloat

Axiom provides two kinds of floating point numbers. The domain Float (abbreviation
FLOAT) implements a model of arbitrary precision floating point numbers. The domain
DoubleFloat (abbreviation DFLOAT) is intended to make available hardware floating point
arithmetic in Axiom. The actual model of floating point DoubleFloat that provides is
system-dependent. For example, on the IBM system 370 Axiom uses IBM double precision
which has fourteen hexadecimal digits of precision or roughly sixteen decimal digits. Arbi-
trary precision floats allow the user to specify the precision at which arithmetic operations
are computed. Although this is an attractive facility, it comes at a cost. Arbitrary-precision
floating-point arithmetic typically takes twenty to two hundred times more time than hard-
ware floating point.

The usual arithmetic and elementary functions are available for DoubleFloat. Use )show
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DoubleFloat to get a list of operations or the HyperDoc browse facility to get more extensive
documentation about DoubleFloat.

By default, floating point numbers that you enter into Axiom are of type Float.

2.71828

2.71828

Type: Float

You must therefore tell Axiom that you want to use DoubleFloat values and operations.
The following are some conservative guidelines for getting Axiom to use DoubleFloat.

To get a value of type DoubleFloat, use a target with @, . . .

2.71828@DoubleFloat

2.71828

Type: DoubleFloat

a conversion, . . .

2.71828 :: DoubleFloat

2.71828

Type: DoubleFloat

or an assignment to a declared variable. It is more efficient if you use a target rather than
an explicit or implicit conversion.

eApprox : DoubleFloat := 2.71828

2.71828

Type: DoubleFloat

You also need to declare functions that work with DoubleFloat.

avg : List DoubleFloat -> DoubleFloat
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Type: Void

avg l ==

empty? l => 0 :: DoubleFloat

reduce(_+,l) / #l

Type: Void

avg [3.4,9.7,-6.8]

Compiling function avg with type List Float -> DoubleFloat

2.1

Type: DoubleFloat

Use package-calling for operations from DoubleFloat unless the arguments themselves are
already of type DoubleFloat.

cos(3.1415926)$DoubleFloat

−0.999999999999999

Type: DoubleFloat

cos(3.1415926 :: DoubleFloat)

−0.999999999999999

Type: DoubleFloat

By far, the most common usage of DoubleFloat is for functions to be graphed. For more in-
formation about Axiom’s numerical and graphical facilities, see Section section 7 on page 217,
section 8.1 on page 289, and Float 9.31 on page 517.
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9.21 EqTable

The EqTable domain provides tables where the keys are compared using eq?. Keys are
considered equal only if they are the same instance of a structure. This is useful if the keys
are themselves updatable structures. Otherwise, all operations are the same as for type
Table. See Table 9.92 on page 780 for general information about tables.

The operation table is here used to create a table where the keys are lists of integers.

e: EqTable(List Integer, Integer) := table()

table()

Type: EqTable(List Integer,Integer)

These two lists are equal according to “=”, but not according to eq?.

l1 := [1,2,3]

[1, 2, 3]

Type: List PositiveInteger

l2 := [1,2,3]

[1, 2, 3]

Type: List PositiveInteger

Because the two lists are not eq?, separate values can be stored under each.

e.l1 := 111

111

Type: PositiveInteger

e.l2 := 222

222

Type: PositiveInteger

e.l1

111

Type: PositiveInteger
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9.22 Equation

The Equation domain provides equations as mathematical objects. These are used, for
example, as the input to various solve operations.

Equations are created using the equals symbol, “=”.

eq1 := 3*x + 4*y = 5

4 y + 3 x = 5

Type: Equation Polynomial Integer

eq2 := 2*x + 2*y = 3

2 y + 2 x = 3

Type: Equation Polynomial Integer

The left- and right-hand sides of an equation are accessible using the operations lhs and
rhs.

lhs eq1

4 y + 3 x

Type: Polynomial Integer

rhs eq1

5

Type: Polynomial Integer

Arithmetic operations are supported and operate on both sides of the equation.

eq1 + eq2

6 y + 5 x = 8

Type: Equation Polynomial Integer
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eq1 * eq2

8 y2 + 14 x y + 6 x2 = 15

Type: Equation Polynomial Integer

2*eq2 - eq1

x = 1

Type: Equation Polynomial Integer

Equations may be created for any type so the arithmetic operations will be defined only
when they make sense. For example, exponentiation is not defined for equations involving
non-square matrices.

eq1**2

16 y2 + 24 x y + 9 x2 = 25

Type: Equation Polynomial Integer

Note that an equals symbol is also used to test for equality of values in certain contexts. For
example, x+1 and y are unequal as polynomials.

if x+1 = y then "equal" else "unequal"

"unequal"

Type: String

eqpol := x+1 = y

x+ 1 = y

Type: Equation Polynomial Integer

If an equation is used where a Boolean value is required, then it is evaluated using the
equality test from the operand type.

if eqpol then "equal" else "unequal"
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"unequal"

Type: String

If one wants a Boolean value rather than an equation, all one has to do is ask!

eqpol::Boolean

false

Type: Boolean

9.23 EuclideanGroebnerBasisPackage

Example to call euclideanGroebner:

a1:DMP([y,x],INT):= (9*x**2 + 5*x - 3)+ y*(3*x**2 + 2*x + 1)

a2:DMP([y,x],INT):= (6*x**3 - 2*x**2 - 3*x +3) + y*(2*x**3 - x - 1)

a3:DMP([y,x],INT):= (3*x**3 + 2*x**2) + y*(x**3 + x**2)

an:=[a1,a2,a3]

euclideanGroebner(an)

This will return the weak euclidean Groebner basis set. All reductions are total reductions.

You can get more information by providing a second argument. To get the reduced critical
pairs do:

euclideanGroebner(an,"redcrit")

You can get other information by calling:

euclideanGroebner(an,"info")

which returns:

ci => Leading monomial for critpair calculation

tci => Number of terms of polynomial i

cj => Leading monomial for critpair calculation

tcj => Number of terms of polynomial j

c => Leading monomial of critpair polynomial

tc => Number of terms of critpair polynomial

rc => Leading monomial of redcritpair polynomial

trc => Number of terms of redcritpair polynomial

tH => Number of polynomials in reduction list H

tD => Number of critpairs still to do
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The three argument form returns all of the information:

euclideanGroebner(an,"info","redcrit")

The term ordering is determined by the polynomial type used. Suggested types include

DistributedMultivariatePolynomial

HomogeneousDistributedMultivariatePolynomial

GeneralDistributedMultivariatePolynomial

See EuclideanGroebnerBasisPackage 9.23 on page 491,
DistributedMultivariatePolynomial 9.19 on page 483,
HomogeneousDistributedMultivariatePolynomial 9.40 on page 543,
GeneralDistributedMultivariatePolynomial 9.34 on page 533,
and GroebnerPackage 9.37 on page 539

9.24 Exit

A function that does not return directly to its caller has Exit as its return type. The
operation error is an example of one which does not return to its caller. Instead, it causes
a return to top-level.

n := 0

0

Type: NonNegativeInteger

The function gasp is given return type Exit since it is guaranteed never to return a value
to its caller.

gasp(): Exit ==

free n

n := n + 1

error "Oh no!"

Function declaration gasp : () -> Exit has been added to workspace.

Type: Void

The return type of half is determined by resolving the types of the two branches of the if.

half(k) ==

if odd? k then gasp()

else k quo 2
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Because gasp has the return type Exit, the type of if in half is resolved to be Integer.

half 4

Compiling function gasp with type () -> Exit

Compiling function half with type PositiveInteger -> Integer

2

Type: PositiveInteger

half 3

Error signalled from user code in function gasp:

Oh no!

n

1

Type: NonNegativeInteger

For functions which return no value at all, use Void. Void 9.100 on page 817 for more
information.

9.25 Expression

Expression is a constructor that creates domains whose objects can have very general sym-
bolic forms. Here are some examples:

This is an object of type Expression Integer.

sin(x) + 3*cos(x)**2

sin (x) + 3 cos (x)
2

Type: Expression Integer

This is an object of type Expression Float.

tan(x) - 3.45*x
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tan (x)− 3.45 x

Type: Expression Float

This object contains symbolic function applications, sums, products, square roots, and a
quotient.

(tan sqrt 7 - sin sqrt 11)**2 / (4 - cos(x - y))

−tan
(√

7
)2

+ 2 sin
(√

11
)
tan

(√
7
)
− sin

(√
11
)2

cos (y − x)− 4

Type: Expression Integer

As you can see, Expression actually takes an argument domain. The coefficients of the
terms within the expression belong to the argument domain. Integer and Float, along
with Complex Integer and Complex Float are the most common coefficient domains.

The choice of whether to use a Complex coefficient domain or not is important since Axiom
can perform some simplifications on real-valued objects

log(exp x)@Expression(Integer)

x

Type: Expression Integer

... which are not valid on complex ones.

log(exp x)@Expression(Complex Integer)

log (ex)

Type: Expression Complex Integer

Many potential coefficient domains, such as AlgebraicNumber, are not usually used because
Expression can subsume them.

sqrt 3 + sqrt(2 + sqrt(-5))

√√
−5 + 2 +

√
3

Type: AlgebraicNumber
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% :: Expression Integer

√√
−5 + 2 +

√
3

Type: Expression Integer

Note that we sometimes talk about “an object of type Expression.” This is not really
correct because we should say, for example, “an object of type Expression Integer” or “an
object of type Expression Float.” By a similar abuse of language, when we refer to an
“expression” in this section we will mean an object of type Expression R for some domain
R.

The Axiom documentation contains many examples of the use of Expression. For the rest
of this section, we’ll give you some pointers to those examples plus give you some idea of
how to manipulate expressions.

It is important for you to know that Expression creates domains that have category Field.
Thus you can invert any non-zero expression and you shouldn’t expect an operation like
factor to give you much information. You can imagine expressions as being represented as
quotients of “multivariate” polynomials where the “variables” are kernels (see Kernel 9.44
on page 562. A kernel can either be a symbol such as x or a symbolic function application
like sin(x + 4). The second example is actually a nested kernel since the argument to sin

contains the kernel x.

height mainKernel sin(x + 4)

2

Type: PositiveInteger

Actually, the argument to sin is an expression, and so the structure of Expression is
recursive. Kernel 9.44 on page 562 demonstrates how to extract the kernels in an expression.

Use the HyperDoc Browse facility to see what operations are applicable to expression. At
the time of this writing, there were 262 operations with 147 distinct name in Expression

Integer. For example, numer and denom extract the numerator and denominator of an
expression.

e := (sin(x) - 4)**2 / ( 1 - 2*y*sqrt(- y) )

−sin (x)2 + 8 sin (x)− 16

2 y
√
−y − 1

Type: Expression Integer
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numer e

−sin (x)2 + 8 sin (x)− 16

Type: SparseMultivariatePolynomial(Integer,Kernel Expression Integer)

denom e

2 y
√
−y − 1

Type: SparseMultivariatePolynomial(Integer,Kernel Expression Integer)

Use D to compute partial derivatives.

D(e, x)

(4 y cos (x) sin (x)− 16 y cos (x))
√
−y − 2 cos (x) sin (x) + 8 cos (x)

4 y
√
−y + 4 y3 − 1

Type: Expression Integer

See section 1.11 on page 40 for more examples of expressions and derivatives.

D(e, [x, y], [1, 2])


((
−2304 y7 + 960 y4

)
cos (x) sin (x) +

(
9216 y7 − 3840 y4

)
cos (x)

) √
−y+(

−960 y9 + 2160 y6 − 180 y3 − 3
)
cos (x) sin (x)+(

3840 y9 − 8640 y6 + 720 y3 + 12
)
cos (x)


(256 y12 − 1792 y9 + 1120 y6 − 112 y3 + 1

) √
−y−

1024 y11 + 1792 y8 − 448 y5 + 16 y2


Type: Expression Integer

See section 1.9 on page 36 and section 1.10 on page 38 for more examples of expressions
and calculus. Differential equations involving expressions are discussed in section 8.10 on
page 348 on page 348. Chapter 8 has many advanced examples: see section 8.8 on page 324
for a discussion of Axiom’s integration facilities.

When an expression involves no “symbol kernels” (for example, x), it may be possible to
numerically evaluate the expression.

If you suspect the evaluation will create a complex number, use complexNumeric.
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complexNumeric(cos(2 - 3*%i))

−4.1896256909 688072301 + 9.1092278937 55336598 i

Type: Complex Float

If you know it will be real, use numeric.

numeric(tan 3.8)

0.7735560905 0312607286

Type: Float

The numeric operation will display an error message if the evaluation yields a calue with
an non-zero imaginary part. Both of these operations have an optional second argument n
which specifies that the accuracy of the approximation be up to n decimal places.

When an expression involves no “symbolic application” kernels, it may be possible to convert
it a polynomial or rational function in the variables that are present.

e2 := cos(x**2 - y + 3)

cos
(
y − x2 − 3

)
Type: Expression Integer

e3 := asin(e2) - %pi/2

−y + x2 + 3

Type: Expression Integer

e3 :: Polynomial Integer

−y + x2 + 3

Type: Polynomial Integer

This also works for the polynomial types where specific variables and their ordering are
given.
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e3 :: DMP([x, y], Integer)

x2 − y + 3

Type: DistributedMultivariatePolynomial([x,y],Integer)

Finally, a certain amount of simplication takes place as expressions are constructed.

sin %pi

0

Type: Expression Integer

cos(%pi / 4)

√
2

2

Type: Expression Integer

For simplications that involve multiple terms of the expression, use simplify.

tan(x)**6 + 3*tan(x)**4 + 3*tan(x)**2 + 1

tan (x)
6
+ 3 tan (x)

4
+ 3 tan (x)

2
+ 1

Type: Expression Integer

simplify %

1

cos (x)
6

Type: Expression Integer

See section 6.21 on page 208 for examples of how to write your own rewrite rules for expres-
sions.
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9.26 Factored

Factored creates a domain whose objects are kept in factored form as long as possible. Thus
certain operations like “*” (multiplication) and gcd are relatively easy to do. Others, such
as addition, require somewhat more work, and the result may not be completely factored
unless the argument domain R provides a factor operation. Each object consists of a unit
and a list of factors, where each factor consists of a member of R (the base), an exponent,
and a flag indicating what is known about the base. A flag may be one of “nil”, “sqfr”,
“irred” or “prime”, which mean that nothing is known about the base, it is square-free, it is
irreducible, or it is prime, respectively. The current restriction to factored objects of integral
domains allows simplification to be performed without worrying about multiplication order.

Decomposing Factored Objects

In this section we will work with a factored integer.

g := factor(4312)

23 72 11

Type: Factored Integer

Let’s begin by decomposing g into pieces. The only possible units for integers are 1 and -1.

unit(g)

1

Type: PositiveInteger

There are three factors.

numberOfFactors(g)

3

Type: PositiveInteger

We can make a list of the bases, . . .

[nthFactor(g,i) for i in 1..numberOfFactors(g)]

[2, 7, 11]



500 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

Type: List Integer

and the exponents, . . .

[nthExponent(g,i) for i in 1..numberOfFactors(g)]

[3, 2, 1]

Type: List Integer

and the flags. You can see that all the bases (factors) are prime.

[nthFlag(g,i) for i in 1..numberOfFactors(g)]

["prime", "prime", "prime"]

Type: List Union("nil","sqfr","irred","prime")

A useful operation for pulling apart a factored object into a list of records of the components
is factorList.

factorList(g)

[[flg = "prime", fctr = 2, xpnt = 3],

[flg = "prime", fctr = 7, xpnt = 2],

[flg = "prime", fctr = 11, xpnt = 1]]

Type: List Record(flg: Union("nil","sqfr","irred","prime"), fctr:

Integer,xpnt: Integer)

If you don’t care about the flags, use factors.

factors(g)

[[factor = 2, exponent = 3],

[factor = 7, exponent = 2],

[factor = 11, exponent = 1]]

Type: List Record(factor: Integer,exponent: Integer)
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Neither of these operations returns the unit.

first(%).factor

2

Type: PositiveInteger

Expanding Factored Objects

Recall that we are working with this factored integer.

g := factor(4312)

23 72 11

Type: Factored Integer

To multiply out the factors with their multiplicities, use expand.

expand(g)

4312

Type: PositiveInteger

If you would like, say, the distinct factors multiplied together but with multiplicity one, you
could do it this way.

reduce(*,[t.factor for t in factors(g)])

154

Type: PositiveInteger

Arithmetic with Factored Objects

We’re still working with this factored integer.

g := factor(4312)
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23 72 11

Type: Factored Integer

We’ll also define this factored integer.

f := factor(246960)

24 32 5 73

Type: Factored Integer

Operations involving multiplication and division are particularly easy with factored objects.

f * g

27 32 5 75 11

Type: Factored Integer

f**500

22000 31000 5500 71500

Type: Factored Integer

gcd(f,g)

23 72

Type: Factored Integer

lcm(f,g)

24 32 5 73 11

Type: Factored Integer

If we use addition and subtraction things can slow down because we may need to compute
greatest common divisors.
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f + g

23 72 641

Type: Factored Integer

f - g

23 72 619

Type: Factored Integer

Test for equality with 0 and 1 by using zero? and one?, respectively.

zero?(factor(0))

true

Type: Boolean

zero?(g)

false

Type: Boolean

one?(factor(1))

true

Type: Boolean

one?(f)

false

Type: Boolean

Another way to get the zero and one factored objects is to use package calling (see section 2.9
on page 89).
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0$Factored(Integer)

0

Type: Factored Integer

1$Factored(Integer)

1

Type: Factored Integer

Creating New Factored Objects

The map operation is used to iterate across the unit and bases of a factored object. See
FactoredFunctions2 9.27 on page 506 for a discussion of map.

The following four operations take a base and an exponent and create a factored object.
They differ in handling the flag component.

nilFactor(24,2)

242

Type: Factored Integer

This factor has no associated information.

nthFlag(%,1)

"nil"

Type: Union("nil",...)

This factor is asserted to be square-free.

sqfrFactor(30,2)

302

Type: Factored Integer
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This factor is asserted to be irreducible.

irreducibleFactor(13,10)

1310

Type: Factored Integer

This factor is asserted to be prime.

primeFactor(11,5)

115

Type: Factored Integer

A partial inverse to factorList is makeFR.

h := factor(-720)

−24 32 5

Type: Factored Integer

The first argument is the unit and the second is a list of records as returned by factorList.

h - makeFR(unit(h),factorList(h))

0

Type: Factored Integer

Factored Objects with Variables

Some of the operations available for polynomials are also available for factored polynomials.

p := (4*x*x-12*x+9)*y*y + (4*x*x-12*x+9)*y + 28*x*x - 84*x + 63

(
4 x2 − 12 x+ 9

)
y2 +

(
4 x2 − 12 x+ 9

)
y + 28 x2 − 84 x+ 63

Type: Polynomial Integer
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fp := factor(p)

(2 x− 3)
2 (
y2 + y + 7

)
Type: Factored Polynomial Integer

You can differentiate with respect to a variable.

D(p,x)

(8 x− 12) y2 + (8 x− 12) y + 56 x− 84

Type: Polynomial Integer

D(fp,x)

4 (2 x− 3)
(
y2 + y + 7

)
Type: Factored Polynomial Integer

numberOfFactors(%)

3

Type: PositiveInteger

9.27 FactoredFunctions2

The FactoredFunctions2 package implements one operation, map, for applying an opera-
tion to every base in a factored object and to the unit.

double(x) == x + x

Type: Void

f := factor(720)

24 32 5
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Type: Factored Integer

Actually, the map operation used in this example comes from Factored itself, since double
takes an integer argument and returns an integer result.

map(double,f)

2 44 62 10

Type: Factored Integer

If we want to use an operation that returns an object that has a type different from
the operation’s argument, the map in Factored cannot be used and we use the one in
FactoredFunctions2.

makePoly(b) == x + b

Type: Void

In fact, the “2” in the name of the package means that we might be using factored objects
of two different types.

g := map(makePoly,f)

(x+ 1) (x+ 2)
4
(x+ 3)

2
(x+ 5)

Type: Factored Polynomial Integer

It is important to note that both versions of map destroy any information known about the
bases (the fact that they are prime, for instance).

The flags for each base are set to “nil” in the object returned by map.

nthFlag(g,1)

"nil"

Type: Union("nil",...)

For more information about factored objects and their use, see Factored 9.26 on page 499
and section 8.13 on page 386.
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9.28 File

The File(S) domain provides a basic interface to read and write values of type S in files.

Before working with a file, it must be made accessible to Axiom with the open operation.

ifile:File List Integer:=open("/tmp/jazz1","output")

"/tmp/jazz1"

Type: File List Integer

The open function arguments are a FileName and a String specifying the mode. If a full
pathname is not specified, the current default directory is assumed. The mode must be one
of “input” or “output”. If it is not specified, “input” is assumed. Once the file has been
opened, you can read or write data.

The operations read and write are provided.

write!(ifile, [-1,2,3])

[−1, 2, 3]

Type: List Integer

write!(ifile, [10,-10,0,111])

[10,−10, 0, 111]

Type: List Integer

write!(ifile, [7])

[7]

Type: List Integer

You can change from writing to reading (or vice versa) by reopening a file.

reopen!(ifile, "input")

"/tmp/jazz1"
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Type: File List Integer

read! ifile

[−1, 2, 3]

Type: List Integer

read! ifile

[10,−10, 0, 111]

Type: List Integer

The read operation can cause an error if one tries to read more data than is in the file. To
guard against this possibility the readIfCan operation should be used.

readIfCan! ifile

[7]

Type: Union(List Integer,...)

readIfCan! ifile

"failed"

Type: Union("failed",...)

You can find the current mode of the file, and the file’s name.

iomode ifile

"input"

Type: String

name ifile

"/tmp/jazz1"
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Type: FileName

When you are finished with a file, you should close it.

close! ifile

"/tmp/jazz1"

Type: File List Integer

)system rm /tmp/jazz1

A limitation of the underlying LISP system is that not all values can be represented in a file.
In particular, delayed values containing compiled functions cannot be saved.

For more information on related topics, see TextFile 9.93 on page 784, KeyedAccessFile
9.45 on page 566, Library 9.48 on page 607, and FileName 9.29 on page 510.

9.29 FileName

The FileName domain provides an interface to the computer’s file system. Functions are
provided to manipulate file names and to test properties of files.

The simplest way to use file names in the Axiom interpreter is to rely on conversion to and
from strings. The syntax of these strings depends on the operating system.

fn: FileName

Type: Void

On Linux, this is a proper file syntax:

fn := "/tmp/fname.input"

"/tmp/fname.input"

Type: FileName

Although it is very convenient to be able to use string notation for file names in the inter-
preter, it is desirable to have a portable way of creating and manipulating file names from
within programs.

A measure of portability is obtained by considering a file name to consist of three parts: the
directory, the name, and the extension.
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directory fn

"/tmp"

Type: String

name fn

"fname"

Type: String

extension fn

"input"

Type: String

The meaning of these three parts depends on the operating system. For example, on CMS
the file “SPADPROF INPUT M” would have directory “M”, name “SPADPROF” and extension
“INPUT”.

It is possible to create a filename from its parts.

fn := filename("/u/smwatt/work", "fname", "input")

"/u/smwatt/work/fname.input"

Type: FileName

When writing programs, it is helpful to refer to directories via variables.

objdir := "/tmp"

"/tmp"

Type: String

fn := filename(objdir, "table", "spad")

"/tmp/table.spad"
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Type: FileName

If the directory or the extension is given as an empty string, then a default is used. On AIX,
the defaults are the current directory and no extension.

fn := filename("", "letter", "")

"letter"

Type: FileName

Three tests provide information about names in the file system.

The exists? operation tests whether the named file exists.

exists? "/etc/passwd"

true

Type: Boolean

The operation readable? tells whether the named file can be read. If the file does not exist,
then it cannot be read.

readable? "/etc/passwd"

true

Type: Boolean

readable? "/etc/security/passwd"

false

Type: Boolean

readable? "/ect/passwd"

false

Type: Boolean
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Likewise, the operation writable? tells whether the named file can be written. If the file
does not exist, the test is determined by the properties of the directory.

writable? "/etc/passwd"

false

Type: Boolean

writable? "/dev/null"

true

Type: Boolean

writable? "/etc/DoesNotExist"

false

Type: Boolean

writable? "/tmp/DoesNotExist"

true

Type: Boolean

The new operation constructs the name of a new writable file. The argument sequence is
the same as for filename, except that the name part is actually a prefix for a constructed
unique name.

The resulting file is in the specified directory with the given extension, and the same defaults
are used.

fn := new(objdir, "xxx", "yy")

"/tmp/xxx82404.yy"

Type: FileName
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9.30 FlexibleArray

The FlexibleArray domain constructor creates one-dimensional arrays of elements of the
same type. Flexible arrays are an attempt to provide a data type that has the best features
of both one-dimensional arrays (fast, random access to elements) and lists (flexibility). They
are implemented by a fixed block of storage. When necessary for expansion, a new, larger
block of storage is allocated and the elements from the old storage area are copied into the
new block.

Flexible arrays have available most of the operations provided by OneDimensionalArray

(see OneDimensionalArray 9.65 on page 674 and Vector 9.99 on page 815). Since flexible
arrays are also of category ExtensibleLinearAggregate, they have operations concat!,
delete!, insert!, merge!, remove!, removeDuplicates!, and select!. In addition, the
operations physicalLength and physicalLength! provide user-control over expansion and
contraction.

A convenient way to create a flexible array is to apply the operation flexibleArray to a
list of values.

flexibleArray [i for i in 1..6]

[1, 2, 3, 4, 5, 6]

Type: FlexibleArray PositiveInteger

Create a flexible array of six zeroes.

f : FARRAY INT := new(6,0)

[0, 0, 0, 0, 0, 0]

Type: FlexibleArray Integer

For i = 1 . . . 6 set the i-th element to i. Display f.

for i in 1..6 repeat f.i := i; f

[1, 2, 3, 4, 5, 6]

Type: FlexibleArray Integer

Initially, the physical length is the same as the number of elements.

physicalLength f
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6

Type: PositiveInteger

Add an element to the end of f.

concat!(f,11)

[1, 2, 3, 4, 5, 6, 11]

Type: FlexibleArray Integer

See that its physical length has grown.

physicalLength f

10

Type: PositiveInteger

Make f grow to have room for 15 elements.

physicalLength!(f,15)

[1, 2, 3, 4, 5, 6, 11]

Type: FlexibleArray Integer

Concatenate the elements of f to itself. The physical length allows room for three more
values at the end.

concat!(f,f)

[1, 2, 3, 4, 5, 6, 11, 1, 2, 3, 4, 5, 6, 11]

Type: FlexibleArray Integer

Use insert! to add an element to the front of a flexible array.

insert!(22,f,1)

[22, 1, 2, 3, 4, 5, 6, 11, 1, 2, 3, 4, 5, 6, 11]
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Type: FlexibleArray Integer

Create a second flexible array from f consisting of the elements from index 10 forward.

g := f(10..)

[2, 3, 4, 5, 6, 11]

Type: FlexibleArray Integer

Insert this array at the front of f.

insert!(g,f,1)

[2, 3, 4, 5, 6, 11, 22, 1, 2, 3, 4, 5, 6, 11, 1, 2, 3, 4, 5, 6, 11]

Type: FlexibleArray Integer

Merge the flexible array f into g after sorting each in place.

merge!(sort! f, sort! g)

[1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 11, 11, 11, 11, 22]

Type: FlexibleArray Integer

Remove duplicates in place.

removeDuplicates! f

[1, 2, 3, 4, 5, 6, 11, 22]

Type: FlexibleArray Integer

Remove all odd integers.

select!(i +-> even? i,f)

[2, 4, 6, 22]

Type: FlexibleArray Integer



9.31. FLOAT 517

All these operations have shrunk the physical length of f.

physicalLength f

8

Type: PositiveInteger

To force Axiom not to shrink flexible arrays call the shrinkable operation with the argument
false. You must package call this operation. The previous value is returned.

shrinkable(false)$FlexibleArray(Integer)

true

Type: Boolean

9.31 Float

Axiom provides two kinds of floating point numbers. The domain Float (abbreviation
FLOAT) implements a model of arbitrary precision floating point numbers. The domain
DoubleFloat (abbreviation DFLOAT) is intended to make available hardware floating point
arithmetic in Axiom. The actual model of floating point that DoubleFloat provides is
system-dependent. For example, on the IBM system 370 Axiom uses IBM double precision
which has fourteen hexadecimal digits of precision or roughly sixteen decimal digits. Arbi-
trary precision floats allow the user to specify the precision at which arithmetic operations
are computed. Although this is an attractive facility, it comes at a cost. Arbitrary-precision
floating-point arithmetic typically takes twenty to two hundred times more time than hard-
ware floating point.

For more information about Axiom’s numeric and graphic facilities, see section 7 on page 217,
section 8.1 on page 289, and DoubleFloat 9.20 on page 485.

Introduction to Float

Scientific notation is supported for input and output of floating point numbers. A floating
point number is written as a string of digits containing a decimal point optionally followed
by the letter “E”, and then the exponent.

We begin by doing some calculations using arbitrary precision floats. The default precision
is twenty decimal digits.

1.234
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1.234

Type: Float

A decimal base for the exponent is assumed, so the number 1.234E2 denotes 1.234 · 102.

1.234E2

123.4

Type: Float

The normal arithmetic operations are available for floating point numbers.

sqrt(1.2 + 2.3 / 3.4 ** 4.5)

1.0996972790 671286226

Type: Float

Conversion Functions

You can use conversion (section 2.7 on page 82) to go back and forth between Integer,
Fraction Integer and Float, as appropriate.

i := 3 :: Float

3.0

Type: Float

i :: Integer

3

Type: Integer

i :: Fraction Integer

3
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Type: Fraction Integer

Since you are explicitly asking for a conversion, you must take responsibility for any loss of
exactness.

r := 3/7 :: Float

0.4285714285 7142857143

Type: Float

r :: Fraction Integer

3

7

Type: Fraction Integer

This conversion cannot be performed: use truncate or round if that is what you intend.

r :: Integer

Cannot convert from type Float to Integer for value

0.4285714285 7142857143

The operations truncate and round truncate . . .

truncate 3.6

3.0

Type: Float

and round to the nearest integral Float respectively.

round 3.6

4.0

Type: Float



520 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

truncate(-3.6)

−3.0

Type: Float

round(-3.6)

−4.0

Type: Float

The operation fractionPart computes the fractional part of x, that is, x - truncate x.

fractionPart 3.6

0.6

Type: Float

The operation digits allows the user to set the precision. It returns the previous value it
was using.

digits 40

20

Type: PositiveInteger

sqrt 0.2

0.4472135954 9995793928 1834733746 2552470881

Type: Float

pi()$Float

3.1415926535 8979323846 2643383279 502884197

Type: Float
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The precision is only limited by the computer memory available. Calculations at 500 or more
digits of precision are not difficult.

digits 500

40

Type: PositiveInteger

pi()$Float

3.1415926535 8979323846 2643383279 5028841971 6939937510 5820974944
5923078164 0628620899 8628034825 3421170679 8214808651 3282306647
0938446095 5058223172 5359408128 4811174502 8410270193 8521105559
6446229489 5493038196 4428810975 6659334461 2847564823 3786783165
2712019091 4564856692 3460348610 4543266482 1339360726 0249141273
7245870066 0631558817 4881520920 9628292540 9171536436 7892590360
0113305305 4882046652 1384146951 9415116094 3305727036 5759591953
0921861173 8193261179 3105118548 0744623799 6274956735 1885752724
8912279381 830119491

Type: Float

Reset digits to its default value.

digits 20

500

Type: PositiveInteger

Numbers of type Float are represented as a record of two integers, namely, the mantissa and
the exponent where the base of the exponent is binary. That is, the floating point number
(m,e) represents the number m · 2e. A consequence of using a binary base is that decimal
numbers can not, in general, be represented exactly.

Output Functions

A number of operations exist for specifying how numbers of type Float are to be displayed.
By default, spaces are inserted every ten digits in the output for readability.3

Output spacing can be modified with the outputSpacing operation. This inserts no spaces
and then displays the value of x.

3Note that you cannot include spaces in the input form of a floating point number, though you can use
underscores.
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outputSpacing 0; x := sqrt 0.2

0.44721359549995793928

Type: Float

Issue this to have the spaces inserted every 5 digits.

outputSpacing 5; x

0.44721 35954 99957 93928

Type: Float

By default, the system displays floats in either fixed format or scientific format, depending
on the magnitude of the number.

y := x/10**10

0.44721 35954 99957 93928 E − 10

Type: Float

A particular format may be requested with the operations outputFloating and output-
Fixed.

outputFloating(); x

0.44721 35954 99957 93928 E 0

Type: Float

outputFixed(); y

0.00000 00000 44721 35954 99957 93928

Type: Float

Additionally, you can ask for n digits to be displayed after the decimal point.

outputFloating 2; y
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0.45 E − 10

Type: Float

outputFixed 2; x

0.45

Type: Float

This resets the output printing to the default behavior.

outputGeneral()

Type: Void

An Example: Determinant of a Hilbert Matrix

Consider the problem of computing the determinant of a 10 by 10 Hilbert matrix. The
(i, j)-th entry of a Hilbert matrix is given by 1/(i+j+1).

First do the computation using rational numbers to obtain the exact result.

a: Matrix Fraction Integer := matrix [ [1/(i+j+1) for j in 0..9] for i in

0..9]



1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19


Type: Matrix Fraction Integer

This version of determinant uses Gaussian elimination.

d:= determinant a
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1

46206893947914691316295628839036278726983680000000000

Type: Fraction Integer

d :: Float

0.21641 79226 43149 18691 E − 52

Type: Float

Now use hardware floats. Note that a semicolon (;) is used to prevent the display of the
matrix.

b: Matrix DoubleFloat := matrix [ [1/(i+j+1$DoubleFloat) for j in 0..9] for

i in 0..9];

Type: Matrix DoubleFloat

The result given by hardware floats is correct only to four significant digits of precision. In
the jargon of numerical analysis, the Hilbert matrix is said to be “ill-conditioned.”

determinant b

2.1643677945721411e− 53

Type: DoubleFloat

Now repeat the computation at a higher precision using Float.

digits 40

20

Type: PositiveInteger

c: Matrix Float := matrix [ [1/(i+j+1$Float) for j in 0..9] for i in 0..9];

Type: Matrix Float
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determinant c

0.21641 79226 43149 18690 60594 98362 26174 36159 E − 52

Type: Float

Reset digits to its default value.

digits 20

40

Type: PositiveInteger

9.32 Fraction

The Fraction domain implements quotients. The elements must belong to a domain of
category IntegralDomain: multiplication must be commutative and the product of two
non-zero elements must not be zero. This allows you to make fractions of most things you
would think of, but don’t expect to create a fraction of two matrices! The abbreviation for
Fraction is FRAC.

Use “/” to create a fraction.

a := 11/12

11

12

Type: Fraction Integer

b := 23/24

23

24

Type: Fraction Integer

The standard arithmetic operations are available.

3 - a*b**2 + a + b/a
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313271

76032

Type: Fraction Integer

Extract the numerator and denominator by using numer and denom, respectively.

numer(a)

11

Type: PositiveInteger

denom(b)

24

Type: PositiveInteger

Operations like max, min, negative?, positive? and zero? are all available if they are
provided for the numerators and denominators. See Integer 9.41 on page 545 for examples.

Don’t expect a useful answer from factor, gcd or lcm if you apply them to fractions.

r := (x**2 + 2*x + 1)/(x**2 - 2*x + 1)

x2 + 2 x+ 1

x2 − 2 x+ 1

Type: Fraction Polynomial Integer

Since all non-zero fractions are invertible, these operations have trivial definitions.

factor(r)

x2 + 2 x+ 1

x2 − 2 x+ 1

Type: Factored Fraction Polynomial Integer

Use map to apply factor to the numerator and denominator, which is probably what you
mean.

map(factor,r)
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(x+ 1)
2

(x− 1)
2

Type: Fraction Factored Polynomial Integer

Other forms of fractions are available. Use continuedFraction to create a continued frac-
tion.

continuedFraction(7/12)

1|
|1

+
1|
|1

+
1|
|2

+
1|
|2

Type: ContinuedFraction Integer

Use partialFraction to create a partial fraction. See ContinuedFraction 9.14 on page 450
and and PartialFraction 9.69 on page 689 for additional information and examples.

partialFraction(7,12)

1− 3

22
+

1

3

Type: PartialFraction Integer

Use conversion to create alternative views of fractions with objects moved in and out of the
numerator and denominator.

g := 2/3 + 4/5*%i

2

3
+

4

5
i

Type: Complex Fraction Integer

Conversion is discussed in detail in section 2.7 on page 82.

g :: FRAC COMPLEX INT

10 + 12 i

15

Type: Fraction Complex Integer
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9.33 FullPartialFractionExpansion

The domain FullPartialFractionExpansion implements factor-free conversion of quotients
to full partial fractions.

Our examples will all involve quotients of univariate polynomials with rational number co-
efficients.

Fx := FRAC UP(x, FRAC INT)

Fraction UnivariatePolynomial(x,Fraction Integer)

Type: Domain

Here is a simple-looking rational function.

f : Fx := 36 / (x**5-2*x**4-2*x**3+4*x**2+x-2)

36

x5 − 2 x4 − 2 x3 + 4 x2 + x− 2

Type: Fraction UnivariatePolynomial(x,Fraction Integer)

We use fullPartialFraction to convert it to an object of type
FullPartialFractionExpansion.

g := fullPartialFraction f

4

x− 2
− 4

x+ 1
+

∑
%A2 − 1 = 0

−3 %A− 6

(x−%A)
2

Type: FullPartialFractionExpansion(Fraction

Integer,UnivariatePolynomial(x,Fraction Integer))

Use a coercion to change it back into a quotient.

g :: Fx

36

x5 − 2 x4 − 2 x3 + 4 x2 + x− 2

Type: Fraction UnivariatePolynomial(x,Fraction Integer)

Full partial fractions differentiate faster than rational functions.
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g5 := D(g, 5)

− 480

(x− 2)
6 +

480

(x+ 1)
6 +

∑
%A2 − 1 = 0

2160 %A+ 4320

(x−%A)
7

Type: FullPartialFractionExpansion(Fraction

Integer,UnivariatePolynomial(x,Fraction Integer))

f5 := D(f, 5)


−544320 x10 + 4354560 x9 − 14696640 x8 + 28615680 x7−

40085280 x6 + 46656000 x5 − 39411360 x4 + 18247680 x3−

5870880 x2 + 3317760 x+ 246240




x20 − 12 x19 + 53 x18 − 76 x17 − 159 x16 + 676 x15 − 391 x14−

1596 x13 + 2527 x12 + 1148 x11 − 4977 x10 + 1372 x9+

4907 x8 − 3444 x7 − 2381 x6 + 2924 x5 + 276 x4−

1184 x3 + 208 x2 + 192 x− 64


Type: Fraction UnivariatePolynomial(x,Fraction Integer)

We can check that the two forms represent the same function.

g5::Fx - f5

0

Type: Fraction UnivariatePolynomial(x,Fraction Integer)

Here are some examples that are more complicated.

f : Fx := (x**5 * (x-1)) / ((x**2 + x + 1)**2 * (x-2)**3)

x6 − x5

x7 − 4 x6 + 3 x5 + 9 x3 − 6 x2 − 4 x− 8

Type: Fraction UnivariatePolynomial(x,Fraction Integer)
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g := fullPartialFraction f

1952
2401

x− 2
+

464
343

(x− 2)
2 +

32
49

(x− 2)
3+

∑
%A2 +%A+ 1 = 0

− 179
2401 %A+ 135

2401

x−%A
+

∑
%A2 +%A+ 1 = 0

37
1029 %A+ 20

1029

(x−%A)
2

Type: FullPartialFractionExpansion(Fraction

Integer,UnivariatePolynomial(x,Fraction Integer))

g :: Fx - f

0

Type: Fraction UnivariatePolynomial(x,Fraction Integer)

f : Fx := (2*x**7-7*x**5+26*x**3+8*x) / (x**8-5*x**6+6*x**4+4*x**2-8)

2 x7 − 7 x5 + 26 x3 + 8 x

x8 − 5 x6 + 6 x4 + 4 x2 − 8

Type: Fraction UnivariatePolynomial(x,Fraction Integer)

g := fullPartialFraction f

∑
%A2 − 2 = 0

1
2

x−%A
+

∑
%A2 − 2 = 0

1

(x−%A)
3+

∑
%A2 + 1 = 0

1
2

x−%A
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Type: FullPartialFractionExpansion(Fraction

Integer,UnivariatePolynomial(x,Fraction Integer))

g :: Fx - f

0

Type: Fraction UnivariatePolynomial(x,Fraction Integer)

f:Fx := x**3 / (x**21 + 2*x**20 + 4*x**19 + 7*x**18 + 10*x**17 + 17*x**16 +

22*x**15 + 30*x**14 + 36*x**13 + 40*x**12 + 47*x**11 + 46*x**10 + 49*x**9 +

43*x**8 + 38*x**7 + 32*x**6 + 23*x**5 + 19*x**4 + 10*x**3 + 7*x**2 + 2*x +

1)

x3
x21 + 2 x20 + 4 x19 + 7 x18 + 10 x17 + 22 x15 + 30 x14+

36 x13 + 40 x12 + 47 x11 + 46 x10 + 49 x9 + 43 x8 + 38 x7+

32 x6 + 23 x5 + 19 x4 + 10 x3 + 7 x2 + 2 x+ 1


Type: Fraction UnivariatePolynomial(x,Fraction Integer)

g := fullPartialFraction f
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∑
%A2 + 1 = 0

1
2 %A

x−%A
+

∑
%A2 +%A+ 1 = 0

1
9 %A− 19

27

x−%A
+

∑
%A2 +%A+ 1 = 0

1
27 %A− 1

27

(x−%A)
2 +

∑
%A5 +%A2 + 1 = 0



− 96556567040

912390759099
%A4 +

420961732891

912390759099
%A3−

59101056149

912390759099
%A2 − 373545875923

912390759099
%A+

529673492498

912390759099


x−%A

+

∑
%A5 +%A2 + 1 = 0


− 5580868

94070601
%A4 − 2024443

94070601
%A3 +

4321919

94070601
%A2−

84614

1542141
%A− 5070620

94070601


(x−%A)

2 +

∑
%A5 +%A2 + 1 = 0


1610957

94070601
%A4 +

2763014

94070601
%A3 − 2016775

94070601
%A2+

266953

94070601
%A+

4529359

94070601


(x−%A)

3

Type: FullPartialFractionExpansion(Fraction

Integer,UnivariatePolynomial(x,Fraction Integer))

This verification takes much longer than the conversion to partial fractions.

g :: Fx - f

0

Type: Fraction UnivariatePolynomial(x,Fraction Integer)

For more information, see the paper: Bronstein, M and Salvy, B. “Full Partial Fraction
Decomposition of Rational Functions,” Proceedings of ISSAC’93, Kiev, ACM Press. Also
see PartialFraction 9.69 on page 689 for standard partial fraction decompositions.
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9.34 GeneralDistributedMultivariatePolynomial

DistributedMultivariatePolynomial which is abbreviated as DMP and Homogeneous-

DistributedMultivariatePolynomial, which is abbreviated as HDMP, are very similar to
MultivariatePolynomial except that they are represented and displayed in a non-recursive
manner.

(d1,d2,d3) : DMP([z,y,x],FRAC INT)

Type: Void

The constructor DMP orders its monomials lexicographically while HDMP orders them by
total order refined by reverse lexicographic order.

d1 := -4*z + 4*y**2*x + 16*x**2 + 1

4 z + 4 y2 x+ 16 x2 + 1

Type: DistributeMultivariatePolynomial([z,y,x],Fraction Integer)

d2 := 2*z*y**2 + 4*x + 1

2 z y2 + 4 x+ 1

Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)

d3 := 2*z*x**2 - 2*y**2 - x

2 z x2 − 2 y2 − x

Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)

These constructors are mostly used in Groebner basis calculations.

groebner [d1,d2,d3]

1568 6 1264 5 6 4 182 3 2047 2 103 2857

[z - ---- x - ---- x + --- x + --- x - ---- x - ---- x - -----,

2745 305 305 549 610 2745 10980

2 112 6 84 5 1264 4 13 3 84 2 1772 2

y + ---- x - --- x - ---- x - --- x + --- x + ---- x + ----,

2745 305 305 549 305 2745 2745

7 29 6 17 4 11 3 1 2 15 1

x + -- x - -- x - -- x + -- x + -- x + -]

4 16 8 32 16 4
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z − 1568

2745
x6 − 1264

305
x5 +

6

305
x4 +

182

549
x3 − 2047

610
x2 − 103

2745
x− 2857

10980
,

y2 +
112

2745
x6 − 84

305
x5 − 1264

305
x4 − 13

549
x3 +

84

305
x2 +

1772

2745
x+

2

2745
,

x7 +
29

4
x6 − 17

16
x4 − 11

8
x3 +

1

32
x2 +

15

16
x+

1

4

]
Type: List DistributedMultivariatePolynomial([z,y,x],Fraction Integer)

(n1,n2,n3) : HDMP([z,y,x],FRAC INT)

Type: Void

n1 := d1

4 y2 x+ 16 x2 − 4 z + 1

Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction

Integer)

n2 := d2

2 z y2 + 4 x+ 1

Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction

Integer)

n3 := d3

2 z x2 − 2 y2 − x

Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction

Integer)

Note that we get a different Groebner basis when we use the HDMP polynomials, as expected.

groebner [n1,n2,n3][
y4 + 2 x3 − 3

2
x2 +

1

2
z − 1

8
, x4 +

29

4
x3 − 1

8
y2 − 7

4
z x− 9

16
x− 1

4
,

z y2 + 2 x+
1

2
, y2 x+ 4 x2 − z + 1

4
,

z x2 − y2 − 1

2
x, z2 − 4 y2 + 2 x2 − 1

4
z − 3

2
x

]



9.35. GENERALSPARSETABLE 535

Type: List HomogeneousDistributedMultivariatePolynomial([z,y,x], Fraction

Integer)

GeneralDistributedMultivariatePolynomial is somewhat more flexible in the sense that
as well as accepting a list of variables to specify the variable ordering, it also takes a predicate
on exponent vectors to specify the term ordering. With this polynomial type the user can
experiment with the effect of using completely arbitrary term orderings. This flexibility
is mostly important for algorithms such as Groebner basis calculations which can be very
sensitive to term ordering.

See Polynomial 9.72 on page 693
UnivariatePolynomial 9.96 on page 800
MultivariatePolynomial 9.61 on page 666
HomogeneousDistributedMultivariatePolynomial 9.40 on page 543, and
DistributedMultivariatePolynomial 9.19 on page 483

9.35 GeneralSparseTable

Sometimes when working with tables there is a natural value to use as the entry in all but
a few cases. The GeneralSparseTable constructor can be used to provide any table type
with a default value for entries. See Table 9.92 on page 780 for general information about
tables.

Suppose we launched a fund-raising campaign to raise fifty thousand dollars. To record
the contributions, we want a table with strings as keys (for the names) and integer entries
(for the amount). In a data base of cash contributions, unless someone has been explicitly
entered, it is reasonable to assume they have made a zero dollar contribution.

This creates a keyed access file with default entry 0.

patrons: GeneralSparseTable(String, Integer, KeyedAccessFile(Integer), 0)

:= table() ;

Type: GeneralSparseTable(String,Integer,KeyedAccessFile Integer,0)

Now patrons can be used just as any other table. Here we record two gifts.

patrons."Smith" := 10500

10500

Type: PositiveInteger

patrons."Jones" := 22000
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22000

Type: PositiveInteger

Now let us look up the size of the contributions from Jones and Stingy.

patrons."Jones"

22000

Type: PositiveInteger

patrons."Stingy"

0

Type: NonNegativeInteger

Have we met our seventy thousand dollar goal?

reduce(+, entries patrons)

32500

Type: PositiveInteger

So the project is cancelled and we can delete the data base:

)system rm -r kaf*.sdata

9.36 GroebnerFactorizationPackage

Solving systems of polynomial equations with the Gröbner basis algorithm can often be
very time consuming because, in general, the algorithm has exponential run-time. These
systems, which often come from concrete applications, frequently have symmetries which are
not taken advantage of by the algorithm. However, it often happens in this case that the
polynomials which occur during the Gröbner calculations are reducible. Since Axiom has an
excellent polynomial factorization algorithm, it is very natural to combine the Gröbner and
factorization algorithms.

GroebnerFactorizationPackage exports the groebnerFactorize operation which imple-
ments a modified Gröbner basis algorithm. In this algorithm, each polynomial that is to be
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put into the partial list of the basis is first factored. The remaining calculation is split into
as many parts as there are irreducible factors. Call these factors p1, . . . , pn. In the branches
corresponding to p2, . . . , pn, the factor p1 can be divided out, and so on. This package
also contains operations that allow you to specify the polynomials that are not zero on the
common roots of the final Gröbner basis.

Here is an example from chemistry. In a theoretical model of the cyclohexan C6H12, the six
carbon atoms each sit in the center of gravity of a tetrahedron that has two hydrogen atoms
and two carbon atoms at its corners. We first normalize and set the length of each edge to
1. Hence, the distances of one fixed carbon atom to each of its immediate neighbours is 1.
We will denote the distances to the other three carbon atoms by x, y and z.

A. Dress developed a theory to decide whether a set of points and distances between them
can be realized in an n-dimensional space. Here, of course, we have n = 3.

mfzn : SQMATRIX(6,DMP([x,y,z],Fraction INT)) := [ [0,1,1,1,1,1],

[1,0,1,8/3,x,8/3], [1,1,0,1,8/3,y], [1,8/3,1,0,1,8/3], [1,x,8/3,1,0,1],

[1,8/3,y,8/3,1,0] ]


0 1 1 1 1 1
1 0 1 8

3 x 8
3

1 1 0 1 8
3 y

1 8
3 1 0 1 8

3
1 x 8

3 1 0 1
1 8

3 y 8
3 1 0


Type: SquareMatrix(6,DistributedMultivariatePolynomial([x,y,z],Fraction

Integer))

For the cyclohexan, the distances have to satisfy this equation.

eq := determinant mfzn

−x2 y2 + 22

3
x2 y − 25

9
x2 +

22

3
x y2 − 388

9
x y−

250

27
x− 25

9
y2 − 250

27
y +

14575

81

Type: DistributedMultivariatePolynomial([x,y,z],Fraction Integer)

They also must satisfy the equations given by cyclic shifts of the indeterminates.

groebnerFactorize [eq, eval(eq, [x,y,z], [y,z,x]), eval(eq, [x,y,z],

[z,x,y])]
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[
x y + x z − 22

3
x+ y z − 22

3
y − 22

3
z +

121

3
,

x z2 − 22

3
x z +

25

9
x+ y z2 − 22

3
y z +

25

9
y − 22

3
z2 +

388

9
z +

250

27
,

y2 z2 − 22

3
y2 z +

25

9
y2 − 22

3
y z2 +

388

9
y z +

250

27
y+

25

9
z2 +

250

27
z − 14575

81

 ,
[
x+ y − 21994

5625
, y2 − 21994

5625
y +

4427

675
, z − 463

87

]
,

[
x2 − 1

2
x z − 11

2
x− 5

6
z +

265

18
, y − z, z2 − 38

3
z +

265

9

]
,

[
x− 25

9
, y − 11

3
, z − 11

3

]
,

[
x− 11

3
, y − 11

3
, z − 11

3

]
,

[
x+

5

3
, y +

5

3
, z +

5

3

]
,

[
x− 19

3
, y +

5

3
, z +

5

3

]]
Type: List List DistributedMultivariatePolynomial([x,y,z],Fraction Integer)

The union of the solutions of this list is the solution of our original problem. If we impose
positivity conditions, we get two relevant ideals. One ideal is zero-dimensional, namely
x = y = z = 11/3, and this determines the “boat” form of the cyclohexan. The other ideal is
one-dimensional, which means that we have a solution space given by one parameter. This
gives the “chair” form of the cyclohexan. The parameter describes the angle of the “back of
the chair.”

groebnerFactorize has an optional Boolean-valued second argument. When it is true

partial results are displayed, since it may happen that the calculation does not terminate in a
reasonable time. See the source code for GroebnerFactorizationPackage in groebf.input
for more details about the algorithms used.
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9.37 GroebnerPackage

Example to call groebner:

s1:DMP[w,p,z,t,s,b]RN:= 45*p + 35*s - 165*b - 36

s2:DMP[w,p,z,t,s,b]RN:= 35*p + 40*z + 25*t - 27*s

s3:DMP[w,p,z,t,s,b]RN:= 15*w + 25*p*s + 30*z - 18*t - 165*b**2

s4:DMP[w,p,z,t,s,b]RN:= -9*w + 15*p*t + 20*z*s

s5:DMP[w,p,z,t,s,b]RN:= w*p + 2*z*t - 11*b**3

s6:DMP[w,p,z,t,s,b]RN:= 99*w - 11*b*s + 3*b**2

s7:DMP[w,p,z,t,s,b]RN:= b**2 + 33/50*b + 2673/10000

sn7:=[s1,s2,s3,s4,s5,s6,s7]

groebner(sn7,info)

groebner calculates a minimal Groebner Basis all reductions are TOTAL reductions

To get the reduced critical pairs do:

groebner(sn7,"redcrit")

You can get other information by calling:

groebner(sn7,"info")

which returns:

ci => Leading monomial for critpair calculation

tci => Number of terms of polynomial i

cj => Leading monomial for critpair calculation

tcj => Number of terms of polynomial j

c => Leading monomial of critpair polynomial

tc => Number of terms of critpair polynomial

rc => Leading monomial of redcritpair polynomial

trc => Number of terms of redcritpair polynomial

tF => Number of polynomials in reduction list F

tD => Number of critpairs still to do

See GroebnerPackage 9.37 on page 539
DistributedMultivariatePolynomial 9.19 on page 483
HomogeneousDistributedMultivariatePolynomial 9.40 on page 543
EuclideanGroebnerBasisPackage 9.23 on page 491

9.38 Heap

The domain Heap(S) implements a priority queue of objects of type S such that the operation
extract! removes and returns the maximum element. The implementation represents heaps
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as flexible arrays (see FlexibleArray 9.30 on page 514.) The representation and algorithms
give complexity of O(log(n)) for insertion and extractions, and O(n) for construction.

Create a heap of six elements.

h := heap [-4,9,11,2,7,-7]

[11, 7, 9,−4, 2,−7]

Type: Heap Integer

Use insert! to add an element.

insert!(3,h)

[11, 7, 9,−4, 2,−7, 3]

Type: Heap Integer

The operation extract! removes and returns the maximum element.

extract! h

11

Type: PositiveInteger

The internal structure of h has been appropriately adjusted.

h

[9, 7, 3,−4, 2,−7]

Type: Heap Integer

Now extract! elements repeatedly until none are left, collecting the elements in a list.

[extract!(h) while not empty?(h)]

[9, 7, 3, 2,−4,−7]

Type: List Integer
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Another way to produce the same result is by defining a heapsort function.

heapsort(x) == (empty? x => []; cons(extract!(x),heapsort x))

Type: Void

Create another sample heap.

h1 := heap [17,-4,9,-11,2,7,-7]

[17, 2, 9,−11,−4, 7,−7]

Type: Heap Integer

Apply heapsort to present elements in order.

heapsort h1

[17, 9, 7, 2,−4,−7,−11]

Type: List Integer

9.39 HexadecimalExpansion

All rationals have repeating hexadecimal expansions. The operation hex returns these ex-
pansions of type HexadecimalExpansion. Operations to access the individual numerals of
a hexadecimal expansion can be obtained by converting the value to RadixExpansion(16).
More examples of expansions are available in the DecimalExpansion 9.17 on page 475,
BinaryExpansion 9.6 on page 415, and RadixExpansion 9.75 on page 708.

This is a hexadecimal expansion of a rational number.

r := hex(22/7)

3.249

Type: HexadecimalExpansion

Arithmetic is exact.

r + hex(6/7)
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4

Type: HexadecimalExpansion

The period of the expansion can be short or long . . .

[hex(1/i) for i in 350..354][
0.00BB3EE721A54D88, 0.00BAB6561, 0.00BA2E8,

0.00B9A7862A0FF465879D5F, 0.00B92143FA36F5E02E4850FE8DBD78
]

Type: List HexadecimalExpansion

or very long!

hex(1/1007)

0.0041149783F0BF2C7D13933192AF6980619EE345E91EC2BB9D5CC
A5C071E40926E54E8DDAE24196C0B2F8A0AAD60DBA57F5D4C8
536262210C74F1

Type: HexadecimalExpansion

These numbers are bona fide algebraic objects.

p := hex(1/4)*x**2 + hex(2/3)*x + hex(4/9)

0.4 x2 + 0.A x+ 0.71C

Type: Polynomial HexadecimalExpansion

q := D(p, x)

0.8 x+ 0.A

Type: Polynomial HexadecimalExpansion

g := gcd(p, q)

x+ 1.5

Type: Polynomial HexadecimalExpansion
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9.40 HomogeneousDistributedMultivariatePolynomial

DistributedMultivariatePolynomial which is abbreviated as DMP and Homogeneous-

DistributedMultivariatePolynomial, which is abbreviated as HDMP, are very similar to
MultivariatePolynomial except that they are represented and displayed in a non-recursive
manner.

(d1,d2,d3) : DMP([z,y,x],FRAC INT)

Type: Void

The constructor DMP orders its monomials lexicographically while HDMP orders them by
total order refined by reverse lexicographic order.

d1 := -4*z + 4*y**2*x + 16*x**2 + 1

−4 z + 4 y2 x+ 16 x2 + 1

Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)

d2 := 2*z*y**2 + 4*x + 1

2 z y2 + 4 x+ 1

Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)

d3 := 2*z*x**2 - 2*y**2 - x

2 z x2 − 2 y2 − x

Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)

These constructors are mostly used in Groebner basis calculations.

groebner [d1,d2,d3][
z − 1568

2745
x6 − 1264

305
x5 +

6

305
x4 +

182

549
x3 − 2047

610
x2 − 103

2745
x− 2857

10980
,

y2 +
112

2745
x6 − 84

305
x5 − 1264

305
x4 − 13

549
x3 +

84

305
x2 +

1772

2745
x+

2

2745
,

x7 +
29

4
x6 − 17

16
x4 − 11

8
x3 +

1

32
x2 +

15

16
x+

1

4

]
Type: List DistributedMultivariatePolynomial([z,y,x],Fraction Integer)
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(n1,n2,n3) : HDMP([z,y,x],FRAC INT)

Type: Void

n1 := d1

4 y2 x+ 16 x2 − 4 z + 1

Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction

Integer)

n2 := d2

2 z y2 + 4 x+ 1

Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction

Integer)

n3 := d3

2 z x2 − 2 y2 − x

Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction

Integer)

Note that we get a different Groebner basis when we use the HDMP

polynomials, as expected.

\begin{verbatim}

groebner [n1,n2,n3][
y4 + 2 x3 − 3

2
x2 +

1

2
z − 1

8
, x4 +

29

4
x3 − 1

8
y2 − 7

4
z x− 9

16
x− 1

4
,

z y2 + 2 x+
1

2
, y2 x+ 4 x2 − z + 1

4
,

z x2 − y2 − 1

2
x, z2 − 4 y2 + 2 x2 − 1

4
z − 3

2
x

]
Type: List HomogeneousDistributedMultivariatePolynomial([z,y,x], Fraction

Integer)



9.41. INTEGER 545

GeneralDistributedMultivariatePolynomial is somewhat more flexible in the sense that
as well as accepting a list of variables to specify the variable ordering, it also takes a predicate
on exponent vectors to specify the term ordering. With this polynomial type the user can
experiment with the effect of using completely arbitrary term orderings. This flexibility
is mostly important for algorithms such as Groebner basis calculations which can be very
sensitive to term ordering.

See Polynomial 9.72 on page 693,
UnivariatePolynomial 9.96 on page 800,
MultivariatePolynomial 9.61 on page 666,
DistributedMultivariatePolynomial 9.19 on page 483, and
GeneralDistributedMultivariatePolynomial 9.34 on page 533

9.41 Integer

Axiom provides many operations for manipulating arbitrary precision integers. In this section
we will show some of those that come from Integer itself plus some that are implemented
in other packages. More examples of using integers are in the following sections: section 1.4
on page 12, IntegerNumberTheoryFunctions 9.43 on page 556, DecimalExpansion 9.17 on
page 475, BinaryExpansion 9.6 on page 415, HexadecimalExpansion 9.39 on page 541, and
RadixExpansion 9.75 on page 708.

Basic Functions

The size of an integer in Axiom is only limited by the amount of computer storage you have
available. The usual arithmetic operations are available.

2**(5678 - 4856 + 2 * 17)

48048107704350081471815409251259243912395261398716822634738556100
88084200076308293086342527091412083743074572278211496076276922026
43343568752733498024953930242542523045817764949544214392905306388
478705146745768073877141698859815495632935288783334250628775936

Type: PositiveInteger

There are a number of ways of working with the sign of an integer. Let’s use this x as an
example.

x := -101

−101

Type: Integer
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First of all, there is the absolute value function.

abs(x)

101

Type: PositiveInteger

The sign operation returns -1 if its argument is negative, 0 if zero and 1 if positive.

sign(x)

−1

Type: Integer

You can determine if an integer is negative in several other ways.

x < 0

true

Type: Boolean

x <= -1

true

Type: Boolean

negative?(x)

true

Type: Boolean

Similarly, you can find out if it is positive.

x > 0

false



9.41. INTEGER 547

Type: Boolean

x >= 1

false

Type: Boolean

positive?(x)

false

Type: Boolean

This is the recommended way of determining whether an integer is zero.

zero?(x)

false

Type: Boolean

Use the zero? operation whenever you are testing any mathematical object
for equality with zero. This is usually more efficient that using = (think of
matrices: it is easier to tell if a matrix is zero by just checking term by term
than constructing another “zero” matrix and comparing the two matrices
term by term) and also avoids the problem that = is usually used for creating
equations.

This is the recommended way of determining whether an integer is equal to one.

one?(x)

false

Type: Boolean

This syntax is used to test equality using “=”. It says that you want a Boolean (true or
false) answer rather than an equation.

(x = -101)@Boolean
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true

Type: Boolean

The operations odd? and even? determine whether an integer is odd or even, respectively.
They each return a Boolean object.

odd?(x)

true

Type: Boolean

even?(x)

false

Type: Boolean

The operation gcd computes the greatest common divisor of two integers.

gcd(56788,43688)

4

Type: PositiveInteger

The operation lcm computes their least common multiple.

lcm(56788,43688)

620238536

Type: PositiveInteger

To determine the maximum of two integers, use max.

max(678,567)

678

Type: PositiveInteger
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To determine the minimum, use min.

min(678,567)

567

Type: PositiveInteger

The reduce operation is used to extend binary operations to more than two arguments. For
example, you can use reduce to find the maximum integer in a list or compute the least
common multiple of all integers in the list.

reduce(max,[2,45,-89,78,100,-45])

100

Type: PositiveInteger

reduce(min,[2,45,-89,78,100,-45])

−89

Type: Integer

reduce(gcd,[2,45,-89,78,100,-45])

1

Type: PositiveInteger

reduce(lcm,[2,45,-89,78,100,-45])

1041300

Type: PositiveInteger

The infix operator “/” is not used to compute the quotient of integers. Rather, it is used to
create rational numbers as described in Fraction 9.32 on page 525.

13 / 4
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13

4

Type: Fraction Integer

The infix operation quo computes the integer quotient.

13 quo 4

3

Type: PositiveInteger

The infix operation rem computes the integer remainder.

13 rem 4

1

Type: PositiveInteger

One integer is evenly divisible by another if the remainder is zero. The operation exquo can
also be used. See section 2.5 on page 76 for an example.

zero?(167604736446952 rem 2003644)

true

Type: Boolean

The operation divide returns a record of the quotient and remainder and thus is more
efficient when both are needed.

d := divide(13,4)

[quotient = 3, remainder = 1]

Type: Record(quotient: Integer,remainder: Integer)

d.quotient

3
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Type: PositiveInteger

Records are discussed in detail in section 2.4 on page 72.

d.remainder

1

Type: PositiveInteger

Primes and Factorization

Use the operation factor to factor integers. It returns an object of type Factored Integer.
See Factored 9.26 on page 499 for a discussion of the manipulation of factored objects.

factor 102400

212 52

Type: Factored Integer

The operation prime? returns true or false depending on whether its argument is a prime.

prime? 7

true

Type: Boolean

prime? 8

false

Type: Boolean

The operation nextPrime returns the least prime number greater than its argument.

nextPrime 100

101
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Type: PositiveInteger

The operation prevPrime returns the greatest prime number less than its argument.

prevPrime 100

97

Type: PositiveInteger

To compute all primes between two integers (inclusively), use the operation primes.

primes(100,175)

[173, 167, 163, 157, 151, 149, 139, 137, 131, 127, 113, 109, 107, 103, 101]

Type: List Integer

You might sometimes want to see the factorization of an integer when it is considered a
Gaussian integer. See Complex 9.13 on page 447 for more details.

factor(2 :: Complex Integer)

−i (1 + i)
2

Type: Factored Complex Integer

Some Number Theoretic Functions

Axiom provides several number theoretic operations for integers. More examples are in
IntegerNumberTheoryFunctions 9.43 on page 556.

The operation fibonacci computes the Fibonacci numbers. The algorithm has running time
O (log3(n)) for argument n.

[fibonacci(k) for k in 0..]

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .]

Type: Stream Integer

The operation legendre computes the Legendre symbol for its two integer arguments where
the second one is prime. If you know the second argument to be prime, use jacobi instead
where no check is made.
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[legendre(i,11) for i in 0..10]

[0, 1,−1, 1, 1, 1,−1,−1,−1, 1,−1]

Type: List Integer

The operation jacobi computes the Jacobi symbol for its two integer arguments. By con-
vention, 0 is returned if the greatest common divisor of the numerator and denominator is
not 1.

[jacobi(i,15) for i in 0..9]

[0, 1, 1, 0, 1, 0, 0,−1, 1, 0]

Type: List Integer

The operation eulerPhi computes the values of Euler’s ϕ-function where ϕ(n) equals the
number of positive integers less than or equal to n that are relatively prime to the positive
integer n.

[eulerPhi i for i in 1..]

[1, 1, 2, 2, 4, 2, 6, 4, 6, 4, . . .]

Type: Stream Integer

The operation moebiusMu computes the Möbius µ function.

[moebiusMu i for i in 1..]

[1,−1,−1, 0,−1, 1,−1, 0, 0, 1, . . .]

Type: Stream Integer

Although they have somewhat limited utility, Axiom provides Roman numerals.

a := roman(78)

LXXVIII

Type: RomanNumeral
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b := roman(87)

LXXXVII

Type: RomanNumeral

a + b

CLXV

Type: RomanNumeral

a * b

MMMMMMDCCLXXXVI

Type: RomanNumeral

b rem a

IX

Type: RomanNumeral

9.42 IntegerLinearDependence

The elements v1, . . . , vn of a module M over a ring R are said to be linearly dependent over R
if there exist c1, . . . , cn in R, not all 0, such that c1v1 + . . . cnvn = 0. If such ci’s exist, they
form what is called a linear dependence relation over R for the vi’s.

The package IntegerLinearDependence provides functions for testing whether some ele-
ments of a module over the integers are linearly dependent over the integers, and to find the
linear dependence relations, if any.

Consider the domain of two by two square matrices with integer entries.

M := SQMATRIX(2,INT)

SquareMatrix(2, Integer)

Type: Domain



9.42. INTEGERLINEARDEPENDENCE 555

Now create three such matrices.

m1: M := squareMatrix matrix [ [1, 2], [0, -1] ]

[
1 2
0 −1

]
Type: SquareMatrix(2,Integer)

m2: M := squareMatrix matrix [ [2, 3], [1, -2] ]

[
2 3
1 −2

]
Type: SquareMatrix(2,Integer)

m3: M := squareMatrix matrix [ [3, 4], [2, -3] ]

[
3 4
2 −3

]
Type: SquareMatrix(2,Integer)

This tells you whether m1, m2 and m3 are linearly dependent over the integers.

linearlyDependentOverZ? vector [m1, m2, m3]

true

Type: Boolean

Since they are linearly dependent, you can ask for the dependence relation.

c := linearDependenceOverZ vector [m1, m2, m3]

[1,−2, 1]

Type: Union(Vector Integer,...)

This means that the following linear combination should be 0.

c.1 * m1 + c.2 * m2 + c.3 * m3
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0 0
0 0

]
Type: SquareMatrix(2,Integer)

When a given set of elements are linearly dependent over R, this also means that at least
one of them can be rewritten as a linear combination of the others with coefficients in the
quotient field of R.

To express a given element in terms of other elements, use the operation solveLinearly-
OverQ.

solveLinearlyOverQ(vector [m1, m3], m2)

[
1

2
,
1

2

]
Type: Union(Vector Fraction Integer,...)

9.43 IntegerNumberTheoryFunctions

The IntegerNumberTheoryFunctions package contains a variety of operations of interest
to number theorists. Many of these operations deal with divisibility properties of integers.
(Recall that an integer a divides an integer b if there is an integer c such that b = a * c.)

The operation divisors returns a list of the divisors of an integer.

div144 := divisors(144)

[1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144]

Type: List Integer

You can now compute the number of divisors of 144 and the sum of the divisors of 144 by
counting and summing the elements of the list we just created.

#(div144)

15

Type: PositiveInteger

reduce(+,div144)
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403

Type: PositiveInteger

Of course, you can compute the number of divisors of an integer n, usually denoted d(n),
and the sum of the divisors of an integer n, usually denoted σ(n), without ever listing the
divisors of n.

In Axiom, you can simply call the operations numberOfDivisors and sumOfDivisors.

numberOfDivisors(144)

15

Type: PositiveInteger

sumOfDivisors(144)

403

Type: PositiveInteger

The key is that d(n) and σ(n) are “multiplicative functions.” This means that when n and
m are relatively prime, that is, when n and m have no prime factor in common, then d(nm)

= d(n) d(m) and σ(nm) = σ(n) σ(m). Note that these functions are trivial to compute
when n is a prime power and are computed for general n from the prime factorization of
n. Other examples of multiplicative functions are σk(n), the sum of the k-th powers of the
divisors of n and φ(n), the number of integers between 1 and n which are prime to n. The
corresponding Axiom operations are called sumOfKthPowerDivisors and eulerPhi.

An interesting function is µ(n), the Möbius µ function, defined as follows: µ(1) = 1,
µ(n) = 0, when n is divisible by a square, and µ = (−1)k, when n is the product of k

distinct primes. The corresponding Axiom operation is moebiusMu.

This function occurs in the following theorem:

Theorem (Möbius Inversion Formula):

Let f(n) be a function on the positive integers and let F(n) be defined by

F (n) =
∑
d|n

f(n)

sum of f(n) over d | n where the sum is taken over the positive divisors of n. Then the
values of f(n) can be recovered from the values of F(n):

f(n) =
∑
d|n

µ(n)F (
n

d
)
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where again the sum is taken over the positive divisors of n.

When f(n) = 1, then F(n) = d(n). Thus, if you sum µ(d) ·d(n/d) over the positive divisors
d of n, you should always get 1.

f1(n) == reduce(+,[moebiusMu(d) * numberOfDivisors(quo(n,d)) for d in

divisors(n)])

Type: Void

f1(200)

1

Type: PositiveInteger

f1(846)

1

Type: PositiveInteger

Similarly, when f(n) = n, then F(n) = σ(n). Thus, if you sum µ(d) · σ(n/d) over the
positive divisors d of n, you should always get n.

f2(n) == reduce(+,[moebiusMu(d) * sumOfDivisors(quo(n,d)) for d in

divisors(n)])

Type: Void

f2(200)

200

Type: PositiveInteger

f2(846)

846
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Type: PositiveInteger

The Möbius inversion formula is derived from the multiplication of formal Dirichlet series.
A Dirichlet series is an infinite series of the form:

∞∑
n=1

a(n)n−s

When
∞∑

n=1

a(n)n−s ·
∞∑

n=1

b(n)n−s =

∞∑
n=1

c(n)n−s

then
c(n) =

∑
d|n

a(d)b(n/d)

Recall that the Riemann ζ function is defined by

ζ(s) =
∏
p

(1− p−s)−1 = σ∞
n=1n

−s

where the product is taken over the set of (positive) primes. Thus,

ζ(s)−1 =
∏
p

(1− p−s) = σ∞
n=1µ(n)n

−s

Now if
F (n) =

∑
(d|n)

f(d)

then ∑
f(n)n−s · ζ(s) =

∑
F (n)n−s

thus
ζ(s)−1 ·

∑
F (n)n−s =

∑
f(n)n−s

and
f(n) =

∑
(d|n)

µ(d)F (n/d)

The Fibonacci numbers are defined by F (1) = F (2) = 1 and F (n) = F (n − 1) + F (n − 2)
for n = 3, 4, . . ..

The operation fibonacci computes the n-th Fibonacci number.

fibonacci(25)

75025
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Type: PositiveInteger

[fibonacci(n) for n in 1..15]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]

Type: List Integer

Fibonacci numbers can also be expressed as sums of binomial coefficients.

fib(n) == reduce(+,[binomial(n-1-k,k) for k in 0..quo(n-1,2)])

Type: Void

fib(25)

75025

Type: PositiveInteger

[fib(n) for n in 1..15]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]

Type: List Integer

Quadratic symbols can be computed with the operations legendre and jacobi. The Legen-

dre symbol
(

a
p

)
is defined for integers a and p with p an odd prime number. By definition,(

a
p

)
= +1, when a is a square (mod p),

(
a
p

)
= -1, when a is not a square (mod p), and

(
a
p

)
= 0, when a is divisible by p.

You compute
(

a
p

)
via the command legendre(a,p).

legendre(3,5)

−1

Type: Integer
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legendre(23,691)

−1

Type: Integer

The Jacobi symbol
(
a
n

)
is the usual extension of the Legendre symbol, where n is an arbitrary

integer. The most important property of the Jacobi symbol is the following: if K is a quadratic
field with discriminant d and quadratic character χ, then χ(n) = (d/n). Thus, you can use
the Jacobi symbol to compute, say, the class numbers of imaginary quadratic fields from a
standard class number formula.

This function computes the class number of the imaginary quadratic field with discriminant
d.

h(d) == quo(reduce(+, [jacobi(d,k) for k in 1..quo(-d, 2)]), 2 -

jacobi(d,2))

Type: Void

h(-163)

1

Type: PositiveInteger

h(-499)

3

Type: PositiveInteger

h(-1832)

26

Type: PositiveInteger
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9.44 Kernel

A kernel is a symbolic function application (such as sin(x+ y)) or a symbol (such as x). More
precisely, a non-symbol kernel over a set S is an operator applied to a given list of arguments
from S. The operator has type BasicOperator (see BasicOperator 9.5 on page 411 and the
kernel object is usually part of an expression object (see Expression 9.25 on page 493.

Kernels are created implicitly for you when you create expressions.

x :: Expression Integer

x

Type: Expression Integer

You can directly create a “symbol” kernel by using the kernel operation.

kernel x

x

Type: Kernel Expression Integer

This expression has two different kernels.

sin(x) + cos(x)

sin (x) + cos (x)

Type: Expression Integer

The operator kernels returns a list of the kernels in an object of type Expression.

kernels %

[sin (x), cos (x)]

Type: List Kernel Expression Integer

This expression also has two different kernels.

sin(x)**2 + sin(x) + cos(x)
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sin (x)
2
+ sin (x) + cos (x)

Type: Expression Integer

The sin(x) kernel is used twice.

kernels %

[sin (x), cos (x)]

Type: List Kernel Expression Integer

An expression need not contain any kernels.

kernels(1 :: Expression Integer)

[ ]

Type: List Kernel Expression Integer

If one or more kernels are present, one of them is designated the main kernel.

mainKernel(cos(x) + tan(x))

tan (x)

Type: Union(Kernel Expression Integer,...)

Kernels can be nested. Use height to determine the nesting depth.

height kernel x

1

Type: PositiveInteger

This has height 2 because the x has height 1 and then we apply an operator to that.

height mainKernel(sin x)

2
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Type: PositiveInteger

height mainKernel(sin cos x)

3

Type: PositiveInteger

height mainKernel(sin cos (tan x + sin x))

4

Type: PositiveInteger

Use the operator operation to extract the operator component of the kernel. The operator
has type BasicOperator.

operator mainKernel(sin cos (tan x + sin x))

sin

Type: BasicOperator

Use the name operation to extract the name of the operator component of the kernel. The
name has type Symbol. This is really just a shortcut for a two-step process of extracting the
operator and then calling name on the operator.

name mainKernel(sin cos (tan x + sin x))

sin

Type: Symbol

Axiom knows about functions such as sin, cos and so on and can make kernels and then
expressions using them. To create a kernel and expression using an arbitrary operator, use
operator.

Now f can be used to create symbolic function applications.

f := operator ’f

f
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Type: BasicOperator

e := f(x, y, 10)

f (x, y, 10)

Type: Expression Integer

Use the is? operation to learn if the operator component of a kernel is equal to a given
operator.

is?(e, f)

true

Type: Boolean

You can also use a symbol or a string as the second argument to is?.

is?(e, ’f)

true

Type: Boolean

Use the argument operation to get a list containing the argument component of a kernel.

argument mainKernel e

[x, y, 10]

Type: List Expression Integer

Conceptually, an object of type Expression can be thought of a quotient of multivariate
polynomials, where the “variables” are kernels. The arguments of the kernels are again
expressions and so the structure recurses. See Expression 9.25 on page 493 for examples of
using kernels to take apart expression objects.
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9.45 KeyedAccessFile

The domain KeyedAccessFile(S) provides files which can be used as associative tables.
Data values are stored in these files and can be retrieved according to their keys. The keys
must be strings so this type behaves very much like the StringTable(S) domain. The
difference is that keyed access files reside in secondary storage while string tables are kept in
memory. For more information on table-oriented operations, see the description of Table.

Before a keyed access file can be used, it must first be opened. A new file can be created by
opening it for output.

ey: KeyedAccessFile(Integer) := open("/tmp/editor.year", "output")

"/tmp/editor.year"

Type: KeyedAccessFile Integer

Just as for vectors, tables or lists, values are saved in a keyed access file by setting elements.

ey."Char" := 1986

1986

Type: PositiveInteger

ey."Caviness" := 1985

1985

Type: PositiveInteger

ey."Fitch" := 1984

1984

Type: PositiveInteger

Values are retrieved using application, in any of its syntactic forms.

ey."Char"

1986



9.45. KEYEDACCESSFILE 567

Type: PositiveInteger

ey("Char")

1986

Type: PositiveInteger

ey "Char"

1986

Type: PositiveInteger

Attempting to retrieve a non-existent element in this way causes an error. If it is not known
whether a key exists, you should use the search operation.

search("Char", ey)

1986

Type: Union(Integer,...)

search("Smith", ey)

"failed"

Type: Union("failed",...)

When an entry is no longer needed, it can be removed from the file.

remove!("Char", ey)

1986

Type: Union(Integer,...)

The keys operation returns a list of all the keys for a given file.

keys ey
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["Fitch", "Caviness"]

Type: List String

The # operation gives the number of entries.

#ey

2

Type: PositiveInteger

The table view of keyed access files provides safe operations. That is, if the Axiom program
is terminated between file operations, the file is left in a consistent, current state. This
means, however, that the operations are somewhat costly. For example, after each update
the file is closed.

Here we add several more items to the file, then check its contents.

KE := Record(key: String, entry: Integer)

Record(key: String,entry: Integer)

Type: Domain

reopen!(ey, "output")

"/tmp/editor.year"

Type: KeyedAccessFile Integer

If many items are to be added to a file at the same time, then it is more efficient to use the
write operation.

write!(ey, ["van Hulzen", 1983]$KE)

[key = "van Hulzen", entry = 1983]

Type: Record(key: String,entry: Integer)

write!(ey, ["Calmet", 1982]$KE)
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[key = "Calmet", entry = 1982]

Type: Record(key: String,entry: Integer)

write!(ey, ["Wang", 1981]$KE)

[key = "Wang", entry = 1981]

Type: Record(key: String,entry: Integer)

close! ey

"/tmp/editor.year"

Type: KeyedAccessFile Integer

The read operation is also available from the file view, but it returns elements in a random
order. It is generally clearer and more efficient to use the keys operation and to extract
elements by key.

keys ey

["Wang", "Calmet", "van Hulzen", "Fitch", "Caviness"]

Type: List String

members ey

[1981, 1982, 1983, 1984, 1985]

Type: List Integer

)system rm -r /tmp/editor.year

For more information on related topics, see File 9.28 on page 508, TextFile 9.93 on
page 784, and Library 9.48 on page 607.
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9.46 LexTriangularPackage

The LexTriangularPackage package constructor provides an implementation of the lexTri-
angular algorithm (D. Lazard “Solving Zero-dimensional Algebraic Systems”, J. of Symbol.
Comput., 1992). This algorithm decomposes a zero-dimensional variety into zero-sets of reg-
ular triangular sets. Thus the input system must have a finite number of complex solutions.
Moreover, this system needs to be a lexicographical Groebner basis.

This package takes two arguments: the coefficient-ring R of the polynomials, which must be
a GcdDomain and their set of variables given by ls a List Symbol. The type of the input
polynomials must be
NewSparseMultivariatePolynomial(R,V) whereV is OrderedVariableList(ls). The ab-
breviation for LexTriangularPackage is LEXTRIPK. The main operations are lexTriangular
and squareFreeLexTriangular. The later provide decompositions by means of square-free
regular triangular sets, built with the SREGSET constructor, whereas the former uses the
REGSET constructor. Note that these constructors also implement another algorithm for
solving algebraic systems by means of regular triangular sets; in that case no computations
of Groebner bases are needed and the input system may have any dimension (i.e. it may
have an infinite number of solutions).

The implementation of the lexTriangular algorithm provided in the LexTriangularPackage
constructor differs from that reported in “Computations of gcd over algebraic towers of simple
extensions” by M. Moreno Maza and R. Rioboo (in proceedings of AAECC11, Paris, 1995).
Indeed, the squareFreeLexTriangular operation removes all multiplicities of the solutions
(i.e. the computed solutions are pairwise different) and the lexTriangular operation may
keep some multiplicities; this later operation runs generally faster than the former.

The interest of the lexTriangular algorithm is due to the following experimental remark. For
some examples, a triangular decomposition of a zero-dimensional variety can be computed
faster via a lexicographical Groebner basis computation than by using a direct method (like
that of SREGSET and REGSET). This happens typically when the total degree of the system
relies essentially on its smallest variable (like in the Katsura systems). When this is not the
case, the direct method may give better timings (like in the Rose system).

Of course, the direct method can also be applied to a lexicographical Groebner basis. How-
ever, the lexTriangular algorithm takes advantage of the structure of this basis and avoids
many unnecessary computations which are performed by the direct method.

For this purpose of solving algebraic systems with a finite number of solutions, see also
the ZeroDimensionalSolvePackage. It allows to use both strategies (the lexTriangular
algorithm and the direct method) for computing either the complex or real roots of a system.

Note that the way of understanding triangular decompositions is detailed in the example of
the RegularTriangularSet constructor.

Since the LEXTRIPK package constructor is limited to zero-dimensional systems, it provides
a zeroDimensional? operation to check whether this requirement holds. There is also a
groebner operation to compute the lexicographical Groebner basis of a set of polynomi-
als with type NewSparseMultivariatePolynomial(R,V). The elimination ordering is that
given by ls (the greatest variable being the first element of ls). This basis is computed by
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the FLGM algorithm (Faugere et al. “Efficient Computation of Zero-Dimensional Groeb-
ner Bases by Change of Ordering” , J. of Symbol. Comput., 1993) implemented in the
LinGroebnerPackage package constructor. Once a lexicographical Groebner basis is com-
puted, then one can call the operations lexTriangular and squareFreeLexTriangular.
Note that these operations admit an optional argument to produce normalized triangular
sets. There is also a zeroSetSplit operation which does all the job from the input system;
an error is produced if this system is not zero-dimensional.

Let us illustrate the facilities of the LEXTRIPK constructor by a famous example, the cyclic-6
root system.

Define the coefficient ring.

R := Integer

Integer

Type: Domain

Define the list of variables,

ls : List Symbol := [a,b,c,d,e,f]

[a, b, c, d, e, f ]

Type: List Symbol

and make it an ordered set.

V := OVAR(ls)

OrderedVariableList [a,b,c,d,e,f]

Type: Domain

Define the polynomial ring.

P := NSMP(R, V)

NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])

Type: Domain

Define the polynomials.
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p1: P := a*b*c*d*e*f - 1

f e d c b a− 1

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[a,b,c,d,e,f])

p2: P := a*b*c*d*e +a*b*c*d*f +a*b*c*e*f +a*b*d*e*f +a*c*d*e*f +b*c*d*e*f

((((e+ f) d+ f e) c+ f e d) b+ f e d c) a+ f e d c b

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[a,b,c,d,e,f])

p3: P := a*b*c*d + a*b*c*f + a*b*e*f + a*d*e*f + b*c*d*e + c*d*e*f

(((d+ f) c+ f e) b+ f e d) a+ e d c b+ f e d c

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[a,b,c,d,e,f])

p4: P := a*b*c + a*b*f + a*e*f + b*c*d + c*d*e + d*e*f

((c+ f) b+ f e) a+ d c b+ e d c+ f e d

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[a,b,c,d,e,f])

p5: P := a*b + a*f + b*c + c*d + d*e + e*f

(b+ f) a+ c b+ d c+ e d+ f e

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[a,b,c,d,e,f])

p6: P := a + b + c + d + e + f

a+ b+ c+ d+ e+ f
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Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[a,b,c,d,e,f])

lp := [p1, p2, p3, p4, p5, p6]

[f e d c b a− 1,

((((e+ f) d+ f e) c+ f e d) b+ f e d c) a+ f e d c b,

(((d+ f) c+ f e) b+ f e d) a+ e d c b+ f e d c,

((c+ f) b+ f e) a+ d c b+ e d c+ f e d,

(b+ f) a+ c b+ d c+ e d+ f e,

a+ b+ c+ d+ e+ f ]

Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[a,b,c,d,e,f])

Now call LEXTRIPK .

lextripack := LEXTRIPK(R,ls)

LexTriangularPackage(Integer, [a, b, c, d, e, f ])

Type: Domain

Compute the lexicographical Groebner basis of the system. This may take between 5 minutes
and one hour, depending on your machine.

lg := groebner(lp)$lextripack

[a+ b+ c+ d+ e+ f,
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3968379498283200 b2 + 15873517993132800 f b+
3968379498283200 d2 + 15873517993132800 f d+
3968379498283200 f3 e5 − 15873517993132800 f4 e4+
23810276989699200 f5 e3 +

(
206355733910726400 f6+

230166010900425600) e2 +
(
−729705987316687 f43+

1863667496867205421 f37 + 291674853771731104461 f31+
365285994691106921745 f25 + 549961185828911895 f19−
365048404038768439269 f13 − 292382820431504027669 f7−
2271898467631865497 f) e− 3988812642545399 f44+
10187423878429609997 f38 + 1594377523424314053637 f32+
1994739308439916238065 f26 + 1596840088052642815 f20−
1993494118301162145413 f14 − 1596049742289689815053 f8−
11488171330159667449 f2,

(23810276989699200 c− 23810276989699200 f) b+
23810276989699200 c2 + 71430830969097600 f c−
23810276989699200 d2 − 95241107958796800 f d−
55557312975964800 f3 e5 + 174608697924460800 f4 e4−
174608697924460800 f5 e3 +

(
−2428648252949318400 f6−

2611193709870345600) e2 +
(
8305444561289527 f43−

21212087151945459641 f37 − 3319815883093451385381 f31−
4157691646261657136445 f25 − 6072721607510764095 f19+
4154986709036460221649 f13 + 3327761311138587096749 f7+
25885340608290841637 f) e+ 45815897629010329 f44−
117013765582151891207 f38 − 18313166848970865074187 f32−
22909971239649297438915 f26 − 16133250761305157265 f20+
22897305857636178256623 f14 + 18329944781867242497923 f8+
130258531002020420699 f2,

(7936758996566400 d− 7936758996566400 f) b−
7936758996566400 f d− 7936758996566400 f3 e5+
23810276989699200 f4 e4 − 23810276989699200 f5 e3+(
−337312257354072000 f6 − 369059293340337600

)
e2+(

1176345388640471 f43 − 3004383582891473073 f37−
470203502707246105653 f31 − 588858183402644348085 f25−
856939308623513535 f19 + 588472674242340526377 f13+
471313241958371103517 f7 + 3659742549078552381 f

)
e+

6423170513956901 f44 − 16404772137036480803 f38−
2567419165227528774463 f32 − 3211938090825682172335 f26−
2330490332697587485 f20 + 3210100109444754864587 f14+
2569858315395162617847 f8 + 18326089487427735751 f2,
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(11905138494849600 e− 11905138494849600 f) b−
3968379498283200 f3 e5 + 15873517993132800 f4 e4−
27778656487982400 f5 e3 +

(
−208339923659868000 f6−

240086959646133600) e2 +
(
786029984751110 f43−

2007519008182245250 f37 − 314188062908073807090 f31−
393423667537929575250 f25 − 550329120654394950 f19+
393196408728889612770 f13 + 314892372799176495730 f7+
2409386515146668530 f) e+ 4177638546747827 f44−
10669685294602576381 f38 − 1669852980419949524601 f32−
2089077057287904170745 f26 − 1569899763580278795 f20+
2087864026859015573349 f14 + 1671496085945199577969 f8+
11940257226216280177 f2,(
11905138494849600 f6 − 11905138494849600

)
b−

15873517993132800 f2 e5 + 39683794982832000 f3 e4−
39683794982832000 f4 e3 +

(
−686529653202993600 f11−

607162063237329600 f5
)
e2+(

65144531306704 f42 − 166381280901088652 f36−
26033434502470283472 f30 − 31696259583860650140 f24+
971492093167581360 f18 + 32220085033691389548 f12+
25526177666070529808 f6 + 138603268355749244

)
e+

167620036074811 f43 − 428102417974791473 f37−
66997243801231679313 f31 − 83426716722148750485 f25+
203673895369980765 f19 + 83523056326010432457 f13+
66995789640238066937 f7 + 478592855549587901 f,

801692827936 c3 + 2405078483808 f c2−
2405078483808 f2 c− 13752945467 f45+
35125117815561 f39 + 5496946957826433 f33+
6834659447749117 f27 − 44484880462461 f21−
6873406230093057 f15 − 5450844938762633 f9+
1216586044571 f3,

(23810276989699200 d− 23810276989699200 f) c+
23810276989699200 d2 + 71430830969097600 f d+
7936758996566400 f3 e5 − 31747035986265600 f4 e4+
31747035986265600 f5 e3 +

(
404774708824886400 f6+

396837949828320000) e2 +
(
−1247372229446701 f43+

3185785654596621203 f37 + 498594866849974751463 f31+
624542545845791047935 f25 + 931085755769682885 f19−
624150663582417063387 f13 − 499881859388360475647 f7−
3926885313819527351 f) e− 7026011547118141 f44+
17944427051950691243 f38 + 2808383522593986603543 f32+
3513624142354807530135 f26 + 2860757006705537685 f20−
3511356735642190737267 f14 − 2811332494697103819887 f8−
20315011631522847311 f2,
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(7936758996566400 e− 7936758996566400 f) c+(
−4418748183673 f43+
11285568707456559 f37 + 1765998617294451019 f31+
2173749283622606155 f25 − 55788292195402895 f19−
2215291421788292951 f13 − 1718142665347430851 f7+
30256569458230237 f) e+ 4418748183673 f44−
11285568707456559 f38 − 1765998617294451019 f32−
2173749283622606155 f26 + 55788292195402895 f20+
2215291421788292951 f14 + 1718142665347430851 f8−
30256569458230237 f2,(

72152354514240 f6 − 72152354514240
)
c+

40950859449 f43 − 104588980990367 f37−
16367227395575307 f31 − 20268523416527355 f25+
442205002259535 f19 + 20576059935789063 f13+
15997133796970563 f7 − 275099892785581 f,

1984189749141600 d3 + 5952569247424800 f d2−
5952569247424800 f2 d− 3968379498283200 f4 e5+
15873517993132800 f5 e4 + 17857707742274400 e3+(
−148814231185620000 f7 − 162703559429611200 f

)
e2+(

−390000914678878 f44 + 996062704593756434 f38+
155886323972034823914 f32 + 194745956143985421330 f26+
6205077595574430 f20 − 194596512653299068786 f14−
155796897940756922666 f8 − 1036375759077320978 f2

)
e−

374998630035991 f45 + 957747106595453993 f39+
149889155566764891693 f33 + 187154171443494641685 f27−
127129015426348065 f21 − 187241533243115040417 f15−
149719983567976534037 f9 − 836654081239648061 f3,

(5952569247424800 e− 5952569247424800 f) d−
3968379498283200 f3 e5 + 9920948745708000 f4 e4−
3968379498283200 f5 e3 +

(
−148814231185620000 f6−

150798420934761600) e2 +
(
492558110242553 f43−

1257992359608074599 f37 − 196883094539368513959 f31−
246562115745735428055 f25 − 325698701993885505 f19+
246417769883651808111 f13 + 197327352068200652911 f7+
1523373796389332143 f) e+ 2679481081803026 f44−
6843392695421906608 f38 − 1071020459642646913578 f32−
1339789169692041240060 f26 − 852746750910750210 f20+
1339105101971878401312 f14 + 1071900289758712984762 f8+
7555239072072727756 f2,
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11905138494849600 f6 − 11905138494849600

)
d−

7936758996566400 f2 e5 + 31747035986265600 f3 e4−
31747035986265600 f4 e3+(
−420648226818019200 f11 − 404774708824886400 f5

)
e2+(

15336187600889 f42 − 39169739565161107 f36−
6127176127489690827 f30 − 7217708742310509615 f24+
538628483890722735 f18 + 7506804353843507643 f12+
5886160769782607203 f6 + 63576108396535879

)
e+

71737781777066 f43 − 183218856207557938 f37−
28672874271132276078 f31 − 35625223686939812010 f25+
164831339634084390 f19 + 35724160423073052642 f13+
28627022578664910622 f7 + 187459987029680506 f,

1322793166094400 e6 − 3968379498283200 f e5+
3968379498283200 f2 e4 − 5291172664377600 f3 e3+(
−230166010900425600 f10 − 226197631402142400 f4

)
e2+(

−152375364610443885 f47 + 389166626064854890415 f41+
60906097841360558987335 f35 + 76167367934608798697275 f29+
27855066785995181125 f23 − 76144952817052723145495 f17−
60933629892463517546975 f11 − 411415071682002547795 f5

)
e−

209493533143822 f42 + 535045979490560586 f36+
83737947964973553146 f30 + 104889507084213371570 f24+
167117997269207870 f18 − 104793725781390615514 f12−
83842685189903180394 f6 − 569978796672974242,(
25438330117200 f6 + 25438330117200

)
e3+(

76314990351600 f7 + 76314990351600 f
)
e2+(

−1594966552735 f44 + 4073543370415745 f38+
637527159231148925 f32 + 797521176113606525 f26+
530440941097175 f20 − 797160527306433145 f14−
638132320196044965 f8 − 4510507167940725 f2

)
e−

6036376800443 f45 + 15416903421476909 f39+
2412807646192304449 f33 + 3017679923028013705 f27+
1422320037411955 f21 − 3016560402417843941 f15−
2414249368183033161 f9 − 16561862361763873 f3,(
1387545279120 f12 − 1387545279120

)
e2+(

4321823003 f43 − 11037922310209 f37−
1727510711947989 f31 − 2165150991154425 f25−
5114342560755 f19 + 2162682824948601 f13+
1732620732685741 f7 + 13506088516033 f

)
e+

24177661775 f44 − 61749727185325 f38−
9664106795754225 f32 − 12090487758628245 f26−
8787672733575 f20 + 12083693383005045 f14+
9672870290826025 f8 + 68544102808525 f2,

f48 − 2554 f42 − 399710 f36 − 499722 f30+
499722 f18 + 399710 f12 + 2554 f6 − 1

]
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Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[a,b,c,d,e,f])

Apply lexTriangular to compute a decomposition into regular triangular sets. This should
not take more than 5 seconds.

lexTriangular(lg,false)$lextripack


{
f6 + 1, e6 − 3 f e5 + 3 f2 e4 − 4 f3 e3 + 3 f4 e2 − 3 f5 e− 1,

3 d+ f2 e5 − 4 f3 e4 + 4 f4 e3 − 2 f5 e2 − 2 e+ 2 f, c+ f,
3 b+ 2 f2 e5 − 5 f3 e4 + 5 f4 e3 − 10 f5 e2 − 4 e+ 7 f,
a− f2 e5 + 3 f3 e4 − 3 f4 e3 + 4 f5 e2 + 3 e− 3 f

}
,{

f6 − 1, e− f, d− f, c2 + 4 f c+ f2, (c− f) b− f c− 5 f2, a+ b+ c+ 3 f
}
,{

f6 − 1, e− f, d− f, c− f, b2 + 4 f b+ f2, a+ b+ 4 f
}
,{

f6 − 1, e− f, d2 + 4 f d+ f2, (d− f) c− f d− 5 f2, b− f, a+ c+ d+ 3 f
}
,{

f36 − 2554 f30 − 399709 f24 − 502276 f18 − 399709 f12 − 2554 f6 + 1,(
161718564 f12 − 161718564

)
e2 +

(
−504205 f31 + 1287737951 f25+

201539391380 f19 + 253982817368 f13 + 201940704665 f7 + 1574134601 f
)
e−

2818405 f32 + 7198203911 f26 + 1126548149060 f20+
1416530563364 f14 + 1127377589345 f8 + 7988820725 f2,(
693772639560 f6 − 693772639560

)
d− 462515093040 f2 e5+

1850060372160 f3 e4 − 1850060372160 f4 e3 +
(
−24513299931120 f11−

23588269745040 f5
)
e2 +

(
−890810428 f30 + 2275181044754 f24+

355937263869776 f18 + 413736880104344 f12 + 342849304487996 f6+
3704966481878) e− 4163798003 f31 + 10634395752169 f25+
1664161760192806 f19 + 2079424391370694 f13 + 1668153650635921 f7+
10924274392693 f,

(
12614047992 f6 − 12614047992

)
c−

7246825 f31 + 18508536599 f25 + 2896249516034 f19+
3581539649666 f13 + 2796477571739 f7 − 48094301893 f,(
693772639560 f6 − 693772639560

)
b− 925030186080 f2 e5+

2312575465200 f3 e4 − 2312575465200 f4 e3 +
(
−40007555547960 f11−

35382404617560 f5
)
e2 +

(
−3781280823 f30 + 9657492291789 f24+

1511158913397906 f18 + 1837290892286154 f12 + 1487216006594361 f6+
8077238712093) e− 9736390478 f31 + 24866827916734 f25+
3891495681905296 f19 + 4872556418871424 f13 + 3904047887269606 f7+
27890075838538 f, a+ b+ c+ d+ e+ f} ,{
f6 − 1, e2 + 4 f e+ f2, (e− f) d− f e− 5 f2, c− f, b− f, a+ d+ e+ 3 f

}]
Type: List RegularChain(Integer,[a,b,c,d,e,f])
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Note that the first set of the decomposition is normalized (all initials are integer numbers)
but not the second one (normalized triangular sets are defined in the description of the
NormalizedTriangularSetCategory constructor).

So apply now lexTriangular to produce normalized triangular sets.

lts := lexTriangular(lg,true)$lextripack


{
f6 + 1, e6 − 3 f e5 + 3 f2 e4 − 4 f3 e3 + 3 f4 e2 − 3 f5 e− 1,

3 d+ f2 e5 − 4 f3 e4 + 4 f4 e3 − 2 f5 e2 − 2 e+ 2 f, c+ f,
3 b+ 2 f2 e5 − 5 f3 e4 + 5 f4 e3 − 10 f5 e2 − 4 e+ 7 f,
a− f2 e5 + 3 f3 e4 − 3 f4 e3 + 4 f5 e2 + 3 e− 3 f

}
,{

f6 − 1, e− f, d− f, c2 + 4 f c+ f2, b+ c+ 4 f, a− f
}
,{

f6 − 1, e− f, d− f, c− f, b2 + 4 f b+ f2, a+ b+ 4 f
}
,{

f6 − 1, e− f, d2 + 4 f d+ f2, c+ d+ 4 f, b− f, a− f
}
,{

f36 − 2554 f30 − 399709 f24 − 502276 f18 − 399709 f12 − 2554 f6 + 1,
1387545279120 e2 +

(
4321823003 f31 − 11037922310209 f25−

1727506390124986 f19 − 2176188913464634 f13 − 1732620732685741 f7−
13506088516033 f) e+ 24177661775 f32 − 61749727185325 f26−
9664082618092450 f20 − 12152237485813570 f14 − 9672870290826025 f8−
68544102808525 f2,
1387545279120 d+

(
−1128983050 f30 + 2883434331830 f24+

451234998755840 f18 + 562426491685760 f12 + 447129055314890 f6−
165557857270) e− 1816935351 f31 + 4640452214013 f25+
726247129626942 f19 + 912871801716798 f13 + 726583262666877 f7+
4909358645961 f,
1387545279120 c+ 778171189 f31 − 1987468196267 f25−
310993556954378 f19 − 383262822316802 f13 − 300335488637543 f7+
5289595037041 f,
1387545279120 b+

(
1128983050 f30 − 2883434331830 f24−

451234998755840 f18 − 562426491685760 f12 − 447129055314890 f6+
165557857270) e− 3283058841 f31 + 8384938292463 f25+
1312252817452422 f19 + 1646579934064638 f13 + 1306372958656407 f7+
4694680112151 f,
1387545279120 a+ 1387545279120 e+ 4321823003 f31−
11037922310209 f25 − 1727506390124986 f19 − 2176188913464634 f13−
1732620732685741 f7 − 13506088516033 f

}
,{

f6 − 1, e2 + 4 f e+ f2, d+ e+ 4 f, c− f, b− f, a− f
}]

Type: List RegularChain(Integer,[a,b,c,d,e,f])
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We check that all initials are constant.

[ [init(p) for p in (ts :: List(P))] for ts in lts]

[[1, 3, 1, 3, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1],
[1387545279120, 1387545279120, 1387545279120,
1387545279120, 1387545279120, 1] ,
[1, 1, 1, 1, 1, 1]]

Type: List List NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[a,b,c,d,e,f])

Note that each triangular set in lts is a lexicographical Groebner basis. Recall that a point
belongs to the variety associated with lp if and only if it belongs to that associated with one
triangular set ts in lts.

By running the squareFreeLexTriangular operation, we retrieve the above decomposition.

squareFreeLexTriangular(lg,true)$lextripack

[{
f6 + 1, e6 − 3 f e5 + 3 f2 e4 − 4 f3 e3 + 3 f4 e2 − 3 f5 e− 1,

3 d+ f2 e5 − 4 f3 e4 + 4 f4 e3 − 2 f5 e2 − 2 e+ 2 f,
c+ f, 3 b+ 2 f2 e5 − 5 f3 e4 + 5 f4 e3 − 10 f5 e2 − 4 e+ 7 f,
a− f2 e5 + 3 f3 e4 − 3 f4 e3 + 4 f5 e2 + 3 e− 3 f

}
,{

f6 − 1, e− f, d− f, c2 + 4 f c+ f2, b+ c+ 4 f, a− f
}
,{

f6 − 1, e− f, d− f, c− f, b2 + 4 f b+ f2, a+ b+ 4 f
}
,{

f6 − 1, e− f, d2 + 4 f d+ f2, c+ d+ 4 f, b− f, a− f
}
,
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f36 − 2554 f30 − 399709 f24 − 502276 f18 − 399709 f12 − 2554 f6 + 1,

1387545279120 e2 +
(
4321823003 f31 − 11037922310209 f25−

1727506390124986 f19 − 2176188913464634 f13 − 1732620732685741 f7−
13506088516033 f) e+ 24177661775 f32 − 61749727185325 f26−
9664082618092450 f20 − 12152237485813570 f14 − 9672870290826025 f8−
68544102808525 f2,
1387545279120 d+

(
−1128983050 f30 + 2883434331830 f24+

451234998755840 f18 + 562426491685760 f12 + 447129055314890 f6−
165557857270) e− 1816935351 f31 + 4640452214013 f25+
726247129626942 f19 + 912871801716798 f13 + 726583262666877 f7+
4909358645961 f,
1387545279120 c+ 778171189 f31 − 1987468196267 f25−
310993556954378 f19 − 383262822316802 f13 − 300335488637543 f7+
5289595037041 f,
1387545279120 b+

(
1128983050 f30 − 2883434331830 f24−

451234998755840 f18 − 562426491685760 f12 − 447129055314890 f6+
165557857270) e− 3283058841 f31 + 8384938292463 f25+
1312252817452422 f19 + 1646579934064638 f13 + 1306372958656407 f7+
4694680112151 f, 1387545279120 a+ 1387545279120 e+
4321823003 f31 − 11037922310209 f25 − 1727506390124986 f19−
2176188913464634 f13 − 1732620732685741 f7 − 13506088516033 f

}
,{

f6 − 1, e2 + 4 f e+ f2, d+ e+ 4 f, c− f, b− f, a− f
}]

Type: List SquareFreeRegularTriangularSet(Integer,IndexedExponents

OrderedVariableList [a,b,c,d,e,f],OrderedVariableList

[a,b,c,d,e,f],NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[a,b,c,d,e,f]))

Thus the solutions given by lts are pairwise different.

We count them as follows.

reduce(+,[degree(ts) for ts in lts])

156

Type: PositiveInteger

We can investigate the triangular decomposition lts by using the ZeroDimensionalSolve-

Package.

This requires to add an extra variable (smaller than the others) as follows.

ls2 : List Symbol := concat(ls,new()$Symbol)

[a, b, c, d, e, f,%A]
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Type: List Symbol

Then we call the package.

zdpack := ZDSOLVE(R,ls,ls2)

ZeroDimensionalSolvePackage(Integer, [a, b, c, d, e, f ], [a, b, c, d, e, f,

Type: Domain

We compute a univariate representation of the variety associated with the input system as
follows.

concat [univariateSolve(ts)$zdpack for ts in lts]

[[
complexRoots = ?4 − 13 ?2 + 49,

coordinates =[
7 a+%A3 − 6 %A, 21 b+%A3 +%A,
21 c− 2 %A3 + 19 %A, 7 d−%A3 + 6 %A, 21 e−%A3 −%A,
21 f + 2 %A3 − 19 %A

]]
,[

complexRoots = ?4 + 11 ?2 + 49,
coordinates =[
35 a+ 3 %A3 + 19 %A, 35 b+%A3 + 18 %A, 35 c− 2 %A3 −%A,
35 d− 3 %A3 − 19 %A, 35 e−%A3 − 18 %A, 35 f + 2 %A3 +%A

]]
,[

complexRoots = ?8 − 12 ?7 + 58 ?6 − 120 ?5+
207 ?4 − 360 ?3 + 802 ?2 − 1332 ? + 1369,
coordinates =[
43054532 a+ 33782 %A7 − 546673 %A6 + 3127348 %A5 − 6927123 %A4+
4365212 %A3 − 25086957 %A2 + 39582814 %A− 107313172,
43054532 b− 33782 %A7 + 546673 %A6 − 3127348 %A5+
6927123 %A4 − 4365212 %A3 + 25086957 %A2−
39582814 %A+ 107313172,
21527266 c− 22306 %A7 + 263139 %A6 − 1166076 %A5 + 1821805 %A4−
2892788 %A3 + 10322663 %A2 − 9026596 %A+ 12950740,
43054532 d+ 22306 %A7 − 263139 %A6+
1166076 %A5 − 1821805 %A4 + 2892788 %A3−
10322663 %A2 + 30553862 %A− 12950740,
43054532 e− 22306 %A7 + 263139 %A6−
1166076 %A5 + 1821805 %A4 − 2892788 %A3+
10322663 %A2 − 30553862 %A+ 12950740,
21527266 f + 22306 %A7 − 263139 %A6+
1166076 %A5 − 1821805 %A4 + 2892788 %A3−
10322663 %A2 + 9026596 %A− 12950740

]]
,
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complexRoots = ?8 + 12 ?7 + 58 ?6 + 120 ?5+
207 ?4 + 360 ?3 + 802 ?2 + 1332 ? + 1369,
coordinates =[
43054532 a+ 33782 %A7 + 546673 %A6 + 3127348 %A5+
6927123 %A4 + 4365212 %A3 + 25086957 %A2 + 39582814 %A+ 107313172,
43054532 b− 33782 %A7 − 546673 %A6 − 3127348 %A5−
6927123 %A4 − 4365212 %A3 − 25086957 %A2 − 39582814 %A− 107313172,
21527266 c− 22306 %A7 − 263139 %A6 − 1166076 %A5−
1821805 %A4 − 2892788 %A3 − 10322663 %A2 − 9026596 %A− 12950740,
43054532 d+ 22306 %A7 + 263139 %A6 + 1166076 %A5+
1821805 %A4 + 2892788 %A3 + 10322663 %A2 + 30553862 %A+ 12950740,
43054532 e− 22306 %A7 − 263139 %A6 − 1166076 %A5−
1821805 %A4 − 2892788 %A3 − 10322663 %A2 − 30553862 %A− 12950740,
21527266 f + 22306 %A7 + 263139 %A6 + 1166076 %A5+
1821805 %A4 + 2892788 %A3 + 10322663 %A2 + 9026596 %A+ 12950740

]]
,[

complexRoots = ?4 − ?2 + 1,
coordinates =[
a−%A, b+%A3 −%A, c+%A3, d+%A, e−%A3 +%A, f −%A3

]]
,[

complexRoots = ?8 + 4 ?6 + 12 ?4 + 16 ?2 + 4,
coordinates =[
4 a− 2 %A7 − 7 %A5 − 20 %A3 − 22 %A,
4 b+ 2 %A7 + 7 %A5 + 20 %A3 + 22 %A,
4 c+%A7 + 3 %A5 + 10 %A3 + 10 %A,
4 d+%A7 + 3 %A5 + 10 %A3 + 6 %A,
4 e−%A7 − 3 %A5 − 10 %A3 − 6 %A,
4 f −%A7 − 3 %A5 − 10 %A3 − 10 %A

]]
,[

complexRoots = ?4 + 6 ?3 + 30 ?2 + 36 ? + 36,
coordinates =[
30 a−%A3 − 5 %A2 − 30 %A− 6,
6 b+%A3 + 5 %A2 + 24 %A+ 6,
30 c−%A3 − 5 %A2 − 6,
30 d−%A3 − 5 %A2 − 30 %A− 6,
30 e−%A3 − 5 %A2 − 30 %A− 6,
30 f −%A3 − 5 %A2 − 30 %A− 6

]]
,[

complexRoots = ?4 − 6 ?3 + 30 ?2 − 36 ? + 36,
coordinates =[
30 a−%A3 + 5 %A2 − 30 %A+ 6,
6 b+%A3 − 5 %A2 + 24 %A− 6,
30 c−%A3 + 5 %A2 + 6,
30 d−%A3 + 5 %A2 − 30 %A+ 6,
30 e−%A3 + 5 %A2 − 30 %A+ 6,
30 f −%A3 + 5 %A2 − 30 %A+ 6

]]
,
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complexRoots = ?2 + 6 ? + 6,
coordinates =
[a+ 1, b−%A− 5, c+%A+ 1, d+ 1, e+ 1, f + 1]] ,[
complexRoots = ?2 − 6 ? + 6,
coordinates =
[a− 1, b−%A+ 5, c+%A− 1, d− 1, e− 1, f − 1]] ,[
complexRoots = ?4 + 6 ?3 + 30 ?2 + 36 ? + 36,
coordinates =[
6 a+%A3 + 5 %A2 + 24 %A+ 6,
30 b−%A3 − 5 %A2 − 6,
30 c−%A3 − 5 %A2 − 30 %A− 6,
30 d−%A3 − 5 %A2 − 30 %A− 6,
30 e−%A3 − 5 %A2 − 30 %A− 6,
30 f −%A3 − 5 %A2 − 30 %A− 6

]]
,[

complexRoots = ?4 − 6 ?3 + 30 ?2 − 36 ? + 36,
coordinates =[
6 a+%A3 − 5 %A2 + 24 %A− 6,
30 b−%A3 + 5 %A2 + 6,
30 c−%A3 + 5 %A2 − 30 %A+ 6,
30 d−%A3 + 5 %A2 − 30 %A+ 6,
30 e−%A3 + 5 %A2 − 30 %A+ 6,
30 f −%A3 + 5 %A2 − 30 %A+ 6

]]
,[

complexRoots = ?2 + 6 ? + 6,
coordinates = [a−%A− 5, b+%A+ 1, c+ 1, d+ 1, e+ 1, f + 1]] ,[
complexRoots = ?2 − 6 ? + 6,
coordinates = [a−%A+ 5, b+%A− 1, c− 1, d− 1, e− 1, f − 1]] ,[
complexRoots = ?4 + 6 ?3 + 30 ?2 + 36 ? + 36,
coordinates =[
30 a−%A3 − 5 %A2 − 30 %A− 6,
30 b−%A3 − 5 %A2 − 30 %A− 6,
6 c+%A3 + 5 %A2 + 24 %A+ 6,
30 d−%A3 − 5 %A2 − 6,
30 e−%A3 − 5 %A2 − 30 %A− 6,
30 f −%A3 − 5 %A2 − 30 %A− 6

]]
,[

complexRoots = ?4 − 6 ?3 + 30 ?2 − 36 ? + 36,
coordinates =[
30 a−%A3 + 5 %A2 − 30 %A+ 6,
30 b−%A3 + 5 %A2 − 30 %A+ 6,
6 c+%A3 − 5 %A2 + 24 %A− 6,
30 d−%A3 + 5 %A2 + 6,
30 e−%A3 + 5 %A2 − 30 %A+ 6,
30 f −%A3 + 5 %A2 − 30 %A+ 6

]]
,
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complexRoots = ?2 + 6 ? + 6,
coordinates = [a+ 1, b+ 1, c−%A− 5, d+%A+ 1, e+ 1, f + 1]] ,[
complexRoots = ?2 − 6 ? + 6,
coordinates = [a− 1, b− 1, c−%A+ 5, d+%A− 1, e− 1, f − 1]] ,[

complexRoots = ?8 + 6 ?7 + 16 ?6 + 24 ?5 + 18 ?4 − 8 ?2 + 4,
coordinates =[
2 a+ 2 %A7 + 9 %A6 + 18 %A5 + 19 %A4 + 4 %A3 − 10 %A2 − 2 %A+ 4,
2 b+ 2 %A7 + 9 %A6 + 18 %A5 + 19 %A4 + 4 %A3 − 10 %A2 − 4 %A+ 4,
2 c−%A7 − 4 %A6 − 8 %A5 − 9 %A4 − 4 %A3 − 2 %A− 4,
2 d+%A7 + 4 %A6 + 8 %A5 + 9 %A4 + 4 %A3 + 2 %A+ 4,
2 e− 2 %A7 − 9 %A6 − 18 %A5 − 19 %A4 − 4 %A3 + 10 %A2 + 4 %A− 4,
2 f − 2 %A7 − 9 %A6 − 18 %A5 − 19 %A4 − 4 %A3 + 10 %A2 + 2 %A− 4

]]
,

[complexRoots =
?8 + 12 ?7 + 64 ?6 + 192 ?5 + 432 ?4 + 768 ?3 + 1024 ?2 + 768 ? + 256,
coordinates =[
1408 a− 19 %A7 − 200 %A6 − 912 %A5 − 2216 %A4−
4544 %A3 − 6784 %A2 − 6976 %A− 1792,
1408 b− 37 %A7 − 408 %A6 − 1952 %A5 − 5024 %A4−
10368 %A3 − 16768 %A2 − 17920 %A− 5120,
1408 c+ 37 %A7 + 408 %A6 + 1952 %A5 + 5024 %A4+
10368 %A3 + 16768 %A2 + 17920 %A+ 5120,
1408 d+ 19 %A7 + 200 %A6 + 912 %A5 + 2216 %A4+
4544 %A3 + 6784 %A2 + 6976 %A+ 1792,
2 e+%A,
2 f −%A]] ,[
complexRoots = ?8 + 4 ?6 + 12 ?4 + 16 ?2 + 4,
coordinates =[
4 a−%A7 − 3 %A5 − 10 %A3 − 6 %A,
4 b−%A7 − 3 %A5 − 10 %A3 − 10 %A,
4 c− 2 %A7 − 7 %A5 − 20 %A3 − 22 %A,
4 d+ 2 %A7 + 7 %A5 + 20 %A3 + 22 %A,
4 e+%A7 + 3 %A5 + 10 %A3 + 10 %A,
4 f +%A7 + 3 %A5 + 10 %A3 + 6 %A

]]
,[

complexRoots = ?8 + 16 ?6 − 96 ?4 + 256 ?2 + 256,
coordinates =[
512 a−%A7 − 12 %A5 + 176 %A3 − 448 %A,
128 b−%A7 − 16 %A5 + 96 %A3 − 256 %A,
128 c+%A7 + 16 %A5 − 96 %A3 + 256 %A,
512 d+%A7 + 12 %A5 − 176 %A3 + 448 %A,
2 e+%A,
2 f −%A]] ,
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[complexRoots =
?8 − 12 ?7 + 64 ?6 − 192 ?5 + 432 ?4 − 768 ?3 + 1024 ?2 − 768 ? + 256,
coordinates =[
1408 a− 19 %A7 + 200 %A6 − 912 %A5 + 2216 %A4−
4544 %A3 + 6784 %A2 − 6976 %A+ 1792,
1408 b− 37 %A7 + 408 %A6 − 1952 %A5 + 5024 %A4−
10368 %A3 + 16768 %A2 − 17920 %A+ 5120,
1408 c+ 37 %A7 − 408 %A6 + 1952 %A5 − 5024 %A4+
10368 %A3 − 16768 %A2 + 17920 %A− 5120,
1408 d+ 19 %A7 − 200 %A6 + 912 %A5 − 2216 %A4+
4544 %A3 − 6784 %A2 + 6976 %A− 1792,
2 e+%A,
2 f −%A]] ,[
complexRoots = ?8 − 6 ?7 + 16 ?6 − 24 ?5 + 18 ?4 − 8 ?2 + 4,
coordinates =[
2 a+ 2 %A7 − 9 %A6 + 18 %A5 − 19 %A4 + 4 %A3 + 10 %A2 − 2 %A− 4,
2 b+ 2 %A7 − 9 %A6 + 18 %A5 − 19 %A4 + 4 %A3 + 10 %A2 − 4 %A− 4,
2 c−%A7 + 4 %A6 − 8 %A5 + 9 %A4 − 4 %A3 − 2 %A+ 4,
2 d+%A7 − 4 %A6 + 8 %A5 − 9 %A4 + 4 %A3 + 2 %A− 4,
2 e− 2 %A7 + 9 %A6 − 18 %A5 + 19 %A4 − 4 %A3 − 10 %A2 + 4 %A+ 4,
2 f − 2 %A7 + 9 %A6 − 18 %A5 + 19 %A4 − 4 %A3 − 10 %A2 + 2 %A+ 4

]]
,[

complexRoots = ?4 + 12 ?2 + 144,
coordinates =[
12 a−%A2 − 12, 12 b−%A2 − 12, 12 c−%A2 − 12,
12 d−%A2 − 12, 6 e+%A2 + 3 %A+ 12, 6 f +%A2 − 3 %A+ 12

]]
,[

complexRoots = ?4 + 6 ?3 + 30 ?2 + 36 ? + 36,
coordinates =[
6 a−%A3 − 5 %A2 − 24 %A− 6, 30 b+%A3 + 5 %A2 + 30 %A+ 6,
30 c+%A3 + 5 %A2 + 30 %A+ 6, 30 d+%A3 + 5 %A2 + 30 %A+ 6,
30 e+%A3 + 5 %A2 + 30 %A+ 6, 30 f +%A3 + 5 %A2 + 6

]]
,[

complexRoots = ?4 − 6 ?3 + 30 ?2 − 36 ? + 36,
coordinates =[
6 a−%A3 + 5 %A2 − 24 %A+ 6, 30 b+%A3 − 5 %A2 + 30 %A− 6,
30 c+%A3 − 5 %A2 + 30 %A− 6, 30 d+%A3 − 5 %A2 + 30 %A− 6,
30 e+%A3 − 5 %A2 + 30 %A− 6, 30 f +%A3 − 5 %A2 − 6

]]
,[

complexRoots = ?4 + 12 ?2 + 144,
coordinates =[
12 a+%A2 + 12, 12 b+%A2 + 12, 12 c+%A2 + 12, 12 d+%A2 + 12,
6 e−%A2 + 3 %A− 12, 6 f −%A2 − 3 %A− 12

]]
,[

complexRoots = ?2 − 12,
coordinates =
[a− 1, b− 1, c− 1, d− 1, 2 e+%A+ 4, 2 f −%A+ 4]] ,
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complexRoots = ?2 + 6 ? + 6,
coordinates =
[a+%A+ 5, b− 1, c− 1, d− 1, e− 1, f −%A− 1]] ,[
complexRoots = ?2 − 6 ? + 6,
coordinates =
[a+%A− 5, b+ 1, c+ 1, d+ 1, e+ 1, f −%A+ 1]] ,[
complexRoots = ?2 − 12,
coordinates =
[a+ 1, b+ 1, c+ 1, d+ 1, 2 e+%A− 4, 2 f −%A− 4]] ,[
complexRoots = ?4 + 6 ?3 + 30 ?2 + 36 ? + 36,
coordinates =[
30 a−%A3 − 5 %A2 − 30 %A− 6, 30 b−%A3 − 5 %A2 − 30 %A− 6,
30 c−%A3 − 5 %A2 − 30 %A− 6, 6 d+%A3 + 5 %A2 + 24 %A+ 6,
30 e−%A3 − 5 %A2 − 6, 30 f −%A3 − 5 %A2 − 30 %A− 6

]]
,[

complexRoots = ?4 − 6 ?3 + 30 ?2 − 36 ? + 36,
coordinates =[
30 a−%A3 + 5 %A2 − 30 %A+ 6, 30 b−%A3 + 5 %A2 − 30 %A+ 6,
30 c−%A3 + 5 %A2 − 30 %A+ 6, 6 d+%A3 − 5 %A2 + 24 %A− 6,
30 e−%A3 + 5 %A2 + 6, 30 f −%A3 + 5 %A2 − 30 %A+ 6

]]
,[

complexRoots = ?2 + 6 ? + 6,
coordinates =
[a+ 1, b+ 1, c+ 1, d−%A− 5, e+%A+ 1, f + 1]] ,[
complexRoots = ?2 − 6 ? + 6,
coordinates =
[a− 1, b− 1, c− 1, d−%A+ 5, e+%A− 1, f − 1]]


Type: List Record(complexRoots: SparseUnivariatePolynomial

Integer,coordinates: List Polynomial Integer)

Since the univariateSolve operation may split a regular set, it returns a list. This explains
the use of concat.

Look at the last item of the result. It consists of two parts. For any complex root ? of the
univariate polynomial in the first part, we get a tuple of univariate polynomials (in a, ..., f
respectively) by replacing %A by ? in the second part. Each of these tuples t describes a
point of the variety associated with lp by equaling to zero the polynomials in t.

Note that the way of reading these univariate representations is explained also in the example
illustrating the ZeroDimensionalSolvePackage constructor.

Now, we compute the points of the variety with real coordinates.

concat [realSolve(ts)$zdpack for ts in lts]
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[[%B23,%B23,%B23,%B27,−%B27− 4 %B23,%B23],

[%B23,%B23,%B23,%B28,−%B28− 4 %B23,%B23],

[%B24,%B24,%B24,%B25,−%B25− 4 %B24,%B24],

[%B24,%B24,%B24,%B26,−%B26− 4 %B24,%B24],

[%B29,%B29,%B29,%B29,%B33,−%B33− 4 %B29],

[%B29,%B29,%B29,%B29,%B34,−%B34− 4 %B29],

[%B30,%B30,%B30,%B30,%B31,−%B31− 4 %B30],

[%B30,%B30,%B30,%B30,%B32,−%B32− 4 %B30],

[%B35,%B35,%B39,−%B39− 4 %B35,%B35,%B35],

[%B35,%B35,%B40,−%B40− 4 %B35,%B35,%B35],

[%B36,%B36,%B37,−%B37− 4 %B36,%B36,%B36],

[%B36,%B36,%B38,−%B38− 4 %B36,%B36,%B36],
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[%B41,
%B51,

7865521

6006689520
%B41

31 − 6696179241

2002229840
%B41

25−

25769893181

49235160
%B41

19 − 1975912990729

3003344760
%B41

13−

1048460696489

2002229840
%B41

7 − 21252634831

6006689520
%B41,

− 778171189

1387545279120
%B41

31
+

1987468196267

1387545279120
%B41

25
+

155496778477189

693772639560
%B41

19
+

191631411158401

693772639560
%B41

13
+

300335488637543

1387545279120
%B41

7 − 755656433863

198220754160
%B41,

1094352947

462515093040
%B41

31 − 2794979430821

462515093040
%B41

25−

218708802908737

231257546520
%B41

19 − 91476663003591

77085848840
%B41

13−

145152550961823

154171697680
%B41

7 − 1564893370717

462515093040
%B41,

−%B51− 4321823003

1387545279120
%B41

31
+

180949546069

22746643920
%B41

25
+

863753195062493

693772639560
%B41

19
+

1088094456732317

693772639560
%B41

13
+

1732620732685741

1387545279120
%B41

7
+

13506088516033

1387545279120
%B41

]
,
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[%B41,%B52,

7865521

6006689520
%B41

31 − 6696179241

2002229840
%B41

25 − 25769893181

49235160
%B41

19−

1975912990729

3003344760
%B41

13 − 1048460696489

2002229840
%B41

7 − 21252634831

6006689520
%B41,

− 778171189

1387545279120
%B41

31
+

1987468196267

1387545279120
%B41

25
+

155496778477189

693772639560
%B41

19
+

191631411158401

693772639560
%B41

13
+

300335488637543

1387545279120
%B41

7 − 755656433863

198220754160
%B41,

1094352947

462515093040
%B41

31 − 2794979430821

462515093040
%B41

25−

218708802908737

231257546520
%B41

19 − 91476663003591

77085848840
%B41

13−

145152550961823

154171697680
%B41

7 − 1564893370717

462515093040
%B41,

−%B52− 4321823003

1387545279120
%B41

31
+

180949546069

22746643920
%B41

25
+

863753195062493

693772639560
%B41

19
+

1088094456732317

693772639560
%B41

13
+

1732620732685741

1387545279120
%B41

7
+

13506088516033

1387545279120
%B41

]
,
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[%B42,%B49,

7865521

6006689520
%B42

31 − 6696179241

2002229840
%B42

25−

25769893181

49235160
%B42

19 − 1975912990729

3003344760
%B42

13−

1048460696489

2002229840
%B42

7 − 21252634831

6006689520
%B42,

− 778171189

1387545279120
%B42

31
+

1987468196267

1387545279120
%B42

25
+

155496778477189

693772639560
%B42

19
+

191631411158401

693772639560
%B42

13
+

300335488637543

1387545279120
%B42

7 − 755656433863

198220754160
%B42,

1094352947

462515093040
%B42

31 − 2794979430821

462515093040
%B42

25−

218708802908737

231257546520
%B42

19 − 91476663003591

77085848840
%B42

13−

145152550961823

154171697680
%B42

7 − 1564893370717

462515093040
%B42,

−%B49− 4321823003

1387545279120
%B42

31
+

180949546069

22746643920
%B42

25
+

863753195062493

693772639560
%B42

19
+

1088094456732317

693772639560
%B42

13
+

1732620732685741

1387545279120
%B42

7
+

13506088516033

1387545279120
%B42

]
,
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[%B42,%B50,

7865521

6006689520
%B42

31 − 6696179241

2002229840
%B42

25−

25769893181

49235160
%B42

19 − 1975912990729

3003344760
%B42

13−

1048460696489

2002229840
%B42

7 − 21252634831

6006689520
%B42,

− 778171189

1387545279120
%B42

31
+

1987468196267

1387545279120
%B42

25
+

155496778477189

693772639560
%B42

19
+

191631411158401

693772639560
%B42

13
+

300335488637543

1387545279120
%B42

7 − 755656433863

198220754160
%B42,

1094352947

462515093040
%B42

31 − 2794979430821

462515093040
%B42

25−

218708802908737

231257546520
%B42

19 − 91476663003591

77085848840
%B42

13−

145152550961823

154171697680
%B42

7 − 1564893370717

462515093040
%B42,

−%B50− 4321823003

1387545279120
%B42

31
+

180949546069

22746643920
%B42

25
+

863753195062493

693772639560
%B42

19
+

1088094456732317

693772639560
%B42

13
+

1732620732685741

1387545279120
%B42

7
+

13506088516033

1387545279120
%B42

]
,
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[%B43,%B47,

7865521

6006689520
%B43

31 − 6696179241

2002229840
%B43

25−

25769893181

49235160
%B43

19 − 1975912990729

3003344760
%B43

13−

1048460696489

2002229840
%B43

7 − 21252634831

6006689520
%B43,

− 778171189

1387545279120
%B43

31
+

1987468196267

1387545279120
%B43

25
+

155496778477189

693772639560
%B43

19
+

191631411158401

693772639560
%B43

13
+

300335488637543

1387545279120
%B43

7 − 755656433863

198220754160
%B43,

1094352947

462515093040
%B43

31 − 2794979430821

462515093040
%B43

25−

218708802908737

231257546520
%B43

19 − 91476663003591

77085848840
%B43

13−

145152550961823

154171697680
%B43

7 − 1564893370717

462515093040
%B43,

−%B47− 4321823003

1387545279120
%B43

31
+

180949546069

22746643920
%B43

25
+

863753195062493

693772639560
%B43

19
+

1088094456732317

693772639560
%B43

13
+

1732620732685741

1387545279120
%B43

7
+

13506088516033

1387545279120
%B43

]
,
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[%B43,%B48,

7865521

6006689520
%B43

31 − 6696179241

2002229840
%B43

25−

25769893181

49235160
%B43

19 − 1975912990729

3003344760
%B43

13−

1048460696489

2002229840
%B43

7 − 21252634831

6006689520
%B43,

− 778171189

1387545279120
%B43

31
+

1987468196267

1387545279120
%B43

25
+

155496778477189

693772639560
%B43

19
+

191631411158401

693772639560
%B43

13
+

300335488637543

1387545279120
%B43

7 − 755656433863

198220754160
%B43,

1094352947

462515093040
%B43

31 − 2794979430821

462515093040
%B43

25−

218708802908737

231257546520
%B43

19 − 91476663003591

77085848840
%B43

13−

145152550961823

154171697680
%B43

7 − 1564893370717

462515093040
%B43,

−%B48− 4321823003

1387545279120
%B43

31
+

180949546069

22746643920
%B43

25
+

863753195062493

693772639560
%B43

19
+

1088094456732317

693772639560
%B43

13
+

1732620732685741

1387545279120
%B43

7
+

13506088516033

1387545279120
%B43

]
,
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[%B44,%B45,

7865521

6006689520
%B44

31 − 6696179241

2002229840
%B44

25−

25769893181

49235160
%B44

19 − 1975912990729

3003344760
%B44

13−

1048460696489

2002229840
%B44

7 − 21252634831

6006689520
%B44,

− 778171189

1387545279120
%B44

31
+

1987468196267

1387545279120
%B44

25
+

155496778477189

693772639560
%B44

19
+

191631411158401

693772639560
%B44

13
+

300335488637543

1387545279120
%B44

7 − 755656433863

198220754160
%B44,

1094352947

462515093040
%B44

31 − 2794979430821

462515093040
%B44

25−

218708802908737

231257546520
%B44

19 − 91476663003591

77085848840
%B44

13−

145152550961823

154171697680
%B44

7 − 1564893370717

462515093040
%B44,

−%B45− 4321823003

1387545279120
%B44

31
+

180949546069

22746643920
%B44

25
+

863753195062493

693772639560
%B44

19
+

1088094456732317

693772639560
%B44

13
+

1732620732685741

1387545279120
%B44

7
+

13506088516033

1387545279120
%B44

]
,
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[%B44,%B46,

7865521

6006689520
%B44

31 − 6696179241

2002229840
%B44

25−

25769893181

49235160
%B44

19 − 1975912990729

3003344760
%B44

13−

1048460696489

2002229840
%B44

7 − 21252634831

6006689520
%B44,

− 778171189

1387545279120
%B44

31
+

1987468196267

1387545279120
%B44

25
+

155496778477189

693772639560
%B44

19
+

191631411158401

693772639560
%B44

13
+

300335488637543

1387545279120
%B44

7 − 755656433863

198220754160
%B44,

1094352947

462515093040
%B44

31 − 2794979430821

462515093040
%B44

25−

218708802908737

231257546520
%B44

19 − 91476663003591

77085848840
%B44

13−

145152550961823

154171697680
%B44

7 − 1564893370717

462515093040
%B44,

−%B46− 4321823003

1387545279120
%B44

31
+

180949546069

22746643920
%B44

25
+

863753195062493

693772639560
%B44

19
+

1088094456732317

693772639560
%B44

13
+

1732620732685741

1387545279120
%B44

7
+

13506088516033

1387545279120
%B44

]
,

[%B53,%B57,−%B57− 4 %B53,%B53,%B53,%B53],

[%B53,%B58,−%B58− 4 %B53,%B53,%B53,%B53],

[%B54,%B55,−%B55− 4 %B54,%B54,%B54,%B54],

[%B54,%B56,−%B56− 4 %B54,%B54,%B54,%B54] ]

Type: List List RealClosure Fraction Integer

We obtain 24 points given by lists of elements in the RealClosure of Fraction of R. In
each list, the first value corresponds to the indeterminate f, the second to e and so on. See
ZeroDimensionalSolvePackage to learn more about the realSolve operation.
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9.47 LazardSetSolvingPackage

The LazardSetSolvingPackage package constructor solves polynomial systems by means
of Lazard triangular sets. However one condition is relaxed: Regular triangular sets whose
saturated ideals have positive dimension are not necessarily normalized.

The decompositions are computed in two steps. First the algorithm of Moreno Maza (im-
plemented in the RegularTriangularSet domain constructor) is called. Then the resulting
decompositions are converted into lists of square-free regular triangular sets and the re-
dundant components are removed. Moreover, zero-dimensional regular triangular sets are
normalized.

Note that the way of understanding triangular decompositions is detailed in the example of
the RegularTriangularSet constructor.

The LazardSetSolvingPackage constructor takes six arguments. The first one, R, is the
coefficient ring of the polynomials; it must belong to the category GcdDomain. The sec-
ond one, E, is the exponent monoid of the polynomials; it must belong to the category
OrderedAbelianMonoidSup. the third one, V, is the ordered set of variables; it must
belong to the category OrderedSet. The fourth one is the polynomial ring; it must be-
long to the category RecursivePolynomialCategory(R,E,V). The fifth one is a domain of
the category RegularTriangularSetCategory(R,E,V,P) and the last one is a domain of
the category SquareFreeRegularTriangularSetCategory(R,E,V,P). The abbreviation for
LazardSetSolvingPackage is LAZM3PK.

N.B. For the purpose of solving zero-dimensional algebraic systems, see also
LexTriangularPackage and ZeroDimensionalSolvePackage. These packages are easier to
call than LAZM3PK. Moreover, the ZeroDimensionalSolvePackage package provides opera-
tions to compute either the complex roots or the real roots.

We illustrate now the use of the LazardSetSolvingPackage package constructor with two
examples (Butcher and Vermeer).

Define the coefficient ring.

R := Integer

Integer

Type: Domain

Define the list of variables,

ls : List Symbol := [b1,x,y,z,t,v,u,w]

[b1, x, y, z, t, v, u, w]

Type: List Symbol
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and make it an ordered set:

V := OVAR(ls)

OrderedVariableList [b1,x,y,z,t,v,u,w]

Type: Domain

then define the exponent monoid.

E := IndexedExponents V

IndexedExponents OrderedVariableList [b1,x,y,z,t,v,u,w]

Type: Domain

Define the polynomial ring.

P := NSMP(R, V)

NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[b1, x, y, z, t, v, u,w])

Type: Domain

Let the variables be polynomial.

b1: P := ’b1

b1

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

x: P := ’x

x

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

y: P := ’y
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y

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

z: P := ’z

z

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

t: P := ’t

t

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

u: P := ’u

u

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

v: P := ’v

v

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

w: P := ’w

w

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])
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Now call the RegularTriangularSet domain constructor.

T := REGSET(R,E,V,P)

RegularTriangularSet(Integer,
IndexedExponentsOrderedVariableList[b1, x, y, z, t, v, u,w],
OrderedVariableList[b1, x, y, z, t, v, u,w],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[b1, x, y, z, t, v, u,w]))

Type: Domain

Define a polynomial system (the Butcher example).

p0 := b1 + y + z - t - w

b1 + y + z − t− w

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

p1 := 2*z*u + 2*y*v + 2*t*w - 2*w**2 - w - 1

2 v y + 2 u z + 2 w t− 2 w2 − w − 1

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

p2 := 3*z*u**2 + 3*y*v**2 - 3*t*w**2 + 3*w**3 + 3*w**2 - t + 4*w

3 v2 y + 3 u2 z +
(
−3 w2 − 1

)
t+ 3 w3 + 3 w2 + 4 w

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

p3 := 6*x*z*v - 6*t*w**2 + 6*w**3 - 3*t*w + 6*w**2 - t + 4*w

6 v z x+
(
−6 w2 − 3 w − 1

)
t+ 6 w3 + 6 w2 + 4 w

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])
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p4 := 4*z*u**3+ 4*y*v**3+ 4*t*w**3- 4*w**4 - 6*w**3+ 4*t*w- 10*w**2- w- 1

4 v3 y + 4 u3 z +
(
4 w3 + 4 w

)
t− 4 w4 − 6 w3 − 10 w2 − w − 1

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

p5 := 8*x*z*u*v +8*t*w**3 -8*w**4 +4*t*w**2 -12*w**3 +4*t*w -14*w**2 -3*w -1

8 u v z x+
(
8 w3 + 4 w2 + 4 w

)
t− 8 w4 − 12 w3 − 14 w2 − 3 w − 1

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

p6 := 12*x*z*v**2+12*t*w**3 -12*w**4 +12*t*w**2 -18*w**3 +8*t*w -14*w**2 -w

-1

12 v2 z x+
(
12 w3 + 12 w2 + 8 w

)
t− 12 w4 − 18 w3 − 14 w2 − w − 1

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

p7 := -24*t*w**3 + 24*w**4 - 24*t*w**2 + 36*w**3 - 8*t*w + 26*w**2 + 7*w + 1

(
−24 w3 − 24 w2 − 8 w

)
t+ 24 w4 + 36 w3 + 26 w2 + 7 w + 1

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

lp := [p0, p1, p2, p3, p4, p5, p6, p7]

[b1 + y + z − t− w,
2 v y + 2 u z + 2 w t− 2 w2 − w − 1,
3 v2 y + 3 u2 z +

(
−3 w2 − 1

)
t+ 3 w3 + 3 w2 + 4 w,

6 v z x+
(
−6 w2 − 3 w − 1

)
t+ 6 w3 + 6 w2 + 4 w,

4 v3 y + 4 u3 z +
(
4 w3 + 4 w

)
t− 4 w4 − 6 w3 − 10 w2 − w − 1,

8 u v z x+
(
8 w3 + 4 w2 + 4 w

)
t− 8 w4 − 12 w3 − 14 w2 − 3 w − 1,

12 v2 z x+
(
12 w3 + 12 w2 + 8 w

)
t− 12 w4 − 18 w3 − 14 w2 − w − 1,(

−24 w3 − 24 w2 − 8 w
)
t+ 24 w4 + 36 w3 + 26 w2 + 7 w + 1

]
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Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

First of all, let us solve this system in the sense of Lazard by means of the REGSET constructor:

lts := zeroSetSplit(lp,false)$T

[{w + 1, u, v, t+ 1, b1 + y + z + 2}, {w + 1, v, t+ 1, z, b1 + y + 2},
{w + 1, t+ 1, z, y, b1 + 2}, {w + 1, v − u, t+ 1, y + z, x, b1 + 2},
{w + 1, u, t+ 1, y, x, b1 + z + 2},{
144 w5 + 216 w4 + 96 w3 + 6 w2 − 11 w − 1,(
12 w2 + 9 w + 1

)
u− 72 w5 − 108 w4 − 42 w3 − 9 w2 − 3 w,(

12 w2 + 9 w + 1
)
v + 36 w4 + 54 w3 + 18 w2,(

24 w3 + 24 w2 + 8 w
)
t− 24 w4 − 36 w3 − 26 w2 − 7 w − 1,(

12 u v − 12 u2
)
z +

(
12 w v + 12 w2 + 4

)
t+ (3 w − 5) v+

36 w4 + 42 w3 + 6 w2 − 16 w,
2 v y + 2 u z + 2 w t− 2 w2 − w − 1,
6 v z x+

(
−6 w2 − 3 w − 1

)
t+ 6 w3 + 6 w2 + 4 w, b1 + y + z − t− w

}]
Type: List RegularTriangularSet(Integer, IndexedExponents

OrderedVariableList [b1,x,y,z,t,v,u,w], OrderedVariableList

[b1,x,y,z,t,v,u,w], NewSparseMultivariatePolynomial(

Integer,OrderedVariableList [b1,x,y,z,t,v,u,w]))

We can get the dimensions of each component of a decomposition as follows.

[coHeight(ts) for ts in lts]

[3, 3, 3, 2, 2, 0]

Type: List NonNegativeInteger

The first five sets have a simple shape. However, the last one, which has dimension zero,
can be simplified by using Lazard triangular sets.

Thus we call the SquareFreeRegularTriangularSet domain constructor,

ST := SREGSET(R,E,V,P)

SquareFreeRegularTriangularSet(Integer,
IndexedExponentsOrderedVariableList[b1, x, y, z, t, v, u,w],
OrderedVariableList[b1, x, y, z, t, v, u,w],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[b1, x, y, z, t, v, u,w]))
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Type: Domain

and set the LAZM3PK package constructor to our situation.

pack := LAZM3PK(R,E,V,P,T,ST)

LazardSetSolvingPackage(Integer,
IndexedExponentsOrderedVariableList[b1, x, y, z, t, v,u,w],
OrderedVariableList[b1, x, y, z, t, v, u,w],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[b1, x, y, z, t, v, u,w]),
RegularTriangularSet(Integer,
IndexedExponentsOrderedVariableList[b1, x, y, z, t, v,u,w],
OrderedVariableList[b1, x, y, z, t, v, u,w],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[b1, x, y, z, t, v, u,w])),
SquareFreeRegularTriangularSet(Integer,
IndexedExponentsOrderedVariableList[b1, x, y, z, t, v,u,w],
OrderedVariableList[b1, x, y, z, t, v, u,w],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[b1, x, y, z, t, v, u,w])))

Type: Domain

We are ready to solve the system by means of Lazard triangular sets:

zeroSetSplit(lp,false)$pack

[{w + 1, t+ 1, z, y, b1 + 2},
{w + 1, v, t+ 1, z, b1 + y + 2},
{w + 1, u, v, t+ 1, b1 + y + z + 2},
{w + 1, v − u, t+ 1, y + z, x, b1 + 2},
{w + 1, u, t+ 1, y, x, b1 + z + 2},{
144 w5 + 216 w4 + 96 w3 + 6 w2 − 11 w − 1,
u− 24 w4 − 36 w3 − 14 w2 + w + 1,
3 v − 48 w4 − 60 w3 − 10 w2 + 8 w + 2,
t− 24 w4 − 36 w3 − 14 w2 − w + 1, 486 z − 2772 w4−
4662 w3 − 2055 w2 + 30 w + 127,

2916 y − 22752 w4 − 30312 w3 − 8220 w2 + 2064 w + 1561,
356 x− 3696 w4 − 4536 w3 − 968 w2 + 822 w + 371,
2916 b1− 30600 w4 − 46692 w3 − 20274 w2 − 8076 w + 593

}]
Type: List SquareFreeRegularTriangularSet(Integer, IndexedExponents

OrderedVariableList [b1,x,y,z,t,v,u,w], OrderedVariableList

[b1,x,y,z,t,v,u,w], NewSparseMultivariatePolynomial(Integer,

OrderedVariableList [b1,x,y,z,t,v,u,w]))
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We see the sixth triangular set is nicer now: each one of its polynomials has a constant
initial.

We follow with the Vermeer example. The ordering is the usual one for this system.

Define the polynomial system.

f0 := (w - v) ** 2 + (u - t) ** 2 - 1

t2 − 2 u t+ v2 − 2 w v + u2 + w2 − 1

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

f1 := t ** 2 - v ** 3

t2 − v3

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

f2 := 2 * t * (w - v) + 3 * v ** 2 * (u - t)

(
−3 v2 − 2 v + 2 w

)
t+ 3 u v2

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

f3 := (3 * z * v ** 2 - 1) * (2 * z * t - 1)

6 v2 t z2 +
(
−2 t− 3 v2

)
z + 1

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

lf := [f0, f1, f2, f3]

[
t2 − 2 u t+ v2 − 2 w v + u2 + w2 − 1,
t2 − v3,(
−3 v2 − 2 v + 2 w

)
t+ 3 u v2,

6 v2 t z2 +
(
−2 t− 3 v2

)
z + 1

]
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Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[b1,x,y,z,t,v,u,w])

First of all, let us solve this system in the sense of Kalkbrener by means of the REGSET

constructor:

zeroSetSplit(lf,true)$T

[{
729 u6 +

(
−1458 w3 + 729 w2 − 4158 w − 1685

)
u4+(

729 w6 − 1458 w5 − 2619 w4 − 4892 w3 − 297 w2 + 5814 w + 427
)
u2+

729 w8 + 216 w7 − 2900 w6 − 2376 w5 + 3870 w4+
4072 w3 − 1188 w2 − 1656 w + 529,(
2187 u4 +

(
−4374 w3 − 972 w2 − 12474 w − 2868

)
u2+

2187 w6 − 1944 w5 − 10125 w4 − 4800 w3 + 2501 w2 + 4968 w − 1587
)
v+(

1944 w3 − 108 w2
)
u2+

972 w6 + 3024 w5 − 1080 w4 + 496 w3 + 1116 w2,(
3 v2 + 2 v − 2 w

)
t− 3 u v2,(

(4 v − 4 w) t− 6 u v2
)
z2 +

(
2 t+ 3 v2

)
z − 1

}]
Type: List RegularTriangularSet(Integer, IndexedExponents

OrderedVariableList [b1,x,y,z,t,v,u,w], OrderedVariableList

[b1,x,y,z,t,v,u,w], NewSparseMultivariatePolynomial(Integer,

OrderedVariableList [b1,x,y,z,t,v,u,w]))

We have obtained one regular chain (i.e. regular triangular set) with dimension 1. This set
is in fact a characterist set of the (radical of) of the ideal generated by the input system lf.
Thus we have only the generic points of the variety associated with lf (for the elimination
ordering given by ls).

So let us get now a full description of this variety.

Hence, we solve this system in the sense of Lazard by means of the REGSET constructor:

zeroSetSplit(lf,false)$T
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729 u6 +

(
−1458 w3 + 729 w2 − 4158 w − 1685

)
u4+(

729 w6 − 1458 w5 − 2619 w4 − 4892 w3 − 297 w2 + 5814 w + 427
)
u2+

729 w8 + 216 w7 − 2900 w6 − 2376 w5 + 3870 w4 + 4072 w3−
1188 w2 − 1656 w + 529,(
2187 u4 +

(
−4374 w3 − 972 w2 − 12474 w − 2868

)
u2+

2187 w6 − 1944 w5 − 10125 w4 − 4800 w3 + 2501 w2 + 4968 w − 1587
)
v+(

1944 w3 − 108 w2
)
u2+

972 w6 + 3024 w5 − 1080 w4 + 496 w3 + 1116 w2,(
3 v2 + 2 v − 2 w

)
t− 3 u v2,(

(4 v − 4 w) t− 6 u v2
)
z2 +

(
2 t+ 3 v2

)
z − 1

}
,{

27 w4 + 4 w3 − 54 w2 − 36 w + 23,
u,
(12 w + 2) v − 9 w2 − 2 w + 9,
6 t2 − 2 v − 3 w2 + 2 w + 3,
2 t z − 1} ,{
59049 w6 + 91854 w5 − 45198 w4 + 145152 w3 + 63549 w2 + 60922 w + 21420,(
31484448266904 w5 − 18316865522574 w4 + 23676995746098 w3 + 6657857188965 w2+
8904703998546 w + 3890631403260) u2 + 94262810316408 w5 − 82887296576616 w4+
89801831438784 w3 + 28141734167208 w2 + 38070359425432 w + 16003865949120,(
243 w2 + 36 w + 85

)
v2 +

(
−81 u2 − 162 w3 + 36 w2 + 154 w + 72

)
v − 72 w3 + 4 w2,(

3 v2 + 2 v − 2 w
)
t− 3 u v2,(

(4 v − 4 w) t− 6 u v2
)
z2 +

(
2 t+ 3 v2

)
z − 1

}
,{

27 w4 + 4 w3 − 54 w2 − 36 w + 23, u,
(12 w + 2) v − 9 w2 − 2 w + 9,
6 t2 − 2 v − 3 w2 + 2 w + 3,
3 v2 z − 1

}]
Type: List RegularTriangularSet(Integer, IndexedExponents

OrderedVariableList [b1,x,y,z,t,v,u,w], OrderedVariableList

[b1,x,y,z,t,v,u,w], NewSparseMultivariatePolynomial(Integer,

OrderedVariableList [b1,x,y,z,t,v,u,w]))

We retrieve our regular chain of dimension 1 and we get three regular chains of dimension
0 corresponding to the degenerated cases. We want now to simplify these zero-dimensional
regular chains by using Lazard triangular sets. Moreover, this will allow us to prove that
the above decomposition has no redundant component. N.B. Generally, decompositions
computed by the REGSET constructor do not have redundant components. However, to
be sure that no redundant component occurs one needs to use the SREGSET or LAZM3PK

constructors.

So let us solve the input system in the sense of Lazard by means of the LAZM3PK constructor:

zeroSetSplit(lf,false)$pack
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729 u6 +

(
−1458 w3 + 729 w2 − 4158 w − 1685

)
u4+(

729 w6 − 1458 w5 − 2619 w4 − 4892 w3 − 297 w2 + 5814 w + 427
)
u2+

729 w8 + 216 w7 − 2900 w6 − 2376 w5 + 3870 w4 + 4072 w3−
1188 w2 − 1656 w + 529,(
2187 u4 +

(
−4374 w3 − 972 w2 − 12474 w − 2868

)
u2+

2187 w6 − 1944 w5 − 10125 w4 − 4800 w3 + 2501 w2 + 4968 w − 1587
)
v+(

1944 w3 − 108 w2
)
u2 + 972 w6 + 3024 w5 − 1080 w4 + 496 w3 + 1116 w2,(

3 v2 + 2 v − 2 w
)
t− 3 u v2,(

(4 v − 4 w) t− 6 u v2
)
z2 +

(
2 t+ 3 v2

)
z − 1

}
,{

81 w2 + 18 w + 28, 729 u2 − 1890 w − 533, 81 v2 + (−162 w + 27) v−
72 w − 112,
11881 t+ (972 w + 2997) u v + (−11448 w − 11536) u,
641237934604288 z2 + (((78614584763904 w + 26785578742272) u+
236143618655616 w + 70221988585728) v + (358520253138432 w+
101922133759488) u+ 142598803536000 w + 54166419595008) z+
(32655103844499 w − 44224572465882) u v+

(43213900115457 w − 32432039102070) u} ,{
27 w4 + 4 w3 − 54 w2 − 36 w + 23, u, 218 v − 162 w3 + 3 w2 + 160 w + 153,
109 t2 − 27 w3 − 54 w2 + 63 w + 80,
1744 z +

(
−1458 w3 + 27 w2 + 1440 w + 505

)
t
}
,{

27 w4 + 4 w3 − 54 w2 − 36 w + 23, u, 218 v − 162 w3 + 3 w2 + 160 w + 153,
109 t2 − 27 w3 − 54 w2 + 63 w + 80, 1308 z + 162 w3 − 3 w2 − 814 w − 153

}
,{

729 w4 + 972 w3 − 1026 w2 + 1684 w + 765, 81 u2 + 72 w2 + 16 w − 72,
702 v − 162 w3 − 225 w2 + 40 w − 99,
11336 t+

(
324 w3 − 603 w2 − 1718 w − 1557

)
u,

595003968 z2 +
((
−963325386 w3 − 898607682 w2 + 1516286466 w−

3239166186) u− 1579048992 w3 − 1796454288 w2 + 2428328160 w−
4368495024) z +

(
9713133306 w3 + 9678670317 w2 − 16726834476 w+

28144233593) u}]

Type: List SquareFreeRegularTriangularSet(Integer, IndexedExponents

OrderedVariableList [b1,x,y,z,t,v,u,w], OrderedVariableList

[b1,x,y,z,t,v,u,w], NewSparseMultivariatePolynomial(Integer,

OrderedVariableList [b1,x,y,z,t,v,u,w]))

Due to square-free factorization, we obtained now four zero-dimensional regular chains.
Moreover, each of them is normalized (the initials are constant). Note that these zero-
dimensional components may be investigated further with the
ZeroDimensionalSolvePackage package constructor.

9.48 Library

The Library domain provides a simple way to store Axiom values in a file. This domain is
similar to KeyedAccessFile but fewer declarations are needed and items of different types
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can be saved together in the same file.

To create a library, you supply a file name.

stuff := library "/tmp/Neat.stuff"

"/tmp/Neat.stuff"

Type: Library

Now values can be saved by key in the file. The keys should be mnemonic, just as the field
names are for records. They can be given either as strings or symbols.

stuff.int := 32**2

1024

Type: PositiveInteger

stuff."poly" := x**2 + 1

x2 + 1

Type: Polynomial Integer

stuff.str := "Hello"

"Hello"

Type: String

You obtain the set of available keys using the keys operation.

keys stuff

["str", "poly", "int"]

Type: List String

You extract values by giving the desired key in this way.

stuff.poly
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x2 + 1

Type: Polynomial Integer

stuff("poly")

x2 + 1

Type: Polynomial Integer

When the file is no longer needed, you should remove it from the file system.

)system rm -rf /tmp/Neat.stuff

For more information on related topics, see File 9.28 on page 508, TextFile 9.93 on
page 784, and KeyedAccessFile 9.45 on page 566.

9.49 LieExponentials

a: Symbol := ’a

a

Type: Symbol

b: Symbol := ’b

b

Type: Symbol

Declarations of domains

coef := Fraction(Integer)

Fraction Integer

Type: Domain

group := LieExponentials(Symbol, coef, 3)
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LieExponentials(Symbol,Fraction Integer,3)

Type: Domain

lpoly := LiePolynomial(Symbol, coef)

LiePolynomial(Symbol,Fraction Integer)

Type: Domain

poly := XPBWPolynomial(Symbol, coef)

XPBWPolynomial(Symbol,Fraction Integer)

Type: Domain

Calculations

ea := exp(a::lpoly)$group

e[a]

Type: LieExponentials(Symbol,Fraction Integer,3)

eb := exp(b::lpoly)$group

e[b]

Type: LieExponentials(Symbol,Fraction Integer,3)

g: group := ea*eb

e[b] e(
1
2 [a b2]) e[a b] e(

1
2 [a2 b]) e[a]

Type: LieExponentials(Symbol,Fraction Integer,3)

g :: poly
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1 + [a] + [b] + 1
2 [a] [a] + [a b] + [b] [a] + 1

2 [b] [b] + 1
6 [a] [a] [a] + 1

2

[
a2 b

]
+

[a b] [a] +
1

2

[
a b2

]
+

1

2
[b] [a] [a] + [b] [a b] +

1

2
[b] [b] [a] +

1

6
[b] [b] [b]

Type: XPBWPolynomial(Symbol,Fraction Integer)

log(g)$group

[a] + [b] +
1

2
[a b] +

1

12

[
a2 b

]
+

1

12

[
a b2

]
Type: LiePolynomial(Symbol,Fraction Integer)

g1: group := inv(g)

e(−[b]) e(−[a])

Type: LieExponentials(Symbol,Fraction Integer,3)

g*g1

1

Type: LieExponentials(Symbol,Fraction Integer,3)

9.50 LiePolynomial

Declaration of domains

RN := Fraction Integer

Fraction Integer

Type: Domain

Lpoly := LiePolynomial(Symbol,RN)

LiePolynomial(Symbol,Fraction Integer)
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Type: Domain

Dpoly := XDPOLY(Symbol,RN)

XDistributedPolynomial(Symbol,Fraction Integer)

Type: Domain

Lword := LyndonWord Symbol

LyndonWord Symbol

Type: Domain

Initialisation

a:Symbol := ’a

a

Type: Symbol

b:Symbol := ’b

b

Type: Symbol

c:Symbol := ’c

c

Type: Symbol

aa: Lpoly := a

[a]

Type: LiePolynomial(Symbol,Fraction Integer)
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bb: Lpoly := b

[b]

Type: LiePolynomial(Symbol,Fraction Integer)

cc: Lpoly := c

[c]

Type: LiePolynomial(Symbol,Fraction Integer)

p : Lpoly := [aa,bb]

[a b]

Type: LiePolynomial(Symbol,Fraction Integer)

q : Lpoly := [p,bb]

[
a b2

]
Type: LiePolynomial(Symbol,Fraction Integer)

All the Lyndon words of order 4

liste : List Lword := LyndonWordsList([a,b], 4)

[
[a], [b], [a b],

[
a2 b

]
,
[
a b2

]
,
[
a3 b

]
,
[
a2 b2

]
,
[
a b3

]]
Type: List LyndonWord Symbol

r: Lpoly := p + q + 3*LiePoly(liste.4)$Lpoly

[a b] + 3
[
a2 b

]
+
[
a b2

]
Type: LiePolynomial(Symbol,Fraction Integer)

s:Lpoly := [p,r]
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−3
[
a2 b a b

]
+
[
a b a b2

]
Type: LiePolynomial(Symbol,Fraction Integer)

t:Lpoly := s + 2*LiePoly(liste.3) - 5*LiePoly(liste.5)

2 [a b]− 5
[
a b2

]
− 3

[
a2 b a b

]
+
[
a b a b2

]
Type: LiePolynomial(Symbol,Fraction Integer)

degree t

5

Type: PositiveInteger

mirror t

−2 [a b]− 5
[
a b2

]
− 3

[
a2 b a b

]
+
[
a b a b2

]
Type: LiePolynomial(Symbol,Fraction Integer)

Jacobi Relation

Jacobi(p: Lpoly, q: Lpoly, r: Lpoly): Lpoly == [ [p,q]$Lpoly, r] + [

[q,r]$Lpoly, p] + [ [r,p]$Lpoly, q]

Function declaration Jacobi : (

LiePolynomial(Symbol, Fraction Integer),

LiePolynomial(Symbol,Fraction Integer),

LiePolynomial(Symbol,Fraction Integer)) ->

LiePolynomial(Symbol,Fraction Integer)

has been added to workspace.

Type: Void

Tests

test: Lpoly := Jacobi(a,b,b)

0
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Type: LiePolynomial(Symbol,Fraction Integer)

test: Lpoly := Jacobi(p,q,r)

0

Type: LiePolynomial(Symbol,Fraction Integer)

test: Lpoly := Jacobi(r,s,t)

0

Type: LiePolynomial(Symbol,Fraction Integer)

Evaluation

eval(p, a, p)$Lpoly

[
a b2

]
Type: LiePolynomial(Symbol,Fraction Integer)

eval(p, [a,b], [2*bb, 3*aa])$Lpoly

−6 [a b]

Type: LiePolynomial(Symbol,Fraction Integer)

r: Lpoly := [p,c]

[a b c] + [a c b]

Type: LiePolynomial(Symbol,Fraction Integer)

r1: Lpoly := eval(r, [a,b,c], [bb, cc, aa])$Lpoly

−[a b c]

Type: LiePolynomial(Symbol,Fraction Integer)
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r2: Lpoly := eval(r, [a,b,c], [cc, aa, bb])$Lpoly

−[a c b]

Type: LiePolynomial(Symbol,Fraction Integer)

r + r1 + r2

0

Type: LiePolynomial(Symbol,Fraction Integer)

9.51 LinearOrdinaryDifferentialOperator

LinearOrdinaryDifferentialOperator(A, diff) is the domain of linear ordinary differ-
ential operators with coefficients in a ring A with a given derivation.

Differential Operators with Series Coefficients

Problem: Find the first few coefficients of exp(x)/x**i of Dop phi where

Dop := D**3 + G/x**2 * D + H/x**3 - 1

phi := sum(s[i]*exp(x)/x**i, i = 0..)

Solution:

Define the differential.

Dx: LODO(EXPR INT, f +-> D(f, x))

Type: Void

Dx := D()

D

Type: LinearOrdinaryDifferentialOperator(Expression Integer,theMap NIL)

Now define the differential operator Dop.
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Dop:= Dx**3 + G/x**2*Dx + H/x**3 - 1

D3 +
G

x2
D +

−x3 +H

x3

Type: LinearOrdinaryDifferentialOperator(Expression Integer,theMap NIL)

n == 3

Type: Void

phi == reduce(+,[subscript(s,[i])*exp(x)/x**i for i in 0..n])

Type: Void

phi1 == Dop(phi) / exp x

Type: Void

phi2 == phi1 *x**(n+3)

Type: Void

phi3 == retract(phi2)@(POLY INT)

Type: Void

pans == phi3 ::UP(x,POLY INT)

Type: Void

pans1 == [coefficient(pans, (n+3-i) :: NNI) for i in 2..n+1]
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Type: Void

leq == solve(pans1,[subscript(s,[i]) for i in 1..n])

Type: Void

Evaluate this for several values of n.

leq

Compiling body of rule n to compute value of type PositiveInteger

Compiling body of rule phi to compute value of type Expression

Integer

Compiling body of rule phi1 to compute value of type Expression

Integer

Compiling body of rule phi2 to compute value of type Expression

Integer

Compiling body of rule phi3 to compute value of type Polynomial

Integer

Compiling body of rule pans to compute value of type

UnivariatePolynomial(x,Polynomial Integer)

Compiling body of rule pans1 to compute value of type List

Polynomial Integer

Compiling body of rule leq to compute value of type List List

Equation Fraction Polynomial Integer

Compiling function G83347 with type Integer -> Boolean

n==4 [[
s1 = s0 G

3 , s2 = 3 s0 H+s0 G2+6 s0 G
18 ,

s3 =
(9 s0 G+ 54 s0) H + s0 G

3 + 18 s0 G
2 + 72 s0 G

162

]]
Type: List List Equation Fraction Polynomial Integer

leq

[[
s1 = s0 G

3 , s2 = 3 s0 H+s0 G2+6 s0 G
18 ,

s3 =
(9 s0 G+ 54 s0) H + s0 G

3 + 18 s0 G
2 + 72 s0 G

162

]]
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Type: List List Equation Fraction Polynomial Integer

n==7

Compiled code for n has been cleared.

Compiled code for leq has been cleared.

Compiled code for pans1 has been cleared.

Compiled code for phi2 has been cleared.

Compiled code for phi has been cleared.

Compiled code for phi3 has been cleared.

Compiled code for phi1 has been cleared.

Compiled code for pans has been cleared.

1 old definition(s) deleted for function or rule n

Type: Void

leq

Compiling body of rule n to compute value of type PositiveInteger

+++ |*0;n;1;G82322| redefined

Compiling body of rule phi to compute value of type Expression

Integer

+++ |*0;phi;1;G82322| redefined

Compiling body of rule phi1 to compute value of type Expression

Integer

+++ |*0;phi1;1;G82322| redefined

Compiling body of rule phi2 to compute value of type Expression

Integer

+++ |*0;phi2;1;G82322| redefined

Compiling body of rule phi3 to compute value of type Polynomial

Integer

+++ |*0;phi3;1;G82322| redefined

Compiling body of rule pans to compute value of type

UnivariatePolynomial(x,Polynomial Integer)

+++ |*0;pans;1;G82322| redefined

Compiling body of rule pans1 to compute value of type List

Polynomial Integer

+++ |*0;pans1;1;G82322| redefined
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Compiling body of rule leq to compute value of type List List

Equation Fraction Polynomial Integer

+++ |*0;leq;1;G82322| redefined[[
s1 =

s0 G

3
,

s2 = 3 s0 H + s0 G
2 +

6 s0 G

18
,

s3 = (9 s0 G+ 54 s0) H + s0 G
3 + 18 s0 G

2 +
72 s0 G

162
,

s4 =

27 s0 H
2 +

(
18 s0 G

2 + 378 s0 G+ 1296 s0
)
H+

s0 G
4 + 36 s0 G

3 + 396 s0 G
2 + 1296 s0 G


1944

,

s5 =


(135 s0 G+ 2268 s0) H

2+(
30 s0 G

3 + 1350 s0 G
2 + 16416 s0 G+ 38880 s0

)
H+

s0 G
5 + 60 s0 G

4 + 1188 s0 G
3 + 9504 s0 G

2 + 25920 s0 G


29160

,

s6 =



405 s0 H
3+(

405 s0 G
2 + 18468 s0 G+ 174960 s0

)
H2+(

45 s0 G
4 + 3510 s0 G

3 + 88776 s0 G
2 + 777600 s0 G+

1166400 s0) H+

s0 G
6 + 90 s0 G

5 + 2628 s0 G
4 + 27864 s0 G

3 + 90720 s0 G
2


524880

,
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s7 =



(2835 s0 G+ 91854 s0) H
3+(

945 s0 G
3 + 81648 s0 G

2 + 2082996 s0 G+ 14171760 s0
)
H2+(

63 s0 G
5 + 7560 s0 G

4 + 317520 s0 G
3 + 5554008 s0 G

2+
34058880 s0 G) H+

s0 G
7 + 126 s0 G

6 + 4788 s0 G
5 + 25272 s0 G

4 − 1744416 s0 G
3−

26827200 s0 G
2 − 97977600 s0 G


11022480




Type: List List Equation Fraction Polynomial Integer

9.52 LinearOrdinaryDifferentialOperator1

LinearOrdinaryDifferentialOperator1(A) is the domain of linear ordinary differential
operators with coefficients in the differential ring A.

Differential Operators with Rational Function Coefficients

This example shows differential operators with rational function coefficients. In this case op-
erator multiplication is non-commutative and, since the coefficients form a field, an operator
division algorithm exists.

We begin by defining RFZ to be the rational functions in x with integer coefficients and Dx

to be the differential operator for d/dx.

RFZ := Fraction UnivariatePolynomial(’x, Integer)

Fraction UnivariatePolynomial(x,Integer)

Type: Domain

x : RFZ := ’x
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x

Type: Fraction UnivariatePolynomial(x,Integer)

Dx : LODO1 RFZ := D()

D

Type: LinearOrdinaryDifferentialOperator1 Fraction

UnivariatePolynomial(x,Integer)

Operators are created using the usual arithmetic operations.

b : LODO1 RFZ := 3*x**2*Dx**2 + 2*Dx + 1/x

3 x2 D2 + 2 D +
1

x

Type: LinearOrdinaryDifferentialOperator1 Fraction

UnivariatePolynomial(x,Integer)

a : LODO1 RFZ := b*(5*x*Dx + 7)

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D +

7

x

Type: LinearOrdinaryDifferentialOperator1 Fraction

UnivariatePolynomial(x,Integer)

Operator multiplication corresponds to functional composition.

p := x**2 + 1/x**2

x4 + 1

x2

Type: Fraction UnivariatePolynomial(x,Integer)

Since operator coefficients depend on x, the multiplication is not commutative.

(a*b - b*a) p

−75 x4 + 540 x− 75

x4
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Type: Fraction UnivariatePolynomial(x,Integer)

When the coefficients of operator polynomials come from a field, as in this case, it is possible
to define operator division. Division on the left and division on the right yield different
results when the multiplication is non-commutative.

The results of leftDivide and rightDivide are quotient-remainder pairs satisfying:

leftDivide(a,b) = [q, r] such that a = b*q + r

rightDivide(a,b) = [q, r] such that a = q*b + r

In both cases, the degree of the remainder, r, is less than the degree of b.

ld := leftDivide(a,b)

[quotient = 5 x D + 7, remainder = 0]

Type: Record(quotient: LinearOrdinaryDifferentialOperator1 Fraction

UnivariatePolynomial(x,Integer), remainder:

LinearOrdinaryDifferentialOperator1 Fraction

UnivariatePolynomial(x,Integer))

a = b * ld.quotient + ld.remainder

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D + 7

x =

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D +

7

x

Type: Equation LinearOrdinaryDifferentialOperator1 Fraction

UnivariatePolynomial(x,Integer)

The operations of left and right division are so-called because the quotient is obtained by
dividing a on that side by b.

rd := rightDivide(a,b)

[
quotient = 5 x D + 7, remainder = 10 D +

5

x

]
Type: Record(quotient: LinearOrdinaryDifferentialOperator1 Fraction

UnivariatePolynomial(x,Integer), remainder:

LinearOrdinaryDifferentialOperator1 Fraction

UnivariatePolynomial(x,Integer))
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a = rd.quotient * b + rd.remainder

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D + 7

x =

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D +

7

x

Type: Equation LinearOrdinaryDifferentialOperator1 Fraction

UnivariatePolynomial(x,Integer)

Operations rightQuotient and rightRemainder are available if only one of the quotient
or remainder are of interest to you. This is the quotient from right division.

rightQuotient(a,b)

5 x D + 7

Type: LinearOrdinaryDifferentialOperator1 Fraction

UnivariatePolynomial(x,Integer)

This is the remainder from right division. The corresponding “left” functions leftQuotient
and leftRemainder are also available.

rightRemainder(a,b)

10 D +
5

x

Type: LinearOrdinaryDifferentialOperator1 Fraction

UnivariatePolynomial(x,Integer)

For exact division, the operations leftExactQuotient and rightExactQuotient are sup-
plied. These return the quotient but only if the remainder is zero. The call rightExact-
Quotient(a,b) would yield an error.

leftExactQuotient(a,b)

5 x D + 7

Type: Union(LinearOrdinaryDifferentialOperator1 Fraction

UnivariatePolynomial(x,Integer),...)

The division operations allow the computation of left and right greatest common divisors
(leftGcd and rightGcd) via remainder sequences, and consequently the computation of left
and right least common multiples (rightLcm and leftLcm).
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e := leftGcd(a,b)

3 x2 D2 + 2 D +
1

x

Type: LinearOrdinaryDifferentialOperator1 Fraction

UnivariatePolynomial(x,Integer)

Note that a greatest common divisor doesn’t necessarily divide a and b on both sides. Here
the left greatest common divisor does not divide a on the right.

leftRemainder(a, e)

0

Type: LinearOrdinaryDifferentialOperator1 Fraction

UnivariatePolynomial(x,Integer)

rightRemainder(a, e)

10 D +
5

x

Type: LinearOrdinaryDifferentialOperator1 Fraction

UnivariatePolynomial(x,Integer)

Similarly, a least common multiple is not necessarily divisible from both sides.

f := rightLcm(a,b)

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D +

7

x

Type: LinearOrdinaryDifferentialOperator1 Fraction

UnivariatePolynomial(x,Integer)

rightRemainder(f, b)

10 D +
5

x

Type: LinearOrdinaryDifferentialOperator1 Fraction

UnivariatePolynomial(x,Integer)
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leftRemainder(f, b)

0

Type: LinearOrdinaryDifferentialOperator1 Fraction

UnivariatePolynomial(x,Integer)

9.53 LinearOrdinaryDifferentialOperator2

LinearOrdinaryDifferentialOperator2(A, M) is the domain of linear ordinary differential
operators with coefficients in the differential ring A and operating on M, an A-module. This
includes the cases of operators which are polynomials in D acting upon scalar or vector
expressions of a single variable. The coefficients of the operator polynomials can be integers,
rational functions, matrices or elements of other domains.

Differential Operators with Constant Coefficients

This example shows differential operators with rational number coefficients operating on
univariate polynomials.

We begin by making type assignments so we can conveniently refer to univariate polynomials
in x over the rationals.

Q := Fraction Integer

Fraction Integer

Type: Domain

PQ := UnivariatePolynomial(’x, Q)

UnivariatePolynomial(x,Fraction Integer)

Type: Domain

x: PQ := ’x

x

Type: UnivariatePolynomial(x,Fraction Integer)
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Now we assign Dx to be the differential operator D corresponding to d/dx.

Dx: LODO2(Q, PQ) := D()

D

Type: LinearOrdinaryDifferentialOperator2( Fraction Integer,

UnivariatePolynomial(x,Fraction Integer))

New operators are created as polynomials in D().

a := Dx + 1

D + 1

Type: LinearOrdinaryDifferentialOperator2( Fraction Integer,

UnivariatePolynomial(x,Fraction Integer))

b := a + 1/2*Dx**2 - 1/2

1

2
D2 +D +

1

2

Type: LinearOrdinaryDifferentialOperator2( Fraction Integer,

UnivariatePolynomial(x,Fraction Integer))

To apply the operator a to the value p the usual function call syntax is used.

p := 4*x**2 + 2/3

4 x2 +
2

3

Type: UnivariatePolynomial(x,Fraction Integer)

a p

4 x2 + 8 x+
2

3

Type: UnivariatePolynomial(x,Fraction Integer)

Operator multiplication is defined by the identity (a*b) p = a(b(p))
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(a * b) p = a b p

2 x2 + 12 x+
37

3
= 2 x2 + 12 x+

37

3

Type: Equation UnivariatePolynomial(x,Fraction Integer)

Exponentiation follows from multiplication.

c := (1/9)*b*(a + b)**2

1

72
D6 +

5

36
D5 +

13

24
D4 +

19

18
D3 +

79

72
D2 +

7

12
D +

1

8

Type: LinearOrdinaryDifferentialOperator2( Fraction Integer,

UnivariatePolynomial(x,Fraction Integer))

Finally, note that operator expressions may be applied directly.

(a**2 - 3/4*b + c) (p + 1)

3 x2 +
44

3
x+

541

36

Type: UnivariatePolynomial(x,Fraction Integer)

Differential Operators with Matrix Coefficients Operating on Vec-
tors

This is another example of linear ordinary differential operators with non-commutative mul-
tiplication. Unlike the rational function case, the differential ring of square matrices (of a
given dimension) with univariate polynomial entries does not form a field. Thus the number
of operations available is more limited.

In this section, the operators have three by three matrix coefficients with polynomial entries.

PZ := UnivariatePolynomial(x,Integer)

UnivariatePolynomial(x, Integer)

Type: Domain

x:PZ := ’x
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x

Type: UnivariatePolynomial(x,Integer)

Mat := SquareMatrix(3,PZ)

SquareMatrix(3, UnivariatePolynomial(x, Integer))

Type: Domain

The operators act on the vectors considered as a Mat-module.

Vect := DPMM(3, PZ, Mat, PZ)

DirectProductMatrixModule(3,
UnivariatePolynomial(x, Integer),
SquareMatrix(3,UnivariatePolynomial(x, Integer)),
UnivariatePolynomial(x, Integer))

Type: Domain

Modo := LODO2(Mat, Vect)

LinearOrdinaryDifferentialOperator2(
SquareMatrix(3,UnivariatePolynomial(x, Integer)),
DirectProductMatrixModule(3,
UnivariatePolynomial(x, Integer),
SquareMatrix(3,UnivariatePolynomial(x, Integer)),
UnivariatePolynomial(x, Integer)))

Type: Domain

The matrix m is used as a coefficient and the vectors p and q are operated upon.

m:Mat := matrix [ [x**2,1,0],[1,x**4,0],[0,0,4*x**2] ]

 x2 1 0
1 x4 0
0 0 4 x2


Type: SquareMatrix(3,UnivariatePolynomial(x,Integer))
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p:Vect := directProduct [3*x**2+1,2*x,7*x**3+2*x]

[
3 x2 + 1, 2 x, 7 x3 + 2 x

]
Type: DirectProductMatrixModule(3, UnivariatePolynomial(x,Integer),

SquareMatrix(3,UnivariatePolynomial(x,Integer)),

UnivariatePolynomial(x,Integer))

q: Vect := m * p

[
3 x4 + x2 + 2 x, 2 x5 + 3 x2 + 1, 28 x5 + 8 x3

]
Type: DirectProductMatrixModule(3, UnivariatePolynomial(x,Integer),

SquareMatrix(3,UnivariatePolynomial(x,Integer)),

UnivariatePolynomial(x,Integer))

Now form a few operators.

Dx : Modo := D()

D

Type: LinearOrdinaryDifferentialOperator2(

SquareMatrix(3,UnivariatePolynomial(x,Integer)),

DirectProductMatrixModule(3, UnivariatePolynomial(x,Integer),

SquareMatrix(3,UnivariatePolynomial(x,Integer)),

UnivariatePolynomial(x,Integer)))

a : Modo := Dx + m

D +

 x2 1 0
1 x4 0
0 0 4 x2


Type: LinearOrdinaryDifferentialOperator2(

SquareMatrix(3,UnivariatePolynomial(x,Integer)),

DirectProductMatrixModule(3, UnivariatePolynomial(x,Integer),

SquareMatrix(3, UnivariatePolynomial(x,Integer)),

UnivariatePolynomial(x,Integer)))

b : Modo := m*Dx + 1
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1 x4 0
0 0 4 x2

 D +

 1 0 0
0 1 0
0 0 1


Type: LinearOrdinaryDifferentialOperator2( SquareMatrix(3,

UnivariatePolynomial(x,Integer)), DirectProductMatrixModule(3,

UnivariatePolynomial(x,Integer), SquareMatrix(3,

UnivariatePolynomial(x,Integer)), UnivariatePolynomial(x,Integer)))

c := a*b  x2 1 0
1 x4 0
0 0 4 x2

 D2+

 x4 + 2 x+ 2 x4 + x2 0
x4 + x2 x8 + 4 x3 + 2 0

0 0 16 x4 + 8 x+ 1

 D+

 x2 1 0
1 x4 0
0 0 4 x2


Type: LinearOrdinaryDifferentialOperator2( SquareMatrix(3,

UnivariatePolynomial(x,Integer)), DirectProductMatrixModule(3,

UnivariatePolynomial(x,Integer), SquareMatrix(3,

UnivariatePolynomial(x,Integer)), UnivariatePolynomial(x,Integer)))

These operators can be applied to vector values.

a p

[
3 x4 + x2 + 8 x, 2 x5 + 3 x2 + 3, 28 x5 + 8 x3 + 21 x2 + 2

]
Type: DirectProductMatrixModule(3, UnivariatePolynomial(x,Integer),

SquareMatrix(3, UnivariatePolynomial(x,Integer)),

UnivariatePolynomial(x,Integer))

b p

[
6 x3 + 3 x2 + 3, 2 x4 + 8 x, 84 x4 + 7 x3 + 8 x2 + 2 x

]
Type: DirectProductMatrixModule(3, UnivariatePolynomial(x,Integer),

SquareMatrix(3, UnivariatePolynomial(x,Integer)),

UnivariatePolynomial(x,Integer))
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(a + b + c) (p + q)

[
10 x8 + 12 x7 + 16 x6 + 30 x5 + 85 x4 + 94 x3 + 40 x2 + 40 x+ 17,

10 x12 + 10 x9 + 12 x8 + 92 x7 + 6 x6 + 32 x5 + 72 x4 + 28 x3 + 49 x2+
32 x+ 19,

2240 x8 + 224 x7 + 1280 x6 + 3508 x5 + 492 x4 + 751 x3 + 98 x2 + 18 x+ 4
]

Type: DirectProductMatrixModule(3, UnivariatePolynomial(x,Integer),

SquareMatrix(3, UnivariatePolynomial(x,Integer)),

UnivariatePolynomial(x,Integer))

9.54 List

A is a finite collection of elements in a specified order that can contain duplicates. A list is
a convenient structure to work with because it is easy to add or remove elements and the
length need not be constant. There are many different kinds of lists in Axiom, but the default
types (and those used most often) are created by the List constructor. For example, there
are objects of type List Integer, List Float and List Polynomial Fraction Integer.
Indeed, you can even have List List List Boolean (that is, lists of lists of lists of Boolean
values). You can have lists of any type of Axiom object.

Creating Lists

The easiest way to create a list with, for example, the elements 2, 4, 5, 6 is to enclose the
elements with square brackets and separate the elements with commas.

The spaces after the commas are optional, but they do improve the readability.

[2, 4, 5, 6]

[2, 4, 5, 6]

Type: List PositiveInteger

To create a list with the single element 1, you can use either [1] or the operation list.

[1]

[1]

Type: List PositiveInteger
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list(1)

[1]

Type: List PositiveInteger

Once created, two lists k and m can be concatenated by issuing append(k,m). append does
not physically join the lists, but rather produces a new list with the elements coming from
the two arguments.

append([1,2,3],[5,6,7])

[1, 2, 3, 5, 6, 7]

Type: List PositiveInteger

Use cons to append an element onto the front of a list.

cons(10,[9,8,7])

[10, 9, 8, 7]

Type: List PositiveInteger

Accessing List Elements

To determine whether a list has any elements, use the operation empty?.

empty? [x+1]

false

Type: Boolean

Alternatively, equality with the list constant nil can be tested.

([] = nil)@Boolean

true

Type: Boolean
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We’ll use this in some of the following examples.

k := [4,3,7,3,8,5,9,2]

[4, 3, 7, 3, 8, 5, 9, 2]

Type: List PositiveInteger

Each of the next four expressions extracts the first element of k.

first k

4

Type: PositiveInteger

k.first

4

Type: PositiveInteger

k.1

4

Type: PositiveInteger

k(1)

4

Type: PositiveInteger

The last two forms generalize to k.i and k(i), respectively, where 1 ≤ i ≤ n and n equals
the length of k.

This length is calculated by “#”.

n := #k
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8

Type: PositiveInteger

Performing an operation such as k.i is sometimes referred to as indexing into k or elting
into k. The latter phrase comes about because the name of the operation that extracts
elements is called elt. That is, k.3 is just alternative syntax for elt(k,3). It is important
to remember that list indices begin with 1. If we issue k := [1,3,2,9,5] then k.4 returns
9. It is an error to use an index that is not in the range from 1 to the length of the list.

The last element of a list is extracted by any of the following three expressions.

last k

2

Type: PositiveInteger

k.last

2

Type: PositiveInteger

This form computes the index of the last element and then extracts the element from the
list.

k.(#k)

2

Type: PositiveInteger

Changing List Elements

We’ll use this in some of the following examples.

k := [4,3,7,3,8,5,9,2]

[4, 3, 7, 3, 8, 5, 9, 2]

Type: List PositiveInteger



636 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

List elements are reset by using the k.i form on the left-hand side of an assignment. This
expression resets the first element of k to 999.

k.1 := 999

999

Type: PositiveInteger

As with indexing into a list, it is an error to use an index that is not within the proper
bounds. Here you see that k was modified.

k

[999, 3, 7, 3, 8, 5, 9, 2]

Type: List PositiveInteger

The operation that performs the assignment of an element to a particular position in a list is
called setelt. This operation is destructive in that it changes the list. In the above example,
the assignment returned the value 999 and k was modified. For this reason, lists are called
objects: it is possible to change part of a list (mutate it) rather than always returning a new
list reflecting the intended modifications.

Moreover, since lists can share structure, changes to one list can sometimes affect others.

k := [1,2]

[1, 2]

Type: List PositiveInteger

m := cons(0,k)

[0, 1, 2]

Type: List Integer

Change the second element of m.

m.2 := 99

99
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Type: PositiveInteger

See, m was altered.

m

[0, 99, 2]

Type: List Integer

But what about k? It changed too!

k

[99, 2]

Type: List PositiveInteger

Other Functions

An operation that is used frequently in list processing is that which returns all elements in
a list after the first element.

k := [1,2,3]

[1, 2, 3]

Type: List PositiveInteger

Use the rest operation to do this.

rest k

[2, 3]

Type: List PositiveInteger

To remove duplicate elements in a list k, use removeDuplicates.

removeDuplicates [4,3,4,3,5,3,4]

[4, 3, 5]
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Type: List PositiveInteger

To get a list with elements in the order opposite to those in a list k, use reverse.

reverse [1,2,3,4,5,6]

[6, 5, 4, 3, 2, 1]

Type: List PositiveInteger

To test whether an element is in a list, use member?: member?(a,k) returns true or false
depending on whether a is in k or not.

member?(1/2,[3/4,5/6,1/2])

true

Type: Boolean

member?(1/12,[3/4,5/6,1/2])

false

Type: Boolean

As an exercise, the reader should determine how to get a list containing all but the last of
the elements in a given non-empty list k.4

Dot, Dot

Certain lists are used so often that Axiom provides an easy way of constructing them. If n
and m are integers, then expand [n..m] creates a list containing n, n+1, ... m. If n > m

then the list is empty. It is actually permissible to leave off the m in the dot-dot construction
(see below).

The dot-dot notation can be used more than once in a list construction and with specific
elements being given. Items separated by dots are called segments.

[1..3,10,20..23]

[1..3, 10..10, 20..23]

4reverse(rest(reverse(k))) works.
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Type: List Segment PositiveInteger

Segments can be expanded into the range of items between the endpoints by using expand.

expand [1..3,10,20..23]

[1, 2, 3, 10, 20, 21, 22, 23]

Type: List Integer

What happens if we leave off a number on the right-hand side of “..”?

expand [1..]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .]

Type: Stream Integer

What is created in this case is a Stream which is a generalization of a list. See Stream 9.88
on page 765 for more information.

9.55 LyndonWord

Initialisations

a:Symbol :=’a

a

Type: Symbol

b:Symbol :=’b

b

Type: Symbol

c:Symbol :=’c

c
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Type: Symbol

lword:= LyndonWord(Symbol)

LyndonWord Symbol

Type: Domain

magma := Magma(Symbol)

Magma Symbol

Type: Domain

word := OrderedFreeMonoid(Symbol)

OrderedFreeMonoid Symbol

Type: Domain

All Lyndon words of with a, b, c to order 3

LyndonWordsList1([a,b,c],3)$lword

[[[a], [b], [c]], [[a b], [a c], [b c]],[[
a2 b

]
,
[
a2 c

]
,
[
a b2

]
, [a b c], [a c b],

[
a c2

]
,
[
b2 c

]
,
[
b c2

]]]
Type: OneDimensionalArray List LyndonWord Symbol

All Lyndon words of with a, b, c to order 3 in flat list

LyndonWordsList([a,b,c],3)$lword

[
[a], [b], [c], [a b], [a c], [b c],

[
a2 b

]
,
[
a2 c

]
,
[
a b2

]
,

[a b c], [a c b],
[
a c2

]
,
[
b2 c

]
,
[
b c2

]]
Type: List LyndonWord Symbol

All Lyndon words of with a, b to order 5
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lw := LyndonWordsList([a,b],5)$lword

[
[a], [b], [a b],

[
a2 b

]
,
[
a b2

]
,
[
a3 b

]
,
[
a2 b2

]
,
[
a b3

]
,
[
a4 b

]
,[

a3 b2
]
,
[
a2 b a b

]
,
[
a2 b3

]
,
[
a b a b2

]
,
[
a b4

]]
Type: List LyndonWord Symbol

w1 : word := lw.4 :: word

a2 b

Type: OrderedFreeMonoid Symbol

w2 : word := lw.5 :: word

a b2

Type: OrderedFreeMonoid Symbol

Let’s try factoring

factor(a::word)$lword

[[a]]

Type: List LyndonWord Symbol

factor(w1*w2)$lword

[[
a2 b a b2

]]
Type: List LyndonWord Symbol

factor(w2*w2)$lword

[[
a b2

]
,
[
a b2

]]
Type: List LyndonWord Symbol
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factor(w2*w1)$lword

[[
a b2

]
,
[
a2 b

]]
Type: List LyndonWord Symbol

Checks and coercions

lyndon?(w1)$lword

true

Type: Boolean

lyndon?(w1*w2)$lword

true

Type: Boolean

lyndon?(w2*w1)$lword

false

Type: Boolean

lyndonIfCan(w1)$lword

[
a2 b

]
Type: Union(LyndonWord Symbol,...)

lyndonIfCan(w2*w1)$lword

"failed"

Type: Union("failed",...)

lyndon(w1)$lword
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[
a2 b

]
Type: LyndonWord Symbol

lyndon(w1*w2)$lword

[
a2 b a b2

]
Type: LyndonWord Symbol

9.56 Magma

Initialisations

x:Symbol :=’x

x

Type: Symbol

y:Symbol :=’y

y

Type: Symbol

z:Symbol :=’z

z

Type: Symbol

word := OrderedFreeMonoid(Symbol)

OrderedFreeMonoid Symbol

Type: Domain
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tree := Magma(Symbol)

Magma Symbol

Type: Domain

Let’s make some trees

a:tree := x*x

[x, x]

Type: Magma Symbol

b:tree := y*y

[y, y]

Type: Magma Symbol

c:tree := a*b

[[x, x], [y, y]]

Type: Magma Symbol

Query the trees

left c

[x, x]

Type: Magma Symbol

right c

[y, y]

Type: Magma Symbol
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length c

4

Type: PositiveInteger

Coerce to the monoid

c::word

x2 y2

Type: OrderedFreeMonoid Symbol

Check ordering

a < b

true

Type: Boolean

a < c

true

Type: Boolean

b < c

true

Type: Boolean

Navigate the tree

first c

x

Type: Symbol
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rest c

[x, [y, y]]

Type: Magma Symbol

rest rest c

[y, y]

Type: Magma Symbol

Check ordering

ax:tree := a*x

[[x, x], x]

Type: Magma Symbol

xa:tree := x*a

[x, [x, x]]

Type: Magma Symbol

xa < ax

true

Type: Boolean

lexico(xa,ax)

false

Type: Boolean
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9.57 MakeFunction

It is sometimes useful to be able to define a function given by the result of a calculation.

Suppose that you have obtained the following expression after several computations and that
you now want to tabulate the numerical values of f for x between -1 and +1 with increment
0.1.

expr := (x - exp x + 1)**2 * (sin(x**2) * x + 1)**3

(
x3 ex2 +

(
−2 x4 − 2 x3

)
ex + x5 + 2 x4 + x3

)
sin
(
x2
)3
+(

3 x2 ex2 +
(
−6 x3 − 6 x2

)
ex + 3 x4 + 6 x3 + 3 x2

)
sin
(
x2
)2
+

(
3 x ex2 +

(
−6 x2 − 6 x

)
ex + 3 x3 + 6 x2 + 3 x

)
sin
(
x2
)
+ ex2+

(−2 x− 2) ex + x2 + 2 x+ 1

Type: Expression Integer

You could, of course, use the function eval within a loop and evaluate expr twenty-one
times, but this would be quite slow. A better way is to create a numerical function f such
that f(x) is defined by the expression expr above, but without retyping expr! The package
MakeFunction provides the operation function which does exactly this.

Issue this to create the function f(x) given by expr.

function(expr, f, x)

f

Type: Symbol

To tabulate expr, we can now quickly evaluate f 21 times.

tbl := [f(0.1 * i - 1) for i in 0..20];
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[0.0005391844 0362701574, 0.0039657551 1844206653,
0.0088545187 4833983689 2, 0.0116524883 0907069695,
0.0108618220 9245751364 5, 0.0076366823 2120869965 06,
0.0040584985 7597822062 55, 0.0015349542 8910500836 48,
0.0003424903 1549879905 716, 0.0000233304 8276098819 6001,
0.0, 0.0000268186 8782862599 4229,
0.0004691571 3720051642 621, 0.0026924576 5968519586 08,
0.0101486881 7369135148 8, 0.0313833725 8543810564 3,
0.0876991144 5154615297 9, 0.2313019789 3439968362,
0.5843743955 958098772, 1.4114930171 992819197,
3.2216948276 75164252]

Type: List Float

Use the list [x1,...,xn] as the third argument to function to create a multivariate function
f(x1,...,xn).

e := (x - y + 1)**2 * (x**2 * y + 1)**2

x4 y4 +
(
−2 x5 − 2 x4 + 2 x2

)
y3 +

(
x6 + 2 x5 + x4 − 4 x3 − 4 x2 + 1

)
y2+(

2 x4 + 4 x3 + 2 x2 − 2 x− 2
)
y + x2 + 2 x+ 1

Type: Polynomial Integer

function(e, g, [x, y])

g

Type: Symbol

In the case of just two variables, they can be given as arguments without making them into
a list.

function(e, h, x, y)

h

Type: Symbol

Note that the functions created by function are not limited to floating point numbers, but
can be applied to any type for which they are defined.

m1 := squareMatrix [ [1, 2], [3, 4] ]
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1 2
3 4

]
Type: SquareMatrix(2,Integer)

m2 := squareMatrix [ [1, 0], [-1, 1] ]

[
1 0
−1 1

]
Type: SquareMatrix(2,Integer)

h(m1, m2)

[
−7836 8960
−17132 19588

]
Type: SquareMatrix(2,Integer)

For more information, see section 6.14 on page 182.

9.58 MappingPackage1

Function are objects of type Mapping. In this section we demonstrate some library opera-
tions from the packages MappingPackage1, MappingPackage2, and MappingPackage3 that
manipulate and create functions. Some terminology: a nullary function takes no arguments,
a unary function takes one argument, and a binary function takes two arguments.

We begin by creating an example function that raises a rational number to an integer expo-
nent.

power(q: FRAC INT, n: INT): FRAC INT == q**n

Function declaration power : (Fraction Integer,Integer) ->

Fraction Integer has been added to workspace.

Type: Void

power(2,3)
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Compiling function power with type (Fraction Integer,Integer) ->

Fraction Integer

8

Type: Fraction Integer

The twist operation transposes the arguments of a binary function. Here rewop(a, b) is
power(b, a).

rewop := twist power

theMap(...)

Type: ((Integer,Fraction Integer) -> Fraction Integer)

This is 23.

rewop(3, 2)

8

Type: Fraction Integer

Now we define square in terms of power.

square: FRAC INT -> FRAC INT

Type: Void

The curryRight operation creates a unary function from a binary one by providing a
constant argument on the right.

square:= curryRight(power, 2)

theMap(...)

Type: (Fraction Integer -> Fraction Integer)

Likewise, the curryLeft operation provides a constant argument on the left.

square 4
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16

Type: Fraction Integer

The constantRight operation creates (in a trivial way) a binary function from a unary one:
constantRight(f) is the function g such that g(a,b)= f(a).

squirrel:= constantRight(square)$MAPPKG3(FRAC INT,FRAC INT,FRAC INT)

theMap(...)

Type: ((Fraction Integer,Fraction Integer) -> Fraction Integer)

Likewise, constantLeft(f) is the function g such that g(a,b)= f(b).

squirrel(1/2, 1/3)

1

4

Type: Fraction Integer

The curry operation makes a unary function nullary.

sixteen := curry(square, 4/1)

theMap(...)

Type: (() -> Fraction Integer)

sixteen()

16

Type: Fraction Integer

The “*” operation constructs composed functions.

square2:=square*square

theMap(...)
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Type: (Fraction Integer -> Fraction Integer)

square2 3

81

Type: Fraction Integer

Use the “**” operation to create functions that are n-fold iterations of other functions.

sc(x: FRAC INT): FRAC INT == x + 1

Function declaration sc : Fraction Integer ->

Fraction Integer has been added to workspace.

Type: Void

This is a list of Mapping objects.

incfns := [sc**i for i in 0..10]

[theMap(...), theMap(...), theMap(...), theMap(...), theMap(...), theMap(...),
theMap(...), theMap(...), theMap(...), theMap(...), theMap(...)]

Type: List (Fraction Integer -> Fraction Integer)

This is a list of applications of those functions.

[f 4 for f in incfns]

[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

Type: List Fraction Integer

Use the recur operation for recursion:

g := recur f means g(n,x) == f(n,f(n-1,...f(1,x))).

times(n:NNI, i:INT):INT == n*i

Function declaration times : (NonNegativeInteger,Integer) ->

Integer has been added to workspace.
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Type: Void

r := recur(times)

theMap(...)

Type: ((NonNegativeInteger,Integer) -> Integer)

This is a factorial function.

fact := curryRight(r, 1)

theMap(...)

Type: (NonNegativeInteger -> Integer)

fact 4

24

Type: PositiveInteger

Constructed functions can be used within other functions.

mto2ton(m, n) ==

raiser := square**n

raiser m

Type: Void

This is 32
3

.

mto2ton(3, 3)

Compiling function mto2ton with type (PositiveInteger,

PositiveInteger) -> Fraction Integer

6561

Type: Fraction Integer
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Here shiftfib is a unary function that modifies its argument.

shiftfib(r: List INT) : INT ==

t := r.1

r.1 := r.2

r.2 := r.2 + t

t

Function declaration shiftfib : List Integer -> Integer

has been added to workspace.

Type: Void

By currying over the argument we get a function with private state.

fibinit: List INT := [0, 1]

[0, 1]

Type: List Integer

fibs := curry(shiftfib, fibinit)

theMap(...)

Type: (() -> Integer)

[fibs() for i in 0..30]

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,
317811, 514229, 832040]

Type: List Integer

9.59 Matrix

The Matrix domain provides arithmetic operations on matrices and standard functions from
linear algebra. This domain is similar to the TwoDimensionalArray domain, except that the
entries for Matrix must belong to a Ring.
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Creating Matrices

There are many ways to create a matrix from a collection of values or from existing matrices.

If the matrix has almost all items equal to the same value, use new to create a matrix filled
with that value and then reset the entries that are different.

m : Matrix(Integer) := new(3,3,0)

 0 0 0
0 0 0
0 0 0


Type: Matrix Integer

To change the entry in the second row, third column to 5, use setelt.

setelt(m,2,3,5)

5

Type: PositiveInteger

An alternative syntax is to use assignment.

m(1,2) := 10

10

Type: PositiveInteger

The matrix was destructively modified.

m  0 10 0
0 0 5
0 0 0


Type: Matrix Integer

If you already have the matrix entries as a list of lists, use matrix.

matrix [ [1,2,3,4],[0,9,8,7] ]



656 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES[
1 2 3 4
0 9 8 7

]
Type: Matrix Integer

If the matrix is diagonal, use diagonalMatrix.

dm := diagonalMatrix [1,x**2,x**3,x**4,x**5]


1 0 0 0 0
0 x2 0 0 0
0 0 x3 0 0
0 0 0 x4 0
0 0 0 0 x5


Type: Matrix Polynomial Integer

Use setRow and setColumn to change a row or column of a matrix.

setRow!(dm,5,vector [1,1,1,1,1])


1 0 0 0 0
0 x2 0 0 0
0 0 x3 0 0
0 0 0 x4 0
1 1 1 1 1


Type: Matrix Polynomial Integer

setColumn!(dm,2,vector [y,y,y,y,y])


1 y 0 0 0
0 y 0 0 0
0 y x3 0 0
0 y 0 x4 0
1 y 1 1 1


Type: Matrix Polynomial Integer

Use copy to make a copy of a matrix.

cdm := copy(dm)
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1 y 0 0 0
0 y 0 0 0
0 y x3 0 0
0 y 0 x4 0
1 y 1 1 1


Type: Matrix Polynomial Integer

This is useful if you intend to modify a matrix destructively but want a copy of the original.

setelt(dm,4,1,1-x**7)

−x7 + 1

Type: Polynomial Integer

[dm,cdm] 


1 y 0 0 0
0 y 0 0 0
0 y x3 0 0

−x7 + 1 y 0 x4 0
1 y 1 1 1

,


1 y 0 0 0
0 y 0 0 0
0 y x3 0 0
0 y 0 x4 0
1 y 1 1 1




Type: List Matrix Polynomial Integer

Use subMatrix to extract part of an existing matrix. The syntax is subMatrix(m, firstrow,
lastrow, firstcol, lastcol).

subMatrix(dm,2,3,2,4) [
y 0 0
y x3 0

]
Type: Matrix Polynomial Integer

To change a submatrix, use setsubMatrix.

d := diagonalMatrix [1.2,-1.3,1.4,-1.5]


1.2 0.0 0.0 0.0
0.0 −1.3 0.0 0.0
0.0 0.0 1.4 0.0
0.0 0.0 0.0 −1.5


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Type: Matrix Float

If e is too big to fit where you specify, an error message is displayed. Use subMatrix to
extract part of e, if necessary.

e := matrix [ [6.7,9.11],[-31.33,67.19] ]

[
6.7 9.11
−31.33 67.19

]
Type: Matrix Float

This changes the submatrix of d whose upper left corner is at the first row and second column
and whose size is that of e.

setsubMatrix!(d,1,2,e)


1.2 6.7 9.11 0.0
0.0 −31.33 67.19 0.0
0.0 0.0 1.4 0.0
0.0 0.0 0.0 −1.5


Type: Matrix Float

d 
1.2 6.7 9.11 0.0
0.0 −31.33 67.19 0.0
0.0 0.0 1.4 0.0
0.0 0.0 0.0 −1.5


Type: Matrix Float

Matrices can be joined either horizontally or vertically to make new matrices.

a := matrix [ [1/2,1/3,1/4],[1/5,1/6,1/7] ]


1

2

1

3

1

4

1

5

1

6

1

7


Type: Matrix Fraction Integer
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b := matrix [ [3/5,3/7,3/11],[3/13,3/17,3/19] ]


3

5

3

7

3

11

3

13

3

17

3

19


Type: Matrix Fraction Integer

Use horizConcat to append them side to side. The two matrices must have the same
number of rows.

horizConcat(a,b)


1

2

1

3

1

4

3

5

3

7

3

11

1

5

1

6

1

7

3

13

3

17

3

19


Type: Matrix Fraction Integer

Use vertConcat to stack one upon the other. The two matrices must have the same number
of columns.

vab := vertConcat(a,b)



1

2

1

3

1

4

1

5

1

6

1

7

3

5

3

7

3

11

3

13

3

17

3

19


Type: Matrix Fraction Integer

The operation transpose is used to create a new matrix by reflection across the main
diagonal.

transpose vab
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1

2

1

5

3

5

3

13

1

3

1

6

3

7

3

17

1

4

1

7

3

11

3

19


Type: Matrix Fraction Integer

Operations on Matrices

Axiom provides both left and right scalar multiplication.

m := matrix [ [1,2],[3,4] ]

[
1 2
3 4

]
Type: Matrix Integer

4 * m * (-5)

[
−20 −40
−60 −80

]
Type: Matrix Integer

You can add, subtract, and multiply matrices provided, of course, that the matrices have
compatible dimensions. If not, an error message is displayed.

n := matrix([ [1,0,-2],[-3,5,1] ])

[
1 0 −2
−3 5 1

]
Type: Matrix Integer

This following product is defined but n * m is not.

m * n
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−5 10 0
−9 20 −2

]
Type: Matrix Integer

The operations nrows and ncols return the number of rows and columns of a matrix. You
can extract a row or a column of a matrix using the operations row and column. The
object returned is a Vector.

Here is the third column of the matrix n.

vec := column(n,3)

[−2, 1]

Type: Vector Integer

You can multiply a matrix on the left by a “row vector” and on the right by a “column
vector.”

vec * m

[1, 0]

Type: Vector Integer

Of course, the dimensions of the vector and the matrix must be compatible or an error
message is returned.

m * vec

[0,−2]

Type: Vector Integer

The operation inverse computes the inverse of a matrix if the matrix is invertible, and
returns "failed" if not.

This Hilbert matrix is invertible.

hilb := matrix([ [1/(i + j) for i in 1..3] for j in 1..3])
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1

2

1

3

1

4

1

3

1

4

1

5

1

4

1

5

1

6


Type: Matrix Fraction Integer

inverse(hilb)

 72 −240 180
−240 900 −720
180 −720 600


Type: Union(Matrix Fraction Integer,...)

This matrix is not invertible.

mm := matrix([ [1,2,3,4], [5,6,7,8], [9,10,11,12], [13,14,15,16] ])


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16


Type: Matrix Integer

inverse(mm)

"failed"

Type: Union("failed",...)

The operation determinant computes the determinant of a matrix provided that the entries
of the matrix belong to a CommutativeRing.

The above matrix mm is not invertible and, hence, must have determinant 0.

determinant(mm)

0
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Type: NonNegativeInteger

The operation trace computes the trace of a square matrix.

trace(mm)

34

Type: PositiveInteger

The operation rank computes the rank of a matrix: the maximal number of linearly inde-
pendent rows or columns.

rank(mm)

2

Type: PositiveInteger

The operation nullity computes the nullity of a matrix: the dimension of its null space.

nullity(mm)

2

Type: PositiveInteger

The operation nullSpace returns a list containing a basis for the null space of a matrix.
Note that the nullity is the number of elements in a basis for the null space.

nullSpace(mm)

[[1,−2, 1, 0], [2,−3, 0, 1]]

Type: List Vector Integer

The operation rowEchelon returns the row echelon form of a matrix. It is easy to see that
the rank of this matrix is two and that its nullity is also two.

rowEchelon(mm)
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1 2 3 4
0 4 8 12
0 0 0 0
0 0 0 0


Type: Matrix Integer

For more information on related topics, see section 1.6 on page 27, section 8.4 on page 309,
section 9.31 on page 523, Permanent 9.70 on page 692, Vector 9.99 on page 815,
OneDimensionalArray 9.65 on page 674, and TwoDimensionalArray 9.94 on page 786.

9.60 Multiset

The domain Multiset(R) is similar to Set(R) except that multiplicities (counts of duplica-
tions) are maintained and displayed. Use the operation multiset to create multisets from
lists. All the standard operations from sets are available for multisets. An element with
multiplicity greater than one has the multiplicity displayed first, then a colon, and then the
element.

Create a multiset of integers.

s := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]

{7, 2: 5, 3: 3, 1, 10, 6, 4: 4, 2: 2}

Type: Multiset PositiveInteger

The operation insert! adds an element to a multiset.

insert!(3,s)

{7, 2: 5, 4: 3, 1, 10, 6, 4: 4, 2: 2}

Type: Multiset PositiveInteger

Use remove! to remove an element. If a third argument is present, it specifies how many in-
stances to remove. Otherwise all instances of the element are removed. Display the resulting
multiset.

remove!(3,s,1); s

{7, 2: 5, 3: 3, 1, 10, 6, 4: 4, 2: 2}

Type: Multiset PositiveInteger
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remove!(5,s); s

{7, 3: 3, 1, 10, 6, 4: 4, 2: 2}

Type: Multiset PositiveInteger

The operation count returns the number of copies of a given value.

count(5,s)

0

Type: NonNegativeInteger

A second multiset.

t := multiset [2,2,2,-9]

{−9, 3: 2}

Type: Multiset Integer

The union of two multisets is additive.

U := union(s,t)

{7, 3: 3, 1,−9, 10, 6, 4: 4, 5: 2}

Type: Multiset Integer

The intersect operation gives the elements that are in common, with additive multiplicity.

I := intersect(s,t)

{5: 2}

Type: Multiset Integer

The difference of s and t consists of the elements that s has but t does not. Elements
are regarded as indistinguishable, so that if s and t have any element in common, the
difference does not contain that element.
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difference(s,t)

{7, 3: 3, 1, 10, 6, 4: 4}

Type: Multiset Integer

The symmetricDifference is the union of difference(s, t) and difference(t, s).

S := symmetricDifference(s,t)

{7, 3: 3, 1,−9, 10, 6, 4: 4}

Type: Multiset Integer

Check that the union of the symmetricDifference and the intersect equals the union of
the elements.

(U = union(S,I))@Boolean

true

Type: Boolean

Check some inclusion relations.

t1 := multiset [1,2,2,3]; [t1 < t, t1 < s, t < s, t1 <= s]

[false, true, false, true]

Type: List Boolean

9.61 MultivariatePolynomial

The domain constructor MultivariatePolynomial is similar to Polynomial except that it
specifies the variables to be used. Polynomial are available for MultivariatePolynomial.
The abbreviation for MultivariatePolynomial is MPOLY. The type expressions

MultivariatePolynomial([x,y],Integer)

and
MPOLY([x,y],INT)

refer to the domain of multivariate polynomials in the variables x and y where the coefficients
are restricted to be integers. The first variable specified is the main variable and the display
of the polynomial reflects this.

This polynomial appears with terms in descending powers of the variable x.
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m : MPOLY([x,y],INT) := (x**2 - x*y**3 +3*y)**2

x4 − 2 y3 x3 +
(
y6 + 6 y

)
x2 − 6 y4 x+ 9 y2

Type: MultivariatePolynomial([x,y],Integer)

It is easy to see a different variable ordering by doing a conversion.

m :: MPOLY([y,x],INT)

x2 y6 − 6 x y4 − 2 x3 y3 + 9 y2 + 6 x2 y + x4

Type: MultivariatePolynomial([y,x],Integer)

You can use other, unspecified variables, by using Polynomial in the coefficient type of
MPOLY.

p : MPOLY([x,y],POLY INT)

Type: Void

p := (a**2*x - b*y**2 + 1)**2

a4 x2 +
(
−2 a2 b y2 + 2 a2

)
x+ b2 y4 − 2 b y2 + 1

Type: MultivariatePolynomial([x,y],Polynomial Integer)

Conversions can be used to re-express such polynomials in terms of the other variables. For
example, you can first push all the variables into a polynomial with integer coefficients.

p :: POLY INT

b2 y4 +
(
−2 a2 b x− 2 b

)
y2 + a4 x2 + 2 a2 x+ 1

Type: Polynomial Integer

Now pull out the variables of interest.

% :: MPOLY([a,b],POLY INT)

x2 a4 +
(
−2 x y2 b+ 2 x

)
a2 + y4 b2 − 2 y2 b+ 1
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Type: MultivariatePolynomial([a,b],Polynomial Integer)

Restriction:

Axiom does not allow you to create types where
MultivariatePolynomial is contained in the coefficient type of
Polynomial. Therefore,
MPOLY([x,y],POLY INT) is legal but POLY MPOLY([x,y],INT) is
not.

.

Multivariate polynomials may be combined with univariate polynomials to create types with
special structures.

q : UP(x, FRAC MPOLY([y,z],INT))

Type: Void

This is a polynomial in x whose coefficients are quotients of polynomials in y and z.

q := (x**2 - x*(z+1)/y +2)**2

x4 +
−2 z − 2

y
x3 +

4 y2 + z2 + 2 z + 1

y2
x2 +

−4 z − 4

y
x+ 4

Type: UnivariatePolynomial(x,Fraction

MultivariatePolynomial([y,z],Integer))

Use conversions for structural rearrangements. z does not appear in a denominator and so
it can be made the main variable.

q :: UP(z, FRAC MPOLY([x,y],INT))

x2

y2
z2 +

−2 y x3 + 2 x2 − 4 y x

y2
z +

y2 x4 − 2 y x3 +
(
4 y2 + 1

)
x2 − 4 y x+ 4 y2

y2

Type: UnivariatePolynomial(z,Fraction

MultivariatePolynomial([x,y],Integer))

Or you can make a multivariate polynomial in x and z whose coefficients are fractions in
polynomials in y.

q :: MPOLY([x,z], FRAC UP(y,INT))
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x4 +
(
− 2

y z −
2
y

)
x3 +

(
1
y2 z

2 + 2
y2 z +

4 y2+1
y2

)
x2+

(
−4

y
z − 4

y

)
x+ 4

Type: MultivariatePolynomial([x,z],Fraction

UnivariatePolynomial(y,Integer))

A conversion like q :: MPOLY([x,y], FRAC UP(z,INT)) is not possible in this example
because y appears in the denominator of a fraction. As you can see, Axiom provides extraor-
dinary flexibility in the manipulation and display of expressions via its conversion facility.

For more information on related topics, see Polynomial 9.72 on page 693,
UnivariatePolynomial 9.96 on page 800, and
DistributedMultivariatePolynomial 9.19 on page 483.

9.62 None

The None domain is not very useful for interactive work but it is provided nevertheless for
completeness of the Axiom type system.

Probably the only place you will ever see it is if you enter an empty list with no type
information.

[ ]

[ ]

Type: List None

Such an empty list can be converted into an empty list of any other type.

[ ] :: List Float

[ ]

Type: List Float

If you wish to produce an empty list of a particular type directly, such as List NonNegative-

Integer, do it this way.

[ ]$List(NonNegativeInteger)

[ ]

Type: List NonNegativeInteger
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9.63 NottinghamGroup

If F is a finite field with pn elements, then we may form the group of all formal power series
{t(1 + a1t + a2t + ...)} where u(0) = 0 and u

′
(0) = 1 and ai ∈ F . The group operation is

substitution (composition). This is called the Nottingham Group.

The Nottingham Group is the projective limit of finite p-groups. Every finite p-group can
be embedded in the Nottingham Group.

x:=monomial(1,1)$UFPS PF 1783

x

Type: UnivariateFormalPowerSeries(PrimeField(1783))

s:=retract(sin x)$NOTTING PF 1783

x+ 297 x3 + 1679 x5 + 427 x7 + 316 x9 +O
(
x11
)

Type: NottinghamGroup(PrimeField(1783))

s^2

x+ 594 x3 + 535 x5 + 1166 x7 + 1379 x9 +O
(
x11
)

Type: NottinghamGroup(PrimeField(1783))

s^-1

x+ 1486 x3 + 847 x5 + 207 x7 + 1701 x9 +O
(
x11
)

Type: NottinghamGroup(PrimeField(1783))

s^-1*s

x+O
(
x11
)

Type: NottinghamGroup(PrimeField(1783))

s*s^-1

x+O
(
x11
)

Type: NottinghamGroup(PrimeField(1783))
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9.64 Octonion

The Octonions, also called the Cayley-Dixon algebra, defined over a commutative ring are an
eight-dimensional non-associative algebra. Their construction from quaternions is similar to
the construction of quaternions from complex numbers (see Quaternion 9.73 on page 703).

As Octonion creates an eight-dimensional algebra, you have to give eight components to
construct an octonion.

oci1 := octon(1,2,3,4,5,6,7,8)

1 + 2 i+ 3 j + 4 k + 5 E + 6 I + 7 J + 8 K

Type: Octonion Integer

oci2 := octon(7,2,3,-4,5,6,-7,0)

7 + 2 i+ 3 j − 4 k + 5 E + 6 I − 7 J

Type: Octonion Integer

Or you can use two quaternions to create an octonion.

oci3 := octon(quatern(-7,-12,3,-10), quatern(5,6,9,0))

−7− 12 i+ 3 j − 10 k + 5 E + 6 I + 9 J

Type: Octonion Integer

You can easily demonstrate the non-associativity of multiplication.

(oci1 * oci2) * oci3 - oci1 * (oci2 * oci3)

2696 i− 2928 j − 4072 k + 16 E − 1192 I + 832 J + 2616 K

Type: Octonion Integer

As with the quaternions, we have a real part, the imaginary parts i, j, k, and four ad-
ditional imaginary parts E, I, J and K. These parts correspond to the canonical basis
(1,i,j,k,E,I,J,K).

For each basis element there is a component operation to extract the coefficient of the basis
element for a given octonion.
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[real oci1, imagi oci1, imagj oci1, imagk oci1, imagE oci1, imagI oci1,

imagJ oci1, imagK oci1]

[1, 2, 3, 4, 5, 6, 7, 8]

Type: List PositiveInteger

A basis with respect to the quaternions is given by (1,E). However, you might ask, what
then are the commuting rules? To answer this, we create some generic elements.

We do this in Axiom by simply changing the ground ring from Integer to Polynomial

Integer.

q : Quaternion Polynomial Integer := quatern(q1, qi, qj, qk)

q1 + qi i+ qj j + qk k

Type: Quaternion Polynomial Integer

E : Octonion Polynomial Integer:= octon(0,0,0,0,1,0,0,0)

E

Type: Octonion Polynomial Integer

Note that quaternions are automatically converted to octonions in the obvious way.

q * E

q1 E + qi I + qj J + qk K

Type: Octonion Polynomial Integer

E * q

q1 E − qi I − qj J − qk K

Type: Octonion Polynomial Integer

q * 1$(Octonion Polynomial Integer)
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q1 + qi i+ qj j + qk k

Type: Octonion Polynomial Integer

1$(Octonion Polynomial Integer) * q

q1 + qi i+ qj j + qk k

Type: Octonion Polynomial Integer

Finally, we check that the norm, defined as the sum of the squares of the coefficients, is a
multiplicative map.

o : Octonion Polynomial Integer := octon(o1, oi, oj, ok, oE, oI, oJ, oK)

o1 + oi i+ oj j + ok k + oE E + oI I + oJ J + oK K

Type: Octonion Polynomial Integer

norm o

ok2 + oj2 + oi2 + oK2 + oJ2 + oI2 + oE2 + o12

Type: Polynomial Integer

p : Octonion Polynomial Integer := octon(p1, pi, pj, pk, pE, pI, pJ, pK)

p1 + pi i+ pj j + pk k + pE E + pI I + pJ J + pK K

Type: Octonion Polynomial Integer

Since the result is 0, the norm is multiplicative.

norm(o*p)-norm(p)*norm(o)

0

Type: Polynomial Integer
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9.65 OneDimensionalArray

The OneDimensionalArray domain is used for storing data in a one-dimensional indexed
data structure. Such an array is a homogeneous data structure in that all the entries of the
array must belong to the same Axiom domain. Each array has a fixed length specified by
the user and arrays are not extensible. The indexing of one-dimensional arrays is one-based.
This means that the “first” element of an array is given the index 1. See also Vector 9.99
on page 815 and FlexibleArray 9.30 on page 514.

To create a one-dimensional array, apply the operation oneDimensionalArray to a list.

oneDimensionalArray [i**2 for i in 1..10]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Type: OneDimensionalArray PositiveInteger

Another approach is to first create a, a one-dimensional array of 10 0’s. OneDimensional-

Array has the convenient abbreviation ARRAY1.

a : ARRAY1 INT := new(10,0)

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Type: OneDimensionalArray Integer

Set each ith element to i, then display the result.

for i in 1..10 repeat a.i := i; a

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Type: OneDimensionalArray Integer

Square each element by mapping the function i 7→ i2 onto each element.

map!(i +-> i ** 2,a); a

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Type: OneDimensionalArray Integer

Reverse the elements in place.
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reverse! a

[100, 81, 64, 49, 36, 25, 16, 9, 4, 1]

Type: OneDimensionalArray Integer

Swap the 4th and 5th element.

swap!(a,4,5); a

[100, 81, 64, 36, 49, 25, 16, 9, 4, 1]

Type: OneDimensionalArray Integer

Sort the elements in place.

sort! a

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Type: OneDimensionalArray Integer

Create a new one-dimensional array b containing the last 5 elements of a.

b := a(6..10)

[36, 49, 64, 81, 100]

Type: OneDimensionalArray Integer

Replace the first 5 elements of a with those of b.

copyInto!(a,b,1)

[36, 49, 64, 81, 100, 36, 49, 64, 81, 100]

Type: OneDimensionalArray Integer
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9.66 Operator

Given any ring R, the ring of the Integer-linear operators over R is called Operator(R). To
create an operator over R, first create a basic operator using the operation operator, and
then convert it to Operator(R) for the R you want.

We choose R to be the two by two matrices over the integers.

R := SQMATRIX(2, INT)

SquareMatrix(2, Integer)

Type: Domain

Create the operator tilde on R.

t := operator("tilde") :: OP(R)

tilde

Type: Operator SquareMatrix(2,Integer)

Since Operator is unexposed we must either package-call operations from it, or expose it
explicitly. For convenience we will do the latter.

Expose Operator.

)set expose add constructor Operator

Operator is now explicitly exposed in frame G82322

To attach an evaluation function (from R to R) to an operator over R, use evaluate(op, f)

where op is an operator over R and f is a function R -> R. This needs to be done only once
when the operator is defined. Note that f must be Integer-linear (that is, f(ax+y) = a

f(x) + f(y) for any integer a, and any x and y in R).

We now attach the transpose map to the above operator t.

evaluate(t, m +-> transpose m)

tilde

Type: Operator SquareMatrix(2,Integer)



9.66. OPERATOR 677

Operators can be manipulated formally as in any ring: + is the pointwise addition and *

is composition. Any element x of R can be converted to an operator opx over R, and the
evaluation function of opx is left-multiplication by x.

Multiplying on the left by this matrix swaps the two rows.

s : R := matrix [ [0, 1], [1, 0] ]

[
0 1
1 0

]
Type: SquareMatrix(2,Integer)

Can you guess what is the action of the following operator?

rho := t * s

tilde

[
0 1
1 0

]
Type: Operator SquareMatrix(2,Integer)

Hint: applying rho four times gives the identity, so rho**4-1 should return 0 when applied
to any two by two matrix.

z := rho**4 - 1

−1 + tilde

[
0 1
1 0

]
tilde

[
0 1
1 0

]
tilde

[
0 1
1 0

]
tilde

[
0 1
1 0

]
Type: Operator SquareMatrix(2,Integer)

Now check with this matrix.

m:R := matrix [ [1, 2], [3, 4] ]

[
1 2
3 4

]
Type: SquareMatrix(2,Integer)

z m
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0 0
0 0

]
Type: SquareMatrix(2,Integer)

As you have probably guessed by now, rho acts on matrices by rotating the elements clock-
wise.

rho m [
3 1
4 2

]
Type: SquareMatrix(2,Integer)

rho rho m [
4 3
2 1

]
Type: SquareMatrix(2,Integer)

(rho**3) m

[
2 4
1 3

]
Type: SquareMatrix(2,Integer)

Do the swapping of rows and transposition commute? We can check by computing their
bracket.

b := t * s - s * t

−
[

0 1
1 0

]
tilde+ tilde

[
0 1
1 0

]
Type: Operator SquareMatrix(2,Integer)

Now apply it to m.

b m
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1 −3
3 −1

]
Type: SquareMatrix(2,Integer)

Next we demonstrate how to define a differential operator on a polynomial ring.

This is the recursive definition of the n-th Legendre polynomial.

L n ==

n = 0 => 1

n = 1 => x

(2*n-1)/n * x * L(n-1) - (n-1)/n * L(n-2)

Type: Void

Create the differential operator d
dx on polynomials in x over the rational numbers.

dx := operator("D") :: OP(POLY FRAC INT)

D

Type: Operator Polynomial Fraction Integer

Now attach the map to it.

evaluate(dx, p +-> D(p, ’x))

D

Type: Operator Polynomial Fraction Integer

This is the differential equation satisfied by the n-th Legendre polynomial.

E n == (1 - x**2) * dx**2 - 2 * x * dx + n*(n+1)

Type: Void

Now we verify this for n = 15. Here is the polynomial.

L 15
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9694845
2048 x15 − 35102025

2048 x13 + 50702925
2048 x11 − 37182145

2048 x9 + 14549535
2048 x7−

2909907

2048
x5 +

255255

2048
x3 − 6435

2048
x

Type: Polynomial Fraction Integer

Here is the operator.

E 15

240− 2 x D −
(
x2 − 1

)
D2

Type: Operator Polynomial Fraction Integer

Here is the evaluation.

(E 15)(L 15)

0

Type: Polynomial Fraction Integer

9.67 OrderedVariableList

The domain OrderedVariableList provides symbols which are restricted to a particular list
and have a definite ordering. Those two features are specified by a List Symbol object that
is the argument to the domain.

This is a sample ordering of three symbols.

ls:List Symbol:=[’x,’a,’z]

[x, a, z]

Type: List Symbol

Let’s build the domain

Z:=OVAR ls

OrderedVariableList [x,a,z]
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Type: Domain

How many variables does it have?

size()$Z

3

Type: NonNegativeInteger

They are (in the imposed order)

lv:=[index(i::PI)$Z for i in 1..size()$Z]

[x, a, z]

Type: List OrderedVariableList [x,a,z]

Check that the ordering is right

sorted?(>,lv)

true

Type: Boolean

9.68 OrderlyDifferentialPolynomial

Many systems of differential equations may be transformed to equivalent systems of ordi-
nary differential equations where the equations are expressed polynomially in terms of the
unknown functions. In Axiom, the domain constructors OrderlyDifferentialPolynomial
(abbreviated ODPOL) and SequentialDifferentialPolynomial (abbreviation SDPOL) im-
plement two domains of ordinary differential polynomials over any differential ring. In the
simplest case, this differential ring is usually either the ring of integers, or the field of ratio-
nal numbers. However, Axiom can handle ordinary differential polynomials over a field of
rational functions in a single indeterminate.

The two domains ODPOL and SDPOL are almost identical, the only difference being the choice
of a different ranking, which is an ordering of the derivatives of the indeterminates. The first
domain uses an orderly ranking, that is, derivatives of higher order are ranked higher, and
derivatives of the same order are ranked alphabetically. The second domain uses a sequential
ranking, where derivatives are ordered first alphabetically by the differential indeterminates,
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and then by order. A more general domain constructor,
DifferentialSparseMultivariatePolynomial (abbreviation DSMP)
allows both a user-provided list of differential indeterminates as well as a user-defined rank-
ing. We shall illustrate ODPOL(FRAC INT), which constructs a domain of ordinary differential
polynomials in an arbitrary number of differential indeterminates with rational numbers as
coefficients.

dpol:= ODPOL(FRAC INT)

OrderlyDifferentialPolynomial Fraction Integer

Type: Domain

A differential indeterminate w may be viewed as an infinite sequence of algebraic indeter-
minates, which are the derivatives of w. To facilitate referencing these, Axiom provides the
operation makeVariable to convert an element of type Symbol to a map from the natural
numbers to the differential polynomial ring.

w := makeVariable(’w)$dpol

theMap(...)

Type: (NonNegativeInteger -> OrderlyDifferentialPolynomial Fraction

Integer)

z := makeVariable(’z)$dpol

theMap(...)

Type: (NonNegativeInteger -> OrderlyDifferentialPolynomial Fraction

Integer)

The fifth derivative of w can be obtained by applying the map w to the number 5. Note that
the order of differentiation is given as a subscript (except when the order is 0).

w.5

w5

Type: OrderlyDifferentialPolynomial Fraction Integer

w 0
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w

Type: OrderlyDifferentialPolynomial Fraction Integer

The first five derivatives of z can be generated by a list.

[z.i for i in 1..5]

[z1, z2, z3, z4, z5]

Type: List OrderlyDifferentialPolynomial Fraction Integer

The usual arithmetic can be used to form a differential polynomial from the derivatives.

f:= w.4 - w.1 * w.1 * z.3

w4 − w1
2 z3

Type: OrderlyDifferentialPolynomial Fraction Integer

g:=(z.1)**3 * (z.2)**2 - w.2

z1
3 z2

2 − w2

Type: OrderlyDifferentialPolynomial Fraction Integer

The operation D computes the derivative of any differential polynomial.

D(f)

w5 − w1
2 z4 − 2 w1 w2 z3

Type: OrderlyDifferentialPolynomial Fraction Integer

The same operation can compute higher derivatives, like the fourth derivative.

D(f,4)

w8 − w1
2 z7 − 8 w1 w2 z6 +

(
−12 w1 w3 − 12 w2

2
)
z5 − 2 w1 z3 w5+

(−8 w1 w4 − 24 w2 w3) z4 − 8 w2 z3 w4 − 6 w3
2 z3
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Type: OrderlyDifferentialPolynomial Fraction Integer

The operation makeVariable creates a map to facilitate referencing the derivatives of f,
similar to the map w.

df:=makeVariable(f)$dpol

theMap(...)

Type: (NonNegativeInteger -> OrderlyDifferentialPolynomial Fraction

Integer)

The fourth derivative of f may be referenced easily.

df.4

w8 − w1
2 z7 − 8 w1 w2 z6 +

(
−12 w1 w3 − 12 w2

2
)
z5 − 2 w1 z3 w5+

(−8 w1 w4 − 24 w2 w3) z4 − 8 w2 z3 w4 − 6 w3
2 z3

Type: OrderlyDifferentialPolynomial Fraction Integer

The operation order returns the order of a differential polynomial, or the order in a specified
differential indeterminate.

order(g)

2

Type: PositiveInteger

order(g, ’w)

2

Type: PositiveInteger

The operation differentialVariables returns a list of differential indeterminates occurring
in a differential polynomial.

differentialVariables(g)
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[z, w]

Type: List Symbol

The operation degree returns the degree, or the degree in the differential indeterminate
specified.

degree(g)

z2
2 z1

3

Type: IndexedExponents OrderlyDifferentialVariable Symbol

degree(g, ’w)

1

Type: PositiveInteger

The operation weights returns a list of weights of differential monomials appearing in dif-
ferential polynomial, or a list of weights in a specified differential indeterminate.

weights(g)

[7, 2]

Type: List NonNegativeInteger

weights(g,’w)

[2]

Type: List NonNegativeInteger

The operation weight returns the maximum weight of all differential monomials appearing
in the differential polynomial.

weight(g)

7
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Type: PositiveInteger

A differential polynomial is isobaric if the weights of all differential monomials appearing in
it are equal.

isobaric?(g)

false

Type: Boolean

To substitute differentially, use eval. Note that we must coerce ’w to Symbol, since in ODPOL,
differential indeterminates belong to the domain Symbol. Compare this result to the next,
which substitutes algebraically (no substitution is done since w.0 does not appear in g).

eval(g,[’w::Symbol],[f])

−w6 + w1
2 z5 + 4 w1 w2 z4 +

(
2 w1 w3 + 2 w2

2
)
z3 + z1

3 z2
2

Type: OrderlyDifferentialPolynomial Fraction Integer

eval(g,variables(w.0),[f])

z1
3 z2

2 − w2

Type: OrderlyDifferentialPolynomial Fraction Integer

Since OrderlyDifferentialPolynomial belongs to PolynomialCategory, all the operations
defined in the latter category, or in packages for the latter category, are available.

monomials(g)

[
z1

3 z2
2,−w2

]
Type: List OrderlyDifferentialPolynomial Fraction Integer

variables(g)

[z2, w2, z1]

Type: List OrderlyDifferentialVariable Symbol
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gcd(f,g)

1

Type: OrderlyDifferentialPolynomial Fraction Integer

groebner([f,g])

[
w4 − w1

2 z3, z1
3 z2

2 − w2

]
Type: List OrderlyDifferentialPolynomial Fraction Integer

The next three operations are essential for elimination procedures in differential polynomial
rings. The operation leader returns the leader of a differential polynomial, which is the
highest ranked derivative of the differential indeterminates that occurs.

lg:=leader(g)

z2

Type: OrderlyDifferentialVariable Symbol

The operation separant returns the separant of a differential polynomial, which is the partial
derivative with respect to the leader.

sg:=separant(g)

2 z1
3 z2

Type: OrderlyDifferentialPolynomial Fraction Integer

The operation initial returns the initial, which is the leading coefficient when the given
differential polynomial is expressed as a polynomial in the leader.

ig:=initial(g)

z1
3

Type: OrderlyDifferentialPolynomial Fraction Integer

Using these three operations, it is possible to reduce f modulo the differential ideal generated
by g. The general scheme is to first reduce the order, then reduce the degree in the leader.
First, eliminate z.3 using the derivative of g.
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g1 := D g

2 z1
3 z2 z3 − w3 + 3 z1

2 z2
3

Type: OrderlyDifferentialPolynomial Fraction Integer

Find its leader.

lg1:= leader g1

z3

Type: OrderlyDifferentialVariable Symbol

Differentiate f partially with respect to this leader.

pdf:=D(f, lg1)

−w1
2

Type: OrderlyDifferentialPolynomial Fraction Integer

Compute the partial remainder of f with respect to g.

prf:=sg * f- pdf * g1

2 z1
3 z2 w4 − w1

2 w3 + 3 w1
2 z1

2 z2
3

Type: OrderlyDifferentialPolynomial Fraction Integer

Note that high powers of lg still appear in prf. Compute the leading coefficient of prf as a
polynomial in the leader of g.

lcf:=leadingCoefficient univariate(prf, lg)

3 w1
2 z1

2

Type: OrderlyDifferentialPolynomial Fraction Integer

Finally, continue eliminating the high powers of lg appearing in prf to obtain the (pseudo)
remainder of f modulo g and its derivatives.

ig * prf - lcf * g * lg

2 z1
6 z2 w4 − w1

2 z1
3 w3 + 3 w1

2 z1
2 w2 z2

Type: OrderlyDifferentialPolynomial Fraction Integer
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9.69 PartialFraction

A partial fraction is a decomposition of a quotient into a sum of quotients where the denom-
inators of the summands are powers of primes.5 For example, the rational number 1/6 is
decomposed into 1/2-1/3.

You can compute partial fractions of quotients of objects from domains belonging to the
category EuclideanDomain. For example, Integer, Complex Integer, and Univariate-

Polynomial(x, Fraction Integer) all belong to EuclideanDomain. In the examples fol-
lowing, we demonstrate how to decompose quotients of each of these kinds of object into
partial fractions. Issue the system command )show PartialFraction to display the full list
of operations defined by PartialFraction.

It is necessary that we know how to factor the denominator when we want to compute
a partial fraction. Although the interpreter can often do this automatically, it may be
necessary for you to include a call to factor. In these examples, it is not necessary to factor
the denominators explicitly.

The main operation for computing partial fractions is called partialFraction and we use
this to compute a decomposition of 1 / 10!. The first argument to partialFraction is the
numerator of the quotient and the second argument is the factored denominator.

partialFraction(1,factorial 10)

159

28
− 23

34
− 12

52
+

1

7

Type: PartialFraction Integer

Since the denominators are powers of primes, it may be possible to expand the numerators
further with respect to those primes. Use the operation padicFraction to do this.

f := padicFraction(%)

1

2
+

1

24
+

1

25
+

1

26
+

1

27
+

1

28
− 2

32
− 1

33
− 2

34
− 2

5
− 2

52
+

1

7

Type: PartialFraction Integer

The operation compactFraction returns an expanded fraction into the usual form. The
compacted version is used internally for computational efficiency.

compactFraction(f)

5Most people first encounter partial fractions when they are learning integral calculus. For a technical
discussion of partial fractions, see, for example, Lang’s Algebra.
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159

28
− 23

34
− 12

52
+

1

7

Type: PartialFraction Integer

You can add, subtract, multiply and divide partial fractions. In addition, you can extract the
parts of the decomposition. numberOfFractionalTerms computes the number of terms
in the fractional part. This does not include the whole part of the fraction, which you get
by calling wholePart. In this example, the whole part is just 0.

numberOfFractionalTerms(f)

12

Type: PositiveInteger

The operation nthFractionalTerm returns the individual terms in the decomposition. No-
tice that the object returned is a partial fraction itself. firstNumer and firstDenom extract
the numerator and denominator of the first term of the fraction.

nthFractionalTerm(f,3)

1

25

Type: PartialFraction Integer

Given two gaussian integers (see Complex 9.13 on page 447), you can decompose their quo-
tient into a partial fraction.

partialFraction(1,- 13 + 14 * %i)

− 1

1 + 2 i
+

4

3 + 8 i

Type: PartialFraction Complex Integer

To convert back to a quotient, simply use a conversion.

% :: Fraction Complex Integer

− i

14 + 13 i

Type: Fraction Complex Integer
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To conclude this section, we compute the decomposition of

1

-------------------------------

2 3 4

(x + 1)(x + 2) (x + 3) (x + 4)

The polynomials in this object have type UnivariatePolynomial(x, Fraction Integer).

We use the primeFactor operation (see Factored 9.26 on page 499) to create the denomi-
nator in factored form directly.

u : FR UP(x, FRAC INT) := reduce(*,[primeFactor(x+i,i) for i in 1..4])

(x+ 1) (x+ 2)
2
(x+ 3)

3
(x+ 4)

4

Type: Factored UnivariatePolynomial(x,Fraction Integer)

These are the compact and expanded partial fractions for the quotient.

partialFraction(1,u)

1
648

x+ 1
+

1
4 x+ 7

16

(x+ 2)
2 +

− 17
8 x2 − 12 x− 139

8

(x+ 3)
3 +

607
324 x

3 + 10115
432 x2 + 391

4 x+ 44179
324

(x+ 4)
4

Type: PartialFraction UnivariatePolynomial(x,Fraction Integer)

padicFraction %

1
648

x+ 1
+

1
4

x+ 2
−

1
16

(x+ 2)
2 −

17
8

x+ 3
+

3
4

(x+ 3)
2 −

1
2

(x+ 3)
3 +

607
324

x+ 4
+

403
432

(x+ 4)
2 +

13
36

(x+ 4)
3 +

1
12

(x+ 4)
4

Type: PartialFraction UnivariatePolynomial(x,Fraction Integer)

All see FullPartialFractionExpansion 9.33 on page 528 for examples of factor-free con-
version of quotients to full partial fractions.
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9.70 Permanent

The package Permanent provides the function permanent for square matrices. The perma-
nent of a square matrix can be computed in the same way as the determinant by expansion
of minors except that for the permanent the sign for each element is 1, rather than being 1

if the row plus column indices is positive and -1 otherwise. This function is much more dif-
ficult to compute efficiently than the determinant. An example of the use of permanent
is the calculation of the n-th derangement number, defined to be the number of different
possibilities for n couples to dance but never with their own spouse.

Consider an n by n matrix with entries 0 on the diagonal and 1 elsewhere. Think of the rows
as one-half of each couple (for example, the males) and the columns the other half. The
permanent of such a matrix gives the desired derangement number.

kn n ==

r : MATRIX INT := new(n,n,1)

for i in 1..n repeat

r.i.i := 0

r

Type: Void

Here are some derangement numbers, which you see grow quite fast.

permanent(kn(5) :: SQMATRIX(5,INT))

Compiling function kn with type PositiveInteger -> Matrix Integer

44

Type: PositiveInteger

[permanent(kn(n) :: SQMATRIX(n,INT)) for n in 1..13]

Cannot compile conversion for types involving local variables.

In particular, could not compile the expression involving

:: SQMATRIX(n,INT)

Axiom will attempt to step through and interpret the code.

[0, 1, 2, 9, 44, 265, 1854, 14833, 133496,
1334961, 14684570, 176214841, 2290792932]

Type: List NonNegativeInteger
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9.71 Permutation

We represent a permutation as two lists of equal length representing preimages and images of
moved points. Fixed points do not occur in either of these lists. This enables us to compute
the set of fixed points and the set of moved points easily.

p := coercePreimagesImages([ [1,2,3],[1,2,3] ])

1

Type: Permutation PositiveInteger

movedPoints p

{}

Type: Set PositiveInteger

even? p

true

Type: Boolean

p := coercePreimagesImages([ [0,1,2,3],[3,0,2,1] ])$PERM ZMOD 4

(1 0 3)

Type: Permutation IntegerMod 4

fixedPoints p

{2}

Type: Set IntegerMod 4

q := coercePreimagesImages([ [0,1,2,3],[1,0] ])$PERM ZMOD 4

(1 0)

Type: Permutation IntegerMod 4

fixedPoints(p*q)

{2,0}

Type: Set IntegerMod 4

even?(p*q)

false

Type: Boolean

9.72 Polynomial

The domain constructor Polynomial (abbreviation: POLY) provides polynomials with an
arbitrary number of unspecified variables.

It is used to create the default polynomial domains in Axiom. Here the coefficients are
integers.
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x + 1

x+ 1

Type: Polynomial Integer

Here the coefficients have type Float.

z - 2.3

z − 2.3

Type: Polynomial Float

And here we have a polynomial in two variables with coefficients which have type Fraction
Integer.

y**2 - z + 3/4

−z + y2 +
3

4

Type: Polynomial Fraction Integer

The representation of objects of domains created by Polynomial is that of recursive univari-
ate polynomials.6

This recursive structure is sometimes obvious from the display of a polynomial.

y **2 + x*y + y

y2 + (x+ 1) y

Type: Polynomial Integer

In this example, you see that the polynomial is stored as a polynomial in y with coefficients
that are polynomials in x with integer coefficients. In fact, you really don’t need to worry
about the representation unless you are working on an advanced application where it is
critical. The polynomial types created from DistributedMultivariatePolynomial and
NewDistributedMultivariatePolynomial (discussed in
DistributedMultivariatePolynomial 9.19 on page 483) are stored and displayed in a non-
recursive manner.

You see a “flat” display of the above polynomial by converting to one of those types.

6The term univariate means “one variable.” multivariate means “possibly more than one variable.”
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% :: DMP([y,x],INT)

y2 + y x+ y

Type: DistributedMultivariatePolynomial([y,x],Integer)

We will demonstrate many of the polynomial facilities by using two polynomials with integer
coefficients.

By default, the interpreter expands polynomial expressions, even if they are written in a
factored format.

p := (y-1)**2 * x * z

(
x y2 − 2 x y + x

)
z

Type: Polynomial Integer

See Factored 9.26 on page 499 to see how to create objects in factored form directly.

q := (y-1) * x * (z+5)

(x y − x) z + 5 x y − 5 x

Type: Polynomial Integer

The fully factored form can be recovered by using factor.

factor(q)

x (y − 1) (z + 5)

Type: Factored Polynomial Integer

This is the same name used for the operation to factor integers. Such reuse of names is called
and makes it much easier to think of solving problems in general ways. Axiom facilities for
factoring polynomials created with Polynomial are currently restricted to the integer and
rational number coefficient cases. There are more complete facilities for factoring univariate
polynomials: see section 8.2 on page 301.

The standard arithmetic operations are available for polynomials.

p - q**2
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−x2 y2 + 2 x2 y − x2

)
z2+((

−10 x2 + x
)
y2 +

(
20 x2 − 2 x

)
y − 10 x2 + x

)
z−

25 x2 y2 + 50 x2 y − 25 x2

Type: Polynomial Integer

The operation gcd is used to compute the greatest common divisor of two polynomials.

gcd(p,q)

x y − x

Type: Polynomial Integer

In the case of p and q, the gcd is obvious from their definitions. We factor the gcd to show
this relationship better.

factor %

x (y − 1)

Type: Factored Polynomial Integer

The least common multiple is computed by using lcm.

lcm(p,q)

(
x y2 − 2 x y + x

)
z2 +

(
5 x y2 − 10 x y + 5 x

)
z

Type: Polynomial Integer

Use content to compute the greatest common divisor of the coefficients of the polynomial.

content p

1

Type: PositiveInteger

Many of the operations on polynomials require you to specify a variable. For example,
resultant requires you to give the variable in which the polynomials should be expressed.

This computes the resultant of the values of p and q, considering them as polynomials in the
variable z. They do not share a root when thought of as polynomials in z.
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resultant(p,q,z)

5 x2 y3 − 15 x2 y2 + 15 x2 y − 5 x2

Type: Polynomial Integer

This value is 0 because as polynomials in x the polynomials have a common root.

resultant(p,q,x)

0

Type: Polynomial Integer

The data type used for the variables created by Polynomial is Symbol. As mentioned
above, the representation used by Polynomial is recursive and so there is a main variable
for nonconstant polynomials.

The operation mainVariable returns this variable. The return type is actually a union of
Symbol and "failed".

mainVariable p

z

Type: Union(Symbol,...)

The latter branch of the union is be used if the polynomial has no variables, that is, is a
constant.

mainVariable(1 :: POLY INT)

"failed"

Type: Union("failed",...)

You can also use the predicate ground? to test whether a polynomial is in fact a member
of its ground ring.

ground? p

false
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Type: Boolean

ground?(1 :: POLY INT)

true

Type: Boolean

The complete list of variables actually used in a particular polynomial is returned by vari-
ables. For constant polynomials, this list is empty.

variables p

[z, y, x]

Type: List Symbol

The degree operation returns the degree of a polynomial in a specific variable.

degree(p,x)

1

Type: PositiveInteger

degree(p,y)

2

Type: PositiveInteger

degree(p,z)

1

Type: PositiveInteger

If you give a list of variables for the second argument, a list of the degrees in those variables
is returned.

degree(p,[x,y,z])
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[1, 2, 1]

Type: List NonNegativeInteger

The minimum degree of a variable in a polynomial is computed using minimumDegree.

minimumDegree(p,z)

1

Type: PositiveInteger

The total degree of a polynomial is returned by totalDegree.

totalDegree p

4

Type: PositiveInteger

It is often convenient to think of a polynomial as a leading monomial plus the remaining
terms.

leadingMonomial p

x y2 z

Type: Polynomial Integer

The reductum operation returns a polynomial consisting of the sum of the monomials after
the first.

reductum p

(−2 x y + x) z

Type: Polynomial Integer

These have the obvious relationship that the original polynomial is equal to the leading
monomial plus the reductum.

p - leadingMonomial p - reductum p
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0

Type: Polynomial Integer

The value returned by leadingMonomial includes the coefficient of that term. This is
extracted by using leadingCoefficient on the original polynomial.

leadingCoefficient p

1

Type: PositiveInteger

The operation eval is used to substitute a value for a variable in a polynomial.

p

(
x y2 − 2 x y + x

)
z

Type: Polynomial Integer

This value may be another variable, a constant or a polynomial.

eval(p,x,w)

(
w y2 − 2 w y + w

)
z

Type: Polynomial Integer

eval(p,x,1)

(
y2 − 2 y + 1

)
z

Type: Polynomial Integer

Actually, all the things being substituted are just polynomials, some more trivial than others.

eval(p,x,y**2 - 1)

(
y4 − 2 y3 + 2 y − 1

)
z

Type: Polynomial Integer
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Derivatives are computed using the D operation.

D(p,x)

(
y2 − 2 y + 1

)
z

Type: Polynomial Integer

The first argument is the polynomial and the second is the variable.

D(p,y)

(2 x y − 2 x) z

Type: Polynomial Integer

Even if the polynomial has only one variable, you must specify it.

D(p,z)

x y2 − 2 x y + x

Type: Polynomial Integer

Integration of polynomials is similar and the integrate operation is used.

Integration requires that the coefficients support division. Consequently, Axiom converts
polynomials over the integers to polynomials over the rational numbers before integrating
them.

integrate(p,y)

(
1

3
x y3 − x y2 + x y

)
z

Type: Polynomial Fraction Integer

It is not possible, in general, to divide two polynomials. In our example using polynomials
over the integers, the operation monicDivide divides a polynomial by a monic polynomial
(that is, a polynomial with leading coefficient equal to 1). The result is a record of the
quotient and remainder of the division.

You must specify the variable in which to express the polynomial.

qr := monicDivide(p,x+1,x)
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[
quotient =

(
y2 − 2 y + 1

)
z, remainder =

(
−y2 + 2 y − 1

)
z
]

Type: Record(quotient: Polynomial Integer,remainder: Polynomial Integer)

The selectors of the components of the record are quotient and remainder. Issue this to
extract the remainder.

qr.remainder

(
−y2 + 2 y − 1

)
z

Type: Polynomial Integer

Now that we can extract the components, we can demonstrate the relationship among them
and the arguments to our original expression qr := monicDivide(p,x+1,x).

p - ((x+1) * qr.quotient + qr.remainder)

0

Type: Polynomial Integer

If the “/” operator is used with polynomials, a fraction object is created. In this example,
the result is an object of type Fraction Polynomial Integer.

p/q

(y − 1) z

z + 5

Type: Fraction Polynomial Integer

If you use rational numbers as polynomial coefficients, the
resulting object is of type Polynomial Fraction Integer.

(2/3) * x**2 - y + 4/5

−y + 2

3
x2 +

4

5

Type: Polynomial Fraction Integer

This can be converted to a fraction of polynomials and back again, if required.
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% :: FRAC POLY INT

−15 y + 10 x2 + 12

15

Type: Fraction Polynomial Integer

% :: POLY FRAC INT

−y + 2

3
x2 +

4

5

Type: Polynomial Fraction Integer

To convert the coefficients to floating point, map the numeric operation on the coefficients
of the polynomial.

map(numeric,%)

−1.0 y + 0.66666666666666666667 x2 + 0.8

Type: Polynomial Float

For more information on related topics, see UnivariatePolynomial 9.96 on page 800,
MultivariatePolynomial 9.61 on page 666, and DistributedMultivariatePolynomial

9.19 on page 483. You can also issue the system command )show Polynomial to display
the full list of operations defined by Polynomial.

9.73 Quaternion

The domain constructor Quaternion implements quaternions over commutative rings. For
information on related topics, see Complex 9.13 on page 447 and Octonion 9.64 on page 671.
You can also issue the system command )show Quaternion to display the full list of oper-
ations defined by Quaternion.

The basic operation for creating quaternions is quatern. This is a quaternion over the
rational numbers.

q := quatern(2/11,-8,3/4,1)

2

11
− 8 i+

3

4
j + k

Type: Quaternion Fraction Integer
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The four arguments are the real part, the i imaginary part, the j imaginary part, and the
k imaginary part, respectively.

[real q, imagI q, imagJ q, imagK q]

[
2

11
,−8, 3

4
, 1

]
Type: List Fraction Integer

Because q is over the rationals (and nonzero), you can invert it.

inv q

352

126993
+

15488

126993
i− 484

42331
j − 1936

126993
k

Type: Quaternion Fraction Integer

The usual arithmetic (ring) operations are available

q**6

−2029490709319345

7256313856
− 48251690851

1288408
i+

144755072553

41229056
j +

48251690851

10307264
k

Type: Quaternion Fraction Integer

r := quatern(-2,3,23/9,-89); q + r

−20

11
− 5 i+

119

36
j − 88 k

Type: Quaternion Fraction Integer

In general, multiplication is not commutative.

q * r - r * q

−2495

18
i− 1418 j − 817

18
k

Type: Quaternion Fraction Integer
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There are no predefined constants for the imaginary i, j, and k parts, but you can easily
define them.

i:=quatern(0,1,0,0); j:=quatern(0,0,1,0); k:=quatern(0,0,0,1)

k

Type: Quaternion Integer

These satisfy the normal identities.

[i*i, j*j, k*k, i*j, j*k, k*i, q*i]

[
−1,−1,−1, k, i, j, 8 + 2

11
i+ j − 3

4
k

]
Type: List Quaternion Fraction Integer

The norm is the quaternion times its conjugate.

norm q

126993

1936

Type: Fraction Integer

conjugate q

2

11
+ 8 i− 3

4
j − k

Type: Quaternion Fraction Integer

q * %

126993

1936

Type: Quaternion Fraction Integer
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9.74 Queue

A queue is an aggregate structure which allows insertion at the back of the queue, deletion
at the front of the queue and inspection of the front element. Queues are similar to a line of
people where you can join the line at the back, leave the line at the front, or see the person
in the front of the line.

Queues can be created from a list of elements using the queue function.

a:Queue INT:= queue [1,2,3,4,5]

[1, 2, 3, 4, 5]

Type: Queue Integer

An empty queue can be created using the empty function.

a:Queue INT:= empty()

[]

Type: Queue Integer

The empty? function will return true if the queue contains no elements.

empty? a

true

Type: Boolean

Queues modify their arguments so they use the exclamation mark “!” as part of the function
name.

The dequeue! operation removes the front element of the queue and returns it. The queue
is one element smaller. The extract! does the same thing with a different name.

a:Queue INT:= queue [1,2,3,4,5]

[1, 2, 3, 4, 5]

Type: Queue Integer

dequeue! a
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1

Type: PositiveInteger

a

[2, 3, 4, 5]

Type: Queue Integer

The enqueue! function adds a new element to the back of the queue and returns the element
that was pushed. The queue is one element larger. The insert! function does the same thing
with a different name.

a:Queue INT:= queue [1,2,3,4,5]

[1, 2, 3, 4, 5]

Type: Queue Integer

enqueue!(9,a)

9

Type: PositiveInteger

a

[1, 2, 3, 4, 5, 9]

Type: Queue Integer

To read the top element without changing the queue use the front function.

a:Queue INT:= queue [1,2,3,4,5]

[1, 2, 3, 4, 5]

Type: Queue Integer
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front a

1

Type: PositiveInteger

a

[1, 2, 3, 4, 5]

Type: Queue Integer

For more information on related topics, see Stack section 9.87 on page 763.

9.75 RadixExpansion

It possible to expand numbers in general bases.

Here we expand 111 in base 5. This means

102 + 101 + 100 = 4 · 52 + 2 · 51 + 50

111::RadixExpansion(5)

421

Type: RadixExpansion 5

You can expand fractions to form repeating expansions.

(5/24)::RadixExpansion(2)

0.00110

Type: RadixExpansion 2

(5/24)::RadixExpansion(3)

0.012

Type: RadixExpansion 3
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(5/24)::RadixExpansion(8)

0.152

Type: RadixExpansion 8

(5/24)::RadixExpansion(10)

0.2083

Type: RadixExpansion 10

For bases from 11 to 36 the letters A through Z are used.

(5/24)::RadixExpansion(12)

0.26

Type: RadixExpansion 12

(5/24)::RadixExpansion(16)

0.35

Type: RadixExpansion 16

(5/24)::RadixExpansion(36)

0.7I

Type: RadixExpansion 36

For bases greater than 36, the ragits are separated by blanks.

(5/24)::RadixExpansion(38)

0 . 7 34 31 25 12

Type: RadixExpansion 38
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The RadixExpansion type provides operations to obtain the individual ragits. Here is a
rational number in base 8.

a := (76543/210)::RadixExpansion(8)

554.37307

Type: RadixExpansion 8

The operation wholeRagits returns a list of the ragits for the integral part of the number.

w := wholeRagits a

[5, 5, 4]

Type: List Integer

The operations prefixRagits and cycleRagits return lists of the initial and repeating ragits
in the fractional part of the number.

f0 := prefixRagits a

[3]

Type: List Integer

f1 := cycleRagits a

[7, 3, 0, 7]

Type: List Integer

You can construct any radix expansion by giving the whole, prefix and cycle parts. The
declaration is necessary to let Axiom know the base of the ragits.

u:RadixExpansion(8):=wholeRadix(w)+fractRadix(f0,f1)

554.37307

Type: RadixExpansion 8

If there is no repeating part, then the list [0] should be used.
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v: RadixExpansion(12) := fractRadix([1,2,3,11], [0])

0.123B0

Type: RadixExpansion 12

If you are not interested in the repeating nature of the expansion, an infinite stream of ragits
can be obtained using fractRagits.

fractRagits(u)

[
3, 7, 3, 0, 7, 7

]
Type: Stream Integer

Of course, it’s possible to recover the fraction representation:

a :: Fraction(Integer)

76543

210

Type: Fraction Integer

More examples of expansions are available in DecimalExpansion 9.17 on page 475,
BinaryExpansion 9.6 on page 415, and HexadecimalExpansion 9.39 on page 541.

9.76 RealClosure

The Real Closure 1.0 package provided by Renaud Rioboo (Renaud.Rioboo@lip6.fr) consists
of different packages, categories and domains :

The package RealPolynomialUtilitiesPackage
which needs a Field F and a UnivariatePolynomialCategory domain with coeffi-
cients in F. It computes some simple functions such as Sturm and Sylvester sequences
(sturmSequence,
sylvesterSequence).

The category RealRootCharacterizationCategory provides abstract functions to
work with “real roots” of univariate polynomials. These resemble variables with some
functionality needed to compute important operations.

The category RealClosedField provides common operations available over real closed
fiels. These include finding all the roots of a univariate polynomial, taking square (and
higher) roots, ...
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The domain RightOpenIntervalRootCharacterization

is the main code that provides the functionality of
RealRootCharacterizationCategory for the case of archimedean fields. Abstract
roots are encoded with a left closed right open interval containing the root together
with a defining polynomial for the root.

The RealClosure domain is the end-user code. It provides usual arithmetic with real
algebraic numbers, along with the functionality of a real closed field. It also provides
functions to approximate a real algebraic number by an element of the base field. This
approximation may either be absolute (approximate) or relative (relativeApprox).

CAVEATS

Since real algebraic expressions are stored as depending on “real roots” which are managed
like variables, there is an ordering on these. This ordering is dynamical in the sense that any
new algebraic takes precedence over older ones. In particular every creation function raises a
new “real root”. This has the effect that when you type something like sqrt(2) + sqrt(2)

you have two new variables which happen to be equal. To avoid this name the expression
such as in s2 := sqrt(2) ; s2 + s2

Also note that computing times depend strongly on the ordering you implicitly provide.
Please provide algebraics in the order which seems most natural to you.

LIMITATIONS

This packages uses algorithms which are published in [1] and [2] which are based on field
arithmetics, in particular for polynomial gcd related algorithms. This can be quite slow for
high degree polynomials and subresultants methods usually work best. Beta versions of the
package try to use these techniques in a better way and work significantly faster. These
are mostly based on unpublished algorithms and cannot be distributed. Please contact the
author if you have a particular problem to solve or want to use these versions.

Be aware that approximations behave as post-processing and that all computations are done
exactly. They can thus be quite time consuming when depending on several “real roots”.

REFERENCES

[1] R. Rioboo : Real Algebraic Closure of an ordered Field : Implementation in Axiom. In
proceedings of the ISSAC’92 Conference, Berkeley 1992 pp. 206-215.

[2] Z. Ligatsikas, R. Rioboo, M. F. Roy : Generic computation of the real closure of an ordered
field. In Mathematics and Computers in Simulation Volume 42, Issue 4-6, November 1996.

EXAMPLES

We shall work with the real closure of the ordered field of rational numbers.

Ran := RECLOS(FRAC INT)

RealClosure Fraction Integer

Type: Domain

Some simple signs for square roots, these correspond to an extension of degree 16 of the
rational numbers. Examples provided by J. Abbot.
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fourSquares(a:Ran,b:Ran,c:Ran,d:Ran):Ran == sqrt(a)+sqrt(b) -

sqrt(c)-sqrt(d)

Function declaration fourSquares : (RealClosure Fraction Integer,

RealClosure Fraction Integer,RealClosure Fraction Integer,

RealClosure Fraction Integer) -> RealClosure Fraction Integer has

been added to workspace.

Type: Void

These produce values very close to zero.

squareDiff1 := fourSquares(73,548,60,586)

−
√
586−

√
60 +

√
548 +

√
73

Type: RealClosure Fraction Integer

recip(squareDiff1)

((
54602

√
548 + 149602

√
73
) √

60 + 49502
√
73
√
548 + 9900895

) √
586+

(
154702

√
73
√
548 + 30941947

) √
60 + 10238421

√
548 + 28051871

√
73

Type: Union(RealClosure Fraction Integer,...)

sign(squareDiff1)

1

Type: PositiveInteger

squareDiff2 := fourSquares(165,778,86,990)

−
√
990−

√
86 +

√
778 +

√
165

Type: RealClosure Fraction Integer

recip(squareDiff2)
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556778

√
778 + 1209010

√
165
) √

86+

401966
√
165
√
778 + 144019431

) √
990+

(
1363822

√
165
√
778 + 488640503

) √
86+

162460913
√
778 + 352774119

√
165

Type: Union(RealClosure Fraction Integer,...)

sign(squareDiff2)

1

Type: PositiveInteger

squareDiff3 := fourSquares(217,708,226,692)

−
√
692−

√
226 +

√
708 +

√
217

Type: RealClosure Fraction Integer

recip(squareDiff3)

((
−34102

√
708− 61598

√
217
) √

226−

34802
√
217
√
708− 13641141

) √
692+

(
−60898

√
217
√
708− 23869841

) √
226−

13486123
√
708− 24359809

√
217

Type: Union(RealClosure Fraction Integer,...)

sign(squareDiff3)

−1
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Type: Integer

squareDiff4 := fourSquares(155,836,162,820)

−
√
820−

√
162 +

√
836 +

√
155

Type: RealClosure Fraction Integer

recip(squareDiff4) ((
−37078

√
836− 86110

√
155
) √

162−

37906
√
155
√
836− 13645107

) √
820+

(
−85282

√
155
√
836− 30699151

) √
162−

13513901
√
836− 31384703

√
155

Type: Union(RealClosure Fraction Integer,...)

sign(squareDiff4)

−1

Type: Integer

squareDiff5 := fourSquares(591,772,552,818)

−
√
818−

√
552 +

√
772 +

√
591

Type: RealClosure Fraction Integer

recip(squareDiff5) ((
70922

√
772 + 81058

√
591
) √

552+

68542
√
591
√
772 + 46297673

) √
818+

(
83438

√
591
√
772 + 56359389

) √
552+

47657051
√
772 + 54468081

√
591
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Type: Union(RealClosure Fraction Integer,...)

sign(squareDiff5)

1

Type: PositiveInteger

squareDiff6 := fourSquares(434,1053,412,1088)

−
√
1088−

√
412 +

√
1053 +

√
434

Type: RealClosure Fraction Integer

recip(squareDiff6)

((
115442

√
1053 + 179818

√
434
) √

412+

112478
√
434
√
1053 + 76037291

) √
1088+

(
182782

√
434
√
1053 + 123564147

) √
412+

77290639
√
1053 + 120391609

√
434

Type: Union(RealClosure Fraction Integer,...)

sign(squareDiff6)

1

Type: PositiveInteger

squareDiff7 := fourSquares(514,1049,446,1152)

−
√
1152−

√
446 +

√
1049 +

√
514

Type: RealClosure Fraction Integer
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recip(squareDiff7)

((
349522

√
1049 + 499322

√
514
) √

446+

325582
√
514
√
1049 + 239072537

) √
1152+

(
523262

√
514
√
1049 + 384227549

) √
446+

250534873
√
1049 + 357910443

√
514

Type: Union(RealClosure Fraction Integer,...)

sign(squareDiff7)

1

Type: PositiveInteger

squareDiff8 := fourSquares(190,1751,208,1698)

−
√
1698−

√
208 +

√
1751 +

√
190

Type: RealClosure Fraction Integer

recip(squareDiff8)

((
−214702

√
1751− 651782

√
190
) √

208−

224642
√
190
√
1751− 129571901

) √
1698+

(
−641842

√
190
√
1751− 370209881

) √
208−

127595865
√
1751− 387349387

√
190

Type: Union(RealClosure Fraction Integer,...)

sign(squareDiff8)
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−1

Type: Integer

This should give three digits of precision

relativeApprox(squareDiff8,10**(-3))::Float

−0.2340527771 5937700123E − 10

Type: Float

The sum of these 4 roots is 0

l := allRootsOf((x**2-2)**2-2)$Ran

[%A33,%A34,%A35,%A36]

Type: List RealClosure Fraction Integer

Check that they are all roots of the same polynomial

removeDuplicates map(mainDefiningPolynomial,l)

[
?4 − 4 ?2 + 2

]
Type: List Union(SparseUnivariatePolynomial RealClosure Fraction

Integer,"failed")

We can see at a glance that they are separate roots

map(mainCharacterization,l)

[[−2,−1[, [−1, 0[, [0, 1[, [1, 2[]

Type: List Union( RightOpenIntervalRootCharacterization( RealClosure

Fraction Integer, SparseUnivariatePolynomial RealClosure Fraction Integer),

"failed")

Check the sum and product

[reduce(+,l),reduce(*,l)-2]
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[0, 0]

Type: List RealClosure Fraction Integer

A more complicated test that involve an extension of degree 256. This is a way of checking
nested radical identities.

(s2, s5, s10) := (sqrt(2)$Ran, sqrt(5)$Ran, sqrt(10)$Ran)

√
10

Type: RealClosure Fraction Integer

eq1:=sqrt(s10+3)*sqrt(s5+2) - sqrt(s10-3)*sqrt(s5-2) = sqrt(10*s2+10)

−
√√

10− 3

√√
5− 2 +

√√
10 + 3

√√
5 + 2 =

√
10
√
2 + 10

Type: Equation RealClosure Fraction Integer

eq1::Boolean

true

Type: Boolean

eq2:=sqrt(s5+2)*sqrt(s2+1) - sqrt(s5-2)*sqrt(s2-1) = sqrt(2*s10+2)

−
√√

5− 2

√√
2− 1 +

√√
5 + 2

√√
2 + 1 =

√
2
√
10 + 2

Type: Equation RealClosure Fraction Integer

eq2::Boolean

true

Type: Boolean

Some more examples from J. M. Arnaudies
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s3 := sqrt(3)$Ran

√
3

Type: RealClosure Fraction Integer

s7:= sqrt(7)$Ran

√
7

Type: RealClosure Fraction Integer

e1 := sqrt(2*s7-3*s3,3)

3

√
2
√
7− 3

√
3

Type: RealClosure Fraction Integer

e2 := sqrt(2*s7+3*s3,3)

3

√
2
√
7 + 3

√
3

Type: RealClosure Fraction Integer

This should be null

e2-e1-s3

0

Type: RealClosure Fraction Integer

A quartic polynomial

pol : UP(x,Ran) := x**4+(7/3)*x**2+30*x-(100/3)

x4 +
7

3
x2 + 30 x− 100

3

Type: UnivariatePolynomial(x,RealClosure Fraction Integer)
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Add some cubic roots

r1 := sqrt(7633)$Ran

√
7633

Type: RealClosure Fraction Integer

alpha := sqrt(5*r1-436,3)/3

1

3

3

√
5
√
7633− 436

Type: RealClosure Fraction Integer

beta := -sqrt(5*r1+436,3)/3

−1

3

3

√
5
√
7633 + 436

Type: RealClosure Fraction Integer

this should be null

pol.(alpha+beta-1/3)

0

Type: RealClosure Fraction Integer

A quintic polynomial

qol : UP(x,Ran) := x**5+10*x**3+20*x+22

x5 + 10 x3 + 20 x+ 22

Type: UnivariatePolynomial(x,RealClosure Fraction Integer)

Add some cubic roots

r2 := sqrt(153)$Ran
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√
153

Type: RealClosure Fraction Integer

alpha2 := sqrt(r2-11,5)

5

√√
153− 11

Type: RealClosure Fraction Integer

beta2 := -sqrt(r2+11,5)

− 5

√√
153 + 11

Type: RealClosure Fraction Integer

this should be null

qol(alpha2+beta2)

0

Type: RealClosure Fraction Integer

Finally, some examples from the book Computer Algebra by Davenport, Siret and Tournier
(page 77). The last one is due to Ramanujan.

dst1:=sqrt(9+4*s2)=1+2*s2

√
4
√
2 + 9 = 2

√
2 + 1

Type: Equation RealClosure Fraction Integer

dst1::Boolean

true

Type: Boolean
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s6:Ran:=sqrt 6

√
6

Type: RealClosure Fraction Integer

dst2:=sqrt(5+2*s6)+sqrt(5-2*s6) = 2*s3

√
−2
√
6 + 5 +

√
2
√
6 + 5 = 2

√
3

Type: Equation RealClosure Fraction Integer

dst2::Boolean

true

Type: Boolean

s29:Ran:=sqrt 29

√
29

Type: RealClosure Fraction Integer

dst4:=sqrt(16-2*s29+2*sqrt(55-10*s29)) = sqrt(22+2*s5)-sqrt(11+2*s29)+s5

√
2

√
−10

√
29 + 55− 2

√
29 + 16 = −

√
2
√
29 + 11 +

√
2
√
5 + 22 +

√
5

Type: Equation RealClosure Fraction Integer

dst4::Boolean

true

Type: Boolean

dst6:=sqrt((112+70*s2)+(46+34*s2)*s5) = (5+4*s2)+(3+s2)*s5
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√(
34
√
2 + 46

) √
5 + 70

√
2 + 112 =

(√
2 + 3

) √
5 + 4

√
2 + 5

Type: Equation RealClosure Fraction Integer

dst6::Boolean

true

Type: Boolean

f3:Ran:=sqrt(3,5)

5
√
3

Type: RealClosure Fraction Integer

f25:Ran:=sqrt(1/25,5)

5

√
1

25

Type: RealClosure Fraction Integer

f32:Ran:=sqrt(32/5,5)

5

√
32

5

Type: RealClosure Fraction Integer

f27:Ran:=sqrt(27/5,5)

5

√
27

5

Type: RealClosure Fraction Integer

dst5:=sqrt((f32-f27,3)) = f25*(1+f3-f3**2)
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3

√
− 5

√
27

5
+

5

√
32

5
=
(
− 5
√
3
2
+

5
√
3 + 1

)
5

√
1

25

Type: Equation RealClosure Fraction Integer

dst5::Boolean

true

Type: Boolean

9.77 RealSolvePackage

p := 4*x^3 - 3*x^2 + 2*x - 4

4 x3 − 3 x2 + 2 x− 4

Type: Polynomial(Integer)

ans1 := solve(p,0.01)$REALSOLV

[1.11328125]

Type: List(Float)

ans2 := solve(p::POLY(FRAC(INT)),0.01)$REALSOLV

[1.11328125]

Type: List(Float)

R := Integer

Integer

Type: Domain

ls : List Symbol := [x,y,z,t]
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[x, y, z, t]

Type: List(Symbol)

ls2 : List Symbol := [x,y,z,t,new()$Symbol]

[x, y, z, t, %A]

Type: List(Symbol)

pack := ZDSOLVE(R,ls,ls2)

ZeroDimensionalSolvePackage(Integer, [x, y, z, t], [x, y, z, t,%A])

Type: Domain

p1 := x**2*y*z + y*z (
x2 + 1

)
y z

Type: Polynomial(Integer)

p2 := x**2*y**2*z + x + z (
x2 y2 + 1

)
z + x

Type: Polynomial(Integer)

p3 := x**2*y**2*z**2 + z + 1

x2 y2 z2 + z + 1

Type: Polynomial(Integer)

lp := [p1, p2, p3] [(
x2 + 1

)
y z,

(
x2 y2 + 1

)
z + x, x2 y2 z2 + z + 1

]
Type: List(Polynomial(Integer))
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lsv:List(Symbol):=[x,y,z]

[x, y, z]

Type: List(Symbol)

ans3 := realSolve(lp,lsv,0.01)$REALSOLV

[[1.0, 0.0, −1.0]]

Type: List(List(Float))

9.78 RegularTriangularSet

The RegularTriangularSet domain constructor implements regular triangular sets. These
particular triangular sets were introduced by M. Kalkbrener (1991) in his PhD Thesis un-
der the name regular chains. Regular chains and their related concepts are presented in
the paper “On the Theories of Triangular sets” By P. Aubry, D. Lazard and M. Moreno
Maza (to appear in the Journal of Symbolic Computation). The RegularTriangularSet

constructor also provides a new method (by the third author) for solving polynomial sys-
tem by means of regular chains. This method has two ways of solving. One has the
same specifications as Kalkbrener’s algorithm (1991) and the other is closer to Lazard’s
method (Discr. App. Math, 1991). Moreover, this new method removes redundant com-
ponent from the decompositions when this is not too expensive. This is always the case
with square-free regular chains. So if you want to obtain decompositions without redun-
dant components just use the SquareFreeRegularTriangularSet domain constructor or
the LazardSetSolvingPackage package constructor. See also the LexTriangularPackage

and ZeroDimensionalSolvePackage for the case of algebraic systems with a finite number
of (complex) solutions.

One of the main features of regular triangular sets is that they naturally define towers of
simple extensions of a field. This allows to perform with multivariate polynomials the same
kind of operations as one can do in an EuclideanDomain.

The RegularTriangularSet constructor takes four arguments. The first one, R, is the
coefficient ring of the polynomials; it must belong to the category GcdDomain. The sec-
ond one, E, is the exponent monoid of the polynomials; it must belong to the category
OrderedAbelianMonoidSup. the third one, V, is the ordered set of variables; it must belong
to the category OrderedSet. The last one is the polynomial ring; it must belong to the
category
RecursivePolynomialCategory(R,E,V). The abbreviation for RegularTriangularSet is
REGSET. See also the constructor RegularChain which only takes two arguments, the coef-
ficient ring and the ordered set of variables; in that case, polynomials are necessarily built
with the NewSparseMultivariatePolynomial domain constructor.
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We shall explain now how to use the constructor REGSET and how to read the decomposition
of a polynomial system by means of regular sets.

Let us give some examples. We start with an easy one (Donati-Traverso) in order to under-
stand the two ways of solving polynomial systems provided by the REGSET constructor.

Define the coefficient ring.

R := Integer

Integer

Type: Domain

Define the list of variables,

ls : List Symbol := [x,y,z,t]

[x, y, z, t]

Type: List Symbol

and make it an ordered set;

V := OVAR(ls)

OrderedVariableList [x,y,z,t]

Type: Domain

then define the exponent monoid.

E := IndexedExponents V

IndexedExponents OrderedVariableList [x,y,z,t]

Type: Domain

Define the polynomial ring.

P := NSMP(R, V)

NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])
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Type: Domain

Let the variables be polynomial.

x: P := ’x

x

Type: NewSparseMultivariatePolynomial( Integer, OrderedVariableList

[x,y,z,t])

y: P := ’y

y

Type: NewSparseMultivariatePolynomial( Integer, OrderedVariableList

[x,y,z,t])

z: P := ’z

z

Type: NewSparseMultivariatePolynomial( Integer, OrderedVariableList

[x,y,z,t])

t: P := ’t

t

Type: NewSparseMultivariatePolynomial( Integer, OrderedVariableList

[x,y,z,t])

Now call the RegularTriangularSet domain constructor.

T := REGSET(R,E,V,P)

RegularTriangularSet(Integer,
IndexedExponentsOrderedVariableList[x, y, z, t],
OrderedVariableList[x, y, z, t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[x, y, z, t]))
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Type: Domain

Define a polynomial system.

p1 := x ** 31 - x ** 6 - x - y

x31 − x6 − x− y

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

p2 := x ** 8 - z

x8 − z

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

p3 := x ** 10 - t

x10 − t

Type: NewSparseMultivariatePolynomial( Integer, OrderedVariableList

[x,y,z,t])

lp := [p1, p2, p3]

[
x31 − x6 − x− y, x8 − z, x10 − t

]
Type: List NewSparseMultivariatePolynomial( Integer, OrderedVariableList

[x,y,z,t])

First of all, let us solve this system in the sense of Kalkbrener.

zeroSetSplit(lp)$T

[{
z5 − t4, t z y2 + 2 z3 y − t8 + 2 t5 + t3 − t2,

(
t4 − t

)
x− t y − z2

}]
Type: List RegularTriangularSet( Integer, IndexedExponents

OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],

NewSparseMultivariatePolynomial( Integer, OrderedVariableList [x,y,z,t]))
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And now in the sense of Lazard (or Wu and other authors).

lts := zeroSetSplit(lp,false)$T

[{
z5 − t4, t z y2 + 2 z3 y − t8 + 2 t5 + t3 − t2,

(
t4 − t

)
x− t y − z2

}
,{

t3 − 1, z5 − t, t z y2 + 2 z3 y + 1, z x2 − t
}
, {t, z, y, x}

]
Type: List RegularTriangularSet( Integer, IndexedExponents

OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],

NewSparseMultivariatePolynomial( Integer, OrderedVariableList [x,y,z,t]))

We can see that the first decomposition is a subset of the second. So how can both be correct
?

Recall first that polynomials from a domain of the category RecursivePolynomialCategory

are regarded as univariate polynomials in their main variable. For instance the second
polynomial in the first set of each decomposition has main variable y and its initial (i.e. its
leading coefficient w.r.t. its main variable) is t z.

Now let us explain how to read the second decomposition. Note that the non-constant
initials of the first set are t4 − t and tz. Then the solutions described by this first set are
the common zeros of its polynomials that do not cancel the polynomials t4− t and tyz. Now
the solutions of the input system lp satisfying these equations are described by the second
and the third sets of the decomposition. Thus, in some sense, they can be considered as
degenerated solutions. The solutions given by the first set are called the generic points of
the system; they give the general form of the solutions. The first decomposition only provides
these generic points. This latter decomposition is useful when they are many degenerated
solutions (which is sometimes hard to compute) and when one is only interested in general
informations, like the dimension of the input system.

We can get the dimensions of each component of a decomposition as follows.

[coHeight(ts) for ts in lts]

[1, 0, 0]

Type: List NonNegativeInteger

Thus the first set has dimension one. Indeed t can take any value, except 0 or any third root
of 1, whereas z is completely determined from t, y is given by z and t, and finally x is given
by the other three variables. In the second and the third sets of the second decomposition
the four variables are completely determined and thus these sets have dimension zero.

We give now the precise specifications of each decomposition. This assume some mathemat-
ical knowledge. However, for the non-expert user, the above explanations will be sufficient
to understand the other features of the RSEGSET constructor.
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The input system lp is decomposed in the sense of Kalkbrener as finitely many regular sets
T1,...,Ts such that the radical ideal generated by lp is the intersection of the radicals of
the saturated ideals of T1,...,Ts. In other words, the affine variety associated with lp is the
union of the closures (w.r.t. Zarisky topology) of the regular-zeros sets of T1,...,Ts.

N. B. The prime ideals associated with the radical of the saturated ideal of a regular
triangular set have all the same dimension; moreover these prime ideals can be given by
characteristic sets with the same main variables. Thus a decomposition in the sense of
Kalkbrener is unmixed dimensional. Then it can be viewed as a lazy decomposition into
prime ideals (some of these prime ideals being merged into unmixed dimensional ideals).

Now we explain the other way of solving by means of regular triangular sets. The input
system lp is decomposed in the sense of Lazard as finitely many regular triangular sets
T1,...,Ts such that the affine variety associated with lp is the union of the regular-zeros
sets of T1,...,Ts. Thus a decomposition in the sense of Lazard is also a decomposition in
the sense of Kalkbrener; the converse is false as we have seen before.

When the input system has a finite number of solutions, both ways of solving provide similar
decompositions as we shall see with this second example (Caprasse).

Define a polynomial system.

f1 := y**2*z+2*x*y*t-2*x-z

(2 t y − 2) x+ z y2 − z

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

f2 := -x**3*z+ 4*x*y**2*z+ 4*x**2*y*t+ 2*y**3*t+ 4*x**2- 10*y**2+ 4*x*z-

10*y*t+ 2

−z x3 + (4 t y + 4) x2 +
(
4 z y2 + 4 z

)
x+ 2 t y3 − 10 y2 − 10 t y + 2

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

f3 := 2*y*z*t+x*t**2-x-2*z

(
t2 − 1

)
x+ 2 t z y − 2 z

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

f4 := -x*z**3+ 4*y*z**2*t+ 4*x*z*t**2+ 2*y*t**3+ 4*x*z+ 4*z**2-10*y*t-

10*t**2+2
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(
−z3 +

(
4 t2 + 4

)
z
)
x+

(
4 t z2 + 2 t3 − 10 t

)
y + 4 z2 − 10 t2 + 2

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

lf := [f1, f2, f3, f4][
(2 t y − 2) x+ z y2 − z,

−z x3 + (4 t y + 4) x2 +
(
4 z y2 + 4 z

)
x+ 2 t y3 − 10 y2 − 10 t y + 2,(

t2 − 1
)
x+ 2 t z y − 2 z,(

−z3 +
(
4 t2 + 4

)
z
)
x+

(
4 t z2 + 2 t3 − 10 t

)
y + 4 z2 − 10 t2 + 2

]
Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

First of all, let us solve this system in the sense of Kalkbrener.

zeroSetSplit(lf)$T[{
t2 − 1, z8 − 16 z6 + 256 z2 − 256, t y − 1,

(
z3 − 8 z

)
x− 8 z2 + 16

}
,{

3 t2 + 1, z2 − 7 t2 − 1, y + t, x+ z
}
,{

t8 − 10 t6 + 10 t2 − 1, z,
(
t3 − 5 t

)
y − 5 t2 + 1, x

}
,{

t2 + 3, z2 − 4, y + t, x− z
}]

Type: List RegularTriangularSet(Integer, IndexedExponents

OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],

NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,y,z,t]))

And now in the sense of Lazard (or Wu and other authors).

lts2 := zeroSetSplit(lf,false)$T[{
t8 − 10 t6 + 10 t2 − 1, z,

(
t3 − 5 t

)
y − 5 t2 + 1, x

}
,{

t2 − 1, z8 − 16 z6 + 256 z2 − 256, t y − 1,
(
z3 − 8 z

)
x− 8 z2 + 16

}
,{

3 t2 + 1, z2 − 7 t2 − 1, y + t, x+ z
}
,{

t2 + 3, z2 − 4, y + t, x− z
}]
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Type: List RegularTriangularSet(Integer, IndexedExponents

OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],

NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,y,z,t]))

Up to the ordering of the components, both decompositions are identical.

Let us check that each component has a finite number of solutions.

[coHeight(ts) for ts in lts2]

[0, 0, 0, 0]

Type: List NonNegativeInteger

Let us count the degrees of each component,

degrees := [degree(ts) for ts in lts2]

[8, 16, 4, 4]

Type: List NonNegativeInteger

and compute their sum.

reduce(+,degrees)

32

Type: PositiveInteger

We study now the options of the zeroSetSplit operation. As we have seen yet, there is an
optional second argument which is a boolean value. If this value is true (this is the default)
then the decomposition is computed in the sense of Kalkbrener, otherwise it is computed in
the sense of Lazard.

There is a second boolean optional argument that can be used (in that case the first optional
argument must be present). This second option allows you to get some information during
the computations.

Therefore, we need to understand a little what is going on during the computations. An
important feature of the algorithm is that the intermediate computations are managed in
some sense like the processes of a Unix system. Indeed, each intermediate computation may
generate other intermediate computations and the management of all these computations
is a crucial task for the efficiency. Thus any intermediate computation may be suspended,
killed or resumed, depending on algebraic considerations that determine priorities for these
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processes. The goal is of course to go as fast as possible towards the final decomposition
which means to avoid as much as possible unnecessary computations.

To follow the computations, one needs to set to true the second argument. Then a lot of
numbers and letters are displayed. Between a [ and a ] one has the state of the processes
at a given time. Just after [ one can see the number of processes. Then each process is
represented by two numbers between < and >. A process consists of a list of polynomial ps
and a triangular set ts; its goal is to compute the common zeros of ps that belong to the
regular-zeros set of ts. After the processes, the number between pipes gives the total number
of polynomials in all the sets ps. Finally, the number between braces gives the number of
components of a decomposition that are already computed. This number may decrease.

Let us take a third example (Czapor-Geddes-Wang) to see how this information is displayed.

Define a polynomial system.

u : R := 2

2

Type: Integer

q1 := 2*(u-1)**2+ 2*(x-z*x+z**2)+ y**2*(x-1)**2- 2*u*x+ 2*y*t*(1-x)*(x-z)+

2*u*z*t*(t-y)+ u**2*t**2*(1-2*z)+ 2*u*t**2*(z-x)+ 2*u*t*y*(z-1)+

2*u*z*x*(y+1)+ (u**2-2*u)*z**2*t**2+ 2*u**2*z**2+ 4*u*(1-u)*z+ t**2*(z-x)**2

(
y2 − 2 t y + t2

)
x2+(

−2 y2 + ((2 t+ 4) z + 2 t) y +
(
−2 t2 + 2

)
z − 4 t2 − 2

)
x+

y2 + (−2 t z − 4 t) y +
(
t2 + 10

)
z2 − 8 z + 4 t2 + 2

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

q2 := t*(2*z+1)*(x-z)+ y*(z+2)*(1-x)+ u*(u-2)*t+ u*(1-2*u)*z*t+

u*y*(x+u-z*x-1)+ u*(u+1)*z**2*t

(−3 z y + 2 t z + t) x+ (z + 4) y + 4 t z2 − 7 t z

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

q3 := -u**2*(z-1)**2+ 2*z*(z-x)-2*(x-1)



736 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

(−2 z − 2) x− 2 z2 + 8 z − 2

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

q4 := u**2+4*(z-x**2)+3*y**2*(x-1)**2- 3*t**2*(z-x)**2

+3*u**2*t**2*(z-1)**2+u**2*z*(z-2)+6*u*t*y*(z+x+z*x-1)

(
3 y2 − 3 t2 − 4

)
x2 +

(
−6 y2 + (12 t z + 12 t) y + 6 t2 z

)
x+ 3 y2+

(12 t z − 12 t) y +
(
9 t2 + 4

)
z2 +

(
−24 t2 − 4

)
z + 12 t2 + 4

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

lq := [q1, q2, q3, q4]

[(
y2 − 2 t y + t2

)
x2+(

−2 y2 + ((2 t+ 4) z + 2 t) y +
(
−2 t2 + 2

)
z − 4 t2 − 2

)
x+ y2+

(−2 t z − 4 t) y +
(
t2 + 10

)
z2 − 8 z + 4 t2 + 2,

(−3 z y + 2 t z + t) x+ (z + 4) y + 4 t z2 − 7 t z,

(−2 z − 2) x− 2 z2 + 8 z − 2,
(
3 y2 − 3 t2 − 4

)
x2+(

−6 y2 + (12 t z + 12 t) y + 6 t2 z
)
x+ 3 y2+

(12 t z − 12 t) y +
(
9 t2 + 4

)
z2 +

(
−24 t2 − 4

)
z + 12 t2 + 4

]
Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

Let us try the information option. N.B. The timing should be between 1 and 10 minutes,
depending on your machine.

zeroSetSplit(lq,true,true)$T

[1 <4,0> -> |4|; {0}]W[2 <5,0>,<3,1> -> |8|; {0}][2 <4,1>,<3,1> -> |7|;

{0}][1 <3,1> -> |3|; {0}]G[2 <4,1>,<4,1> -> |8|; {0}]W[3 <5,1>,<4,1>,

<3,2> -> |12|; {0}]GI[3 <4,2>,<4,1>,<3,2> -> |11|; {0}]GWw[3 <4,1>,

<3,2>,<5,2> -> |12|; {0}][3 <3,2>,<3,2>,<5,2> -> |11|; {0}]GIwWWWw
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[4 <3,2>,<4,2>,<5,2>,<2,3> -> |14|; {0}][4 <2,2>,<4,2>,<5,2>,<2,3> ->

|13|; {0}]Gwww[5 <3,2>,<3,2>,<4,2>,<5,2>,<2,3> -> |17|; {0}]Gwwwwww

[8 <3,2>,<4,2>,<4,2>,<4,2>,<4,2>,<4,2>,<5,2>,<2,3> -> |30|; {0}]Gwwwwww

[8 <4,2>,<4,2>,<4,2>,<4,2>,<4,2>,<4,2>,<5,2>,<2,3> -> |31|; {0}][8

<3,3>,<4,2>,<4,2>,<4,2>,<4,2>,<4,2>,<5,2>,<2,3> -> |30|; {0}][8 <2,3>,

<4,2>,<4,2>,<4,2>,<4,2>,<4,2>,<5,2>,<2,3> -> |29|; {0}][8 <1,3>,<4,2>,

<4,2>,<4,2>,<4,2>,<4,2>,<5,2>,<2,3> -> |28|; {0}][7 <4,2>,<4,2>,<4,2>,

<4,2>,<4,2>,<5,2>,<2,3> -> |27|; {0}][6 <4,2>,<4,2>,<4,2>,<4,2>,<5,2>,

<2,3> -> |23|; {0}][5 <4,2>,<4,2>,<4,2>,<5,2>,<2,3> -> |19|; {0}]

GIGIWwww[6 <5,2>,<4,2>,<4,2>,<5,2>,<3,3>,<2,3> -> |23|; {0}][6 <4,3>,

<4,2>,<4,2>,<5,2>,<3,3>,<2,3> -> |22|; {0}]GIGI[6 <3,4>,<4,2>,<4,2>,

<5,2>,<3,3>,<2,3> -> |21|; {0}][6 <2,4>,<4,2>,<4,2>,<5,2>,<3,3>,<2,3>

-> |20|; {0}]GGG[5 <4,2>,<4,2>,<5,2>,<3,3>,<2,3> -> |18|; {0}]GIGIWwwwW

[6 <5,2>,<4,2>,<5,2>,<3,3>,<3,3>,<2,3> -> |22|; {0}][6 <4,3>,<4,2>,

<5,2>,<3,3>,<3,3>,<2,3> -> |21|; {0}]GIwwWwWWWWWWWwWWWWwwwww[8 <4,2>,

<5,2>,<3,3>,<3,3>,<4,3>,<2,3>,<3,4>,<3,4> -> |27|; {0}][8 <3,3>,<5,2>,

<3,3>,<3,3>,<4,3>,<2,3>,<3,4>,<3,4> -> |26|; {0}][8 <2,3>,<5,2>,<3,3>,

<3,3>,<4,3>,<2,3>,<3,4>,<3,4> -> |25|; {0}]Gwwwwwwwwwwwwwwwwwwww[9

<5,2>,<3,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,4>,<3,4> -> |29|; {0}]

GI[9 <4,3>,<3,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,4>,<3,4> -> |28|;

{0}][9 <3,3>,<3,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,4>,<3,4> -> |27|;

{0}][9 <2,3>,<3,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,4>,<3,4> -> |26|;

{0}]GGwwwwwwwwwwwwWWwwwwwwww[11 <3,3>,<3,3>,<3,3>,<3,3>,<4,3>,<2,3>,

<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |33|; {0}][11 <2,3>,<3,3>,<3,3>,<3,3>,

<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |32|; {0}][11 <1,3>,<3,3>,

<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |31|; {0}]

GGGwwwwwwwwwwwww[12 <2,3>,<2,3>,<3,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,

<3,3>,<3,3>,<3,4>,<3,4> -> |34|; {0}]GGwwwwwwwwwwwww[13 <3,3>,<2,3>,

<3,3>,<3,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> ->

|38|; {0}]Gwwwwwwwwwwwww[13 <2,3>,<3,3>,<4,3>,<3,3>,<4,3>,<3,3>,<3,3>,

<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |39|; {0}]GGGwwwwwwwwwwwww[15

<3,3>,<4,3>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,

<3,3>,<3,4>,<3,4> -> |46|; {0}][14 <4,3>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,

<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |43|; {0}]GIGGGGIGGI

[14 <3,4>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,

<3,3>,<3,4>,<3,4> -> |42|; {0}]GGG[14 <2,4>,<3,3>,<3,3>,<3,3>,<3,3>,

<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |41|; {0}]

[14 <1,4>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,

<3,3>,<3,4>,<3,4> -> |40|; {0}]GGG[13 <3,3>,<3,3>,<3,3>,<3,3>,<3,3>,

<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |39|; {0}]

Gwwwwwwwwwwwww[15 <3,3>,<3,3>,<4,3>,<4,3>,<4,3>,<3,3>,<3,3>,<4,3>,

<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |48|; {0}]Gwwwwwwwwwwwww

[15 <4,3>,<4,3>,<3,3>,<4,3>,<4,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,3>,

<3,3>,<3,3>,<3,4>,<3,4> -> |49|; {0}]GIGI[15 <3,4>,<4,3>,<3,3>,<4,3>,

<4,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> ->
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|48|; {0}]G[14 <4,3>,<3,3>,<4,3>,<4,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,

<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |45|; {0}][13 <3,3>,<4,3>,<4,3>,

<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |41|;

{0}]Gwwwwwwwwwwwww[13 <4,3>,<4,3>,<4,3>,<3,3>,<3,3>,<4,3>,<3,3>,<2,3>,

<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |42|; {0}]GIGGGGIGGI[13 <3,4>,<4,3>,

<4,3>,<3,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> ->

|41|; {0}]GGGGGGGG[13 <2,4>,<4,3>,<4,3>,<3,3>,<3,3>,<4,3>,<3,3>,<2,3>,

<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |40|; {0}][13 <1,4>,<4,3>,<4,3>,<3,3>,

<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |39|; {0}]

[13 <0,4>,<4,3>,<4,3>,<3,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,

<3,4>,<3,4> -> |38|; {0}][12 <4,3>,<4,3>,<3,3>,<3,3>,<4,3>,<3,3>,

<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |38|; {1}][11 <4,3>,<3,3>,

<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |34|; {1}]

[10 <3,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> ->

|30|; {1}][10 <2,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,

<3,4> -> |29|; {1}]GGGwwwwwwwwwwwww[11 <3,3>,<3,3>,<4,3>,<3,3>,

<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |33|; {1}]

GGGwwwwwwwwwwwww[12 <4,3>,<3,3>,<4,3>,<3,3>,<3,3>,<4,3>,

<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |38|; {1}]Gwwwwwwwwwwwww

[12 <3,3>,<4,3>,<5,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,

<3,4>,<3,4> -> |39|; {1}]GGwwwwwwwwwwwww[13 <5,3>,<4,3>,<4,3>,

<4,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> ->

|44|; {1}]GIGGGGIGGIW[13 <4,4>,<4,3>,<4,3>,<4,3>,<3,3>,<3,3>,

<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |43|; {1}]GGW[13

<3,4>,<4,3>,<4,3>,<4,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,

<3,4>,<3,4> -> |42|; {1}]GGG[12 <4,3>,<4,3>,<4,3>,<3,3>,<3,3>,<4,3>,

<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |39|; {1}]Gwwwwwwwwwwwww[12

<4,3>,<4,3>,<5,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,

<3,4> -> |40|; {1}]Gwwwwwwwwwwwww[13 <5,3>,<5,3>,<4,3>,<5,3>,<3,3>,

<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |46|; {1}]GIGIW

[13 <4,4>,<5,3>,<4,3>,<5,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,

<3,3>,<3,4>,<3,4> -> |45|; {1}][13 <3,4>,<5,3>,<4,3>,<5,3>,<3,3>,

<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |44|; {1}][13

<2,4>,<5,3>,<4,3>,<5,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,

<3,4>,<3,4> -> |43|; {1}]GG[12 <5,3>,<4,3>,<5,3>,<3,3>,<3,3>,<4,3>,

<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |41|; {1}]GIGGGGIGGIW[12

<4,4>,<4,3>,<5,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,

<3,4> -> |40|; {1}]GGGGGGW[12 <3,4>,<4,3>,<5,3>,<3,3>,<3,3>,<4,3>,

<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |39|; {1}][12 <2,4>,<4,3>,

<5,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |38|;

{1}][12 <1,4>,<4,3>,<5,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,

<3,4>,<3,4> -> |37|; {1}]GGG[11 <4,3>,<5,3>,<3,3>,<3,3>,<4,3>,<2,3>,

<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |36|; {1}][10 <5,3>,<3,3>,<3,3>,

<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |32|; {1}][9 <3,3>,

<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |27|; {1}]W[9
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<2,4>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |26|; {1}]

[9 <1,4>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |25|;

{1}][8 <3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |24|; {1}]

W[8 <2,4>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |23|; {1}][8

<1,4>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |22|; {1}][7 <4,3>,

<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |21|; {1}]w[7 <3,4>,<2,3>,

<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |20|; {1}][7 <2,4>,<2,3>,<3,3>,

<3,3>,<3,3>,<3,4>,<3,4> -> |19|; {1}][7 <1,4>,<2,3>,<3,3>,<3,3>,

<3,3>,<3,4>,<3,4> -> |18|; {1}][6 <2,3>,<3,3>,<3,3>,<3,3>,<3,4>,

<3,4> -> |17|; {1}]GGwwwwww[7 <3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<3,4>,

<3,4> -> |21|; {1}]GIW[7 <2,4>,<3,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4>

-> |20|; {1}]GG[6 <3,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |18|; {1}]

Gwwwwww[7 <4,3>,<4,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |23|; {1}]

GIW[7 <3,4>,<4,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |22|; {1}][6

<4,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |19|; {1}]GIW[6 <3,4>,<3,3>,

<3,3>,<3,3>,<3,4>,<3,4> -> |18|; {1}]GGW[6 <2,4>,<3,3>,<3,3>,<3,3>,

<3,4>,<3,4> -> |17|; {1}][6 <1,4>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> ->

|16|; {1}]GGG[5 <3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |15|; {1}]GIW[5

<2,4>,<3,3>,<3,3>,<3,4>,<3,4> -> |14|; {1}]GG[4 <3,3>,<3,3>,<3,4>,

<3,4> -> |12|; {1}][3 <3,3>,<3,4>,<3,4> -> |9|; {1}]W[3 <2,4>,<3,4>,

<3,4> -> |8|; {1}][3 <1,4>,<3,4>,<3,4> -> |7|; {1}]G[2 <3,4>,<3,4>

-> |6|; {1}]G[1 <3,4> -> |3|; {1}][1 <2,4> -> |2|; {1}][1 <1,4> ->

|1|; {1}]

*** QCMPACK Statistics ***

Table size: 36

Entries reused: 255

*** REGSETGCD: Gcd Statistics ***

Table size: 125

Entries reused: 0

*** REGSETGCD: Inv Set Statistics ***

Table size: 30

Entries reused: 0[{
960725655771966 t24 + 386820897948702 t23+

8906817198608181 t22 + 2704966893949428 t21+
37304033340228264 t20 + 7924782817170207 t19+
93126799040354990 t18 + 13101273653130910 t17+
156146250424711858 t16 + 16626490957259119 t15+
190699288479805763 t14 + 24339173367625275 t13+
180532313014960135 t12 + 35288089030975378 t11+



740 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

135054975747656285 t10 + 34733736952488540 t9 +
75947600354493972 t8 + 19772555692457088 t7+
28871558573755428 t6 + 5576152439081664 t5+
6321711820352976 t4 + 438314209312320 t3+
581105748367008 t2 − 60254467992576 t+
1449115951104,(
26604210869491302385515265737052082361668474181372891857784 t23+
443104378424686086067294899528296664238693556855017735265295 t22+
279078393286701234679141342358988327155321305829547090310242 t21+
3390276361413232465107617176615543054620626391823613392185226 t20+
941478179503540575554198645220352803719793196473813837434129 t19+
11547855194679475242211696749673949352585747674184320988144390 t18+
1343609566765597789881701656699413216467215660333356417241432 t17+
23233813868147873503933551617175640859899102987800663566699334 t16+
869574020537672336950845440508790740850931336484983573386433 t15+
31561554305876934875419461486969926554241750065103460820476969 t14+

1271400990287717487442065952547731879554823889855386072264931 t13+
31945089913863736044802526964079540198337049550503295825160523 t12+
3738735704288144509871371560232845884439102270778010470931960 t11+
25293997512391412026144601435771131587561905532992045692885927 t10+
5210239009846067123469262799870052773410471135950175008046524 t9+
15083887986930297166259870568608270427403187606238713491129188 t8+
3522087234692930126383686270775779553481769125670839075109000 t7+
6079945200395681013086533792568886491101244247440034969288588 t6+
1090634852433900888199913756247986023196987723469934933603680 t5+
1405819430871907102294432537538335402102838994019667487458352 t4+

88071527950320450072536671265507748878347828884933605202432 t3+
135882489433640933229781177155977768016065765482378657129440 t2−
13957283442882262230559894607400314082516690749975646520320 t+
334637692973189299277258325709308472592117112855749713920) z+
8567175484043952879756725964506833932149637101090521164936 t23+
149792392864201791845708374032728942498797519251667250945721 t22+
77258371783645822157410861582159764138123003074190374021550 t21+
1108862254126854214498918940708612211184560556764334742191654 t20+
213250494460678865219774480106826053783815789621501732672327 t19+
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3668929075160666195729177894178343514501987898410131431699882 t18+
171388906471001872879490124368748236314765459039567820048872 t17+
7192430746914602166660233477331022483144921771645523139658986 t16−
128798674689690072812879965633090291959663143108437362453385 t15+
9553010858341425909306423132921134040856028790803526430270671 t14−
13296096245675492874538687646300437824658458709144441096603 t13+
9475806805814145326383085518325333106881690568644274964864413 t12+
803234687925133458861659855664084927606298794799856265539336 t11+
7338202759292865165994622349207516400662174302614595173333825 t10+
1308004628480367351164369613111971668880538855640917200187108 t9+

4268059455741255498880229598973705747098216067697754352634748 t8+
892893526858514095791318775904093300103045601514470613580600 t7+
1679152575460683956631925852181341501981598137465328797013652 t6+
269757415767922980378967154143357835544113158280591408043936 t5+
380951527864657529033580829801282724081345372680202920198224 t4+
19785545294228495032998826937601341132725035339452913286656 t3+
36477412057384782942366635303396637763303928174935079178528 t2−
3722212879279038648713080422224976273210890229485838670848 t+
89079724853114348361230634484013862024728599906874105856,(

3 z3 − 11 z2 + 8 z + 4
)
y + 2 t z3 + 4 t z2 − 5 t z − t, :

(z + 1) x+ z2 − 4 z + 1
}]

Type: List RegularTriangularSet( Integer, IndexedExponents

OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],

NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,y,z,t]))

Between a sequence of processes, thus between a ] and a [ you can see capital letters W, G,

I and lower case letters i, w. Each time a capital letter appears a non-trivial computation
has be performed and its result is put in a hash-table. Each time a lower case letter appears
a needed result has been found in an hash-table. The use of these hash-tables generally speed
up the computations. However, on very large systems, it may happen that these hash-tables
become too big to be handle by your Axiom configuration. Then in these exceptional cases,
you may prefer getting a result (even if it takes a long time) than getting nothing. Hence
you need to know how to prevent the RSEGSET constructor from using these hash-tables. In
that case you will be using the zeroSetSplit with five arguments. The first one is the input
system lp as above. The second one is a boolean value hash? which is true iff you want to
use hash-tables. The third one is boolean value clos? which is true iff you want to solve
your system in the sense of Kalkbrener, the other way remaining that of Lazard. The fourth
argument is boolean value info? which is true iff you want to display information during the
computations. The last one is boolean value prep? which is true iff you want to use some
heuristics that are performed on the input system before starting the real algorithm. The
value of this flag is true when you are using zeroSetSplit with less than five arguments.
Note that there is no available signature for zeroSetSplit with four arguments.
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We finish this section by some remarks about both ways of solving, in the sense of Kalk-
brener or in the sense of Lazard. For problems with a finite number of solutions, there are
theoretically equivalent and the resulting decompositions are identical, up to the ordering
of the components. However, when solving in the sense of Lazard, the algorithm behaves
differently. In that case, it becomes more incremental than in the sense of Kalkbrener. That
means the polynomials of the input system are considered one after another whereas in the
sense of Kalkbrener the input system is treated more globally.

This makes an important difference in positive dimension. Indeed when solving in the sense
of Kalkbrener, the Primeidealkettensatz of Krull is used. That means any regular triangular
containing more polynomials than the input system can be deleted. This is not possible
when solving in the sense of Lazard. This explains why Kalkbrener’s decompositions usually
contain less components than those of Lazard. However, it may happen with some examples
that the incremental process (that cannot be used when solving in the sense of Kalkbrener)
provide a more efficient way of solving than the global one even if the Primeidealkettensatz is
used. Thus just try both, with the various options, before concluding that you cannot solve
your favorite system with zeroSetSplit. There exist more options at the development level
that are not currently available in this public version.

9.79 RomanNumeral

The Roman numeral package was added to Axiom in MCMLXXXVI for use in denoting
higher order derivatives.

For example, let f be a symbolic operator.

f := operator ’f

f

Type: BasicOperator

This is the seventh derivative of f with respect to x.

D(f x,x,7)

f (vii) (x)

Type: Expression Integer

You can have integers printed as Roman numerals by declaring variables to be of type
RomanNumeral (abbreviation ROMAN).

a := roman(1978 - 1965)
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XIII

Type: RomanNumeral

This package now has a small but devoted group of followers that claim this domain has
shown its efficacy in many other contexts. They claim that Roman numerals are every bit
as useful as ordinary integers.

In a sense, they are correct, because Roman numerals form a ring and you can therefore
construct polynomials with Roman numeral coefficients, matrices over Roman numerals,
etc..

x : UTS(ROMAN,’x,0) := x

x

Type: UnivariateTaylorSeries(RomanNumeral,x,0)

Was Fibonacci Italian or ROMAN?

recip(1 - x - x**2)

I + x+ II x2 + III x3 + V x4 + V III x5 +XIII x6 +XXI x7+

XXXIV x8 + LV x9 + LXXXIX x10 +O
(
x11
)

Type: Union(UnivariateTaylorSeries(RomanNumeral,x,0),...)

You can also construct fractions with Roman numeral numerators and denominators, as this
matrix Hilberticus illustrates.

m : MATRIX FRAC ROMAN

Type: Void

m := matrix [ [1/(i + j) for i in 1..3] for j in 1..3]

 I
II

I
III

I
IV

I
III

I
IV

I
V

I
IV

I
V

I
V I


Type: Matrix Fraction RomanNumeral
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Note that the inverse of the matrix has integral ROMAN entries.

inverse m  LXXII −CCXL CLXXX
−CCXL CM −DCCXX
CLXXX −DCCXX DC


Type: Union(Matrix Fraction RomanNumeral,...)

Unfortunately, the spoil-sports say that the fun stops when the numbers get big—mostly
because the Romans didn’t establish conventions about representing very large numbers.

y := factorial 10

3628800

Type: PositiveInteger

You work it out!

roman y

((((I))))((((I))))((((I))))(((I)))(((I)))(((I)))(((I)))
(((I)))(((I)))((I))((I))MMMMMMMMDCCC

Type: RomanNumeral

Issue the system command )show RomanNumeral to display the full list of operations defined
by RomanNumeral.

9.80 Segment

The Segment domain provides a generalized interval type.

Segments are created using the .. construct by indicating the (included) end points.

s := 3..10

3..10

Type: Segment PositiveInteger
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The first end point is called the lo and the second is called hi.

lo s

3

Type: PositiveInteger

These names are used even though the end points might belong to an unordered set.

hi s

10

Type: PositiveInteger

In addition to the end points, each segment has an integer “increment.” An increment can
be specified using the “by” construct.

t := 10..3 by -2

10..3 by − 2

Type: Segment PositiveInteger

This part can be obtained using the incr function.

incr s

1

Type: PositiveInteger

Unless otherwise specified, the increment is 1.

incr t

−2

Type: Integer

A single value can be converted to a segment with equal end points. This happens if segments
and single values are mixed in a list.
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l := [1..3, 5, 9, 15..11 by -1]

[1..3, 5..5, 9..9, 15..11by − 1]

Type: List Segment PositiveInteger

If the underlying type is an ordered ring, it is possible to perform additional operations. The
expand operation creates a list of points in a segment.

expand s

[3, 4, 5, 6, 7, 8, 9, 10]

Type: List Integer

If k > 0, then expand(l..h by k) creates the list [l, l+k, ..., lN] where lN <= h <

lN+k. If k < 0, then lN >= h > lN+k.

expand t

[10, 8, 6, 4]

Type: List Integer

It is also possible to expand a list of segments. This is equivalent to appending lists obtained
by expanding each segment individually.

expand l

[1, 2, 3, 5, 9, 15, 14, 13, 12, 11]

Type: List Integer

For more information on related topics, see SegmentBinding 9.81 on page 746 and
UniversalSegment 9.98 on page 813.

9.81 SegmentBinding

The SegmentBinding type is used to indicate a range for a named symbol.

First give the symbol, then an = and finally a segment of values.

x = a..b
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x = a..b

Type: SegmentBinding Symbol

This is used to provide a convenient syntax for arguments to certain operations.

sum(i**2, i = 0..n)

2 n3 + 3 n2 + n

6

Type: Fraction Polynomial Integer

draw(x**2, x = -2..2)

x2, x = −2..2
The left-hand side must be of type Symbol but the right-hand side can be a segment over
any type.

sb := y = 1/2..3/2

y =

(
1

2

)
..

(
3

2

)
Type: SegmentBinding Fraction Integer

The left- and right-hand sides can be obtained using the variable and segment operations.
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variable(sb)

y

Type: Symbol

segment(sb)

(
1

2

)
..

(
3

2

)
Type: Segment Fraction Integer

For more information on related topics, see Segment 9.80 on page 744 and UniversalSegment

9.98 on page 813.

9.82 Set

The Set domain allows one to represent explicit finite sets of values. These are similar to
lists, but duplicate elements are not allowed.

Sets can be created by giving a fixed set of values . . .

s := set [x**2-1, y**2-1, z**2-1]

{
x2 − 1, y2 − 1, z2 − 1

}
Type: Set Polynomial Integer

or by using a collect form, just as for lists. In either case, the set is formed from a finite
collection of values.

t := set [x**i - i+1 for i in 2..10 | prime? i]

{
x2 − 1, x3 − 2, x5 − 4, x7 − 6

}
Type: Set Polynomial Integer

The basic operations on sets are intersect, union, difference, and symmetricDifference.

i := intersect(s,t)
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{
x2 − 1

}
Type: Set Polynomial Integer

u := union(s,t)

{
x2 − 1, x3 − 2, x5 − 4, x7 − 6, y2 − 1, z2 − 1

}
Type: Set Polynomial Integer

The set difference(s,t) contains those members of s which are not in t.

difference(s,t)

{
y2 − 1, z2 − 1

}
Type: Set Polynomial Integer

The set symmetricDifference(s,t) contains those elements which are in s or t but not in
both.

symmetricDifference(s,t)

{
x3 − 2, x5 − 4, x7 − 6, y2 − 1, z2 − 1

}
Type: Set Polynomial Integer

Set membership is tested using the member? operation.

member?(y, s)

false

Type: Boolean

member?((y+1)*(y-1), s)

true

Type: Boolean
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The subset? function determines whether one set is a subset of another.

subset?(i, s)

true

Type: Boolean

subset?(u, s)

false

Type: Boolean

When the base type is finite, the absolute complement of a set is defined. This finds the set
of all multiplicative generators of PrimeField 11—the integers mod 11.

gs := set [g for i in 1..11 | primitive?(g := i::PF 11)]

{2, 6, 7, 8}

Type: Set PrimeField 11

The following values are not generators.

complement gs

{1, 3, 4, 5, 9, 10, 0}

Type: Set PrimeField 11

Often the members of a set are computed individually; in addition, values can be inserted
or removed from a set over the course of a computation.

There are two ways to do this:

a := set [i**2 for i in 1..5]

{1, 4, 9, 16, 25}

Type: Set PositiveInteger

One is to view a set as a data structure and to apply updating operations.
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insert!(32, a)

{1, 4, 9, 16, 25, 32}

Type: Set PositiveInteger

remove!(25, a)

{1, 4, 9, 16, 32}

Type: Set PositiveInteger

a

{1, 4, 9, 16, 32}

Type: Set PositiveInteger

The other way is to view a set as a mathematical entity and to create new sets from old.

b := b0 := set [i**2 for i in 1..5]

{1, 4, 9, 16, 25}

Type: Set PositiveInteger

b := union(b, 32)

{1, 4, 9, 16, 25, 32}

Type: Set PositiveInteger

b := difference(b, 25)

{1, 4, 9, 16, 32}

Type: Set PositiveInteger

b0

{1, 4, 9, 16, 25}

Type: Set PositiveInteger

For more information about lists, see List 9.54 on page 632.
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9.83 SingleInteger

The SingleInteger domain is intended to provide support in Axiom for machine integer
arithmetic. It is generally much faster than (bignum) Integer arithmetic but suffers from a
limited range of values. Since Axiom can be implemented on top of various dialects of Lisp,
the actual representation of small integers may not correspond exactly to the host machines
integer representation.

In the CCL implementation of Axiom (Release 2.1 onwards) the underlying representation of
SingleInteger is the same as Integer. The underlying Lisp primitives treat machine-word
sized computations specially.

You can discover the minimum and maximum values in your implementation by using min
and max.

min()$SingleInteger

−134217728

Type: SingleInteger

max()$SingleInteger

134217727

Type: SingleInteger

To avoid confusion with Integer, which is the default type for integers, you usually need to
work with declared variables (section 2.3 on page 69). . . .

a := 1234 :: SingleInteger

1234

Type: SingleInteger

or use package calling (section 2.9 on page 89).

b := 124$SingleInteger

124

Type: SingleInteger
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You can add, multiply and subtract SingleInteger objects, and ask for the greatest common
divisor (gcd).

gcd(a,b)

2

Type: SingleInteger

The least common multiple (lcm) is also available.

lcm(a,b)

76508

Type: SingleInteger

Operations mulmod, addmod, submod, and invmod are similar—they provide arith-
metic modulo a given small integer. Here is 5 ∗ 6mod13.

mulmod(5,6,13)$SingleInteger

4

Type: SingleInteger

To reduce a small integer modulo a prime, use positiveRemainder.

positiveRemainder(37,13)$SingleInteger

11

Type: SingleInteger

Operations And, Or, xor, and Not provide bit level operations on small integers.

And(3,4)$SingleInteger

0

Type: SingleInteger
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Use shift(int,numToShift) to shift bits, where i is shifted left if numToShift is positive,
right if negative.

shift(1,4)$SingleInteger

16

Type: SingleInteger

shift(31,-1)$SingleInteger

15

Type: SingleInteger

Many other operations are available for small integers, including many of those provided
for Integer. To see the other operations, use the Browse HyperDoc facility (section 14 on
page 931)

9.84 SparseTable

The SparseTable domain provides a general purpose table type with default entries.

Here we create a table to save strings under integer keys. The value "Try again!" is returned
if no other value has been stored for a key.

t: SparseTable(Integer, String, "Try again!") := table()

table()

Type: SparseTable(Integer,String,Try again!)

Entries can be stored in the table.

t.3 := "Number three"

"Number three"

Type: String

t.4 := "Number four"
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"Number four"

Type: String

These values can be retrieved as usual, but if a look up fails the default entry will be returned.

t.3

"Number three"

Type: String

t.2

"Try again!"

Type: String

To see which values are explicitly stored, the keys and entries functions can be used.

keys t

[4, 3]

Type: List Integer

entries t

["Number four", "Number three"]

Type: List String

If a specific table representation is required, the GeneralSparseTable constructor should be
used. The domain SparseTable(K, E, dflt) is equivalent to
GeneralSparseTable(K, E, Table(K,E), dflt). For more information, see Table 9.92
on page 780 and GeneralSparseTable 9.35 on page 535.
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9.85 SquareMatrix

The top level matrix type in Axiom is Matrix (see Matrix 9.59 on page 654, which provides
basic arithmetic and linear algebra functions. However, since the matrices can be of any size
it is not true that any pair can be added or multiplied. Thus Matrix has little algebraic
structure.

Sometimes you want to use matrices as coefficients for polynomials or in other algebraic
contexts. In this case, SquareMatrix should be used. The domain SquareMatrix(n,R)

gives the ring of n by n square matrices over R.

Since SquareMatrix is not normally exposed at the top level, you must expose it before it
can be used.

)set expose add constructor SquareMatrix

SquareMatrix is now explicitly exposed in frame G82322

Once SQMATRIX has been exposed, values can be created using the squareMatrix function.

m := squareMatrix [ [1,-%i],[%i,4] ]

[
1 −i
i 4

]
Type: SquareMatrix(2,Complex Integer)

The usual arithmetic operations are available.

m*m - m [
1 −4 i
4 i 13

]
Type: SquareMatrix(2,Complex Integer)

Square matrices can be used where ring elements are required. For example, here is a matrix
with matrix entries.

mm := squareMatrix [ [m, 1], [1-m, m**2] ]


[

1 −i
i 4

] [
1 0
0 1

]
[

0 i
−i −3

] [
2 −5 i
5 i 17

]

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Type: SquareMatrix(2,SquareMatrix(2,Complex Integer))

Or you can construct a polynomial with square matrix coefficients.

p := (x + m)**2

x2 +

[
2 −2 i
2 i 8

]
x+

[
2 −5 i
5 i 17

]
Type: Polynomial SquareMatrix(2,Complex Integer)

This value can be converted to a square matrix with polynomial coefficients.

p::SquareMatrix(2, ?)

[
x2 + 2 x+ 2 −2 i x− 5 i
2 i x+ 5 i x2 + 8 x+ 17

]
Type: SquareMatrix(2,Polynomial Complex Integer)

For more information on related topics, see section 2.2 on page 67, section 2.11 on page 94,
and Matrix 9.59 on page 654.

9.86 SquareFreeRegularTriangularSet

The SquareFreeRegularTriangularSet domain constructor implements square-free regular
triangular sets. See the RegularTriangularSet domain constructor for general regular
triangular sets. Let T be a regular triangular set consisting of polynomials t1, ..., tm ordered
by increasing main variables. The regular triangular set T is square-free if T is empty or if
t1, ..., tm-1 is square-free and if the polynomial tm is square-free as a univariate polynomial
with coefficients in the tower of simple extensions associated with t1, ..., tm-1.

The main interest of square-free regular triangular sets is that their associated towers of
simple extensions are product of fields. Consequently, the saturated ideal of a square-free
regular triangular set is radical. This property simplifies some of the operations related to
regular triangular sets. However, building square-free regular triangular sets is generally
more expensive than building general regular triangular sets.

As the RegularTriangularSet domain constructor, the SquareFreeRegularTriangular-

Set domain constructor also implements a method for solving polynomial systems by means
of regular triangular sets. This is in fact the same method with some adaptations to take
into account the fact that the computed regular chains are square-free. Note that it is
also possible to pass from a decomposition into general regular triangular sets to a decom-
position into square-free regular triangular sets. This conversion is used internally by the
LazardSetSolvingPackage package constructor.
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N.B. When solving polynomial systems with the SquareFreeRegularTriangularSet do-
main constructor or the LazardSetSolvingPackage package constructor, decompositions
have no redundant components. See also LexTriangularPackage and ZeroDimensional-

SolvePackage for the case of algebraic systems with a finite number of (complex) solutions.

We shall explain now how to use the constructor SquareFreeRegularTriangularSet.

This constructor takes four arguments. The first one, R, is the coefficient ring of the poly-
nomials; it must belong to the category GcdDomain. The second one, E, is the exponent
monoid of the polynomials; it must belong to the category OrderedAbelianMonoidSup. the
third one, V, is the ordered set of variables; it must belong to the category OrderedSet.
The last one is the polynomial ring; it must belong to the category
RecursivePolynomialCategory(R,E,V). The abbreviation for
SquareFreeRegularTriangularSet is SREGSET.

Note that the way of understanding triangular decompositions is detailed in the example of
the RegularTriangularSet constructor.

Let us illustrate the use of this constructor with one example (Donati-Traverso). Define the
coefficient ring.

R := Integer

Integer

Type: Domain

Define the list of variables,

ls : List Symbol := [x,y,z,t]

[x, y, z, t]

Type: List Symbol

and make it an ordered set;

V := OVAR(ls)

OrderedVariableList [x,y,z,t]

Type: Domain

then define the exponent monoid.

E := IndexedExponents V



9.86. SQUAREFREEREGULARTRIANGULARSET 759

IndexedExponents OrderedVariableList [x,y,z,t]

Type: Domain

Define the polynomial ring.

P := NSMP(R, V)

NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])

Type: Domain

Let the variables be polynomial.

x: P := ’x

x

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

y: P := ’y

y

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

z: P := ’z

z

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

t: P := ’t

t

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])
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Now call the SquareFreeRegularTriangularSet domain constructor.

ST := SREGSET(R,E,V,P)

SquareFreeRegularTriangularSet(Integer,
IndexedExponentsOrderedVariableList[x, y, z, t],
OrderedVariableList[x, y, z, t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[x, y, z, t]))

Type: Domain

Define a polynomial system.

p1 := x ** 31 - x ** 6 - x - y

x31 − x6 − x− y

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

p2 := x ** 8 - z

x8 − z

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

p3 := x ** 10 - t

x10 − t

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

lp := [p1, p2, p3]

[
x31 − x6 − x− y, x8 − z, x10 − t

]
Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])
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First of all, let us solve this system in the sense of Kalkbrener.

zeroSetSplit(lp)$ST

[{
z5 − t4, t z y2 + 2 z3 y − t8 + 2 t5 + t3 − t2,

(
t4 − t

)
x− t y − z2

}]
Type: List SquareFreeRegularTriangularSet(Integer, IndexedExponents

OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],

NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,y,z,t]))

And now in the sense of Lazard (or Wu and other authors).

zeroSetSplit(lp,false)$ST

[{
z5 − t4, t z y2 + 2 z3 y − t8 + 2 t5 + t3 − t2,

(
t4 − t

)
x− t y − z2

}
,{

t3 − 1, z5 − t, t y + z2, z x2 − t
}
, {t, z, y, x}

]
Type: List SquareFreeRegularTriangularSet(Integer, IndexedExponents

OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],

NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,y,z,t]))

Now to see the difference with the RegularTriangularSet domain constructor, we define:

T := REGSET(R,E,V,P)

RegularTriangularSet(Integer,
IndexedExponentsOrderedVariableList[x, y, z, t],
OrderedVariableList[x, y, z, t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[x, y, z, t]))

Type: Domain

and compute:

lts := zeroSetSplit(lp,false)$T

[{
z5 − t4, t z y2 + 2 z3 y − t8 + 2 t5 + t3 − t2,

(
t4 − t

)
x− t y − z2

}
,{

t3 − 1, z5 − t, t z y2 + 2 z3 y + 1, z x2 − t
}
, {t, z, y, x}

]
Type: List RegularTriangularSet(Integer, IndexedExponents

OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],

NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,y,z,t]))
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If you look at the second set in both decompositions in the sense of Lazard, you will see that
the polynomial with main variable y is not the same.

Let us understand what has happened.

We define:

ts := lts.2

{
t3 − 1, z5 − t, t z y2 + 2 z3 y + 1, z x2 − t

}
Type: RegularTriangularSet(Integer, IndexedExponents OrderedVariableList

[x,y,z,t], OrderedVariableList [x,y,z,t],

NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,y,z,t]))

pol := select(ts,’y)$T

t z y2 + 2 z3 y + 1

Type: Union( NewSparseMultivariatePolynomial(Integer, OrderedVariableList

[x,y,z,t]),...)

tower := collectUnder(ts,’y)$T

{
t3 − 1, z5 − t

}
Type: RegularTriangularSet(Integer, IndexedExponents OrderedVariableList

[x,y,z,t], OrderedVariableList [x,y,z,t],

NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,y,z,t]))

pack := RegularTriangularSetGcdPackage(R,E,V,P,T)

RegularTriangularSetGcdPackage(Integer,
IndexedExponentsOrderedVariableList[x, y, z, t],
OrderedVariableList[x, y, z, t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[x, y, z, t]),
RegularTriangularSet(Integer,
IndexedExponentsOrderedVariableList[x, y, z, t],
OrderedVariableList[x, y, z, t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[x, y, z, t])))
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Type: Domain

Then we compute:

toseSquareFreePart(pol,tower)$pack

[[
val = t y + z2, tower =

{
t3 − 1, z5 − t

}]]
Type: List Record(val: NewSparseMultivariatePolynomial(Integer,

OrderedVariableList [x,y,z,t]), tower: RegularTriangularSet(Integer,

IndexedExponents OrderedVariableList [x,y,z,t], OrderedVariableList

[x,y,z,t], NewSparseMultivariatePolynomial(Integer, OrderedVariableList

[x,y,z,t])))

9.87 Stack

A stack is an aggregate structure which allows insertion, deletion, and inspection of the
“top” element. Stacks are similar to any pile of paper where you can only add to the pile,
remove the top paper from the pile, or read the top paper.

Stacks can be created from a list of elements using the stack function.

a:Stack INT:= stack [1,2,3,4,5]

[1, 2, 3, 4, 5]

Type: Stack Integer

An empty stack can be created using the empty function.

a:Stack INT:= empty()

[]

Type: Stack Integer

The empty? function will return true if the stack contains no elements.

empty? a

true
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Type: Boolean

Stacks modify their arguments so they use the exclamation mark “!” as part of the function
name.

The pop! function removes the top element of the stack and returns it. The stack is one
element smaller. The extract! function does the same thing with a different name.

a:Stack INT:= stack [1,2,3,4,5]

[1, 2, 3, 4, 5]

Type: Stack Integer

pop! a

1

Type: PositiveInteger

a

[2, 3, 4, 5]

Type: Stack Integer

The push! operation adds a new top element to the stack and returns the element that was
pushed. The stack is one element larger. The insert! does the same thing with a different
name.

a:Stack INT:= stack [1,2,3,4,5]

[1, 2, 3, 4, 5]

Type: Stack Integer

push!(9,a)

9

Type: PositiveInteger
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a

[9, 1, 2, 3, 4, 5]

Type: Stack Integer

To read the top element without changing the stack use the top function.

a:Stack INT:= stack [1,2,3,4,5]

[1, 2, 3, 4, 5]

Type: Stack Integer

top a

1

Type: PositiveInteger

a

[1, 2, 3, 4, 5]

Type: Stack Integer

For more information on related topics, see Queue section 9.74 on page 706.

9.88 Stream

A Stream object is represented as a list whose last element contains the wherewithal to
create the next element, should it ever be required.

Let ints be the infinite stream of non-negative integers.

ints := [i for i in 0..]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, . . .]

Type: Stream NonNegativeInteger
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By default, ten stream elements are calculated. This number may be changed to something
else by the system command )set streams calculate. For the display purposes of this
book, we have chosen a smaller value.

More generally, you can construct a stream by specifying its initial value and a function
which, when given an element, creates the next element.

f : List INT -> List INT

Type: Void

f x == [x.1 + x.2, x.1]

Type: Void

fibs := [i.2 for i in [generate(f,[1,1])]]

Compiling function f with type List Integer -> List Integer

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .]

Type: Stream Integer

You can create the stream of odd non-negative integers by either filtering them from the
integers, or by evaluating an expression for each integer.

[i for i in ints | odd? i]

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, . . .]

Type: Stream NonNegativeInteger

odds := [2*i+1 for i in ints]

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, . . .]

Type: Stream NonNegativeInteger

You can accumulate the initial segments of a stream using the scan operation.
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scan(0,+,odds)

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, . . .]

Type: Stream NonNegativeInteger

The corresponding elements of two or more streams can be combined in this way.

[i*j for i in ints for j in odds]

[0, 3, 10, 21, 36, 55, 78, 105, 136, 171, . . .]

Type: Stream NonNegativeInteger

map(*,ints,odds)

[0, 3, 10, 21, 36, 55, 78, 105, 136, 171, . . .]

Type: Stream NonNegativeInteger

Many operations similar to those applicable to lists are available for streams.

first ints

0

Type: NonNegativeInteger

rest ints

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .]

Type: Stream NonNegativeInteger

fibs 20

6765

Type: PositiveInteger

The packages StreamFunctions1, StreamFunctions2 and StreamFunctions3 export some
useful stream manipulation operations. For more information, see section 5.5 on page 146,
section 8.9 on page 328, ContinuedFraction 9.14 on page 450, and List 9.54 on page 632.
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9.89 String

The type String provides character strings. Character strings provide all the operations for
a one-dimensional array of characters, plus additional operations for manipulating text. For
more information on related topics, see Character 9.10 on page 434 and CharacterClass

9.11 on page 437. You can also issue the system command )show String to display the full
list of operations defined by String.

String values can be created using double quotes.

hello := "Hello, I’m Axiom!"

"Hello, I’m Axiom!"

Type: String

Note, however, that double quotes and underscores must be preceded by an extra underscore.

said := "Jane said, "Look! ""

"Jane said, "Look!""

Type: String

saw := "She saw exactly one underscore: ."

"She saw exactly one underscore: ."

Type: String

It is also possible to use new to create a string of any size filled with a given character. Since
there are many new functions it is necessary to indicate the desired type.

gasp: String := new(32, char "x")

"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

Type: String

The length of a string is given by “#”.

#gasp
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32

Type: PositiveInteger

Indexing operations allow characters to be extracted or replaced in strings. For any string
s, indices lie in the range 1..#s.

hello.2

e

Type: Character

Indexing is really just the application of a string to a subscript, so any application syntax
works.

hello 2

e

Type: Character

hello(2)

e

Type: Character

If it is important not to modify a given string, it should be copied before any updating
operations are used.

hullo := copy hello

"Hello, I’m Axiom!"

Type: String

hullo.2 := char "u"; [hello, hullo]

["Hello, I’m Axiom!", "Hullo, I’m Axiom!"]
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Type: List String

Operations are provided to split and join strings. The concat operation allows several strings
to be joined together.

saidsaw := concat ["alpha","---","omega"]

"alpha---omega"

Type: String

There is a version of concat that works with two strings.

concat("hello ","goodbye")

"hello goodbye"

Type: String

Juxtaposition can also be used to concatenate strings.

"This " "is " "several " "strings " "concatenated."

"This is several strings concatenated."

Type: String

Substrings are obtained by giving an index range.

hello(1..5)

"Hello"

Type: String

hello(8..)

"I’m Axiom!"

Type: String
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A string can be split into several substrings by giving a separation character or character
class.

split(hello, char " ")

["Hello,", "I’m", "Axiom!"]

Type: List String

other := complement alphanumeric();

Type: CharacterClass

split(saidsaw, other)

["alpha", "omega"]

Type: List String

Unwanted characters can be trimmed from the beginning or end of a string using the oper-
ations trim, leftTrim and rightTrim.

trim("## ++ relax ++ ##", char "#")

" ++ relax ++ "

Type: String

Each of these functions takes a string and a second argument to specify the characters to be
discarded.

trim("## ++ relax ++ ##", other)

"relax"

Type: String

The second argument can be given either as a single character or as a character class.

leftTrim ("## ++ relax ++ ##", other)
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"relax ++ ##"

Type: String

rightTrim("## ++ relax ++ ##", other)

"## ++ relax"

Type: String

Strings can be changed to upper case or lower case using the operations upperCase, and
lowerCase.

upperCase hello

"HELLO, I’M Axiom!"

Type: String

The versions with the exclamation mark change the original string, while the others produce
a copy.

lowerCase hello

"hello, i’m axiom!"

Type: String

Some basic string matching is provided. The function prefix? tests whether one string is
an initial prefix of another.

prefix?("He", "Hello")

true

Type: Boolean

prefix?("Her", "Hello")

false
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Type: Boolean

A similar function, suffix?, tests for suffixes.

suffix?("", "Hello")

true

Type: Boolean

suffix?("LO", "Hello")

false

Type: Boolean

The function substring? tests for a substring given a starting position.

substring?("ll", "Hello", 3)

true

Type: Boolean

substring?("ll", "Hello", 4)

false

Type: Boolean

A number of position functions locate things in strings. If the first argument to position
is a string, then position(s,t,i) finds the location of s as a substring of t starting the
search at position i.

n := position("nd", "underground", 1)

2

Type: PositiveInteger

n := position("nd", "underground", n+1)
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10

Type: PositiveInteger

If s is not found, then 0 is returned (minIndex(s)-1 in IndexedString).

n := position("nd", "underground", n+1)

0

Type: NonNegativeInteger

To search for a specific character or a member of a character class, a different first argument
is used.

position(char "d", "underground", 1)

3

Type: PositiveInteger

position(hexDigit(), "underground", 1)

3

Type: PositiveInteger

9.90 StringTable

This domain provides a table type in which the keys are known to be strings so special
techniques can be used. Other than performance, the type StringTable(S) should be-
have exactly the same way as Table(String,S). See Table 9.92 on page 780 for general
information about tables.

This creates a new table whose keys are strings.

t: StringTable(Integer) := table()

table()

Type: StringTable Integer
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The value associated with each string key is the number of characters in the string.

for s in split("My name is Ian Watt.",char " ")

repeat

t.s := #s

Type: Void

for key in keys t repeat output [key, t.key]

["Ian",3]

["My",2]

["Watt.",5]

["name",4]

["is",2]

Type: Void

9.91 Symbol

Symbols are one of the basic types manipulated by Axiom. The Symbol domain provides
ways to create symbols of many varieties.

The simplest way to create a symbol is to “single quote” an identifier.

X: Symbol := ’x

x

Type: Symbol

This gives the symbol even if x has been assigned a value. If x has not been assigned a value,
then it is possible to omit the quote.

XX: Symbol := x

x

Type: Symbol

Declarations must be used when working with symbols, because otherwise the interpreter
tries to place values in a more specialized type Variable.
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A := ’a

a

Type: Variable a

B := b

b

Type: Variable b

The normal way of entering polynomials uses this fact.

x**2 + 1

x2 + 1

Type: Polynomial Integer

Another convenient way to create symbols is to convert a string. This is useful when the
name is to be constructed by a program.

"Hello"::Symbol

Hello

Type: Symbol

Sometimes it is necessary to generate new unique symbols, for example, to name constants
of integration. The expression new() generates a symbol starting with %.

new()$Symbol

%A

Type: Symbol

Successive calls to new produce different symbols.

new()$Symbol
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%B

Type: Symbol

The expression new("s") produces a symbol starting with %s.

new("xyz")$Symbol

%xyz0

Type: Symbol

A symbol can be adorned in various ways. The most basic thing is applying a symbol to a
list of subscripts.

X[i,j]

xi,j

Type: Symbol

Somewhat less pretty is to attach subscripts, superscripts or arguments.

U := subscript(u, [1,2,1,2])

u1,2,1,2

Type: Symbol

V := superscript(v, [n])

vn

Type: Symbol

P := argscript(p, [t])

p (t)

Type: Symbol
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It is possible to test whether a symbol has scripts using the scripted? test.

scripted? U

true

Type: Boolean

scripted? X

false

Type: Boolean

If a symbol is not scripted, then it may be converted to a string.

string X

"x"

Type: String

The basic parts can always be extracted using the name and scripts operations.

name U

u

Type: Symbol

scripts U

[sub = [1, 2, 1, 2], sup = [], presup = [], presub = [], args = []]

Type: Record( sub: List OutputForm, sup: List OutputForm, presup: List

OutputForm, presub: List OutputForm, args: List OutputForm)

name X

x
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Type: Symbol

scripts X

[sub = [], sup = [], presup = [], presub = [], args = []]

Type: Record( sub: List OutputForm, sup: List OutputForm, presup: List

OutputForm, presub: List OutputForm, args: List OutputForm)

The most general form is obtained using the script operation. This operation takes an argu-
ment which is a list containing, in this order, lists of subscripts, superscripts, presuperscripts,
presubscripts and arguments to a symbol.

M := script(Mammoth, [ [i,j],[k,l],[0,1],[2],[u,v,w] ])

0,1
2 Mammothk,li,j (u, v, w)

Type: Symbol

scripts M

[sub = [i, j], sup = [k, l], presup = [0, 1], presub = [2], args = [u, v, w]]

Type: Record( sub: List OutputForm, sup: List OutputForm, presup: List

OutputForm, presub: List OutputForm, args: List OutputForm)

If trailing lists of scripts are omitted, they are assumed to be empty.

N := script(Nut, [ [i,j],[k,l],[0,1] ])

0,1Nutk,li,j

Type: Symbol

scripts N

[sub = [i, j], sup = [k, l], presup = [0, 1], presub = [], args = []]

Type: Record( sub: List OutputForm, sup: List OutputForm, presup: List

OutputForm, presub: List OutputForm, args: List OutputForm)
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9.92 Table

The Table constructor provides a general structure for associative storage. This type pro-
vides hash tables in which data objects can be saved according to keys of any type. For a
given table, specific types must be chosen for the keys and entries.

In this example the keys to the table are polynomials with integer coefficients. The entries
in the table are strings.

t: Table(Polynomial Integer, String) := table()

table()

Type: Table(Polynomial Integer,String)

To save an entry in the table, the setelt operation is used. This can be called directly, giving
the table a key and an entry.

setelt(t, x**2 - 1, "Easy to factor")

"Easy to factor"

Type: String

Alternatively, you can use assignment syntax.

t(x**3 + 1) := "Harder to factor"

"Harder to factor"

Type: String

t(x) := "The easiest to factor"

"The easiest to factor"

Type: String

Entries are retrieved from the table by calling the elt operation.

elt(t, x)

"The easiest to factor"
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Type: String

This operation is called when a table is “applied” to a key using this or the following syntax.

t.x

"The easiest to factor"

Type: String

t x

"The easiest to factor"

Type: String

Parentheses are used only for grouping. They are needed if the key is an infixed expression.

t.(x**2 - 1)

"Easy to factor"

Type: String

Note that the elt operation is used only when the key is known to be in the table—otherwise
an error is generated.

t (x**3 + 1)

"Harder to factor"

Type: String

You can get a list of all the keys to a table using the keys operation.

keys t

[
x, x3 + 1, x2 − 1

]
Type: List Polynomial Integer
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If you wish to test whether a key is in a table, the search operation is used. This operation
returns either an entry or "failed".

search(x, t)

"The easiest to factor"

Type: Union(String,...)

search(x**2, t)

"failed"

Type: Union("failed",...)

The return type is a union so the success of the search can be tested using case.

search(x**2, t) case "failed"

true

Type: Boolean

The remove! operation is used to delete values from a table.

remove!(x**2-1, t)

"Easy to factor"

Type: Union(String,...)

If an entry exists under the key, then it is returned. Otherwise remove returns "failed".

remove!(x-1, t)

"failed"

Type: Union("failed",...)

The number of key-entry pairs can be found using the # operation.

#t
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2

Type: PositiveInteger

Just as keys returns a list of keys to the table, a list of all the entries can be obtained using
the members operation.

members t

["The easiest to factor", "Harder to factor"]

Type: List String

A number of useful operations take functions and map them on to the table to compute the
result. Here we count the entries which have “Hard” as a prefix.

count(s: String +-> prefix?("Hard", s), t)

1

Type: PositiveInteger

Other table types are provided to support various needs.

AssociationList gives a list with a table view. This allows new entries to be appended
onto the front of the list to cover up old entries. This is useful when table entries need
to be stacked or when frequent list traversals are required. See AssociationList 9.3
on page 406 for more information.

EqTable gives tables in which keys are considered equal only when they are in fact the
same instance of a structure. See EqTable 9.21 on page 488 for more information.

StringTable should be used when the keys are known to be strings. See StringTable
9.90 on page 774 for more information.

SparseTable provides tables with default entries, so lookup never fails. The General-
SparseTable constructor can be used to make any table type behave this way. See
SparseTable 9.84 on page 754 for more information.

KeyedAccessFile allows values to be saved in a file,
accessed as a table. See KeyedAccessFile 9.45 on page 566 for more information.
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9.93 TextFile

The domain TextFile allows Axiom to read and write character data and exchange text with
other programs. This type behaves in Axiom much like a File of strings, with additional
operations to cause new lines. We give an example of how to produce an upper case copy of
a file.

This is the file from which we read the text.

f1: TextFile := open("/etc/group", "input")

"/etc/group"

Type: TextFile

This is the file to which we write the text.

f2: TextFile := open("/tmp/MOTD", "output")

"/tmp/MOTD"

Type: TextFile

Entire lines are handled using the readLine and writeLine operations.

l := readLine! f1

"root:x:0:root"

Type: String

writeLine!(f2, upperCase l)

"ROOT:X:0:ROOT"

Type: String

Use the endOfFile? operation to check if you have reached the end of the file.

while not endOfFile? f1 repeat

s := readLine! f1

writeLine!(f2, upperCase s)
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Type: Void

The file f1 is exhausted and should be closed.

close! f1

"/etc/group"

Type: TextFile

It is sometimes useful to write lines a bit at a time. The write operation allows this.

write!(f2, "-The-")

"-The-"

Type: String

write!(f2, "-End-")

"-End-"

Type: String

This ends the line. This is done in a machine-dependent manner.

writeLine! f2

""

Type: String

close! f2

"/tmp/MOTD"

Type: TextFile

Finally, clean up.

)system rm /tmp/MOTD

For more information on related topics, see File 9.28 on page 508, KeyedAccessFile 9.45
on page 566, and Library 9.48 on page 607.
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9.94 TwoDimensionalArray

The TwoDimensionalArray domain is used for storing data in a two dimensional data struc-
ture indexed by row and by column. Such an array is a homogeneous data structure in that
all the entries of the array must belong to the same Axiom domain (although see section 2.6
on page 81. Each array has a fixed number of rows and columns specified by the user and
arrays are not extensible. In Axiom, the indexing of two-dimensional arrays is one-based.
This means that both the “first” row of an array and the “first” column of an array are given
the index 1. Thus, the entry in the upper left corner of an array is in position (1,1).

The operation new creates an array with a specified number of rows and columns and fills
the components of that array with a specified entry. The arguments of this operation specify
the number of rows, the number of columns, and the entry.

This creates a five-by-four array of integers, all of whose entries are zero.

arr : ARRAY2 INT := new(5,4,0)


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Type: TwoDimensionalArray Integer

The entries of this array can be set to other integers using the operation setelt.

Issue this to set the element in the upper left corner of this array to 17.

setelt(arr,1,1,17)

17

Type: PositiveInteger

Now the first element of the array is 17.

arr 
17 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


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Type: TwoDimensionalArray Integer

Likewise, elements of an array are extracted using the operation elt.

elt(arr,1,1)

17

Type: PositiveInteger

Another way to use these two operations is as follows. This sets the element in position
(3,2) of the array to 15.

arr(3,2) := 15

15

Type: PositiveInteger

This extracts the element in position (3,2) of the array.

arr(3,2)

15

Type: PositiveInteger

The operations elt and setelt come equipped with an error check which verifies that the
indices are in the proper ranges. For example, the above array has five rows and four columns,
so if you ask for the entry in position (6,2) with arr(6,2) Axiom displays an error message.
If there is no need for an error check, you can call the operations qelt and qsetelt which
provide the same functionality but without the error check. Typically, these operations are
called in well-tested programs.

The operations row and column extract rows and columns, respectively, and return objects
of OneDimensionalArray with the same underlying element type.

row(arr,1)

[17, 0, 0, 0]

Type: OneDimensionalArray Integer
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column(arr,1)

[17, 0, 0, 0, 0]

Type: OneDimensionalArray Integer

You can determine the dimensions of an array by calling the operations nrows and ncols,
which return the number of rows and columns, respectively.

nrows(arr)

5

Type: PositiveInteger

ncols(arr)

4

Type: PositiveInteger

To apply an operation to every element of an array, use map. This creates a new array.
This expression negates every element.

map(-,arr)


−17 0 0 0
0 0 0 0
0 −15 0 0
0 0 0 0
0 0 0 0


Type: TwoDimensionalArray Integer

This creates an array where all the elements are doubled.

map((x +-> x + x),arr)


34 0 0 0
0 0 0 0
0 30 0 0
0 0 0 0
0 0 0 0


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Type: TwoDimensionalArray Integer

To change the array destructively, use map instead of map. If you need to make a copy of
any array, use copy.

arrc := copy(arr)


17 0 0 0
0 0 0 0
0 15 0 0
0 0 0 0
0 0 0 0


Type: TwoDimensionalArray Integer

map!(-,arrc)


−17 0 0 0
0 0 0 0
0 −15 0 0
0 0 0 0
0 0 0 0


Type: TwoDimensionalArray Integer

arrc 
−17 0 0 0
0 0 0 0
0 −15 0 0
0 0 0 0
0 0 0 0


Type: TwoDimensionalArray Integer

arr 
17 0 0 0
0 0 0 0
0 15 0 0
0 0 0 0
0 0 0 0


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Type: TwoDimensionalArray Integer

Use member? to see if a given element is in an array.

member?(17,arr)

true

Type: Boolean

member?(10317,arr)

false

Type: Boolean

To see how many times an element appears in an array, use count.

count(17,arr)

1

Type: PositiveInteger

count(0,arr)

18

Type: PositiveInteger

For more information about the operations available for TwoDimensionalArray, issue )show
TwoDimensionalArray. For information on related topics, see Matrix 9.59 on page 654 and
OneDimensionalArray 9.65 on page 674.

9.95 TwoDimensionalViewport

We want to graph x3 ∗ (a+ b ∗ x) on the interval x = −1..1 so we clear out the workspace.

We assign values to the constants

a:=0.5
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0.5

Type: Float

b:=0.5

0.5

Type: Float

We draw the first case of the graph

y1:=draw(x^3*(a+b*x),x=-1..1,title=="2.2.10 explicit")

TwoDimensionalViewport: "2.2.10 explicit"

Type: TwDimensionalViewport

which results in the image:

We fetch the graph of the first object

g1:=getGraph(y1,1)
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Graph with 1point list

Type: GraphImage

We extract its points

pointLists g1
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[[
[−1.0, 0.0, 1.0, 3.0],
[−0.95833333333333337,−1.8336166570216028E − 2, 1.0, 3.0],
[−0.91666666666666674,−3.2093942901234518E − 2, 1.0, 3.0],
[−0.87500000000000011,−4.18701171875E − 2, 1.0, 3.0],
[−0.83333333333333348,−4.8225308641975301E − 2, 1.0, 3.0],
[−0.79166666666666685,−5.1683967496141986E − 2, 1.0, 3.0],
[−0.75000000000000022,−5.2734375E − 2, 1.0, 3.0],
[−0.70833333333333359,−5.1828643422067916E − 2, 1.0, 3.0],
[−0.66666666666666696,−4.9382716049382741E − 2, 1.0, 3.0],
[−0.62500000000000033,−4.5776367187500042E − 2, 1.0, 3.0],
[−0.5833333333333337,−4.1353202160493867E − 2, 1.0, 3.0],
[−0.54166666666666707,−3.6420657310956832E − 2, 1.0, 3.0],
[−0.50000000000000044,−3.1250000000000056E − 2, 1.0, 3.0],
[−0.45833333333333376,−2.6076328607253136E − 2, 1.0, 3.0],
[−0.41666666666666707,−2.1098572530864244E − 2, 1.0, 3.0],
[−0.37500000000000039,−1.6479492187500042E − 2, 1.0, 3.0],
[−0.3333333333333337,−1.2345679012345713E − 2, 1.0, 3.0],
[−0.29166666666666702,−8.7875554591049648E − 3, 1.0, 3.0],
[−0.25000000000000033,−5.8593750000000208E − 3, 1.0, 3.0],
[−0.20833333333333368,−3.5792221257716214E − 3, 1.0, 3.0],
[−0.16666666666666702,−1.9290123456790237E − 3, 1.0, 3.0],
[−0.12500000000000036,−8.5449218750000705E − 4, 1.0, 3.0],
[−8.3333333333333703E − 2,−2.6523919753086765E − 4, 1.0, 3.0],
[−4.1666666666667039E − 2,−3.4661940586420673E − 5, 1.0, 3.0],
[−3.7470027081099033E − 16,−2.630401389437233E − 47, 1.0, 3.0],
[4.166666666666629E − 2, 3.7676022376542178E − 5, 1.0, 3.0],
[8.3333333333332954E − 2, 3.1346450617283515E − 4, 1.0, 3.0],
[0.12499999999999961, 1.0986328124999894E − 3, 1.0, 3.0],
[0.16666666666666627, 2.7006172839505972E − 3, 1.0, 3.0],
[0.20833333333333293, 5.463023244598731E − 3, 1.0, 3.0],
[0.24999999999999958, 9.765624999999948E − 3, 1.0, 3.0],
[0.29166666666666624, 1.6024365837191284E − 2, 1.0, 3.0],
[0.33333333333333293, 2.469135802469126E − 2, 1.0, 3.0],
[0.37499999999999961, 3.6254882812499882E − 2, 1.0, 3.0],
[0.4166666666666663, 5.1239390432098617E − 2, 1.0, 3.0],
[0.45833333333333298, 7.0205500096450435E − 2, 1.0, 3.0],
[0.49999999999999967, 9.3749999999999792E − 2, 1.0, 3.0],
[0.5416666666666663, 0.12250584731867258, 1.0, 3.0],
[0.58333333333333293, 0.15714216820987617, 1.0, 3.0],
[0.62499999999999956, 0.1983642578124995, 1.0, 3.0],
[0.66666666666666619, 0.24691358024691298, 1.0, 3.0],
[0.70833333333333282, 0.30356776861496837, 1.0, 3.0],
[0.74999999999999944, 0.369140624999999, 1.0, 3.0],
[0.79166666666666607, 0.44448212046681984, 1.0, 3.0],
[0.8333333333333327, 0.530478395061727, 1.0, 3.0],
[0.87499999999999933, 0.62805175781249845, 1.0, 3.0],
[0.91666666666666596, 0.73816068672839308, 1.0, 3.0],
[0.95833333333333259, 0.86179982880015205, 1.0, 3.0],
[1.0, 1.0, 1.0, 3.0]

]]
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Type: List List Point DoubleFloat

Now we create a second graph with a changed parameter

b:=1.0

1.0

Type: Float

We draw it

y2:=draw(x^3*(a+b*x),x=-1..1)

TwoDimensionalViewport: "Axiom2D"

Type: TwoDimensionalViewport

which results in the image:

We fetch this new graph

g2:=getGraph(y2,1)
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Graph with 1point list

Type: GraphImage

We get the points from this graph

pointLists g2
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[[
[−1.0, 0.5, 1.0, 3.0],
[−0.95833333333333337, 0.40339566454475323, 1.0, 3.0],
[−0.91666666666666674, 0.32093942901234584, 1.0, 3.0],
[−0.87500000000000011, 0.25122070312500017, 1.0, 3.0],
[−0.83333333333333348, 0.19290123456790137, 1.0, 3.0],
[−0.79166666666666685, 0.14471510898919768, 1.0, 3.0],
[−0.75000000000000022, 0.10546875000000019, 1.0, 3.0],
[−0.70833333333333359, 7.404091917438288E − 2, 1.0, 3.0],
[−0.66666666666666696, 4.938271604938288E − 2, 1.0, 3.0],
[−0.62500000000000033, 3.0517578125000125E − 2, 1.0, 3.0],
[−0.5833333333333337, 1.6541280864197649E − 2, 1.0, 3.0],
[−0.54166666666666707, 6.6219376929013279E − 3, 1.0, 3.0],
[−0.50000000000000044, 5.5511151231257827E − 17, 1.0, 3.0],
[−0.45833333333333376,−4.011742862654287E − 3, 1.0, 3.0],
[−0.41666666666666707,−6.0281635802469057E − 3, 1.0, 3.0],
[−0.37500000000000039,−6.5917968750000035E − 3, 1.0, 3.0],
[−0.3333333333333337,−6.1728395061728461E − 3, 1.0, 3.0],
[−0.29166666666666702,−5.1691502700617377E − 3, 1.0, 3.0],
[−0.25000000000000033,−3.9062500000000104E − 3, 1.0, 3.0],
[−0.20833333333333368,−2.6373215663580349E − 3, 1.0, 3.0],
[−0.16666666666666702,−1.543209876543218E − 3, 1.0, 3.0],
[−0.12500000000000036,−7.3242187500000564E − 4, 1.0, 3.0],
[−8.3333333333333703E − 2,−2.4112654320987957E − 4, 1.0, 3.0],
[−4.1666666666667039E − 2,−3.315489969135889E − 5, 1.0, 3.0],
[−3.7470027081099033E − 16,−2.6304013894372324E − 47, 1.0, 3.0],
[4.166666666666629E − 2, 3.9183063271603852E − 5, 1.0, 3.0],
[8.3333333333332954E − 2, 3.3757716049382237E − 4, 1.0, 3.0],
[0.12499999999999961, 1.2207031249999879E − 3, 1.0, 3.0],
[0.16666666666666627, 3.0864197530863957E − 3, 1.0, 3.0],
[0.20833333333333293, 6.4049238040123045E − 3, 1.0, 3.0],
[0.24999999999999958, 1.1718749999999934E − 2, 1.0, 3.0],
[0.29166666666666624, 1.9642771026234473E − 2, 1.0, 3.0],
[0.33333333333333293, 3.0864197530864071E − 2, 1.0, 3.0],
[0.37499999999999961, 4.6142578124999847E − 2, 1.0, 3.0],
[0.4166666666666663, 6.6309799382715848E − 2, 1.0, 3.0],
[0.45833333333333298, 9.2270085841049135E − 2, 1.0, 3.0],
[0.49999999999999967, 0.12499999999999971, 1.0, 3.0],
[0.5416666666666663, 0.16554844232253049, 1.0, 3.0],
[0.58333333333333293, 0.21503665123456736, 1.0, 3.0],
[0.62499999999999956, 0.27465820312499928, 1.0, 3.0],
[0.66666666666666619, 0.3456790123456781, 1.0, 3.0],
[0.70833333333333282, 0.42943733121141858, 1.0, 3.0],
[0.74999999999999944, 0.52734374999999845, 1.0, 3.0],
[0.79166666666666607, 0.64088119695215873, 1.0, 3.0],
[0.8333333333333327, 0.77160493827160281, 1.0, 3.0],
[0.87499999999999933, 0.92114257812499756, 1.0, 3.0],
[0.91666666666666596, 1.0911940586419722, 1.0, 3.0],
[0.95833333333333259, 1.2835316599151199, 1.0, 3.0],
[1.0, 1.5, 1.0, 3.0]

]]
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Type: List List Point DoubleFloat

and we put these points, g2 onto the first graph y1 as graph 2

putGraph(y1,g2,2)

Type: Void

And now we do the whole sequence again

b:=2.0

2.0

Type: Float

y3:=draw(x^3*(a+b*x),x=-1..1)

TwoDimensionalViewport: "Axiom2D"

TwoDimensionalViewport

which results in the image:



798 CHAPTER 9. SOME EXAMPLES OF DOMAINS AND PACKAGES

g3:=getGraph(y3,1)

Graph with 1point list

Type: GraphImage

pointLists g3
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[[
[−1.0, 1.5, 1.0, 3.0],
[−0.95833333333333337, 1.2468593267746917, 1.0, 3.0],
[−0.91666666666666674, 1.0270061728395066, 1.0, 3.0],
[−0.87500000000000011, 0.83740234375000044, 1.0, 3.0],
[−0.83333333333333348, 0.67515432098765471, 1.0, 3.0],
[−0.79166666666666685, 0.53751326195987703, 1.0, 3.0],
[−0.75000000000000022, 0.42187500000000056, 1.0, 3.0],
[−0.70833333333333359, 0.32578004436728447, 1.0, 3.0],
[−0.66666666666666696, 0.24691358024691412, 1.0, 3.0],
[−0.62500000000000033, 0.18310546875000044, 1.0, 3.0],
[−0.5833333333333337, 0.1323302469135807, 1.0, 3.0],
[−0.54166666666666707, 9.2707127700617648E − 2, 1.0, 3.0],
[−0.50000000000000044, 6.2500000000000278E − 2, 1.0, 3.0],
[−0.45833333333333376, 4.0117428626543411E − 2, 1.0, 3.0],
[−0.41666666666666707, 2.4112654320987775E − 2, 1.0, 3.0],
[−0.37500000000000039, 1.3183593750000073E − 2, 1.0, 3.0],
[−0.3333333333333337, 6.1728395061728877E − 3, 1.0, 3.0],
[−0.29166666666666702, 2.0676601080247183E − 3, 1.0, 3.0],
[−0.25000000000000033, 1.0408340855860843E − 17, 1.0, 3.0],
[−0.20833333333333368,−7.5352044753086191E − 4, 1.0, 3.0],
[−0.16666666666666702,−7.7160493827160663E − 4, 1.0, 3.0],
[−0.12500000000000036,−4.8828125000000282E − 4, 1.0, 3.0],
[−8.3333333333333703E − 2,−1.9290123456790339E − 4, 1.0, 3.0],
[−4.1666666666667039E − 2,−3.0140817901235325E − 5, 1.0, 3.0],
[−3.7470027081099033E − 16,−2.6304013894372305E − 47, 1.0, 3.0],
[4.166666666666629E − 2, 4.21971450617272E − 5, 1.0, 3.0],
[8.3333333333332954E − 2, 3.8580246913579681E − 4, 1.0, 3.0],
[0.12499999999999961, 1.4648437499999848E − 3, 1.0, 3.0],
[0.16666666666666627, 3.8580246913579933E − 3, 1.0, 3.0],
[0.20833333333333293, 8.2887249228394497E − 3, 1.0, 3.0],
[0.24999999999999958, 1.562499999999991E − 2, 1.0, 3.0],
[0.29166666666666624, 2.6879581404320851E − 2, 1.0, 3.0],
[0.33333333333333293, 4.3209876543209694E − 2, 1.0, 3.0],
[0.37499999999999961, 6.5917968749999764E − 2, 1.0, 3.0],
[0.4166666666666663, 9.6450617283950296E − 2, 1.0, 3.0],
[0.45833333333333298, 0.13639925733024652, 1.0, 3.0],
[0.49999999999999967, 0.18749999999999956, 1.0, 3.0],
[0.5416666666666663, 0.25163363233024633, 1.0, 3.0],
[0.58333333333333293, 0.33082561728394977, 1.0, 3.0],
[0.62499999999999956, 0.42724609374999883, 1.0, 3.0],
[0.66666666666666619, 0.5432098765432084, 1.0, 3.0],
[0.70833333333333282, 0.68117645640431912, 1.0, 3.0],
[0.74999999999999944, 0.84374999999999756, 1.0, 3.0],
[0.79166666666666607, 1.0336793499228365, 1.0, 3.0],
[0.8333333333333327, 1.2538580246913544, 1.0, 3.0],
[0.87499999999999933, 1.507324218749996, 1.0, 3.0],
[0.91666666666666596, 1.7972608024691306, 1.0, 3.0],
[0.95833333333333259, 2.1269953221450555, 1.0, 3.0],
[1.0, 2.5, 1.0, 3.0]

]]
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Type: List List Point DoubleFloat

and put the third graphs points g3 onto the first graph y1 as graph 3

putGraph(y1,g3,3)

Type: Void

Finally we show the combined result

vp:=makeViewport2D(y1)

TwoDimensionalViewport: "2.2.10 explicit"

Type: TwoDimensionalViewport

which results in the image:

which shows all of the graphs in a single image.

9.96 UnivariatePolynomial

The domain constructor UnivariatePolynomial (abbreviated UP) creates domains of uni-
variate polynomials in a specified variable. For example, the domain UP(a1,POLY FRAC INT)
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provides polynomials in the single variable a1 whose coefficients are general polynomials with
rational number coefficients.

Restriction:

Axiom does not allow you to create types where
UnivariatePolynomial is contained in the coefficient type of
Polynomial. Therefore, UP(x,POLY INT) is legal but POLY

UP(x,INT) is not.

.

UP(x,INT) is the domain of polynomials in the single variable x with integer coefficients.

(p,q) : UP(x,INT)

Type: Void

p := (3*x-1)**2 * (2*x + 8)

18 x3 + 60 x2 − 46 x+ 8

Type: UnivariatePolynomial(x,Integer)

q := (1 - 6*x + 9*x**2)**2

81 x4 − 108 x3 + 54 x2 − 12 x+ 1

Type: UnivariatePolynomial(x,Integer)

The usual arithmetic operations are available for univariate polynomials.

p**2 + p*q

1458 x7 + 3240 x6 − 7074 x5 + 10584 x4 − 9282 x3 + 4120 x2 − 878 x+ 72

Type: UnivariatePolynomial(x,Integer)

The operation leadingCoefficient extracts the coefficient of the term of highest degree.

leadingCoefficient p
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18

Type: PositiveInteger

The operation degree returns the degree of the polynomial. Since the polynomial has only
one variable, the variable is not supplied to operations like degree.

degree p

3

Type: PositiveInteger

The reductum of the polynomial, the polynomial obtained by subtracting the term of highest
order, is returned by reductum.

reductum p

60 x2 − 46 x+ 8

Type: UnivariatePolynomial(x,Integer)

The operation gcd computes the greatest common divisor of two polynomials.

gcd(p,q)

9 x2 − 6 x+ 1

Type: UnivariatePolynomial(x,Integer)

The operation lcm computes the least common multiple.

lcm(p,q)

162 x5 + 432 x4 − 756 x3 + 408 x2 − 94 x+ 8

Type: UnivariatePolynomial(x,Integer)

The operation resultant computes the resultant of two univariate polynomials. In the case
of p and q, the resultant is 0 because they share a common root.

resultant(p,q)
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0

Type: NonNegativeInteger

To compute the derivative of a univariate polynomial with respect to its variable, use D.

D p

54 x2 + 120 x− 46

Type: UnivariatePolynomial(x,Integer)

Univariate polynomials can also be used as if they were functions. To evaluate a univariate
polynomial at some point, apply the polynomial to the point.

p(2)

300

Type: PositiveInteger

The same syntax is used for composing two univariate polynomials, i.e. substituting one
polynomial for the variable in another. This substitutes q for the variable in p.

p(q)

9565938 x12 − 38263752 x11 + 70150212 x10 − 77944680 x9 + 58852170 x8−

32227632 x7 + 13349448 x6 − 4280688 x5 + 1058184 x4−

192672 x3 + 23328 x2 − 1536 x+ 40

Type: UnivariatePolynomial(x,Integer)

This substitutes p for the variable in q.

q(p)

8503056 x12 + 113374080 x11 + 479950272 x10 + 404997408 x9−

1369516896 x8 − 626146848 x7 + 2939858712 x6 − 2780728704 x5+

1364312160 x4 − 396838872 x3 + 69205896 x2 − 6716184 x+ 279841
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Type: UnivariatePolynomial(x,Integer)

To obtain a list of coefficients of the polynomial, use coefficients.

l := coefficients p

[18, 60,−46, 8]

Type: List Integer

From this you can use gcd and reduce to compute the content of the polynomial.

reduce(gcd,l)

2

Type: PositiveInteger

Alternatively (and more easily), you can just call content.

content p

2

Type: PositiveInteger

Note that the operation coefficients omits the zero coefficients from the list. Sometimes
it is useful to convert a univariate polynomial to a vector whose i-th position contains the
degree i-1 coefficient of the polynomial.

ux := (x**4+2*x+3)::UP(x,INT)

x4 + 2 x+ 3

Type: UnivariatePolynomial(x,Integer)

To get a complete vector of coefficients, use the operation vectorise, which takes a univariate
polynomial and an integer denoting the length of the desired vector.

vectorise(ux,5)

[3, 2, 0, 0, 1]
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Type: Vector Integer

It is common to want to do something to every term of a polynomial, creating a new poly-
nomial in the process.

This is a function for iterating across the terms of a polynomial, squaring each term.

squareTerms(p) == reduce(+,[t**2 for t in monomials p])

Type: Void

Recall what p looked like.

p

18 x3 + 60 x2 − 46 x+ 8

Type: UnivariatePolynomial(x,Integer)

We can demonstrate squareTerms on p.

squareTerms p

Compiling function squareTerms with type

UnivariatePolynomial(x,Integer) ->

UnivariatePolynomial(x,Integer)

324 x6 + 3600 x4 + 2116 x2 + 64

Type: UnivariatePolynomial(x,Integer)

When the coefficients of the univariate polynomial belong to a field,7 it is possible to compute
quotients and remainders.

(r,s) : UP(a1,FRAC INT)

Type: Void

7For example, when the coefficients are rational numbers, as opposed to integers. The important property
of a field is that non-zero elements can be divided and produce another element. The quotient of the integers
2 and 3 is not another integer.
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r := a1**2 - 2/3

a12 − 2

3

Type: UnivariatePolynomial(a1,Fraction Integer)

s := a1 + 4

a1 + 4

Type: UnivariatePolynomial(a1,Fraction Integer)

When the coefficients are rational numbers or rational expressions, the operation quo com-
putes the quotient of two polynomials.

r quo s

a1− 4

Type: UnivariatePolynomial(a1,Fraction Integer)

The operation rem computes the remainder.

r rem s

46

3

Type: UnivariatePolynomial(a1,Fraction Integer)

The operation divide can be used to return a record of both components.

d := divide(r, s)

[
quotient = a1− 4, remainder =

46

3

]
Type: Record( quotient: UnivariatePolynomial(a1,Fraction Integer),

remainder: UnivariatePolynomial(a1,Fraction Integer))

Now we check the arithmetic!
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r - (d.quotient * s + d.remainder)

0

Type: UnivariatePolynomial(a1,Fraction Integer)

It is also possible to integrate univariate polynomials when the coefficients belong to a field.

integrate r

1

3
a13 − 2

3
a1

Type: UnivariatePolynomial(a1,Fraction Integer)

integrate s

1

2
a12 + 4 a1

Type: UnivariatePolynomial(a1,Fraction Integer)

One application of univariate polynomials is to see expressions in terms of a specific variable.

We start with a polynomial in a1 whose coefficients are quotients of polynomials in b1 and
b2.

t : UP(a1,FRAC POLY INT)

Type: Void

Since in this case we are not talking about using multivariate polynomials in only two
variables, we use Polynomial. We also use Fraction because we want fractions.

t := a1**2 - a1/b2 + (b1**2-b1)/(b2+3)

a12 − 1

b2
a1 +

b12 − b1
b2 + 3

Type: UnivariatePolynomial(a1,Fraction Polynomial Integer)

We push all the variables into a single quotient of polynomials.
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u : FRAC POLY INT := t

a12 b22 +
(
b12 − b1 + 3 a12 − a1

)
b2− 3 a1

b22 + 3 b2

Type: Fraction Polynomial Integer

Alternatively, we can view this as a polynomial in the variable This is a mode-directed
conversion: you indicate as much of the structure as you care about and let Axiom decide
on the full type and how to do the transformation.

u :: UP(b1,?)

1

b2 + 3
b12 − 1

b2 + 3
b1 +

a12 b2− a1
b2

Type: UnivariatePolynomial(b1,Fraction Polynomial Integer)

See section 8.2 on page 301 for a discussion of the factorization facilities in Axiom for
univariate polynomials. For more information on related topics, see section 1.8 on page 35,
section 2.7 on page 82, Polynomial 9.72 on page 693, MultivariatePolynomial 9.61 on
page 666, and DistributedMultivariatePolynomial 9.19 on page 483.

9.97 UnivariateSkewPolynomial

Skew or Ore polynomial rings provide a unified framework to compute with differential and
difference equations.

In the following, let A be an integral domain, equipped with two endomorphisms σ and δ
where:

• σ: A − > A is an injective ring endomorphism

• δ: A − > A, the pseudo-derivation with respect to σ, is an additive endomorphism
with

δ(ab) = σ(a)δ(b) + δ(a)b

for all a, b in A

The skew polynomial ring [∆;σ, δ] is the ring of polynomials in ∆ with coefficients in A, with
the usual addition, while the product is given by

∆a = σ(a)∆ + δ(a) for a in A

The two most important examples of skew polynomial rings are:
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• K(x)[D, 1, δ], where 1 is the identity on K and δ is the usual derviative, is the ring of
differential polynomials

• Kn[E, n, 7→ n + 1, 0] is the ring of linear recurrence operators with polynomial coeffi-
cients

The UnivariateSkewPolynomialCategory (OREPCAT) provides a unified framework for poly-
nomial rings in a non-central indeterminate over some coefficient ring R. The commutation
relations between the indeterminate x and the coefficient t is given by

xr = σ(r)x+ δ(r)

where σ is a ring endomorphism of R and δ is a σ-derivation of R which is an additive map
from R to R such that

δ(rs) = σ(r)δ(s) + δ(r)s

In case σ is the identity map on R, a σ-derivation of R is just called a derivation. Here are
some examples

We start with a linear ordinary differential operator. First, we define the coefficient ring to
be expressions in one variable x with fractional coefficients:

F:=EXPR(FRAC(INT))

Define Dx to be a derivative d/dx:

Dx:F->F:=f+->D(f,[’x])

Define a skew polynomial ring over F with identity endomorphism as σ and derivation d/dx
as δ:

D0:=OREUP(’d,F,1,Dx)

u:D0:=(operator ’u)(x)

u (x)

d:D0:=’d

d

a:D0:=u**3*d**3+u**2*d**2+u*d+1

u (x)
3
d3 + u (x)

2
d2 + u (x) d+ 1
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b:D0:=(u+1)*d**2+2*d

(u (x) + 1) d2 + 2 d

r:=rightDivide(a,b)


quotient =

u (x)
3

u (x) + 1
d+
−u (x)3 u, (x)− u (x)3 + u (x)

2

u (x)
2
+ 2 u (x) + 1

,

remainder =
2 u (x)

3
u, (x) + 3 u (x)

3
+ u (x)

u (x)
2
+ 2 u (x) + 1

d+ 1


r.quotient

u (x)
3

u (x) + 1
d+
−u (x)3 u, (x)− u (x)3 + u (x)

2

u (x)
2
+ 2 u (x) + 1

r.remainder

2 u (x)
3
u, (x) + 3 u (x)

3
+ u (x)

u (x)
2
+ 2 u (x) + 1

d+ 1

A second example

)clear all

As a second example, we consider the so-called Weyl algebra.

Define the coefficient ring to be an ordinary polynomial over integers in one variable t

R:=UP(’t,INT)

Define a skew polynomial ring over R with identity map as σ and derivation d/dt as δ. The
resulting algebra is then called a Weyl algebra. This is a simple ring over a division ring
that is non-commutative, similar to the ring of matrices.

R:=UP(’t,INT)

W:=OREUP(’x,R,1,D)

t:W:=’t

t



9.97. UNIVARIATESKEWPOLYNOMIAL 811

x:W:=’x

x

Let

a:W:=(t-1)*x**4+(t**3+3*t+1)*x**2+2*t*x+t**3

(t− 1) x4 +
(
t3 + 3 t+ 1

)
x2 + 2 t x+ t3

b:W:=(6*t**4+2*t**2)*x**3+3*t**2*x**2(
6 t4 + 2 t2

)
x3 + 3 t2 x2

Then

a*b (
6 t5 − 6 t4 + 2 t3 − 2 t2

)
x7 +

(
96 t4 − 93 t3 + 13 t2 − 16 t

)
x6+(

6 t7 + 20 t5 + 6 t4 + 438 t3 − 406 t2 − 24
)
x5+(

48 t6 + 15 t5 + 152 t4 + 61 t3 + 603 t2 − 532 t− 36
)
x4+(

6 t7 + 74 t5 + 60 t4 + 226 t3 + 116 t2 + 168 t− 140
)
x3+(

3 t5 + 6 t3 + 12 t2 + 18 t+ 6
)
x2

a**3(
t3 − 3 t2 + 3 t− 1

)
x12 +

(
3 t5 − 6 t4 + 12 t3 − 15 t2 + 3 t+ 3

)
x10+(

6 t3 − 12 t2 + 6 t
)
x9 +

(
3 t7 − 3 t6 + 21 t5 − 18 t4 + 24 t3 − 9 t2 − 15 t− 3

)
x8+(

12 t5 − 12 t4 + 36 t3 − 24 t2 − 12 t
)
x7+(

t9 + 15 t7 − 3 t6 + 45 t5 + 6 t4 + 36 t3 + 15 t2 + 9 t+ 1
)
x6+(

6 t7 + 48 t5 + 54 t3 + 36 t2 + 6 t
)
x5+(

3 t9 + 21 t7 + 3 t6 + 39 t5 + 18 t4 + 39 t3 + 12 t2
)
x4+(

12 t7 + 36 t5 + 12 t4 + 8 t3
)
x3+(

3 t9 + 9 t7 + 3 t6 + 12 t5
)
x2 + 6 t7 x+ t9

A third example

)clear all

As a third example, we construct a difference operator algebra over the ring of EXPR(INT)
by using an automorphism S defined by a “shift” operation S:EXPR(INT) − > EXPR(INT)

s(e)(n) = e(n+ 1)

and an S-derivation defined by DF:EXPR(INT) − > EXPR(INT) as

DF (e)(n) = e(n+ 1)− e(n)

Define S to be a “shift” operator, which acts on expressions with the discrete variable n:
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S:EXPR(INT)->EXPR(INT):=e+->eval(e,[n],[n+1])

Define DF to be a “difference” operator, which acts on expressions with a discrete variable
n:

DF:EXPR(INT)->EXPR(INT):=e+->eval(e,[n],[n+1])-e

Then define the difference operator algebra D0:

D0:=OREUP(’D,EXPR(INT),morphism S,DF)

u:=(operator ’u)[n]

u (n)

L:D0:=’D+u

D + u (n)

L**2

D2 + 2 u (n) D + u (n)
2

A fourth example

)clear all

As a fourth example, we construct a skew polynomial ring by using an inner derivation δ
induced by a fixed y in R:

δ(r) = yr − ry

First we should expose the constructor SquareMatrix so it is visible in the interpreter:

)set expose add constructor SquareMatrix

Define R to be the square matrix with integer entries:

R:=SQMATRIX(2,INT)

SquareMatrix(2, Integer)

y:R:=matrix [ [1,1],[0,1] ]
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1 1
0 1

]
Define the inner derivative δ:

delta:R->R:=r+->y*r-r*y

Define S to be a skew polynomial determined by σ = 1 and δ as an inner derivative:

S:=OREUP(’x,R,1,delta)

x:S:=’x

x

a:S:=matrix [ [2,3],[1,1] ]

[
2 3
1 1

]
x**2*a [

2 3
1 1

]
x2 +

[
2 −2
0 −2

]
x+

[
0 −2
0 0

]

9.98 UniversalSegment

The UniversalSegment domain generalizes Segment by allowing segments without a “hi”
end point.

pints := 1..

1..

Type: UniversalSegment PositiveInteger

nevens := (0..) by -2

0.. by − 2

Type: UniversalSegment NonNegativeInteger
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Values of type Segment are automatically converted to type UniversalSegment when ap-
propriate.

useg: UniversalSegment(Integer) := 3..10

3..10

Type: UniversalSegment Integer

The operation hasHi is used to test whether a segment has a hi end point.

hasHi pints

false

Type: Boolean

hasHi nevens

false

Type: Boolean

hasHi useg

true

Type: Boolean

All operations available on type Segment apply to UniversalSegment, with the proviso that
expansions produce streams rather than lists. This is to accommodate infinite expansions.

expand pints

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .]

Type: Stream Integer

expand nevens

[0,−2,−4,−6,−8,−10,−12,−14,−16,−18, . . .]
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Type: Stream Integer

expand [1, 3, 10..15, 100..]

[1, 3, 10, 11, 12, 13, 14, 15, 100, 101, . . .]

Type: Stream Integer

For more information on related topics, see Segment 9.80 on page 744, SegmentBinding 9.81
on page 746, List 9.54 on page 632, and Stream 9.88 on page 765.

9.99 Vector

The Vector domain is used for storing data in a one-dimensional indexed data structure. A
vector is a homogeneous data structure in that all the components of the vector must belong
to the same Axiom domain. Each vector has a fixed length specified by the user; vectors are
not extensible. This domain is similar to the OneDimensionalArray domain, except that
when the components of a Vector belong to a Ring, arithmetic operations are provided. For
more examples of operations that are defined for both Vector and OneDimensionalArray,
see OneDimensionalArray 9.65 on page 674.

As with the OneDimensionalArray domain, a Vector can be created by calling the oper-
ation new, its components can be accessed by calling the operations elt and qelt, and its
components can be reset by calling the operations setelt and qsetelt.

This creates a vector of integers of length 5 all of whose components are 12.

u : VECTOR INT := new(5,12)

[12, 12, 12, 12, 12]

Type: Vector Integer

This is how you create a vector from a list of its components.

v : VECTOR INT := vector([1,2,3,4,5])

[1, 2, 3, 4, 5]

Type: Vector Integer

Indexing for vectors begins at 1. The last element has index equal to the length of the vector,
which is computed by “#”.
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#(v)

5

Type: PositiveInteger

This is the standard way to use elt to extract an element. Functionally, it is the same as if
you had typed elt(v,2).

v.2

2

Type: PositiveInteger

This is the standard way to use setelt to change an element. It is the same as if you had
typed setelt(v,3,99).

v.3 := 99

99

Type: PositiveInteger

Now look at v to see the change. You can use qelt and qsetelt (instead of elt and setelt,
respectively) but only when you know that the index is within the valid range.

v

[1, 2, 99, 4, 5]

Type: Vector Integer

When the components belong to a Ring, Axiom provides arithmetic operations for Vector.
These include left and right scalar multiplication.

5 * v

[5, 10, 495, 20, 25]

Type: Vector Integer
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v * 7

[7, 14, 693, 28, 35]

Type: Vector Integer

w : VECTOR INT := vector([2,3,4,5,6])

[2, 3, 4, 5, 6]

Type: Vector Integer

Addition and subtraction are also available.

v + w

[3, 5, 103, 9, 11]

Type: Vector Integer

Of course, when adding or subtracting, the two vectors must have the same length or an
error message is displayed.

v - w

[−1,−1, 95,−1,−1]

Type: Vector Integer

For more information about other aggregate domains, see the following: List 9.54 on
page 632, Matrix 9.59 on page 654, OneDimensionalArray 9.65 on page 674, Set 9.82
on page 748, Table 9.92 on page 780, and TwoDimensionalArray 9.94 on page 786. Issue
the system command )show Vector to display the full list of operations defined by Vector.

9.100 Void

When an expression is not in a value context, it is given type Void. For example, in the
expression

r := (a; b; if c then d else e; f)
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values are used only from the subexpressions c and f: all others are thrown away. The
subexpressions a, b, d and e are evaluated for side-effects only and have type Void. There
is a unique value of type Void.

You will most often see results of type Void when you declare a variable.

a : Integer

Type: Void

Usually no output is displayed for Void results. You can force the display of a rather ugly
object by issuing )set message void on.

)set message void on

b : Fraction Integer

"()"

Type: Void

)set message void off

All values can be converted to type Void.

3::Void

Type: Void

Once a value has been converted to Void, it cannot be recovered.

% :: PositiveInteger

Cannot convert from type Void to PositiveInteger for value "()"
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9.101 WuWenTsunTriangularSet

The WuWenTsunTriangularSet domain constructor implements the characteristic set method
of Wu Wen Tsun. This algorithm computes a list of triangular sets from a list of polynomials
such that the algebraic variety defined by the given list of polynomials decomposes into the
union of the regular-zero sets of the computed triangular sets. The constructor takes four
arguments. The first one, R, is the coefficient ring of the polynomials; it must belong to the
category IntegralDomain. The second one, E, is the exponent monoid of the polynomials; it
must belong to the category OrderedAbelianMonoidSup. The third one, V, is the ordered set
of variables; it must belong to the category OrderedSet. The last one is the polynomial ring;
it must belong to the category RecursivePolynomialCategory(R,E,V). The abbreviation
for WuWenTsunTriangularSet is WUTSET.

Let us illustrate the facilities by an example.

Define the coefficient ring.

R := Integer

Integer

Type: Domain

Define the list of variables,

ls : List Symbol := [x,y,z,t]

[x, y, z, t]

Type: List Symbol

and make it an ordered set;

V := OVAR(ls)

OrderedVariableList [x,y,z,t]

Type: Domain

then define the exponent monoid.

E := IndexedExponents V

IndexedExponents OrderedVariableList [x,y,z,t]
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Type: Domain

Define the polynomial ring.

P := NSMP(R, V)

NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])

Type: Domain

Let the variables be polynomial.

x: P := ’x

x

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

y: P := ’y

y

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

z: P := ’z

z

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

t: P := ’t

t

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

Now call the WuWenTsunTriangularSet domain constructor.
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T := WUTSET(R,E,V,P)

WuWenTsunTriangularSet(Integer,
IndexedExponentsOrderedVariableList[x, y, z, t],
OrderedVariableList[x, y, z, t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[x, y, z, t]))

Type: Domain

Define a polynomial system.

p1 := x ** 31 - x ** 6 - x - y

x31 − x6 − x− y

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

p2 := x ** 8 - z

x8 − z

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

p3 := x ** 10 - t

x10 − t

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

lp := [p1, p2, p3]

[
x31 − x6 − x− y, x8 − z, x10 − t

]
Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList

[x,y,z,t])

Compute a characteristic set of the system.
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characteristicSet(lp)$T

{
z5 − t4,

t4 z2 y2 + 2 t3 z4 y +
(
−t7 + 2 t4 − t

)
z6 + t6 z,(

t3 − 1
)
z3 x− z3 y − t3

}
Type: Union( WuWenTsunTriangularSet(Integer, IndexedExponents

OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],

NewSparseMultivariatePolynomial(Integer, OrderedVariableList

[x,y,z,t])),...)

Solve the system.

zeroSetSplit(lp)$T

[
{t, z, y, x},

{
t3 − 1, z5 − t4, z3 y + t3, z x2 − t

}
,{

z5 − t4, t4 z2 y2 + 2 t3 z4 y +
(
−t7 + 2 t4 − t

)
z6 + t6 z,(

t3 − 1
)
z3 x− z3 y − t3

}]
Type: List WuWenTsunTriangularSet(Integer, IndexedExponents

OrderedVariableList [x,y,z,t], OrderedVariableList [x,y,z,t],

NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,y,z,t]))

The RegularTriangularSet and SquareFreeRegularTriangularSet

domain constructors, the LazardSetSolvingPackage package
constructors as well as, SquareFreeRegularTriangularSet and
ZeroDimensionalSolvePackage package constructors also provide
operations to compute triangular decompositions of algebraic varieties.

These five constructor use a special kind of characteristic sets, called regular triangular
sets. These special characteristic sets have better properties than the general ones. Regular
triangular sets and their related concepts are presented in the paper “On the Theories of
Triangular sets” By P. Aubry, D. Lazard and M. Moreno Maza (to appear in the Journal of
Symbolic Computation). The decomposition algorithm (due to the third author) available
in the four above constructors provide generally better timings than the characteristic set
method. In fact, the WUTSET constructor remains interesting for the purpose of manipulating
characteristic sets whereas the other constructors are more convenient for solving polynomial
systems.

Note that the way of understanding triangular decompositions is detailed in the example of
the RegularTriangularSet constructor.
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9.102 XPBWPolynomial

Initialisations

a:Symbol := ’a

a

Type: Symbol

b:Symbol := ’b

b

Type: Symbol

RN := Fraction(Integer)

Fraction Integer

Type: Domain

word := OrderedFreeMonoid Symbol

OrderedFreeMonoid Symbol

Type: Domain

lword := LyndonWord(Symbol)

LyndonWord Symbol

Type: Domain

base := PoincareBirkhoffWittLyndonBasis Symbol

PoincareBirkhoffWittLyndonBasis Symbol

Type: Domain
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dpoly := XDistributedPolynomial(Symbol, RN)

XDistributedPolynomial(Symbol,Fraction Integer)

Type: Domain

rpoly := XRecursivePolynomial(Symbol, RN)

XRecursivePolynomial(Symbol,Fraction Integer)

Type: Domain

lpoly := LiePolynomial(Symbol, RN)

LiePolynomial(Symbol,Fraction Integer)

Type: Domain

poly := XPBWPolynomial(Symbol, RN)

XPBWPolynomial(Symbol,Fraction Integer)

Type: Domain

liste : List lword := LyndonWordsList([a,b], 6)

[
[a], [b], [a b],

[
a2 b

]
,
[
a b2

]
,
[
a3 b

]
,
[
a2 b2

]
,
[
a b3

]
,
[
a4 b

]
,[

a3 b2
]
,
[
a2 b a b

]
,
[
a2 b3

]
,
[
a b a b2

]
,
[
a b4

]
,
[
a5 b

]
,
[
a4 b2

]
,[

a3 b a b
]
,
[
a3 b3

]
,
[
a2 b a b2

]
,
[
a2 b2 a b

]
,
[
a2 b4

]
,
[
a b a b3

]
,
[
a b5

]]
Type: List LyndonWord Symbol

Let’s make some polynomials

0$poly

0
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Type: XPBWPolynomial(Symbol,Fraction Integer)

1$poly

1

Type: XPBWPolynomial(Symbol,Fraction Integer)

p : poly := a

[a]

Type: XPBWPolynomial(Symbol,Fraction Integer)

q : poly := b

[b]

Type: XPBWPolynomial(Symbol,Fraction Integer)

pq: poly := p*q

[a b] + [b] [a]

Type: XPBWPolynomial(Symbol,Fraction Integer)

Coerce to distributed polynomial

pq :: dpoly

a b

Type: XDistributedPolynomial(Symbol,Fraction Integer)

Check some polynomial operations

mirror pq

[b] [a]
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Type: XPBWPolynomial(Symbol,Fraction Integer)

listOfTerms pq

[[k = [b] [a], c = 1], [k = [a b], c = 1]]

Type: List Record(k: PoincareBirkhoffWittLyndonBasis Symbol,c: Fraction

Integer)

reductum pq

[a b]

Type: XPBWPolynomial(Symbol,Fraction Integer)

leadingMonomial pq

[b] [a]

Type: PoincareBirkhoffWittLyndonBasis Symbol

coefficients pq

[1, 1]

Type: List Fraction Integer

leadingTerm pq

[k = [b] [a], c = 1]

Type: Record(k: PoincareBirkhoffWittLyndonBasis Symbol,c: Fraction

Integer)

degree pq

2

Type: PositiveInteger
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pq4:=exp(pq,4)

1 + [a b] + [b] [a] + 1
2 [a b] [a b] + 1

2

[
a b2

]
[a] + 1

2 [b]
[
a2 b

]
+

3

2
[b] [a b] [a] +

1

2
[b] [b] [a] [a]

Type: XPBWPolynomial(Symbol,Fraction Integer)

log(pq4,4) - pq

0

Type: XPBWPolynomial(Symbol,Fraction Integer)

Calculations with verification in XDistributedPolynomial.

lp1 :lpoly := LiePoly liste.10

[
a3 b2

]
Type: LiePolynomial(Symbol,Fraction Integer)

lp2 :lpoly := LiePoly liste.11

[
a2 b a b

]
Type: LiePolynomial(Symbol,Fraction Integer)

lp :lpoly := [lp1, lp2]

[
a3 b2 a2 b a b

]
Type: LiePolynomial(Symbol,Fraction Integer)

lpd1: dpoly := lp1

a3 b2 − 2 a2 b a b− a2 b2 a+ 4 a b a b a− a b2 a2 − 2 b a b a2 + b2 a3

Type: XDistributedPolynomial(Symbol,Fraction Integer)
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lpd2: dpoly := lp2

a2 b a b− a2 b2 a− 3 a b a2 b+ 4 a b a b a−

a b2 a2 + 2 b a3 b− 3 b a2 b a+ b a b a2

Type: XDistributedPolynomial(Symbol,Fraction Integer)

lpd : dpoly := lpd1 * lpd2 - lpd2 * lpd1

a3 b2 a2 b a b− a3 b2 a2 b2 a− 3 a3 b2 a b a2 b+ 4 a3 b2 a b a b a−
a3 b2 a b2 a2 + 2 a3 b3 a3 b− 3 a3 b3 a2 b a+ a3 b3 a b a2−
a2 b a b a3 b2 + 3 a2 b a b a2 b2 a+ 6 a2 b a b a b a2 b− 12 a2 b a b a b a b a+
3 a2 b a b a b2 a2 − 4 a2 b a b2 a3 b+ 6 a2 b a b2 a2 b a− a2 b a b3 a3+
a2 b2 a4 b2 − 3 a2 b2 a3 b a b+ 3 a2 b2 a2 b a2 b− 2 a2 b2 a b a3 b+
3 a2 b2 a b a2 b a− 3 a2 b2 a b a b a2 + a2 b2 a b2 a3 + 3 a b a2 b a3 b2−
6 a b a2 b a2 b a b− 3 a b a2 b a2 b2 a+ 12 a b a2 b a b a b a− 3 a b a2 b a b2 a2−
6 a b a2 b2 a b a2 + 3 a b a2 b3 a3 − 4 a b a b a4 b2 + 12 a b a b a3 b a b−
12 a b a b a2 b a2 b+ 8 a b a b a b a3 b− 12 a b a b a b a2 b a+
12 a b a b a b a b a2 − 4 a b a b a b2 a3 + a b2 a5 b2 − 3 a b2 a4 b a b+
3 a b2 a3 b a2 b− 2 a b2 a2 b a3 b+ 3 a b2 a2 b a2 b a− 3 a b2 a2 b a b a2+
a b2 a2 b2 a3 − 2 b a3 b a3 b2 + 4 b a3 b a2 b a b+ 2 b a3 b a2 b2 a−
8 b a3 b a b a b a+ 2 b a3 b a b2 a2 + 4 b a3 b2 a b a2 − 2 b a3 b3 a3+
3 b a2 b a4 b2 − 6 b a2 b a3 b a b− 3 b a2 b a3 b2 a+ 12 b a2 b a2 b a b a−
3 b a2 b a2 b2 a2 − 6 b a2 b a b a b a2 + 3 b a2 b a b2 a3 − b a b a5 b2+
3 b a b a4 b2 a+ 6 b a b a3 b a2 b− 12 b a b a3 b a b a+ 3 b a b a3 b2 a2−
4 b a b a2 b a3 b+ 6 b a b a2 b a2 b a− b a b a2 b2 a3 + b2 a5 b a b−
b2 a5 b2 a− 3 b2 a4 b a2 b+ 4 b2 a4 b a b a− b2 a4 b2 a2+
2 b2 a3 b a3 b− 3 b2 a3 b a2 b a+ b2 a3 b a b a2

Type: XDistributedPolynomial(Symbol,Fraction Integer)

lp :: dpoly - lpd

0

Type: XDistributedPolynomial(Symbol,Fraction Integer)

Calculations with verification in XRecursivePolynomial.

p := 3 * lp

3
[
a3 b2 a2 b a b

]
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Type: XPBWPolynomial(Symbol,Fraction Integer)

q := lp1

[
a3 b2

]
Type: XPBWPolynomial(Symbol,Fraction Integer)

pq:= p * q

3
[
a3 b2 a2 b a b

] [
a3 b2

]
Type: XPBWPolynomial(Symbol,Fraction Integer)

pr:rpoly := p :: rpoly

a (a (a b b (a (a b (a b 3 + b a (−3)) + b
(a (a b (−9) + b a 12) + b a a (−3))) + b a
(a (a b 6 + b a (−9)) + b a a 3)) + b (a b (a (a
(a b b (−3) + b b a 9) + b (a (a b 18 + b a (−36)) + b a a 9
)) + b (a a (a b (−12) + b a 18) + b a a a (−3))
) + b a (a (a (a b b 3 + b a b (−9)) + b a a b 9) + b (a
(a (a b (−6) + b a 9) + b a a (−9)) + b a a a 3))
)) + b (a (a b (a (a (a b b 9 + b (a b (−18) + b a
(−9))) + b (a b a 36 + b a a (−9))) + b (a b a a
(−18) + b a a a 9)) + b a (a (a (a b b (−12) + b a b 36) + b a a b
(−36)) + b (a (a (a b 24 + b a (−36)) + b a a 36) + b a a a
(−12)))) + b a a (a (a (a b b 3 + b a b (−9)
) + b a a b 9) + b (a (a (a b (−6) + b a 9) + b a a (−9)
) + b a a a 3)))) + b (a (a (a b (a (a

(a b b (−6) + b (a b 12 + b a 6)) + b (a b a (−24) + b a a 6)
) + b (a b a a 12 + b a a a (−6))) + b a (a (a (a b b 9 + b (a b (−18
) + b a (−9))) + b (a b a 36 + b a a (−9))) + b (a b a a
(−18) + b a a a 9))) + b a a (a (a (a b b (−3) + b b a 9
) + b (a (a b 18 + b a (−36)) + b a a 9)) + b (a a (a b
(−12) + b a 18) + b a a a (−3)))) + b a a a (a
(a b (a b 3 + b a (−3)) + b (a (a b (−9) + b a 12) + b a a
(−3))) + b a (a (a b 6 + b a (−9)) + b a a 3)))

Type: XRecursivePolynomial(Symbol,Fraction Integer)

qr:rpoly := q :: rpoly
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a (a (a b b 1 + b (a b (−2) + b a (−1)))+

b (a b a 4 + b a a (−1)))+

b (a b a a (−2) + b a a a 1)

Type: XRecursivePolynomial(Symbol,Fraction Integer)

pq :: rpoly - pr*qr

0

Type: XRecursivePolynomial(Symbol,Fraction Integer)

9.103 XPolynomial

The XPolynomial domain constructor implements multivariate polynomials whose set of
variables is Symbol. These variables do not commute. The only parameter of this con-
strutor is the coefficient ring which may be non-commutative. However, coefficients and
variables commute. The representation of the polynomials is recursive. The abbreviation for
XPolynomial is XPOLY.

Constructors like XPolynomialRing, XRecursivePolynomial
as well as XDistributedPolynomial, LiePolynomial and
XPBWPolynomial implement multivariate polynomials in
non-commutative variables.

We illustrate now some of the facilities of the XPOLY domain constructor.

Define a polynomial ring over the integers.

poly := XPolynomial(Integer)

XPolynomial Integer

Type: Domain

Define a first polynomial,

pr: poly := 2*x + 3*y-5

−5 + x 2 + y 3

Type: XPolynomial Integer
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and a second one.

pr2: poly := pr*pr

25 + x (−20 + x 4 + y 6) + y (−30 + x 6 + y 9)

Type: XPolynomial Integer

Rewrite pr in a distributive way,

pd := expand pr

−5 + 2 x+ 3 y

Type: XDistributedPolynomial(Symbol,Integer)

compute its square,

pd2 := pd*pd

25− 20 x− 30 y + 4 x2 + 6 x y + 6 y x+ 9 y2

Type: XDistributedPolynomial(Symbol,Integer)

and checks that:

expand(pr2) - pd2

0

Type: XDistributedPolynomial(Symbol,Integer)

We define:

qr := pr**3

−125 + x (150 + x (−60 + x 8 + y 12) + y (−90 + x 12 + y 18))+

y (225 + x (−90 + x 12 + y 18) + y (−135 + x 18 + y 27))

Type: XPolynomial Integer
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and:

qd := pd**3

−125 + 150 x+ 225 y − 60 x2 − 90 x y − 90 y x− 135 y2 + 8 x3 + 12 x2 y+

12 x y x+ 18 x y2 + 12 y x2 + 18 y x y + 18 y2 x+ 27 y3

Type: XDistributedPolynomial(Symbol,Integer)

We truncate qd at degree 3:

trunc(qd,2)

−125 + 150 x+ 225 y − 60 x2 − 90 x y − 90 y x− 135 y2

Type: XDistributedPolynomial(Symbol,Integer)

The same for qr:

trunc(qr,2)

−125 + x (150 + x (−60) + y (−90)) + y (225 + x (−90) + y (−135))

Type: XPolynomial Integer

We define:

Word := OrderedFreeMonoid Symbol

OrderedFreeMonoid Symbol

Type: Domain

and:

w: Word := x*y**2

x y2

Type: OrderedFreeMonoid Symbol
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We can compute the right-quotient of qr by r:

rquo(qr,w)

18

Type: XPolynomial Integer

and the shuffle-product of pr by r:

sh(pr,w::poly)

x (x y y 4 + y (x y 2 + y (−5 + x 2 + y 9))) + y x y y 3

Type: XPolynomial Integer

9.104 XPolynomialRing

The XPolynomialRing domain constructor implements generalized polynomials with coeffi-
cients from an arbitrary Ring (not necessarily commutative) and whose exponents are words
from an arbitrary OrderedMonoid (not necessarily commutative too). Thus these polynomi-
als are (finite) linear combinations of words.

This constructor takes two arguments. The first one is a Ring and the second is an
OrderedMonoid. The abbreviation for XPolynomialRing is XPR.

Other constructors like XPolynomial, XRecursivePolynomial
XDistributedPolynomial, LiePolynomial and
XPBWPolynomial implement multivariate polynomials in
non-commutative variables.

We illustrate now some of the facilities of the XPR domain constructor.

Define the free ordered monoid generated by the symbols.

Word := OrderedFreeMonoid(Symbol)

OrderedFreeMonoid Symbol

Type: Domain

Define the linear combinations of these words with integer coefficients.

poly:= XPR(Integer,Word)
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XPolynomialRing(Integer,OrderedFreeMonoid Symbol)

Type: Domain

Then we define a first element from poly.

p:poly := 2 * x - 3 * y + 1

1 + 2 x− 3 y

Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)

And a second one.

q:poly := 2 * x + 1

1 + 2 x

Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)

We compute their sum,

p + q

2 + 4 x− 3 y

Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)

their product,

p * q

1 + 4 x− 3 y + 4 x2 − 6 y x

Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)

and see that variables do not commute.

(p+q)**2-p**2-q**2-2*p*q

−6 x y + 6 y x
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Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)

Now we define a ring of square matrices,

M := SquareMatrix(2,Fraction Integer)

SquareMatrix(2,Fraction Integer)

Type: Domain

and the linear combinations of words with these matrices as coefficients.

poly1:= XPR(M,Word)

XPolynomialRing(SquareMatrix(2,FractionInteger),
OrderedFreeMonoidSymbol)

Type: Domain

Define a first matrix,

m1:M := matrix [ [i*j**2 for i in 1..2] for j in 1..2]

[
1 2
4 8

]
Type: SquareMatrix(2,Fraction Integer)

a second one,

m2:M := m1 - 5/4 [
−1

4 2
4 27

4

]
Type: SquareMatrix(2,Fraction Integer)

and a third one.

m3: M := m2**2 [
129
16 13
26 857

16

]
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Type: SquareMatrix(2,Fraction Integer)

Define a polynomial,

pm:poly1 := m1*x + m2*y + m3*z - 2/3[
−2

3 0
0 − 2

3

]
+

[
1 2
4 8

]
x+

[
− 1

4 2
4 27

4

]
y +

[
129
16 13
26 857

16

]
z

Type: XPolynomialRing( SquareMatrix(2,Fraction Integer), OrderedFreeMonoid

Symbol)

a second one,

qm:poly1 := pm - m1*x[
−2

3 0
0 −2

3

]
+

[
−1

4 2
4 27

4

]
y +

[
129
16 13
26 857

16

]
z

Type: XPolynomialRing( SquareMatrix(2,Fraction Integer), OrderedFreeMonoid

Symbol)

and the following power.

qm**3 [
− 8

27 0
0 − 8

27

]
+

[
− 1

3
8
3

16
3 9

]
y +

[
43
4

52
3

104
3

857
12

]
z+

[
− 129

8 −26
−52 −857

8

]
y2 +

[
−3199

32 −831
4

− 831
2 −26467

32

]
y z +

[
− 3199

32 −831
4

−831
2 −26467

32

]
z y+

[
− 103169

128 − 6409
4

− 6409
2 −820977

128

]
z2 +

[
3199
64

831
8

831
4

26467
64

]
y3+

[
103169
256

6409
8

6409
4

820977
256

]
y2 z +

[
103169
256

6409
8

6409
4

820977
256

]
y z y+

[
3178239
1024

795341
128

795341
64

25447787
1024

]
y z2 +

[
103169
256

6409
8

6409
4

820977
256

]
z y2+

[
3178239
1024

795341
128

795341
64

25447787
1024

]
z y z +

[
3178239
1024

795341
128

795341
64

25447787
1024

]
z2 y+

[
98625409

4096
12326223

256
12326223

128
788893897

4096

]
z3
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Type: XPolynomialRing(SquareMatrix(2,Fraction Integer),OrderedFreeMonoid

Symbol)

9.105 ZeroDimensionalSolvePackage

The ZeroDimensionalSolvePackage package constructor provides operations for computing
symbolically the complex or real roots of zero-dimensional algebraic systems.

The package provides no multiplicity information (i.e. some returned roots may be double
or higher) but only distinct roots are returned.

Complex roots are given by means of univariate representations of irreducible regular chains.
These representations are computed by the univariateSolve operation (by calling the
InternalRationalUnivariateRepresentationPackage package constructor which does the
job).

Real roots are given by means of tuples of coordinates lying in the RealClosure of the
coefficient ring. They are computed by the realSolve and positiveSolve operations. The
former computes all the solutions of the input system with real coordinates whereas the
later concentrate on the solutions with (strictly) positive coordinates. In both cases, the
computations are performed by the RealClosure constructor.

Both computations of complex roots and real roots rely on triangular decompositions. These
decompositions can be computed in two different ways. First, by a applying the zeroSet-
Split operation from the REGSET domain constructor. In that case, no Groebner bases are
computed. This strategy is used by default. Secondly, by applying the zeroSetSplit from
LEXTRIPK. To use this later strategy with the operations univariateSolve, realSolve and
positiveSolve one just needs to use an extra boolean argument.

Note that the way of understanding triangular decompositions is detailed in the example of
the RegularTriangularSet constructor.

The ZeroDimensionalSolvePackage constructor takes three arguments. The first one R
is the coefficient ring; it must belong to the categories OrderedRing, EuclideanDomain,
CharacteristicZero and RealConstant. This means essentially that R is Integer or
Fraction(Integer). The second argument ls is the list of variables involved in the systems
to solve. The third one MUST BE concat(ls,s) where s is an additional symbol used
for the univariate representations. The abbreviation for ZeroDimensionalSolvePackage is
ZDSOLVE.

We illustrate now how to use the constructor ZDSOLVE by two examples: the Arnborg and
Lazard system and the L-3 system (Aubry and Moreno Maza). Note that the use of this
package is also demonstrated in the example of the LexTriangularPackage constructor.

Define the coefficient ring.

R := Integer

Integer
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Type: Domain

Define the lists of variables:

ls : List Symbol := [x,y,z,t]

[x, y, z, t]

Type: List Symbol

and:

ls2 : List Symbol := [x,y,z,t,new()$Symbol]

[x, y, z, t,%A]

Type: List Symbol

Call the package:

pack := ZDSOLVE(R,ls,ls2)

ZeroDimensionalSolvePackage(Integer, [x, y, z, t], [x, y, z, t,

Type: Domain

Define a polynomial system (Arnborg-Lazard)

p1 := x**2*y*z + x*y**2*z + x*y*z**2 + x*y*z + x*y + x*z + y*z

x y z2 +
(
x y2 +

(
x2 + x+ 1

)
y + x

)
z + x y

Type: Polynomial Integer

p2 := x**2*y**2*z + x*y**2*z**2 + x**2*y*z + x*y*z + y*z + x + z

x y2 z2 +
(
x2 y2 +

(
x2 + x+ 1

)
y + 1

)
z + x

Type: Polynomial Integer

p3 := x**2*y**2*z**2 + x**2*y**2*z + x*y**2*z + x*y*z + x*z + z + 1
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x2 y2 z2 +
((
x2 + x

)
y2 + x y + x+ 1

)
z + 1

Type: Polynomial Integer

lp := [p1, p2, p3]

[
x y z2 +

(
x y2 +

(
x2 + x+ 1

)
y + x

)
z + x y,

x y2 z2 +
(
x2 y2 +

(
x2 + x+ 1

)
y + 1

)
z + x,

x2 y2 z2 +
((
x2 + x

)
y2 + x y + x+ 1

)
z + 1

]
Type: List Polynomial Integer

Note that these polynomials do not involve the variable t; we will use it in the second
example.

First compute a decomposition into regular chains (i.e. regular triangular sets).

triangSolve(lp)$pack
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z20 − 6 z19 − 41 z18 + 71 z17 + 106 z16 + 92 z15 + 197 z14+

145 z13 + 257 z12 + 278 z11 + 201 z10 + 278 z9 + 257 z8 + 145 z7+

197 z6 + 92 z5 + 106 z4 + 71 z3 − 41 z2 − 6 z + 1,(
14745844 z19 + 50357474 z18 − 130948857 z17 − 185261586 z16−

180077775 z15 − 338007307 z14 − 275379623 z13 − 453190404 z12−

474597456 z11 − 366147695 z10 − 481433567 z9 − 430613166 z8−

261878358 z7 − 326073537 z6 − 163008796 z5 − 177213227 z4−

104356755 z3 + 65241699 z2 + 9237732 z − 1567348
)
y+

1917314 z19 + 6508991 z18 − 16973165 z17 − 24000259 z16−

23349192 z15 − 43786426 z14 − 35696474 z13 − 58724172 z12−

61480792 z11 − 47452440 z10 − 62378085 z9 − 55776527 z8−

33940618 z7 − 42233406 z6 − 21122875 z5 − 22958177 z4−

13504569 z3 + 8448317 z2 + 1195888 z − 202934,((
z3 − 2 z

)
y2 +

(
−z3 − z2 − 2 z − 1

)
y − z2 − z + 1

)
x+ z2 − 1

}]
Type: List RegularChain(Integer,[x,y,z,t])

We can see easily from this decomposition (consisting of a single regular chain) that the
input system has 20 complex roots.

Then we compute a univariate representation of this regular chain.

univariateSolve(lp)$pack
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complexRoots = ?12 − 12 ?11 + 24 ?10 + 4 ?9 − 9 ?8 + 27 ?7−

21 ?6 + 27 ?5 − 9 ?4 + 4 ?3 + 24 ?2 − 12 ? + 1,

coordinates =[
63 x+ 62 %A11 − 721 %A10 + 1220 %A9 + 705 %A8 − 285 %A7+

1512 %A6 − 735 %A5 + 1401 %A4 − 21 %A3 + 215 %A2 + 1577 %A− 142,

63 y − 75 %A11 + 890 %A10 − 1682 %A9 − 516 %A8 + 588 %A7 − 1953 %A6+

1323 %A5 − 1815 %A4 + 426 %A3 − 243 %A2 − 1801 %A+ 679,

z −%A]] ,[
complexRoots = ?6 + ?5 + ?4 + ?3 + ?2+? + 1,
coordinates =

[
x−%A5, y −%A3, z −%A

]]
,[

complexRoots = ?2 + 5 ? + 1, coordinates = [x− 1, y − 1, z −%A]
]]

Type: List Record( complexRoots: SparseUnivariatePolynomial Integer,

coordinates: List Polynomial Integer)

We see that the zeros of our regular chain are split into three components. This is due to
the use of univariate polynomial factorization.

Each of these components consist of two parts. The first one is an irreducible univariate
polynomial p(?) which defines a simple algebraic extension of the field of fractions of
R. The second one consists of multivariate polynomials pol1(x,%A), pol2(y,%A) and
pol3(z,%A). Each of these polynomials involve two variables: one is an indeterminate x, y
or z of the input system lp and the other is %A which represents any root of p(?). Recall
that this %A is the last element of the third parameter of ZDSOLVE. Thus any complex
root ? of p(?) leads to a solution of the input system lp by replacing %A by this ?
in pol1(x,%A), pol2(y,%A) and pol3(z,%A). Note that the polynomials pol1(x,%A),
pol2(y,%A) and pol3(z,%A) have degree one w.r.t. x, y or z respectively. This is always
the case for all univariate representations. Hence the operation univariateSolve replaces
a system of multivariate polynomials by a list of univariate polynomials, what justifies its
name. Another example of univariate representations illustrates the LexTriangularPackage
package constructor.

We now compute the solutions with real coordinates:

lr := realSolve(lp)$pack
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[[%B1,

1184459

1645371
%B1

19 − 2335702

548457
%B1

18 − 5460230

182819
%B1

17
+

79900378

1645371
%B1

16
+

43953929

548457
%B1

15
+

13420192

182819
%B1

14
+

553986

3731
%B1

13
+

193381378

1645371
%B1

12
+

35978916

182819
%B1

11
+

358660781

1645371
%B1

10
+

271667666

1645371
%B1

9
+

118784873

548457
%B1

8
+

337505020

1645371
%B1

7
+

1389370

11193
%B1

6
+

688291

4459
%B1

5
+

3378002

42189
%B1

4
+

140671876

1645371
%B1

3
+

32325724

548457
%B1

2 − 8270

343
%B1− 9741532

1645371
,

− 91729

705159
%B1

19
+

487915

705159
%B1

18
+

4114333

705159
%B1

17 − 1276987

235053
%B1

16−

13243117

705159
%B1

15 − 16292173

705159
%B1

14 − 26536060

705159
%B1

13 − 722714

18081
%B1

12−

5382578

100737
%B1

11 − 15449995

235053
%B1

10 − 14279770

235053
%B1

9 − 6603890

100737
%B1

8−

409930

6027
%B1

7 − 37340389

705159
%B1

6 − 34893715

705159
%B1

5 − 26686318

705159
%B1

4−

801511

26117
%B1

3 − 17206178

705159
%B1

2 − 4406102

705159
%B1 +

377534

705159

]
,
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[%B2,

1184459

1645371
%B2

19 − 2335702

548457
%B2

18 − 5460230

182819
%B2

17
+

79900378

1645371
%B2

16
+

43953929

548457
%B2

15
+

13420192

182819
%B2

14
+

553986

3731
%B2

13
+

193381378

1645371
%B2

12
+

35978916

182819
%B2

11
+

358660781

1645371
%B2

10
+

271667666

1645371
%B2

9
+

118784873

548457
%B2

8
+

337505020

1645371
%B2

7
+

1389370

11193
%B2

6
+

688291

4459
%B2

5
+

3378002

42189
%B2

4
+

140671876

1645371
%B2

3
+

32325724

548457
%B2

2 − 8270

343
%B2− 9741532

1645371
,

− 91729

705159
%B2

19
+

487915

705159
%B2

18
+

4114333

705159
%B2

17 − 1276987

235053
%B2

16−

13243117

705159
%B2

15 − 16292173

705159
%B2

14 − 26536060

705159
%B2

13 − 722714

18081
%B2

12−

5382578

100737
%B2

11 − 15449995

235053
%B2

10 − 14279770

235053
%B2

9 − 6603890

100737
%B2

8−

409930

6027
%B2

7 − 37340389

705159
%B2

6 − 34893715

705159
%B2

5 − 26686318

705159
%B2

4−

801511

26117
%B2

3 − 17206178

705159
%B2

2 − 4406102

705159
%B2 +

377534

705159

]
,
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[%B3,

1184459

1645371
%B3

19 − 2335702

548457
%B3

18 − 5460230

182819
%B3

17
+

79900378

1645371
%B3

16
+

43953929

548457
%B3

15
+

13420192

182819
%B3

14
+

553986

3731
%B3

13
+

193381378

1645371
%B3

12
+

35978916

182819
%B3

11
+

358660781

1645371
%B3

10
+

271667666

1645371
%B3

9
+

118784873

548457
%B3

8
+

337505020

1645371
%B3

7
+

1389370

11193
%B3

6
+

688291

4459
%B3

5
+

3378002

42189
%B3

4
+

140671876

1645371
%B3

3
+

32325724

548457
%B3

2 − 8270

343
%B3− 9741532

1645371
,

− 91729

705159
%B3

19
+

487915

705159
%B3

18
+

4114333

705159
%B3

17 − 1276987

235053
%B3

16−

13243117

705159
%B3

15 − 16292173

705159
%B3

14 − 26536060

705159
%B3

13 − 722714

18081
%B3

12−

5382578

100737
%B3

11 − 15449995

235053
%B3

10 − 14279770

235053
%B3

9 − 6603890

100737
%B3

8−

409930

6027
%B3

7 − 37340389

705159
%B3

6 − 34893715

705159
%B3

5 − 26686318

705159
%B3

4−

801511

26117
%B3

3 − 17206178

705159
%B3

2 − 4406102

705159
%B3 +

377534

705159

]
,
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[%B4,

1184459

1645371
%B4

19 − 2335702

548457
%B4

18 − 5460230

182819
%B4

17
+

79900378

1645371
%B4

16
+

43953929

548457
%B4

15
+

13420192

182819
%B4

14
+

553986

3731
%B4

13
+

193381378

1645371
%B4

12
+

35978916

182819
%B4

11
+

358660781

1645371
%B4

10
+

271667666

1645371
%B4

9
+

118784873

548457
%B4

8
+

337505020

1645371
%B4

7
+

1389370

11193
%B4

6
+

688291

4459
%B4

5
+

3378002

42189
%B4

4
+

140671876

1645371
%B4

3
+

32325724

548457
%B4

2 − 8270

343
%B4− 9741532

1645371
,

− 91729

705159
%B4

19
+

487915

705159
%B4

18
+

4114333

705159
%B4

17 − 1276987

235053
%B4

16−

13243117

705159
%B4

15 − 16292173

705159
%B4

14 − 26536060

705159
%B4

13 − 722714

18081
%B4

12−

5382578

100737
%B4

11 − 15449995

235053
%B4

10 − 14279770

235053
%B4

9 − 6603890

100737
%B4

8−

409930

6027
%B4

7 − 37340389

705159
%B4

6 − 34893715

705159
%B4

5 − 26686318

705159
%B4

4−

801511

26117
%B4

3 − 17206178

705159
%B4

2 − 4406102

705159
%B4 +

377534

705159

]
,
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[%B5,

1184459

1645371
%B5

19 − 2335702

548457
%B5

18 − 5460230

182819
%B5

17
+

79900378

1645371
%B5

16
+

43953929

548457
%B5

15
+

13420192

182819
%B5

14
+

553986

3731
%B5

13
+

193381378

1645371
%B5

12
+

35978916

182819
%B5

11
+

358660781

1645371
%B5

10
+

271667666

1645371
%B5

9
+

118784873

548457
%B5

8
+

337505020

1645371
%B5

7
+

1389370

11193
%B5

6
+

688291

4459
%B5

5
+

3378002

42189
%B5

4
+

140671876

1645371
%B5

3
+

32325724

548457
%B5

2 − 8270

343
%B5− 9741532

1645371
,

− 91729

705159
%B5

19
+

487915

705159
%B5

18
+

4114333

705159
%B5

17 − 1276987

235053
%B5

16−

13243117

705159
%B5

15 − 16292173

705159
%B5

14 − 26536060

705159
%B5

13 − 722714

18081
%B5

12−

5382578

100737
%B5

11 − 15449995

235053
%B5

10 − 14279770

235053
%B5

9 − 6603890

100737
%B5

8−

409930

6027
%B5

7 − 37340389

705159
%B5

6 − 34893715

705159
%B5

5 − 26686318

705159
%B5

4−

801511

26117
%B5

3 − 17206178

705159
%B5

2 − 4406102

705159
%B5 +

377534

705159

]
,
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[%B6,

1184459

1645371
%B6

19 − 2335702

548457
%B6

18 − 5460230

182819
%B6

17
+

79900378

1645371
%B6

16
+

43953929

548457
%B6

15
+

13420192

182819
%B6

14
+

553986

3731
%B6

13
+

193381378

1645371
%B6

12
+

35978916

182819
%B6

11
+

358660781

1645371
%B6

10
+

271667666

1645371
%B6

9
+

118784873

548457
%B6

8
+

337505020

1645371
%B6

7
+

1389370

11193
%B6

6
+

688291

4459
%B6

5
+

3378002

42189
%B6

4
+

140671876

1645371
%B6

3
+

32325724

548457
%B6

2 − 8270

343
%B6− 9741532

1645371
,

− 91729

705159
%B6

19
+

487915

705159
%B6

18
+

4114333

705159
%B6

17 − 1276987

235053
%B6

16−

13243117

705159
%B6

15 − 16292173

705159
%B6

14 − 26536060

705159
%B6

13 − 722714

18081
%B6

12−

5382578

100737
%B6

11 − 15449995

235053
%B6

10 − 14279770

235053
%B6

9 − 6603890

100737
%B6

8−

409930

6027
%B6

7 − 37340389

705159
%B6

6 − 34893715

705159
%B6

5 − 26686318

705159
%B6

4−
801511

26117
%B6

3 − 17206178

705159
%B6

2 − 4406102

705159
%B6 +

377534

705159

]
,
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[%B7,

1184459

1645371
%B7

19 − 2335702

548457
%B7

18 − 5460230

182819
%B7

17
+

79900378

1645371
%B7

16
+

43953929

548457
%B7

15
+

13420192

182819
%B7

14
+

553986

3731
%B7

13
+

193381378

1645371
%B7

12
+

35978916

182819
%B7

11
+

358660781

1645371
%B7

10
+

271667666

1645371
%B7

9
+

118784873

548457
%B7

8
+

337505020

1645371
%B7

7
+

1389370

11193
%B7

6
+

688291

4459
%B7

5
+

3378002

42189
%B7

4
+

140671876

1645371
%B7

3
+

32325724

548457
%B7

2 − 8270

343
%B7− 9741532

1645371
,

− 91729

705159
%B7

19
+

487915

705159
%B7

18
+

4114333

705159
%B7

17 − 1276987

235053
%B7

16−

13243117

705159
%B7

15 − 16292173

705159
%B7

14 − 26536060

705159
%B7

13 − 722714

18081
%B7

12−

5382578

100737
%B7

11 − 15449995

235053
%B7

10 − 14279770

235053
%B7

9 − 6603890

100737
%B7

8−

409930

6027
%B7

7 − 37340389

705159
%B7

6 − 34893715

705159
%B7

5 − 26686318

705159
%B7

4−

801511

26117
%B7

3 − 17206178

705159
%B7

2 − 4406102

705159
%B7 +

377534

705159

]
,
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[%B8,

1184459

1645371
%B8

19 − 2335702

548457
%B8

18 − 5460230

182819
%B8

17
+

79900378

1645371
%B8

16
+

43953929

548457
%B8

15
+

13420192

182819
%B8

14
+

553986

3731
%B8

13
+

193381378

1645371
%B8

12
+

35978916

182819
%B8

11
+

358660781

1645371
%B8

10
+

271667666

1645371
%B8

9
+

118784873

548457
%B8

8
+

337505020

1645371
%B8

7
+

1389370

11193
%B8

6
+

688291

4459
%B8

5
+

3378002

42189
%B8

4
+

140671876

1645371
%B8

3
+

32325724

548457
%B8

2 − 8270

343
%B8− 9741532

1645371
,

− 91729

705159
%B8

19
+

487915

705159
%B8

18
+

4114333

705159
%B8

17 − 1276987

235053
%B8

16−

13243117

705159
%B8

15 − 16292173

705159
%B8

14 − 26536060

705159
%B8

13 − 722714

18081
%B8

12−

5382578

100737
%B8

11 − 15449995

235053
%B8

10 − 14279770

235053
%B8

9 − 6603890

100737
%B8

8−

409930

6027
%B8

7 − 37340389

705159
%B8

6 − 34893715

705159
%B8

5 − 26686318

705159
%B8

4−

801511

26117
%B8

3 − 17206178

705159
%B8

2 − 4406102

705159
%B8 +

377534

705159

]]
Type: List List RealClosure Fraction Integer

The number of real solutions for the input system is:

# lr

8

Type: PositiveInteger

Each of these real solutions is given by a list of elements in RealClosure(R). In these 8 lists,
the first element is a value of z, the second of y and the last of x. This is logical since by
setting the list of variables of the package to [x,y,z,t] we mean that the elimination ordering
on the variables is t ¡ z ¡ y ¡ x . Note that each system treated by the ZDSOLVE package
constructor needs only to be zero-dimensional w.r.t. the variables involved in the system
it-self and not necessarily w.r.t. all the variables used to define the package.
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We can approximate these real numbers as follows. This computation takes between 30 sec.
and 5 min, depending on your machine.

[ [approximate(r,1/1000000) for r in point] for point in lr]

[[
−10048059

2097152
,


450305731698538794352439791383896641459673197621176821933588120838
551631405892456717609142362969577740309983336076104889822891657813
709430983859733113720258484693913237615701950676035760116591745498
681538209878909485152342039281129312614132985654697714546466149548
782591994118844704172244049192156726354215802806143775884436463441
0045253024786561923163288214175



450305728302524548851651180698582663508310069375732046528055470686
564494957750991686720188943809040835481793171859386279762455151898
357079304877442429148870882984032418920030143612331486020082144373
379075531124363291986489542170422894957129001611949880795702366386
544306939202714897968826671232335604349152343406892427528041733857
4817381189277066143312396681216,




210626076882347507389479868048601659624960714869068553876368371502
063968085864965079005588950564689330944709709993780218732909532589
878524724902071750498366048207515661873872451468533306001120296463
516638135154325598220025030528398108683711061484230702609121129792
987689628568183047905476005638076266490561846205530604781619178201
15887037891389881895




210626060949846419247211380481647417534196295329643410241390314236
875796768527388858559097596521177886218987288195394364024629735706
195981232610365979902512686325867656720234210687703171018424748418
142328892183768123706270847029570621848592886740077193782849920092
376059331416890100066637389634759811822855673103707202647449677622
83837629939232800768





,

[
−2563013

2097152
,

−261134617679192778969861769323775771923825996306354178192275233044018989966807292833849076862359320744212592598673381593224350480
9294837523030237337236806668167446173001727271353311571242897


11652254005052225305839819160045891437572266102768589900087901348
199149409224137539839713940195234333204081399281531888294957554551
63963417619308395977544797140231469234269034921938055593984,


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
3572594550275917221096588729615788272998517054675603239578198141
006034091735282826590621902304466963941971038923304526273329316373
7574500619789892286110976997087250466235373



10395482693455989368770712448340260558008145511201705922005223665
917594096594864423391410294529502651799899601048118758225302053465
051315812439017247289173865014702966308864



 ,
[
−1715967

2097152
,

−421309353378430352108483951797708239037726150396958622482899843660603065607635937456481377349837660312126782256580143620693951995
146518222580524697287410022543952491


94418141441853744586496920343492240524365974709662536639306419607
958058825854931998401916999176594432648246411351873835838881478673
4019307857605820364195856822304768,



7635833347112644222515625424410831225347475669008589338834162172
501904994376346730876809042845208919919925302105720971453918982731
3890725914035



26241887640860971997842976104780666339342304678958516022785809785
037845492057884990196406022669660268915801035435676250390186298871
4128491675648



 ,
[
− 437701

2097152
,

1683106908638349588322172332654225913562986313181951031452750161
441497473455328150721364868355579646781603507777199075077835213366
48453365491383623741304759


16831068680952133890017099827059136389630776687312261111677851880
049074252262986803258878109626141402985973669842648879989083770687
9999845423381649008099328,


4961550109835010186422681013422108735958714801003760639707968096
64691282670847283444311723917219104249213450966312411133


49615498727577383155091920782102090298528971186110971262363840408
2937659261914313170254867464792718363492160482442215424



 ,
[
222801

2097152
,

−899488488040242826510759512197069142713604569254197827557300186521375992158813771669612634910165522019514299493229913718324170586
7672383477


11678899986650263721777651006918885827089699602299347696908357524
570777794164352094737678665077694058889427645877185424342556259924
56372224,


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
−238970488813315687832080154437380839561277150920849101984745299
188550954651952546783901661359399969388664003628357055232115503787
1291458703265



53554872736450963260904032866899319059882254446854114332215938336
811929575628336714686542903407469936562859255991176021204461834431
45479421952



 ,
[
765693

2097152
,

8558969219816716267873244761178198088724698958616670140213765754
322002303251685786118678330840203328837654339523418704917749518340
772512899000391009630373148561


29414424455330107909764284113763934998155802159458569179064525354
957230138568189417023302287798901412962367211381542319972389173221
567119652444639331719460159488,



−205761823058257210124765032486024256111130258154358880884392366
276754938224165936271229077761280019292142057440894808519374368858
27622246433251878894899015



26715982033257355380979523535014502205763137598908350970917225206
427101987719026671839489062898637147596783602924839492046164715377
77775324180661095366656



 ,
[
5743879

2097152
,


1076288816968906847955546394773570208171456724942618614023663123
574768960850434263971398072546592772662158833449797698617455397887
562900072984768000608343553189801693408727205047612559889232757563
830528688953535421809482771058917542602890060941949620874083007858
36666945350176624841488732463225



31317689570803179466484619400235520441903766134585849862285496319
161966016162197817656155325322947465296482764305838108940793745664
607578231468885811955560292085152188388832003186584074693994260632
605898286123092315966691297079864813198515719429272303406229340239
234867030420681530440845099008,




−211328669918575091836412047556545843787017248986548599438982813
533526444466528455752649273493169173140787270143293550347334817207
609872054584900878007756416053431789468836611952973998050294416266
855009812796195049621022194287808935967492585059442776850225178975
8706752831632503615




16276155849379875802429066243471045808891444661684597180431538394
083725255333098080703636995855022160112110871032636095510260277694
140873911481262211681397816825874380753225914661319399754572005223
498385689642856344480185620382723787873544601061061415180109356172
051706396253618176




,
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19739877

2097152
,



−299724993683270330379901580486152094921504038750070717770128576
672019253057942247895356602435986014310154780163808277161116037221
287484777803580987284314922548423836585801362934170532170258233335
091800960178993702398593530490046049338987383703085341034708990888
081485398113201846458245880061539477074169948729587596021075021589
194881447685487103153093129546733219013370267109820090228230051075
18607185928457030277807397796525813862762239286996106809728023675




23084332748522785907289100811918110239065041413214326461239367948
739333192706089607021381934176478983606202295191766329376317868514
550147660272062590222525055517418236888968838066366025744317604722
402920931967294751602472688341211418933188487286618444349272872851
128970807675528648950565858640331785659103870650061128015164035227
410373609905560544769495270592270708095930494912575195547088792595
9552929920110858560812556635485429471554031675979542656381353984,




−512818926354822848909627639786894008060093841066308045940796633
584500926410949052045982531625008472301004703502449743652303892581
895928931293158470135392762143543439867426304729390912285013385199
069649023156609437199433379507078262401172758774998929661127731837
229462420711653791043655457414608288470130554391262041935488541073
594015777589660282236457586461183151294397397471516692046506185060
376287516256195847052412587282839139194642913955




22882819397784393305312087931812904711836310924553689903863908242
435094636442362497730806474389877391449216077946826538517411890917
117418681451149783372841918224976758683587294866447308566225526872
092037244118004814057028371983106422912756761957746144438159967135
026293917497835900414708601277523729964886277426724876224800632688
088893248918508424949343473376030759399802682084829048596781777514
4465749979827872616963053217673201717237252096






Type: List List Fraction Integer

We can also concentrate on the solutions with real (strictly) positive coordinates:

lpr := positiveSolve(lp)$pack

[]

Type: List List RealClosure Fraction Integer

Thus we have checked that the input system has no solution with strictly positive coordinates.

Let us define another polynomial system (L-3).
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f0 := x**3 + y + z + t- 1

z + y + x3 + t− 1

Type: Polynomial Integer

f1 := x + y**3 + z + t -1

z + y3 + x+ t− 1

Type: Polynomial Integer

f2 := x + y + z**3 + t-1

z3 + y + x+ t− 1

Type: Polynomial Integer

f3 := x + y + z + t**3 -1

z + y + x+ t3 − 1

Type: Polynomial Integer

lf := [f0, f1, f2, f3]

[
z + y + x3 + t− 1, z + y3 + x+ t− 1,

z3 + y + x+ t− 1, z + y + x+ t3 − 1
]

Type: List Polynomial Integer

First compute a decomposition into regular chains (i.e. regular triangular sets).

lts := triangSolve(lf)$pack

[{
t2 + t+ 1, z3 − z − t3 + t,

(
3 z + 3 t3 − 3

)
y2 +

(
3 z2 +

(
6 t3 − 6

)
z + 3 t6−

6 t3 + 3
)
y +

(
3 t3 − 3

)
z2 +

(
3 t6 − 6 t3 + 3

)
z + t9 − 3 t6 + 5 t3 − 3 t,

x+ y + z} ,
{
t16 − 6 t13 + 9 t10 + 4 t7 + 15 t4 − 54 t2 + 27,
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4907232 t15 + 40893984 t14 − 115013088 t13 + 22805712 t12 + 36330336 t11+
162959040 t10 − 159859440 t9 − 156802608 t8 + 117168768 t7+
126282384 t6 − 129351600 t5 + 306646992 t4 + 475302816 t3−
1006837776 t2 − 237269088 t+ 480716208

)
z+

48 t54 − 912 t51 + 8232 t48 − 72 t46 − 46848 t45 + 1152 t43 + 186324 t42 −
3780 t40 − 543144 t39 − 3168 t38 − 21384 t37 + 1175251 t36 + 41184 t35+
278003 t34 − 1843242 t33 − 301815 t32 − 1440726 t31 + 1912012 t30+
1442826 t29 + 4696262 t28 − 922481 t27 − 4816188 t26 − 10583524 t25−
208751 t24 + 11472138 t23 + 16762859 t22 − 857663 t21 − 19328175 t20−
18270421 t19 + 4914903 t18 + 22483044 t17 + 12926517 t16 − 8605511 t15−
17455518 t14 − 5014597 t13 + 8108814 t12 + 8465535 t11 + 190542 t10−
4305624 t9 − 2226123 t8 + 661905 t7 + 1169775 t6 + 226260 t5−
209952 t4 − 141183 t3 + 27216 t,(
3 z + 3 t3 − 3

)
y2 +

(
3 z2 +

(
6 t3 − 6

)
z + 3 t6 − 6 t3 + 3

)
y +

(
3 t3 − 3

)
z2+(

3 t6 − 6 t3 + 3
)
z + t9 − 3 t6 + 5 t3 − 3 t, x+ y + z + t3 − 1

}
,{

t, z − 1, y2 − 1, x+ y
}
,
{
t− 1, z, y2 − 1, x+ y

}
,
{
t− 1, z2 − 1, z y + 1, x

}
,{

t16 − 6 t13 + 9 t10 + 4 t7 + 15 t4 − 54 t2 + 27,(
4907232 t29 + 40893984 t28 − 115013088 t27 − 1730448 t26 − 168139584 t25+
738024480 t24 − 195372288 t23 + 315849456 t22 − 2567279232 t21+
937147968 t20 + 1026357696 t19 + 4780488240 t18 − 2893767696 t17−
5617160352 t16 − 3427651728 t15 + 5001100848 t14 + 8720098416 t13+
2331732960 t12 − 499046544 t11 − 16243306272 t10 − 9748123200 t9+
3927244320 t8 + 25257280896 t7 + 10348032096 t6 − 17128672128 t5−
14755488768 t4 + 544086720 t3 + 10848188736 t2 + 1423614528 t−
2884297248) z−

48 t68 + 1152 t65 − 13560 t62 + 360 t60 + 103656 t59 − 7560 t57 − 572820 t56+
71316 t54 + 2414556 t53 + 2736 t52 − 402876 t51 − 7985131 t50 − 49248 t49+
1431133 t48 + 20977409 t47 + 521487 t46 − 2697635 t45 − 43763654 t44−
3756573 t43 − 2093410 t42 + 71546495 t41 + 19699032 t40 + 35025028 t39−
89623786 t38 − 77798760 t37 − 138654191 t36 + 87596128 t35 + 235642497 t34+
349607642 t33 − 93299834 t32 − 551563167 t31 − 630995176 t30+
186818962 t29 + 995427468 t28 + 828416204 t27 − 393919231 t26−
1076617485 t25 − 1609479791 t24 + 595738126 t23 + 1198787136 t22+
4342832069 t21 − 2075938757 t20 − 4390835799 t19 − 4822843033 t18+
6932747678 t17 + 6172196808 t16 + 1141517740 t15 − 4981677585 t14−
9819815280 t13 − 7404299976 t12 − 157295760 t11 + 29124027630 t10+
14856038208 t9 − 16184101410 t8 − 26935440354 t7 − 3574164258 t6+
10271338974 t5 + 11191425264 t4 + 6869861262 t3 − 9780477840 t2−
3586674168 t+ 2884297248,
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3 z3 +

(
6 t3 − 6

)
z2 +

(
6 t6 − 12 t3 + 3

)
z + 2 t9 − 6 t6 + t3 + 3 t

)
y +(

3 t3 − 3
)
z3 +

(
6 t6 − 12 t3 + 6

)
z2 +

(
4 t9 − 12 t6 + 11 t3 − 3

)
z+

t12 − 4 t9 + 5 t6 − 2 t3, x+ y + z + t3 − 1
}
,{

t− 1, z2 − 1, y, x+ z
}
,
{
t8 + t7 + t6 − 2 t5 − 2 t4 − 2 t3 + 19 t2 + 19 t− 8,(

2395770 t7 + 3934440 t6 − 3902067 t5 − 10084164 t4 − 1010448 t3 + 32386932 t2+

22413225 t− 10432368) z − 463519 t7 + 3586833 t6 + 9494955 t5 − 8539305 t4−

33283098 t3 + 35479377 t2 + 46263256 t− 17419896,(
3 z4 +

(
9 t3 − 9

)
z3 +

(
12 t6 − 24 t3 + 9

)
z2 +

(
−152 t3 + 219 t− 67

)
z−

41 t6 + 57 t4 + 25 t3 − 57 t+ 16
)
y +

(
3 t3 − 3

)
z4 +

(
9 t6 − 18 t3 + 9

)
z3+(

−181 t3 + 270 t− 89
)
z2 +

(
−92 t6 + 135 t4 + 49 t3 − 135 t+ 43

)
z+

27 t7 − 27 t6 − 54 t4 + 396 t3 − 486 t+ 144, x+ y + z + t3 − 1
}
,{

t, z − t3 + 1, y − 1, x− 1
}
, {t− 1, z, y, x}, {t, z − 1, y, x}, {t, z, y − 1, x},

{t, z, y, x− 1}]

Type: List RegularChain(Integer,[x,y,z,t])

Then we compute a univariate representation.

univariateSolve(lf)$pack



9.105. ZERODIMENSIONALSOLVEPACKAGE 857

[[complexRoots =?, coordinates = [x− 1, y − 1, z + 1, t−%A]],
[complexRoots =?, coordinates = [x, y − 1, z, t−%A]],
[complexRoots = ?− 1, coordinates = [x, y, z, t−%A]],
[complexRoots =?, coordinates = [x− 1, y, z, t−%A]],
[complexRoots =?, coordinates = [x, y, z − 1, t−%A]],
[complexRoots = ?− 2, coordinates = [x− 1, y + 1, z, t− 1]],
[complexRoots =?, coordinates = [x+ 1, y − 1, z, t− 1]],
[complexRoots = ?− 1, coordinates = [x− 1, y + 1, z − 1, t]],
[complexRoots = ? + 1, coordinates = [x+ 1, y − 1, z − 1, t]],[
complexroots = ?6 − 2 ?3 + 3 ?2 − 3, coordinates =

[
2 x+%A3 +%A− 1,

2 y +%A3 +%A− 1, z −%A, t−%A
]]
,[

complexRoots = ?5 + 3 ?3 − 2 ?2 + 3 ?− 3, coordinates = [x−%A,
y −%A, z +%A3 + 2 %A− 1, t−%A

]]
,[

complexRoots = ?4 − ?3 − 2 ?2 + 3, coordinates =
[
x+%A3 −%A− 1,

y +%A3 −%A− 1, z −%A3 + 2 %A+ 1, t−%A
]]
,

[complexRoots = ? + 1, coordinates = [x− 1, y − 1, z, t−%A]] ,[
complexRoots = ?6 + 2 ?3 + 3 ?2 − 3, coordinates =

[
2 x−%A3 −%A− 1,

y +%A, 2 z −%A3 −%A− 1, t+%A
]]
,[

complexRoots = ?6 + 12 ?4 + 20 ?3 − 45 ?2 − 42 ?− 953, coordinates =[
12609 x+ 23 %A5 + 49 %A4 − 46 %A3 + 362 %A2 − 5015 %A− 8239,

25218 y + 23 %A5 + 49 %A4 − 46 %A3 + 362 %A2 + 7594 %A− 8239,
25218 z + 23 %A5 + 49 %A4 − 46 %A3 + 362 %A2 + 7594 %A− 8239,
12609 t+ 23 %A5 + 49 %A4 − 46 %A3 + 362 %A2 − 5015 %A− 8239

]]
,[

complexRoots = ?5 + 12 ?3 − 16 ?2 + 48 ?− 96, coordinates =
[
8 x+%A3+

8 %A− 8, 2 y −%A, 2 z −%A, 2 t−%A]] ,[
complexRoots = ?5 + ?4 − 5 ?3 − 3 ?2 + 9 ? + 3, coordinates =

[
2 x−%A3+

2 %A− 1, 2 y +%A3 − 4 %A+ 1, 2 z −%A3 + 2 %A− 1, 2 t−%A3 + 2 %A− 1
]]
,[

complexRoots = ?4 − 3 ?3 + 4 ?2 − 6 ? + 13, coordinates =
[
9 x− 2 %A3+

4 %A2 −%A+ 2, 9 y +%A3 − 2 %A2 + 5 %A− 1, 9 z +%A3 − 2 %A2+
5 %A− 1, 9 t+%A3 − 2 %A2 − 4 %A− 1

]]
,[

complexRoots = ?4 − 11 ?2 + 37, coordinates =
[
3 x−%A2 + 7, 6 y +%A2+

3 %A− 7, 3 z −%A2 + 7, 6 t+%A2 − 3 %A− 7
]]
,

[complexRoots = ? + 1, coordinates = [x− 1, y, z − 1, t+ 1]],
[complexRoots = ? + 2, coordinates = [x, y − 1, z − 1, t+ 1]],
[complexRoots = ?− 2, coordinates = [x, y − 1, z + 1, t− 1]],
[complexRoots =?, coordinates = [x, y + 1, z − 1, t− 1]],
[complexRoots = ?− 2, coordinates = [x− 1, y, z + 1, t− 1]],
[complexRoots =?, coordinates = [x+ 1, y, z − 1, t− 1]],[
complexRoots = ?4 + 5 ?3 + 16 ?2 + 30 ? + 57, coordinates =

[
151 x+ 15 %A3+

54 %A2 + 104 %A+ 93, 151 y − 10 %A3 − 36 %A2 − 19 %A− 62,
151 z − 5 %A3 − 18 %A2 − 85 %A− 31, 151 t− 5 %A3 − 18 %A2 − 85 %A− 31

]]
,[

complexRoots = ?4 − ?3 − 2 ?2 + 3, coordinates =
[
x−%A3 + 2 %A+ 1,

y +%A3 −%A− 1, z −%A, t+%A3 −%A− 1
]]
,[

complexRoots = ?4 + 2 ?3 − 8 ?2 + 48, coordinates =
[
8 x−%A3 + 4 %A− 8,

2 y +%A, 8 z +%A3 − 8 %A+ 8, 8 t−%A3 + 4 %A− 8
]]
,[

complexRoots = ?5 + ?4 − 2 ?3 − 4 ?2 + 5 ? + 8,
coordinates =

[
3 x+%A3 − 1, 3 y +%A3 − 1, 3 z +%A3 − 1, t−%A

]]
,[

complexRoots = ?3 + 3 ?− 1, coordinates = [x−%A, y −%A, z −%A, t−%A]
]]
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Type: List Record( complexRoots: SparseUnivariatePolynomial Integer,

coordinates: List Polynomial Integer)

Note that this computation is made from the input system lf.

However it is possible to reuse a pre-computed regular chain as follows:

ts := lts.1{
t2 + t+ 1, z3 − z − t3 + t,(
3 z + 3 t3 − 3

)
y2 +

(
3 z2 +

(
6 t3 − 6

)
z + 3 t6 − 6 t3 + 3

)
y+(

3 t3 − 3
)
z2 +

(
3 t6 − 6 t3 + 3

)
z + t9 − 3 t6 + 5 t3 − 3 t, x+ y + z

}
Type: RegularChain(Integer,[x,y,z,t])

univariateSolve(ts)$pack

[[
complexRoots = ?4 + 5 ?3 + 16 ?2 + 30 ? + 57, p

coordinates =
[
151 x+ 15 %A3 + 54 %A2 + 104 %A+ 93,

151 y − 10 %A3 − 36 %A2 − 19 %A− 62,
151 z − 5 %A3 − 18 %A2 − 85 %A− 31,
151 t− 5 %A3 − 18 %A2 − 85 %A− 31

]]
,[

complexRoots = ?4 − ?3 − 2 ?2 + 3,
coordinates =

[
x−%A3 + 2 %A+ 1, y +%A3 −%A− 1,

z −%A, t+%A3 −%A− 1
]]
,[

complexRoots = ?4 + 2 ?3 − 8 ?2 + 48,
coordinates =

[
8 x−%A3 + 4 %A− 8, 2 y +%A,

8 z +%A3 − 8 %A+ 8, 8 t−%A3 + 4 %A− 8
]]]

Type: List Record( complexRoots: SparseUnivariatePolynomial Integer,

coordinates: List Polynomial Integer)

realSolve(ts)$pack

[]

Type: List List RealClosure Fraction Integer

We compute now the full set of points with real coordinates:
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lr2 := realSolve(lf)$pack

[[0,−1, 1, 1], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0],

[1, 0,%B37,−%B37], [1, 0,%B38,−%B38],

[0, 1,%B35,−%B35], [0, 1,%B36,−%B36], [−1, 0, 1, 1],[
%B32, 1

27 %B32
15

+ 2
27 %B32

14
+ 1

27 %B32
13 − 4

27 %B32
12 − 11

27 %B32
11−

4

27
%B32

10
+

1

27
%B32

9
+

14

27
%B32

8
+

1

27
%B32

7
+

2

9
%B32

6
+

1

3
%B32

5
+

2

9
%B32

4
+%B32

3
+

4

3
%B32

2 −%B32− 2,

− 1
54 %B32

15 − 1
27 %B32

14 − 1
54 %B32

13
+ 2

27 %B32
12

+ 11
54 %B32

11
+

2

27
%B32

10 − 1

54
%B32

9 − 7

27
%B32

8 − 1

54
%B32

7 − 1

9
%B32

6−

1

6
%B32

5 − 1

9
%B32

4 −%B32
3 − 2

3
%B32

2
+

1

2
%B32 +

3

2
,

− 1
54 %B32

15 − 1
27 %B32

14 − 1
54 %B32

13
+ 2

27 %B32
12

+ 11
54 %B32

11
+

2

27
%B32

10 − 1

54
%B32

9 − 7

27
%B32

8 − 1

54
%B32

7 − 1

9
%B32

6−

1

6
%B32

5 − 1

9
%B32

4 −%B32
3 − 2

3
%B32

2
+

1

2
%B32 +

3

2

]
,[

%B33, 1
27 %B33

15
+ 2

27 %B33
14

+ 1
27 %B33

13 − 4
27 %B33

12 − 11
27 %B33

11−

4

27
%B33

10
+

1

27
%B33

9
+

14

27
%B33

8
+

1

27
%B33

7
+

2

9
%B33

6
+

1

3
%B33

5
+

2

9
%B33

4
+%B33

3
+

4

3
%B33

2 −%B33− 2,

− 1
54 %B33

15 − 1
27 %B33

14 − 1
54 %B33

13
+ 2

27 %B33
12

+ 11
54 %B33

11
+

2

27
%B33

10 − 1

54
%B33

9 − 7

27
%B33

8 − 1

54
%B33

7 − 1

9
%B33

6−

1

6
%B33

5 − 1

9
%B33

4 −%B33
3 − 2

3
%B33

2
+

1

2
%B33 +

3

2
,
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− 1
54 %B33

15 − 1
27 %B33

14 − 1
54 %B33

13
+ 2

27 %B33
12

+ 11
54 %B33

11
+

2

27
%B33

10 − 1

54
%B33

9 − 7

27
%B33

8 − 1

54
%B33

7 − 1

9
%B33

6−

1

6
%B33

5 − 1

9
%B33

4 −%B33
3 − 2

3
%B33

2
+

1

2
%B33 +

3

2

]
,[

%B34, 1
27 %B34

15
+ 2

27 %B34
14

+ 1
27 %B34

13 − 4
27 %B34

12 − 11
27 %B34

11−

4

27
%B34

10
+

1

27
%B34

9
+

14

27
%B34

8
+

1

27
%B34

7
+

2

9
%B34

6
+

1

3
%B34

5
+

2

9
%B34

4
+%B34

3
+

4

3
%B34

2 −%B34− 2,

− 1
54 %B34

15 − 1
27 %B34

14 − 1
54 %B34

13
+ 2

27 %B34
12

+ 11
54 %B34

11
+

2

27
%B34

10 − 1

54
%B34

9 − 7

27
%B34

8 − 1

54
%B34

7 − 1

9
%B34

6−

1

6
%B34

5 − 1

9
%B34

4 −%B34
3 − 2

3
%B34

2
+

1

2
%B34 +

3

2
,

− 1
54 %B34

15 − 1
27 %B34

14 − 1
54 %B34

13
+ 2

27 %B34
12

+ 11
54 %B34

11
+

2

27
%B34

10 − 1

54
%B34

9 − 7

27
%B34

8 − 1

54
%B34

7 − 1

9
%B34

6−

1

6
%B34

5 − 1

9
%B34

4 −%B34
3 − 2

3
%B34

2
+

1

2
%B34 +

3

2

]
,

[−1, 1, 0, 1], [−1, 1, 1, 0],[
%B23,− 1

54
%B23

15 − 1

27
%B23

14 − 1

54
%B23

13
+

2

27
%B23

12
+

11

54
%B23

11
+

2

27
%B23

10 − 1

54
%B23

9 − 7

27
%B23

8 − 1

54
%B23

7 − 1

9
%B23

6−

1

6
%B23

5 − 1

9
%B23

4 −%B23
3 − 2

3
%B23

2
+

1

2
%B23 +

3

2
,

%B30,−%B30 + 1
54 %B23

15
+ 1

27 %B23
14

+ 1
54 %B23

13 − 2
27 %B23

12 − 11
54 %B23

11−

2

27
%B23

10
+

1

54
%B23

9
+

7

27
%B23

8
+

1

54
%B23

7
+

1

9
%B23

6
+

1

6
%B23

5
+

1

9
%B23

4
+

2

3
%B23

2 − 1

2
%B23− 1

2

]
,
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%B23,− 1

54 %B23
15 − 1

27 %B23
14 − 1

54 %B23
13

+ 2
27 %B23

12
+ 11

54 %B23
11
+

2

27
%B23

10 − 1

54
%B23

9 − 7

27
%B23

8 − 1

54
%B23

7 − 1

9
%B23

6−

1

6
%B23

5 − 1

9
%B23

4 −%B23
3 − 2

3
%B23

2
+

1

2
%B23 +

3

2
,

%B31,−%B31 + 1
54 %B23

15
+ 1

27 %B23
14

+ 1
54 %B23

13 − 2
27 %B23

12−

11

54
%B23

11 − 2

27
%B23

10
+

1

54
%B23

9
+

7

27
%B23

8
+

1

54
%B23

7
+

1

9
%B23

6
+

1

6
%B23

5
+

1

9
%B23

4
+

2

3
%B23

2 − 1

2
%B23− 1

2

]
,[

%B24,− 1
54 %B24

15 − 1
27 %B24

14 − 1
54 %B24

13
+ 2

27 %B24
12

+ 11
54 %B24

11
+

2

27
%B24

10 − 1

54
%B24

9 − 7

27
%B24

8 − 1

54
%B24

7 − 1

9
%B24

6−

1

6
%B24

5 − 1

9
%B24

4 −%B24
3 − 2

3
%B24

2
+

1

2
%B24 +

3

2
,

%B28,−%B28 + 1
54 %B24

15
+ 1

27 %B24
14

+ 1
54 %B24

13 − 2
27 %B24

12 − 11
54 %B24

11−

2

27
%B24

10
+

1

54
%B24

9
+

7

27
%B24

8
+

1

54
%B24

7
+

1

9
%B24

6
+

1

6
%B24

5
+

1

9
%B24

4
+

2

3
%B24

2 − 1

2
%B24− 1

2

]
,[

%B24,− 1
54 %B24

15 − 1
27 %B24

14 − 1
54 %B24

13
+ 2

27 %B24
12

+ 11
54 %B24

11
+

2

27
%B24

10 − 1

54
%B24

9 − 7

27
%B24

8 − 1

54
%B24

7 − 1

9
%B24

6−

1

6
%B24

5 − 1

9
%B24

4 −%B24
3 − 2

3
%B24

2
+

1

2
%B24 +

3

2
,

%B29,−%B29 + 1
54 %B24

15
+ 1

27 %B24
14

+ 1
54 %B24

13 − 2
27 %B24

12 − 11
54 %B24

11−

2

27
%B24

10
+

1

54
%B24

9
+

7

27
%B24

8
+

1

54
%B24

7
+

1

9
%B24

6
+

1

6
%B24

5
+

1

9
%B24

4
+

2

3
%B24

2 − 1

2
%B24− 1

2

]
,
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%B25,− 1

54 %B25
15 − 1

27 %B25
14 − 1

54 %B25
13

+ 2
27 %B25

12
+ 11

54 %B25
11
+

2

27
%B25

10 − 1

54
%B25

9 − 7

27
%B25

8 − 1

54
%B25

7 − 1

9
%B25

6−

1

6
%B25

5 − 1

9
%B25

4 −%B25
3 − 2

3
%B25

2
+

1

2
%B25 +

3

2
,

%B26,−%B26 + 1
54 %B25

15
+ 1

27 %B25
14

+ 1
54 %B25

13 − 2
27 %B25

12 − 11
54 %B25

11−

2

27
%B25

10
+

1

54
%B25

9
+

7

27
%B25

8
+

1

54
%B25

7
+

1

9
%B25

6
+

1

6
%B25

5
+

1

9
%B25

4
+

2

3
%B25

2 − 1

2
%B25− 1

2

]
,[

%B25,− 1
54 %B25

15 − 1
27 %B25

14 − 1
54 %B25

13
+ 2

27 %B25
12

+ 11
54 %B25

11
+

2

27
%B25

10 − 1

54
%B25

9 − 7

27
%B25

8 − 1

54
%B25

7 − 1

9
%B25

6−

1

6
%B25

5 − 1

9
%B25

4 −%B25
3 − 2

3
%B25

2
+

1

2
%B25 +

3

2
,

%B27,−%B27 + 1
54 %B25

15
+ 1

27 %B25
14

+ 1
54 %B25

13 − 2
27 %B25

12 − 11
54 %B25

11−

2

27
%B25

10
+

1

54
%B25

9
+

7

27
%B25

8
+

1

54
%B25

7
+

1

9
%B25

6
+

1

6
%B25

5
+

1

9
%B25

4
+

2

3
%B25

2 − 1

2
%B25− 1

2

]
,

[1,%B21,−%B21, 0], [1,%B22,−%B22, 0], [1,%B19, 0,−%B19], [1,%B20, 0,−%B20],[
%B17,−1

3
%B17

3
+

1

3
,−1

3
%B17

3
+

1

3
,−1

3
%B17

3
+

1

3

]
,

[
%B18,−1

3
%B18

3
+

1

3
,−1

3
%B18

3
+

1

3
,−1

3
%B18

3
+

1

3

]]
Type: List List RealClosure Fraction Integer

The number of real solutions for the input system is:

#lr2

27
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Type: PositiveInteger

Another example of computation of real solutions illustrates the LexTriangularPackage

package constructor.

We concentrate now on the solutions with real (strictly) positive coordinates:

lpr2 := positiveSolve(lf)$pack

[[
%B40,−1

3
%B40

3
+

1

3
,−1

3
%B40

3
+

1

3
,−1

3
%B40

3
+

1

3

]]
Type: List List RealClosure Fraction Integer

Finally, we approximate the coordinates of this point with 20 exact digits:

[approximate(r,1/10**21)::Float for r in lpr2.1]

[0.3221853546 2608559291, 0.3221853546 2608559291,
0.3221853546 2608559291, 0.32218535462608559291]

Type: List Float
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Chapter 10

Interactive Programming

Programming in the interpreter is easy. So is the use of Axiom’s graphics facility. Both are
rather flexible and allow you to use them for many interesting applications. However, both
require learning some basic ideas and skills.

All graphics examples in the gallery section are either produced directly by interactive com-
mands or by interpreter programs. Four of these programs are introduced here. By the end
of this chapter you will know enough about graphics and programming in the interpreter to
not only understand all these examples, but to tackle interesting and difficult problems on
your own. The appendix on graphics lists all the remaining commands and programs used
to create these images.

10.1 Drawing Ribbons Interactively

We begin our discussion of interactive graphics with the creation of a useful facility: plotting
ribbons of two-graphs in three-space. Suppose you want to draw the two-dimensional graphs
of n functions fi(x), 1 ≤ i ≤ n, all over some fixed range of x. One approach is to create a
two-dimensional graph for each one, then superpose one on top of the other. What you will
more than likely get is a jumbled mess. Even if you make each function a different color, the
result is likely to be confusing.

A better approach is to display each of the fi(x) in three dimensions as a “ribbon” of some
appropriate width along the y-direction, laying down each ribbon next to the previous one.
A ribbon is simply a function of x and y depending only on x.

We illustrate this for fi(x) defined as simple powers of x for x ranging between −1 and 1.

Draw the ribbon for z = x2.

draw(x**2,x=-1..1,y=0..1)

865
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x2, x = −1..1, y = 0..1

Now that was easy! What you get is a “wire-mesh” rendition of the ribbon. That’s fine for
now. Notice that the mesh-size is small in both the x and the y directions. Axiom normally
computes points in both these directions. This is unnecessary. One step is all we need in
the y-direction. To have Axiom economize on y-points, we re-draw the ribbon with option
var2Steps == 1.

Re-draw the ribbon, but with option var2Steps == 1 so that only 1 step is computed in the
y direction.

vp := draw(x**2,x=-1..1,y=0..1,var2Steps==1)

x2, x = −1..1, y = 0..1, var2Steps == 1

The operation has created a viewport, that is, a graphics window on your screen. We assigned
the viewport to vp and now we manipulate its contents.

Graphs are objects, like numbers and algebraic expressions. You may want to do some
experimenting with graphs. For example, say

showRegion(vp, "on")

to put a bounding box around the ribbon. Try it! Issue rotate(vp,−45, 90) to rotate the
figure −45 longitudinal degrees and 90 latitudinal degrees.
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Here is a different rotation. This turns the graph so you can view it along the y-axis.

rotate(vp, 0, -90)

rotate(vp, 0,−90)
There are many other things you can do. In fact, most everything you can do interactively
using the three-dimensional control panel (such as translating, zooming, resizing, coloring,
perspective and lighting selections) can also be done directly by operations (see section 7 on
page 217 for more details).

When you are done experimenting, say reset(vp) to restore the picture to its original position
and settings.

Let’s add another ribbon to our picture—one for x3. Since y ranges from 0 to 1 for the first
ribbon, now let y range from 1 to 2. This puts the second ribbon next to the first one.

How do you add a second ribbon to the viewport? One method is to extract the “space”
component from the viewport using the operation subspace. You can think of the space
component as the object inside the window (here, the ribbon). Let’s call it sp. To add the
second ribbon, you draw the second ribbon using the option space == sp.

Extract the space component of vp.

sp := subspace(vp)

Add the ribbon for x3 alongside that for x2.

vp := draw(x**3,x=-1..1,y=1..2,var2Steps==1, space==sp)
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x3, x = −1..1, y = 1..2, var2Steps == 1, space == sp

Unless you moved the original viewport, the new viewport covers the old one. You might
want to check that the old object is still there by moving the top window.

Let’s show quadrilateral polygon outlines on the ribbons and then enclose the ribbons in a
box.

Show quadrilateral polygon outlines.

drawStyle(vp,"shade");outlineRender(vp,"on")

drawStyle(vp, ”shade”); outlineRender(vp, ”on”)

Enclose the ribbons in a box.

rotate(vp,20,-60); showRegion(vp,"on")
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rotate(vp, 20,−60); showRegion(vp, ”on”)
This process has become tedious! If we had to add two or three more ribbons, we would
have to repeat the above steps several more times. It is time to write an interpreter program
to help us take care of the details.
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drawRibbons(flist, xrange) ==

sp := createThreeSpace() Create empty space $sp$.

y0 := 0 The initial ribbon position.

for f in flist repeat For each function $f$,

makeObject(f, xrange, y=y0..y0+1, create and add a ribbon

space==sp, var2Steps == 1) for $f$ to the space $sp$.

y0 := y0 + 1 The next ribbon position.

vp := makeViewport3D(sp, "Ribbons") Create viewport.

drawStyle(vp, "shade") Select shading style.

outlineRender(vp, "on") Show polygon outlines.

showRegion(vp,"on") Enclose in a box.

n := # flist The number of ribbons

zoom(vp,n,1,n) Zoom in x- and z-directions.

rotate(vp,0,75) Change the angle of view.

vp Return the viewport.

Figure 10.1: The first drawRibbons function.

10.2 A Ribbon Program

The above approach creates a new viewport for each additional ribbon. A better approach
is to build one object composed of all ribbons before creating a viewport. To do this, use
makeObject rather than draw. The operations have similar formats, but draw returns a
viewport and makeObject returns a space object.

We now create a function drawRibbons of two arguments: flist, a list of formulas for the
ribbons you want to draw, and xrange, the range over which you want them drawn. Using
this function, you can just say

drawRibbons([x**2, x**3], x=-1..1)

to do all of the work required in the last section. Here is the drawRibbons program. Invoke
your favorite editor and create a file called ribbon.input containing the following program.

Here are some remarks on the syntax used in the drawRibbons function (consult sec-
tion 6 on page 153 for more details). Unlike most other programming languages which use
semicolons, parentheses, or begin–end brackets to delineate the structure of programs, the
structure of an Axiom program is determined by indentation. The first line of the function
definition always begins in column 1. All other lines of the function are indented with respect
to the first line and form a pile (see section 5.2 on page 123).

The definition of drawRibbons consists of a pile of expressions to be executed one after
another. Each expression of the pile is indented at the same level. Lines 4-7 designate one
single expression: since lines 5-7 are indented with respect to the others, these lines are
treated as a continuation of line 4. Also since lines 5 and 7 have the same indentation level,
these lines designate a pile within the outer pile.
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The last line of a pile usually gives the value returned by the pile. Here it is also the value
returned by the function. Axiom knows this is the last line of the function because it is the
last line of the file. In other cases, a new expression beginning in column one signals the end
of a function.

The line drawStyle(vp,"shade") is given after the viewport has been created to select the
draw style. We have also used the zoom option. Without the zoom, the viewport region
would be scaled equally in all three coordinate directions.

Let’s try the function drawRibbons. First you must read the file to give Axiom the function
definition.

Read the input file.

)read ribbon

Draw ribbons for x, x2, . . . , x5 for −1 ≤ x ≤ 1

drawRibbons([x**i for i in 1..5],x=-1..1)

[xirm for i in 1..5], x = −1..1

10.3 Coloring and Positioning Ribbons

Before leaving the ribbon example, we make two improvements. Normally, the color given
to each point in the space is a function of its height within a bounding box. The points at
the bottom of the box are red, those at the top are purple.

To change the normal coloring, you can give an option colorFunction == function. When
Axiom goes about displaying the data, it determines the range of colors used for all points
within the box. Axiom then distributes these numbers uniformly over the number of hues.
Here we use the simple color function (x, y) 7→ i for the i-th ribbon.

Also, we add an argument yrange so you can give the range of y occupied by the ribbons.
For example, if the yrange is given as y = 0..1 and there are 5 ribbons to be displayed, each
ribbon would have width 0.2 and would appear in the range 0 ≤ y ≤ 1.
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drawRibbons(flist, xrange, yrange) ==

sp := createThreeSpace() Create empty space $sp$.

num := # flist The number of ribbons.

yVar := variable yrange The ribbon variable.

y0:Float := lo segment yrange The first ribbon coordinate.

width:Float := (hi segment yrange - y0)/num The width of a ribbon.

for f in flist for color in 1..num repeat For each function $f$,

makeObject(f, xrange, yVar = y0..y0+width, create and add ribbon to

var2Steps == 1, colorFunction == (x,y) +-> color, _

space == sp) $sp$ of a different color.

y0 := y0 + width The next ribbon coordinate.

vp := makeViewport3D(sp, "Ribbons") Create viewport.

drawStyle(vp, "shade") Select shading style.

outlineRender(vp, "on") Show polygon outlines.

showRegion(vp, "on") Enclose in a box.

vp Return the viewport.

Figure 10.2: The final drawRibbons function.

Refer to lines 4-9. Line 4 assigns to yV ar the variable part of the yrange (after all, it need
not be y). Suppose that yrange is given as t = a..b where a and b have numerical values.
Then line 5 assigns the value of a to the variable y0. Line 6 computes the width of the ribbon
by dividing the difference of a and b by the number, num, of ribbons. The result is assigned
to the variable width. Note that in the for-loop in line 7, we are iterating in parallel; it is
not a nested loop.

10.4 Points, Lines, and Curves

What you have seen so far is a high-level program using the graphics facility. We now turn
to the more basic notions of points, lines, and curves in three-dimensional graphs. These
facilities use small floats (objects of type DoubleFloat) for data. Let us first give names to
the small float values 0 and 1.

The small float 0.

zero := 0.0@DFLOAT

The small float 1.

one := 1.0@DFLOAT

The @ sign means “of the type.” Thus zero is 0.0 of the type DoubleFloat. You can also
say 0.0 :: DFLOAT .
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Points can have four small float components: x, y, z coordinates and an optional color. A
“curve” is simply a list of points connected by straight line segments.

Create the point origin with color zero, that is, the lowest color on the color map.

origin := point [zero,zero,zero,zero]

Create the point unit with color zero.

unit := point [one,one,one,zero]

Create the curve (well, here, a line) from origin to unit.

line := [origin, unit]

We make this line segment into an arrow by adding an arrowhead. The arrowhead extends
to, say, p3 on the left, and to, say, p4 on the right. To describe an arrow, you tell Axiom
to draw the two curves [p1, p2, p3] and [p2, p4]. We also decide through experimentation on
values for arrowScale, the ratio of the size of the arrowhead to the stem of the arrow, and
arrowAngle, the angle between the arrowhead and the arrow.

Invoke your favorite editor and create an input file called arrows.input.

This input file first defines the values of arrowAngle and arrowScale, then defines the
function makeArrow(p1, p2) to draw an arrow from point p1 to p2.

arrowAngle := %pi-%pi/10.0@DFLOAT The angle of the arrowhead.

arrowScale := 0.2@DFLOAT The size of the arrowhead

relative to the stem.

makeArrow(p1, p2) ==

delta := p2 - p1 The arrow.

len := arrowScale * length delta length of the arrowhead.

theta := atan(delta.1, delta.2) angle from the x-axis

c1 := len*cos(theta + arrowAngle) x-coord of left endpoint

s1 := len*sin(theta + arrowAngle) y-coord of left endpoint

c2 := len*cos(theta - arrowAngle) x-coord of right endpoint

s2 := len*sin(theta - arrowAngle) y-coord of right endpoint

z := p2.3*(1 - arrowScale) z-coord of both endpoints

p3 := point [p2.1 + c1, p2.2 + s1, z, p2.4] left endpoint of head

p4 := point [p2.1 + c2, p2.2 + s2, z, p2.4] right endpoint of head

[ [p1, p2, p3], [p2, p4] ] arrow as a list of curves

Read the file and then create an arrow from the point origin to the point unit.

Read the input file defining makeArrow.
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)read arrows

Construct the arrow (a list of two curves).

arrow := makeArrow(origin,unit)

[[[0.0, 0.0, 0.0, 0.0] , [1.0, 1.0, 1.0, 1.0] ,

[0.69134628604607973, 0.842733077659504, 0.80000000000000004, 0.0]] ,

[[1.0, 1.0, 1.0, 1.0] , [0.842733077659504, 0.69134628604607973, 0.80000000000000004, 0.0]]]

Type: List List Point DoubleFloat

Create an empty object sp of type ThreeSpace.

sp := createThreeSpace()

Type: ThreeSpace DoubleFloat

Add each curve of the arrow to the space sp.

for a in arrow repeat sp := curve(sp,a)

Type: Void

Create a three-dimensional viewport containing that space.

vp := makeViewport3D(sp,"Arrow")

makeV iewport3D(sp, ”Arrow”)

Here is a better viewing angle.
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rotate(vp,200,-60)

rotate(vp, 200,−60)

10.5 A Bouquet of Arrows

Let’s draw a “bouquet” of arrows. Each arrow is identical. The arrowheads are uniformly
placed on a circle parallel to the xy-plane. Thus the position of each arrow differs only by
the angle θ, 0 ≤ θ < 2π, between the arrow and the x-axis on the xy-plane.

Our bouquet is rather special: each arrow has a different color (which won’t be evident here,
unfortunately). This is arranged by letting the color of each successive arrow be denoted by
θ. In this way, the color of arrows ranges from red to green to violet. Here is a program to
draw a bouquet of n arrows.

drawBouquet(n,title) ==

angle := 0.0@DFLOAT The initial angle

sp := createThreeSpace() Create empty space $sp$

for i in 0..n-1 repeat For each index i, create:

start := point [0.0@DFLOAT,0.0@DFLOAT,0.0@DFLOAT,angle]

the point at base of arrow;

end := point [cos angle, sin angle, 1.0@DFLOAT, angle]

the point at tip of arrow;

arrow := makeArrow(start,end) the $i$th arrow

for a in makeArrow(start,end) repeat For each arrow component,

curve(sp,a) add the component to $sp$

angle := angle + 2*%pi/n The next angle

makeViewport3D(sp,title) Create the viewport from $sp$

Read the input file.

)read bouquet
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A bouquet of a dozen arrows.

drawBouquet(12,"A Dozen Arrows")

drawBouquet(12, ”A Dozen Arrows”)

10.6 Diversion: When Things Go Wrong

10.7 Drawing Complex Vector Fields

We now put our arrows to good use drawing complex vector fields. These vector fields give
a representation of complex-valued functions of complex variables. Consider a Cartesian
coordinate grid of points (x, y) in the plane, and some complex-valued function f defined on
this grid. At every point on this grid, compute the value of f(x+ iy) and call it z. Since z
has both a real and imaginary value for a given (x, y) grid point, there are four dimensions
to plot. What do we do? We represent the values of z by arrows planted at each grid point.
Each arrow represents the value of z in polar coordinates (r, θ). The length of the arrow is
proportional to r. Its direction is given by θ.

The code for drawing vector fields is in the file vectors.input. We discuss its contents from
top to bottom.

Before showing you the code, we have two small matters to take care of. First, what if the
function has large spikes, say, ones that go off to infinity? We define a variable clipV alue
for this purpose. When r exceeds the value of clipV alue, then the value of clipV alue is used
instead of that for r. For convenience, we define a function clipFun(x) which uses clipV alue
to “clip” the value of x.

clipValue : DFLOAT := 6 Maximum value allowed

clipFun(x) == min(max(x,-clipValue),clipValue)
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Notice that we identify clipV alue as a small float but do not declare the type of the function
clipFun. As it turns out, clipFun is called with a small float value. This declaration ensures
that clipFun never does a conversion when it is called.

The second matter concerns the possible “poles” of a function, the actual points where the
spikes have infinite values.

Axiom uses normal DoubleFloat arithmetic which does not directly handle infinite values.
If your function has poles, you must adjust your step size to avoid landing directly on them
(Axiom calls error when asked to divide a value by 0, for example).

We set the variables realSteps and imagSteps to hold the number of steps taken in the real
and imaginary directions, respectively. Most examples will have ranges centered around the
origin. To avoid a pole at the origin, the number of points is taken to be odd.

realSteps: INT := 25 Number of real steps

imagSteps: INT := 25 Number of imaginary steps

)read arrows

Now define the function drawComplexVectorField to draw the arrows. It is good practice
to declare the type of the main function in the file. This one declaration is usually sufficient
to ensure that other lower-level functions are compiled with the correct types.

C := Complex DoubleFloat

S := Segment DoubleFloat

drawComplexVectorField: (C -> C, S, S) -> VIEW3D

The first argument is a function mapping complex small floats into complex small floats.
The second and third arguments give the range of real and imaginary values as segments
like a..b. The result is a three-dimensional viewport. Here is the full function definition:

drawComplexVectorField(f, realRange,imagRange) ==

-- The real step size

delReal := (hi(realRange)-lo(realRange))/realSteps

-- The imaginary step size

delImag := (hi(imagRange)-lo(imagRange))/imagSteps

sp := createThreeSpace() Create empty space $sp$

real := lo(realRange) The initial real value

for i in 1..realSteps+1 repeat Begin real iteration

imag := lo(imagRange) initial imaginary value

for j in 1..imagSteps+1 repeat Begin imaginary iteration

z := f complex(real,imag) value of $f$ at the point

arg := argument z direction of the arrow
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len := clipFun sqrt norm z length of the arrow

p1 := point [real, imag, 0.0@DFLOAT, arg] base point of the arrow

scaleLen := delReal * len scaled length of the arrow

p2 := point [p1.1 + scaleLen*cos(arg), tip point of the arrow

p1.2 + scaleLen*sin(arg),0.0@DFLOAT, arg]

arrow := makeArrow(p1, p2) Create the arrow

for a in arrow repeat curve(sp, a) Add arrow to space $sp$

imag := imag + delImag The next imaginary value

real := real + delReal The next real value

makeViewport3D(sp, "Complex Vector Field") Draw it

As a first example, let us draw f(z) == sin(z). There is no need to create a user function:
just pass the sin from Complex DoubleFloat.

Read the file.

)read vectors

Draw the complex vector field of sin(x).

drawComplexVectorField(sin,-2..2,-2..2)

drawBouquet(12, ”A Dozen Arrows”)

10.8 Drawing Complex Functions

Here is another way to graph a complex function of complex arguments. For each complex
value z, compute f(z), again expressing the value in polar coordinates (r, θ). We draw the
complex valued function, again considering the (x, y)-plane as the complex plane, using r as
the height (or z-coordinate) and θ as the color. This is a standard plot—we learned how
to do this in section 7 on page 217 — but here we write a new program to illustrate the
creation of polygon meshes, or grids.
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Call this function drawComplex. It displays the points using the “mesh” of points. The
function definition is in three parts.

drawComplex: (C -> C, S, S) -> VIEW3D

drawComplex(f, realRange, imagRange) ==

-- The real step size

delReal := (hi(realRange)-lo(realRange))/realSteps

-- The imaginary step size

delImag := (hi(imagRange)-lo(imagRange))/imagSteps

-- Initial list of list of points $llp$

llp:List List Point DFLOAT := []

Variables delReal and delImag give the step sizes along the real and imaginary directions
as computed by the values of the global variables realSteps and imagSteps. The mesh is
represented by a list of lists of points llp, initially empty. Now [] alone is ambiguous, so to
set this initial value you have to tell Axiom what type of empty list it is. Next comes the
loop which builds llp.

real := lo(realRange) The initial real value

for i in 1..realSteps+1 repeat Begin real iteration

imag := lo(imagRange) initial imaginary value

lp := []$(List Point DFLOAT) initial list of points $lp$

for j in 1..imagSteps+1 repeat Begin imaginary iteration

z := f complex(real,imag) value of $f$ at the point

pt := point [real,imag,

clipFun sqrt norm z, Create a point

argument z]

lp := cons(pt,lp) Add the point to $lp$

imag := imag + delImag The next imaginary value

real := real + delReal The next real value

llp := cons(lp, llp) Add $lp$ to $llp$

The code consists of both an inner and outer loop. Each pass through the inner loop adds
one list lp of points to the list of lists of points llp. The elements of lp are collected in reverse
order.

makeViewport3D(mesh(llp), "Complex Function") Create a mesh and display

The operation mesh then creates an object of type ThreeSpace(DoubleFloat) from the list
of lists of points. This is then passed to makeViewport3D to display the image.
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Now add this function directly to your vectors.input file and re-read the file using read
vectors. We try drawComplex using a user-defined function f .

Read the file.

)read vectors

This one has a pole at z = 0.

f(z) == exp(1/z)

Draw it with an odd number of steps to avoid the pole.

drawComplex(f,-2..2,-2..2)

drawComplex(f,−2..2,−2..2)

10.9 Functions Producing Functions

In section 6.14 on page 182, you learned how to use the operation function to create a
function from symbolic formulas. Here we introduce a similar operation which not only
creates functions, but functions from functions.

The facility we need is provided by the package MakeUnaryCompiledFunction(E,S,T). This
package produces a unary (one-argument) compiled function from some symbolic data gen-
erated by a previous computation.1 The E tells where the symbolic data comes from; the
S and T give Axiom the source and target type of the function, respectively. The com-
piled function produced has type S → T . To produce a compiled function with definition
p(x) == expr, call compiledFunction(expr, x) from this package. The function you get has
no name. You must to assign the function to the variable p to give it that name.

Do some computation.

1MakeBinaryCompiledFunction is available for binary functions.
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(x+1/3)**5

Convert this to an anonymous function of x. Assign it to the variable p to give the function
a name.

p := compiledFunction(%,x)$MakeUnaryCompiledFunction(POLY FRAC

INT,DFLOAT,DFLOAT)

Apply the function.

p(sin(1.3))

For a more sophisticated application, read on.

10.10 Automatic Newton Iteration Formulas

This setting is needed to get Newton’s iterations to converge.

)set streams calculate 10

We resume our continuing saga of arrows and complex functions. Suppose we want to inves-
tigate the behavior of Newton’s iteration function in the complex plane. Given a function
f , we want to find the complex values z such that f(z) = 0.

The first step is to produce a Newton iteration formula for a given f : xn+1 = xn − f(xn)
f ′(xn)

.

We represent this formula by a function g that performs the computation on the right-hand
side, that is, xn+1 = g(xn).

The type Expression Integer (abbreviated EXPR INT) is used to represent general symbolic
expressions in Axiom. To make our facility as general as possible, we assume f has this type.
Given f , we want to produce a Newton iteration function g which, given a complex point
xn, delivers the next Newton iteration point xn+1.

This time we write an input file called newton.input. We need to
import MakeUnaryCompiledFunction (discussed in the last section),
call it with appropriate types, and then define the function newtonStep
which references it. Here is the function newtonStep:

C := Complex DoubleFloat The complex numbers

complexFunPack:=MakeUnaryCompiledFunction(EXPR INT,C,C)

Package for making functions

newtonStep(f) == Newton’s iteration function
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fun := complexNumericFunction f Function for $f$

deriv := complexDerivativeFunction(f,1) Function for $f’$

(x:C):C +-> Return the iterator function

x - fun(x)/deriv(x)

complexNumericFunction f == Turn an expression $f$ into a

v := theVariableIn f function

compiledFunction(f, v)$complexFunPack

complexDerivativeFunction(f,n) == Create an nth derivative

v := theVariableIn f function

df := D(f,v,n)

compiledFunction(df, v)$complexFunPack

theVariableIn f == Returns the variable in $f$

vl := variables f The list of variables

nv := # vl The number of variables

nv > 1 => error "Expression is not univariate."

nv = 0 => ’x Return a dummy variable

first vl

Do you see what is going on here? A formula f is passed into the function newtonStep.
First, the function turns f into a compiled program mapping complex numbers into complex
numbers. Next, it does the same thing for the derivative of f . Finally, it returns a function
which computes a single step of Newton’s iteration.

The function complexNumericFunction extracts the variable from the expression f and
then turns f into a function which maps complex numbers into complex numbers. The
function complexDerivativeFunction does the same thing for the derivative of f . The
function theVariableIn extracts the variable from the expression f , calling the function
error if f has more than one variable. It returns the dummy variable x if f has no variables.

Let’s now apply newtonStep to the formula for computing cube roots of two.

Read the input file with the definitions.

)read newton

)read vectors

The cube root of two.

f := x**3 - 2

Get Newton’s iteration formula.

g := newtonStep f
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Let a denote the result of applying Newton’s iteration once to the complex number 1 + %i.

a := g(1.0 + %i)

Now apply it repeatedly. How fast does it converge?

[(a := g(a)) for i in 1..]

Check the accuracy of the last iterate.

a**3

In MappingPackage1, we show how functions can be manipulated as objects in Axiom. A
useful operation to consider here is ∗, which means composition. For example g ∗ g causes
the Newton iteration formula to be applied twice. Correspondingly, g ∗ ∗n means to apply
the iteration formula n times.

Apply g twice to the point 1 + %i.

(g*g) (1.0 + %i)

Apply g 11 times.

(g**11) (1.0 + %i)

Look now at the vector field and surface generated after two steps of Newton’s formula for
the cube root of two. The poles in these pictures represent bad starting values, and the flat
areas are the regions of convergence to the three roots.

The vector field.

drawComplexVectorField(g**3,-3..3,-3..3)

drawComplexV ectorF ield(g3,−3..3,−3..3)
The surface.
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drawComplex(g**3,-3..3,-3..3)

drawComplex(g3,−3..3,−3..3)
Here and throughout the book we should use the terminology “type of a function”, rather
than talking about source and target. A function is just an object that has a mapping type.
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Packages

Packages provide the bulk of Axiom’s algorithmic library, from numeric packages for com-
puting special functions to symbolic facilities for differential equations, symbolic integration,
and limits.

In section 10 on page 865, we developed several useful functions for drawing vector fields
and complex functions. We now show you how you can add these functions to the Axiom
library to make them available for general use.

The way we created the functions in section 10 on page 865 is typical of how you, as an
advanced Axiom user, may interact with Axiom. You have an application. You go to your
editor and create an input file defining some functions for the application. Then you run
the file and try the functions. Once you get them all to work, you will often want to extend
them, add new features, perhaps write additional functions.

Eventually, when you have a useful set of functions for your application, you may want to
add them to your local Axiom library. To do this, you embed these function definitions in a
package and add that package to the library.

To introduce new packages, categories, and domains into the system, you need to use the
Axiom compiler to convert the constructors into executable machine code. An existing
compiler in Axiom is available on an “as-is” basis. A new, faster compiler will be available
in version 2.0 of Axiom.

11.1 Names, Abbreviations, and File Structure

Each package has a name and an abbreviation. For a package of the complex draw functions
from section 10 on page 865, we choose the name DrawComplex and abbreviation DRAWCX.1

To be sure that you have not chosen a name or abbreviation already used by the system,
issue the system command )show for both the name and the abbreviation.

1An abbreviation can be any string of between two and seven capital letters and digits, beginning with a
letter. See section 2.2 on page 68 for more information.

885
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Once you have named the package and its abbreviation, you can choose any new filename
you like with extension “.spad” to hold the definition of your package. We choose the name
drawpak.spad. If your application involves more than one package, you can put them all
in the same file. Axiom assumes no relationship between the name of a library file, and the
name or abbreviation of a package.

Near the top of the “.spad” file, list all the abbreviations for the packages using )abbrev,
each command beginning in column one. Macros giving names to Axiom expressions can also
be placed near the top of the file. The macros are only usable from their point of definition
until the end of the file.

Consider the definition of DrawComplex in figure 11.1 on page 897. After the macro definition

S ==> Segment DoubleFloat

the name S can be used in the file as a shorthand for Segment DoubleFloat.2 The abbre-
viation command for the package

)abbrev package DRAWCX DrawComplex

is given after the macros (although it could precede them).

11.2 Syntax

The definition of a package has the syntax:

PackageForm : Exports == Implementation

The syntax for defining a package constructor is the same as that for defining any function
in Axiom. In practice, the definition extends over many lines so that this syntax is not
practical. Also, the type of a package is expressed by the operator with followed by an
explicit list of operations. A preferable way to write the definition of a package is with a
where expression:

The definition of a package usually has the form:
PackageForm : Exports == Implementation where

optional type declarations
Exports == with

list of exported operations
Implementation == add

list of function definitions for exported operations

The DrawComplex package takes no parameters and exports five operations, each a separate
item of a pile. Each operation is described as a declaration: a name, followed by a colon (:),
followed by the type of the operation. All operations have types expressed as mappings with
the syntax

source -> target

2The interpreter also allows macro for macro definitions.
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11.3 Abstract Datatypes

A constructor as defined in Axiom is called an abstract datatype in the computer science
literature. Abstract datatypes separate “specification” (what operations are provided) from
“implementation” (how the operations are implemented). The Exports (specification) part
of a constructor is said to be “public” (it provides the user interface to the package) whereas
the Implementation part is “private” (information here is effectively hidden—programs
cannot take advantage of it).

The Exports part specifies what operations the package provides to users. As an author
of a package, you must ensure that the Implementation part provides a function for each
operation in the Exports part.3

An important difference between interactive programming and the use of packages is in the
handling of global variables such as realSteps and imagSteps. In interactive programming,
you simply change the values of variables by assignment. With packages, such variables are
local to the package—their values can only be set using functions exported by the package.
In our example package, we provide two functions setRealSteps and setImagSteps for
this purpose.

Another local variable is clipV alue which can be changed using the exported operation set-
ClipValue. This value is referenced by the internal function clipFun that decides whether
to use the computed value of the function at a point or, if the magnitude of that value is too
large, the value assigned to clipV alue (with the appropriate sign).

11.4 Capsules

The part to the right of add in the Implementation part of the definition is called a capsule.
The purpose of a capsule is:

• to define a function for each exported operation, and

• to define a local environment for these functions to run.

What is a local environment? First, what is an environment? Think of the capsule as an
input file that Axiom reads from top to bottom. Think of the input file as having a )clear
all at the top so that initially no variables or functions are defined. When this file is read,
variables such as realSteps and arrowSize in DrawComplex are set to initial values. Also,
all the functions defined in the capsule are compiled. These include those that are exported
(like drawComplex), and those that are not (like makeArrow). At the end, you get a set of
name-value pairs: variable names (like realSteps and arrowSize) are paired with assigned
values, while operation names (like drawComplex andmakeArrow) are paired with function
values.

This set of name-value pairs is called an environment. Actually, we call this environment the
“initial environment” of a package: it is the environment that exists immediately after the

3The DrawComplex package enhances the facility described in section 10.8 on page 878 by allowing a com-
plex function to have arrows emanating from the surface to indicate the direction of the complex argument.
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package is first built. Afterwards, functions of this capsule can access or reset a variable in
the environment. The environment is called local since any changes to the value of a variable
in this environment can be seen only by these functions.

Only the functions from the package can change the variables in the local environment.
When two functions are called successively from a package, any changes caused by the first
function called are seen by the second.

Since the environment is local to the package, its names don’t get mixed up with others in
the system or your workspace. If you happen to have a variable called realSteps in your
workspace, it does not affect what the DrawComplex functions do in any way.

The functions in a package are compiled into machine code. Unlike function definitions
in input files that may be compiled repeatedly as you use them with varying argument
types, functions in packages have a unique type (generally parameterized by the argument
parameters of a package) and a unique compilation residing on disk.

The capsule itself is turned into a compiled function. This so-called capsule function is what
builds the initial environment spoken of above. If the package has arguments (see below),
then each call to the package constructor with a distinct pair of arguments builds a distinct
package, each with its own local environment.

11.5 Input Files vs. Packages

A good question at this point would be “Is writing a package more difficult than writing an
input file?”

The programs in input files are designed for flexibility and ease-of-use. Axiom can usually
work out all of your types as it reads your program and does the computations you request.
Let’s say that you define a one-argument function without giving its type. When you first
apply the function to a value, this value is understood by Axiom as identifying the type for
the argument parameter. Most of the time Axiom goes through the body of your function
and figures out the target type that you have in mind. Axiom sometimes fails to get it right.
Then—and only then—do you need a declaration to tell Axiom what type you want.

Input files are usually written to be read by Axiom—and by you. Without suitable docu-
mentation and declarations, your input files are likely incomprehensible to a colleague—and
to you some months later!

Packages are designed for legibility, as well as run-time efficiency. There are few new concepts
you need to learn to write packages. Rather, you just have to be explicit about types and type
conversions. The types of all functions are pre-declared so that Axiom—and the reader—
knows precisely what types of arguments can be passed to and from the functions (certainly
you don’t want a colleague to guess or to have to work this out from context!). The types
of local variables are also declared. Type conversions are explicit, never automatic.4

In summary, packages are more tedious to write than input files. When writing input files,

4There is one exception to this rule: conversions from a subdomain to a domain are automatic. After all,
the objects both have the domain as a common type.
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you can casually go ahead, giving some facts now, leaving others for later. Writing packages
requires forethought, care and discipline.

11.6 Compiling Packages

Once you have defined the package DrawComplex, you need to compile and test it. To
compile the package, issue the system command )compile drawpak. Axiom reads the file
drawpak.spad and compiles its contents into machine binary. If all goes well, the file
DRAWCX.nrlib is created in your local directory for the package. To test the package, you
must load the package before trying an operation.

Compile the package.

)compile drawpak

Expose the package.

)expose DRAWCX

Use an odd step size to avoid a pole at the origin.

setRealSteps 51

setImagSteps 51

Define f to be the Gamma function.

f(z) == Gamma(z)

Clip values of function with magnitude larger than 7.

setClipValue 7

Draw the Gamma function.

drawComplex(f,-%pi..%pi,-%pi..%pi, false)
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f,−π..π,−π..π, false

11.7 Parameters

The power of packages becomes evident when packages have parameters. Usually these
parameters are domains and the exported operations have types involving these parameters.

In section 2 on page 57, you learned that categories denote classes of domains. Although
we cover this notion in detail in the next chapter, we now give you a sneak preview of its
usefulness.

In section 6.15 on page 186, we defined functions bubbleSort(m) and insertionSort(m) to
sort a list of integers. If you look at the code for these functions, you see that they may be
used to sort any structure m with the right properties. Also, the functions can be used to
sort lists of any elements—not just integers. Let us now recall the code for bubbleSort.

bubbleSort(m) ==

n := #m

for i in 1..(n-1) repeat

for j in n..(i+1) by -1 repeat

if m.j < m.(j-1) then swap!(m,j,j-1)

m

What properties of “lists of integers” are assumed by the sorting algorithm? In the first line,
the operation # computes the maximum index of the list. The first obvious property is that
m must have a finite number of elements. In Axiom, this is done by your telling Axiom that
m has the “attribute” finiteAggregate. An attribute is a property that a domain either
has or does not have. As we show later in section 12.9 on page 906, programs
can query domains as to the presence or absence of an attribute.

The operation swap swaps elements of m. Using Browse, you find
that swap requires its elements to come from a domain of category
IndexedAggregate with attribute shallowlyMutable.

This attribute means that you can change the internal components of
m without changing its external structure. Shallowly-mutable data
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structures include lists, streams, one- and two-dimensional arrays,
vectors, and matrices.

The category IndexedAggregate designates the class of aggregates whose elements can be
accessed by the notation m.s for suitable selectors s. The category IndexedAggregate takes
two arguments: Index, a domain of selectors for the aggregate, and Entry, a domain of
entries for the aggregate. Since the sort functions access elements by integers, we must
choose Index =Integer. The most general class of domains for which bubbleSort and
insertionSort are defined are those of category IndexedAggregate(Integer,Entry) with
the two attributes shallowlyMutable and finiteAggregate.

Using Browse, you can also discover that Axiom has many kinds of domains with attribute
shallowlyMutable. Those of class IndexedAggregate(Integer,Entry) include Bits,
FlexibleArray, OneDimensionalArray, List, String, and Vector, and also HashTable

and EqTable with integer keys. Although you may never want to sort all such structures,
we nonetheless demonstrate Axiom’s ability to do so.

Another requirement is that Entry has an operation <. One way to get this operation is to
assume that Entry has category OrderedSet. By definition, will then export a < operation.
A more general approach is to allow any comparison function f to be used for sorting. This
function will be passed as an argument to the sorting functions.

Our sorting package then takes two arguments: a domain S of objects of any type, and
a domain A, an aggregate of type IndexedAggregate(Integer, S) with the above two
attributes. Here is its definition using what are close to the original definitions of bubbleSort
and insertionSort for sorting lists of integers. The symbol ! is added to the ends of the
operation names. This uniform naming convention is used for Axiom operation names that
destructively change one or more of their arguments.

SortPackage(S,A) : Exports == Implementation where

S: Object

A: IndexedAggregate(Integer,S)

with (finiteAggregate; shallowlyMutable)

Exports == with

bubbleSort!: (A,(S,S) -> Boolean) -> A

insertionSort!: (A, (S,S) -> Boolean) -> A

Implementation == add

bubbleSort!(m,f) ==

n := #m

for i in 1..(n-1) repeat

for j in n..(i+1) by -1 repeat

if f(m.j,m.(j-1)) then swap!(m,j,j-1)

m

insertionSort!(m,f) ==

for i in 2..#m repeat

j := i

while j > 1 and f(m.j,m.(j-1)) repeat
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swap!(m,j,j-1)

j := (j - 1) pretend PositiveInteger

m

11.8 Conditionals

When packages have parameters, you can say that an operation is or is not exported depend-
ing on the values of those parameters. When the domain of objects S has an < operation, we
can supply one-argument versions of bubbleSort and insertionSort which use this operation
for sorting. The presence of the operation < is guaranteed when S is an ordered set.

Exports == with

bubbleSort!: (A,(S,S) -> Boolean) -> A

insertionSort!: (A, (S,S) -> Boolean) -> A

if S has OrderedSet then

bubbleSort!: A -> A

insertionSort!: A -> A

In addition to exporting the one-argument sort operations conditionally, we must provide
conditional definitions for the operations in the Implementation part. This is easy: just
have the one-argument functions call the corresponding two-argument functions with the
operation < from S.

Implementation == add

...

if S has OrderedSet then

bubbleSort!(m) == bubbleSort!(m,<$S)

insertionSort!(m) == insertionSort!(m,<$S)

In section 6.15 on page 186, we give an alternative definition of bubbleSort using first and
rest that is more efficient for a list (for which access to any element requires traversing the
list from its first node). To implement a more efficient algorithm for lists, we need the opera-
tion setelt which allows us to destructively change the first and rest of a list. Using Browse,
you find that these operations come from category UnaryRecursiveAggregate. Several ag-
gregate types are unary recursive aggregates including those of List and AssociationList.
We provide two different implementations for bubbleSort! and insertionSort!: one for
list-like structures, another for array-like structures.



11.9. TESTING 893

Implementation == add

...

if A has UnaryRecursiveAggregate(S) then

bubbleSort!(m,fn) ==

empty? m => m

l := m

while not empty? (r := l.rest) repeat

r := bubbleSort! r

x := l.first

if fn(r.first,x) then

l.first := r.first

r.first := x

l.rest := r

l := l.rest

m

insertionSort!(m,fn) ==

...

The ordering of definitions is important. The standard definitions come first and then the
predicate

A has UnaryRecursiveAggregate(S)

is evaluated. If true, the special definitions cover up the standard ones.

Another equivalent way to write the capsule is to use an if − then− else expression:

if A has UnaryRecursiveAggregate(S) then

...

else

...

11.9 Testing

Once you have written the package, embed it in a file, for example, sortpak.spad. Be sure
to include an )abbrev command at the top of the file:

)abbrev package SORTPAK SortPackage

Now compile the file (using )compile sortpak.spad).

Expose the constructor. You are then ready to begin testing.

)expose SORTPAK
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Define a list.

l := [1,7,4,2,11,-7,3,2]

Since the integers are an ordered set, a one-argument operation will do.

bubbleSort!(l)

Re-sort it using “greater than.”

bubbleSort!(l,(x,y) +-> x > y)

Now sort it again using < on integers.

bubbleSort!(l, <$Integer)

A string is an aggregate of characters so we can sort them as well.

bubbleSort! "Mathematical Sciences"

Is < defined on booleans?

false < true

Good! Create a bit string representing ten consecutive boolean values true.

u : Bits := new(10,true)

Set bits 3 through 5 to false, then display the result.

u(3..5) := false; u

Now sort these booleans.

bubbleSort! u

Create an “eq-table”, a table having integers as keys and strings as values.

t : EqTable(Integer,String) := table()

Give the table a first entry.
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t.1 := "robert"

And a second.

t.2 := "richard"

What does the table look like?

t

Now sort it.

bubbleSort! t

11.10 How Packages Work

Recall that packages as abstract datatypes are compiled independently and put into the
library. The curious reader may ask: “How is the interpreter able to find an operation such
as bubbleSort!? Also, how is a single compiled function such as bubbleSort! able to sort
data of different types?”

After the interpreter loads the package SortPackage, the four operations from the package
become known to the interpreter. Each of these operations is expressed as a modemap in
which the type of the operation is written in terms of symbolic domains.

See the modemaps for bubbleSort!.

)display op bubbleSort!

There are 2 exposed functions called bubbleSort! :

[1] D1 -> D1 from SortPackage(D2,D1)

if D2 has ORDSET and D2 has OBJECT and D1 has

IndexedAggregate(Integer, D2) with

finiteAggregate

shallowlyMutable

[2] (D1,((D3,D3) -> Boolean)) -> D1 from SortPackage(D3,D1)

if D3 has OBJECT and D1 has

IndexedAggregate(Integer,D3) with

finiteAggregate

shallowlyMutable
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What happens if you ask for bubbleSort!([1,−5, 3])? There is a unique modemap for an
operation named bubbleSort! with one argument. Since [1,−5, 3] is a list of integers,
the symbolic domain D1 is defined as List(Integer). For some operation to apply, it must
satisfy the predicate for someD2. WhatD2? The third expression of the and requires D1 has

IndexedAggregate(Integer, D2) with two attributes. So the interpreter searches for an
IndexedAggregate among the ancestors of List (Integer) (see section 12.4 on page 902).
It finds one: IndexedAggregate(Integer, Integer). The interpreter tries defining D2 as
Integer. After substituting for D1 and D2, the predicate evaluates to true. An applicable
operation has been found!

Now Axiom builds the package SortPackage(List(Integer), Integer). According to its
definition, this package exports the required operation: bubbleSort!: List Integer → List
Integer. The interpreter then asks the package for a function implementing this operation.
The package gets all the functions it needs (for example, rest and swap) from the appro-
priate domains and then it returns a bubbleSort! to the interpreter together with the
local environment for bubbleSort!. The interpreter applies the function to the argument
[1,−5, 3]. The bubbleSort! function is executed in its local environment and produces the
result.
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C ==> Complex DoubleFloat All constructors used in a file

S ==> Segment DoubleFloat must be spelled out in full

INT ==> Integer unless abbreviated by macros

DFLOAT ==> DoubleFloat like these at the top of

VIEW3D ==> ThreeDimensionalViewport a file

CURVE ==> List List Point DFLOAT

)abbrev package DRAWCX DrawComplex Identify kinds and abbreviations

Type definition begins here

DrawComplex(): Exports == Implementation where

Exports == with Export part begins

drawComplex: (C -> C,S,S,Boolean) -> VIEW3D Exported Operations

drawComplexVectorField: (C -> C,S,S) -> VIEW3D

setRealSteps: INT -> INT

setImagSteps: INT -> INT

setClipValue: DFLOAT-> DFLOAT

-- Implementation part begins

Implementation == add

arrowScale : DFLOAT := (0.2)::DFLOAT --relative size Local variable 1

arrowAngle : DFLOAT := pi()-pi()/(20::DFLOAT) Local variable 2

realSteps : INT := 11 --# real steps Local variable 3

imagSteps : INT := 11 --# imaginary steps Local variable 4

clipValue : DFLOAT := 10::DFLOAT --maximum vector length

Local variable 5

setRealSteps(n) == realSteps := n Exported function definition 1

setImagSteps(n) == imagSteps := n Exported function definition 2

setClipValue(c) == clipValue := c Exported function definition 3

clipFun: DFLOAT -> DFLOAT --Clip large magnitudes.

clipFun(x) == min(max(x, -clipValue), clipValue)

Local function definition 1

makeArrow: (Point DFLOAT,Point DFLOAT,DFLOAT,DFLOAT) -> CURVE

makeArrow(p1, p2, len, arg) == ... Local function definition 2

drawComplex(f, realRange, imagRange, arrows?) == ...

Exported function definition 4

Figure 11.1: The DrawComplex package.
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Chapter 12

Categories

This chapter unravels the mysteries of categories—what they are, how they are related to
domains and packages, how they are defined in Axiom, and how you can extend the system
to include new categories of your own.

We assume that you have read the introductory material on domains and categories in
section 2.1 on page 59. There you learned that the notion of packages covered in the previous
chapter are special cases of domains. While this is in fact the case, it is useful here to regard
domains as distinct from packages.

Think of a domain as a datatype, a collection of objects (the objects of the domain). From
your “sneak preview” in the previous chapter, you might conclude that categories are sim-
ply named clusters of operations exported by domains. As it turns out, categories have a
much deeper meaning. Categories are fundamental to the design of Axiom. They control
the interactions between domains and algorithmic packages, and, in fact, between all the
components of Axiom.

Categories form hierarchies as shown on the inside cover pages of this book. The inside front-
cover pages illustrate the basic algebraic hierarchy of the Axiom programming language. The
inside back-cover pages show the hierarchy for data structures.

Think of the category structures of Axiom as a foundation for a city on which superstruc-
tures (domains) are built. The algebraic hierarchy, for example, serves as a foundation for
constructive mathematical algorithms embedded in the domains of Axiom. Once in place,
domains can be constructed, either independently or from one another.

Superstructures are built for quality—domains are compiled into machine code for run-time
efficiency. You can extend the foundation in directions beyond the space directly beneath
the superstructures, then extend selected superstructures to cover the space. Because of
the compilation strategy, changing components of the foundation generally means that the
existing superstructures (domains) built on the changed parts of the foundation (categories)
have to be rebuilt—that is, recompiled.

Before delving into some of the interesting facts about categories, let’s see how you define
them in Axiom.

899



900 CHAPTER 12. CATEGORIES

12.1 Definitions

A category is defined by a function with exactly the same format as any other function in
Axiom.

The definition of a category has the syntax:

CategoryForm : Category == Extensions [ with Exports ]

The brackets [ ] here indicate optionality.

The first example of a category definition is SetCategory, the most basic of the algebraic
categories in Axiom.

SetCategory(): Category ==

Join(Type,CoercibleTo OutputForm) with

"=" : ($, $) -> Boolean

The definition starts off with the name of the category (SetCategory); this is always in
column one in the source file. All parts of a category definition are then indented with
respect to this first line.

In section 2 on page 57, we talked about Ring as denoting the class of all domains that are
rings, in short, the class of all rings. While this is the usual naming convention in Axiom,
it is also common to use the word “Category” at the end of a category name for clarity.
The interpretation of the name SetCategory is, then, “the category of all domains that are
(mathematical) sets.”

The name SetCategory is followed in the definition by its formal parameters enclosed in
parentheses (). Here there are no parameters. As required, the type of the result of this
category function is the distinguished name Category.

Then comes the ==. As usual, what appears to the right of the == is a definition, here, a
category definition. A category definition always has two parts separated by the reserved
word with.

The first part tells what categories the category extends. Here, the category extends two
categories: Type, the category of all domains, and CoercibleTo(OutputForm). The opera-
tion Join is a system-defined operation that forms a single category from two or more other
categories.

Every category other than Type is an extension of some other category. If, for example,
SetCategory extended only the category Type, the definition here would read “Type with

...”. In fact, the Type is optional in this line; “with ...” suffices.
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12.2 Exports

To the right of the with is a list of all the exports of the category. Each exported operation
has a name and a type expressed by a declaration of the form “name: type”.

Categories can export symbols, as well as 0 and 1 which denote domain constants.1 In the
current implementation, all other exports are operations with types expressed as mappings
with the syntax

source -> target

The category SetCategory has a single export: the operation = whose type is given by the
mapping ($, $) -> Boolean. The $ in a mapping type always means “the domain.” Thus
the operation = takes two arguments from the domain and returns a value of type Boolean.

The source part of the mapping here is given by a tuple consisting of two or more types
separated by commas and enclosed in parentheses. If an operation takes only one argument,
you can drop the parentheses around the source type. If the mapping has no arguments,
the source part of the mapping is either left blank or written as (). Here are examples of
formats of various operations with some contrived names.

someIntegerConstant : $

aZeroArgumentOperation: () -> Integer

aOneArgumentOperation: Integer -> $

aTwoArgumentOperation: (Integer,$) -> Void

aThreeArgumentOperation: ($,Integer,$) -> Fraction($)

12.3 Documentation

The definition of SetCategory above is missing an important component: its library docu-
mentation. Here is its definition, complete with documentation.

++ Description:

++ \bs{}axiomType\{SetCategory\} is the basic category

++ for describing a collection of elements with

++ \bs{}axiomOp\{=\} (equality) and a \bs{}axiomFun\{coerce\}

++ to \bs{}axiomType\{OutputForm\}.

SetCategory(): Category ==

Join(Type, CoercibleTo OutputForm) with

"=": ($, $) -> Boolean

++ \bs{}axiom\{x = y\} tests if \bs{}axiom\{x\} and

++ \bs{}axiom\{y\} are equal.

1The numbers 0 and 1 are operation names in Axiom.
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Documentary comments are an important part of constructor definitions. Documentation is
given both for the category itself and for each export. A description for the category precedes
the code. Each line of the description begins in column one with ++. The description starts
with the word Description:.2 All lines of the description following the initial line are
indented by the same amount.

Surround the name of any constructor (with or without parameters) with an {\bf }. Sim-
ilarly, surround an operator name with {\tt }, an Axiom operation with {\bf }, and a
variable or Axiom expression with $$. Library documentation is given in a TEX-like lan-
guage so that it can be used both for hard-copy and for Browse. These different wrappings
cause operations and types to have mouse-active buttons in Browse. For hard-copy out-
put, wrapped expressions appear in a different font. The above documentation appears in
hard-copy as:

SetCategory is the basic category for describing a collection of elements with
= (equality) and a coerce to OutputForm.

and

x = y tests if x and y are equal.

For our purposes in this chapter, we omit the documentation from further category descrip-
tions.

12.4 Hierarchies

A second example of a category is SemiGroup, defined by:

SemiGroup(): Category == SetCategory with

"*": ($,$) -> $

"**": ($, PositiveInteger) -> $

This definition is as simple as that for SetCategory, except that there are two exported
operations. Multiple exported operations are written as a pile, that is, they all begin in the
same column. Here you see that the category mentions another type, PositiveInteger, in
a signature. Any domain can be used in a signature.

Since categories extend one another, they form hierarchies. Each category other than Type

has one or more parents given by the one or more categories mentioned before the with part

2Other information such as the author’s name, date of creation, and so on, can go in this area as well but
are currently ignored by Axiom.
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of the definition. SemiGroup extends SetCategory and SetCategory extends both Type

and CoercibleTo (OutputForm). Since CoercibleTo (OutputForm) also extends Type,
the mention of Type in the definition is unnecessary but included for emphasis.

12.5 Membership

We say a category designates a class of domains. What class of domains? That is, how
does Axiom know what domains belong to what categories? The simple answer to this basic
question is key to the design of Axiom:

Domains belong to categories by assertion.

When a domain is defined, it is asserted to belong to one or more categories. Suppose, for
example, that an author of domain String wishes to use the binary operator ∗ to denote
concatenation. Thus "hello " * "there" would produce the string "hello there" Actually,
concatenation of strings in Axiom is done by juxtaposition or by using the operation concat.
The expression "hello " "there" produces the string "hello there". The author of String
could then assert that String is a member of SemiGroup. According to our definition of
SemiGroup, strings would then also have the operation ∗∗ defined automatically. Then
"--" ** 4 would produce a string of eight dashes "--------". Since String is a member of
SemiGroup, it also is a member of SetCategory and thus has an operation = for testing that
two strings are equal.

Now turn to the algebraic category hierarchy inside the front cover of this book. Any domain
that is a member of a category extending SemiGroup is a member of SemiGroup (that is, it is
a semigroup). In particular, any domain asserted to be a Ring is a semigroup since Ring ex-
tends Monoid, that, in turn, extends SemiGroup. The definition of Integer in Axiom asserts
that Integer is a member of category IntegerNumberSystem, that, in turn, asserts that it
is a member of EuclideanDomain. Now EuclideanDomain extends PrincipalIdealDomain
and so on. If you trace up the hierarchy, you see that EuclideanDomain extends Ring, and,
therefore, SemiGroup. Thus Integer is a semigroup and also exports the operations ∗ and
∗∗.

12.6 Defaults

We actually omitted the last part of the definition of SemiGroup in section 12.4 on page 902.
Here now is its complete Axiom definition.

SemiGroup(): Category == SetCategory with

"*": ($, $) -> $

"**": ($, PositiveInteger) -> $

add

import RepeatedSquaring($)



904 CHAPTER 12. CATEGORIES

x: $ ** n: PositiveInteger == expt(x,n)

The add part at the end is used to give “default definitions” for exported operations. Once
you have a multiplication operation ∗, you can define exponentiation for positive integer
exponents using repeated multiplication:

xn = xxx · · · x︸ ︷︷ ︸
n times

This definition for ∗∗ is called a default definition. In general, a category can give default
definitions for any operation it exports. Since SemiGroup and all its category descendants
in the hierarchy export ∗∗, any descendant category may redefine ∗∗ as well.
A domain of category SemiGroup (such as Integer) may or may not choose to define its own
∗∗ operation. If it does not, a default definition that is closest (in a “tree-distance” sense of
the hierarchy) to the domain is chosen.

The part of the category definition following an add operation is a capsule, as discussed in
the previous chapter. The line

import RepeatedSquaring($)

references the package RepeatedSquaring($), that is, the package RepeatedSquaring that
takes “this domain” as its parameter. For example, if the semigroup Polynomial (Integer)

does not define its own exponentiation operation, the definition used may come from the
package RepeatedSquaring (Polynomial (Integer)). The next line gives the definition
in terms of expt from that package.

The default definitions are collected to form a “default package” for the category. The name
of the package is the same as the category but with an ampersand (&) added at the end. A
default package always takes an additional argument relative to the category. Here is the
definition of the default package SemiGroup& as automatically generated by Axiom from the
above definition of SemiGroup.

SemiGroup_&($): Exports == Implementation where

$: SemiGroup

Exports == with

"**": ($, PositiveInteger) -> $

Implementation == add

import RepeatedSquaring($)

x:$ ** n:PositiveInteger == expt(x,n)
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12.7 Axioms

In the previous section you saw the complete Axiom program defining SemiGroup. According
to this definition, semigroups (that is, are sets with the operations “*” and “**”.

You might ask: “Aside from the notion of default packages, isn’t a category just a macro,
that is, a shorthand equivalent to the two operations ∗ and ∗∗ with their types?” If a
category were a macro, every time you saw the word SemiGroup, you would rewrite it by
its list of exported operations. Furthermore, every time you saw the exported operations
of SemiGroup among the exports of a constructor, you could conclude that the constructor
exported SemiGroup.

A category is not a macro and here is why. The definition for SemiGroup has documentation
that states:

Category SemiGroup denotes the class of all multiplicative semigroups, that
is, a set with an associative operation ∗.

Axioms:
associative("*" : ($,$)->$) -- (x*y)*z = x*(y*z)

According to the author’s remarks, the mere exporting of an operation named ∗ and ∗∗ is
not enough to qualify the domain as a SemiGroup. In fact, a domain can be a semigroup
only if it explicitly exports a ∗∗ and a ∗ satisfying the associativity axiom.

In general, a category name implies a set of axioms, even mathematical theorems. There are
numerous axioms from Ring, for example, that are well-understood from the literature. No
attempt is made to list them all. Nonetheless, all such mathematical facts are implicit by
the use of the name Ring.

12.8 Correctness

While such statements are only comments, Axiom can enforce their intention simply by
shifting the burden of responsibility onto the author of a domain. A domain belongs to
category Ring only if the author asserts that the domain belongs to Ring or to a category
that extends Ring.

This principle of assertion is important for large user-extendable systems. Axiom has a large
library of operations offering facilities in many areas. Names such as norm and product,
for example, have diverse meanings in diverse contexts. An inescapable hindrance to users
would be to force those who wish to extend Axiom to always invent new names for operations.
Axiom allows you to reuse names, and then use context to disambiguate one from another.

Here is another example of why this is important. Some languages, such as APL, denote
the Boolean constants true and false by the integers 1 and 0. You may want to let infix
operators + and ∗ serve as the logical operators or and and, respectively. But note this:
Boolean is not a ring. The inverse axiom for Ring states:
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Every element x has an additive inverse y such that x+ y = 0.

Boolean is not a ring since true has no inverse—there is no inverse element a such that
1 + a = 0 (in terms of booleans, (true or a) = false). Nonetheless, Axiom could easily
and correctly implement Boolean this way. Boolean simply would not assert that it is of
category Ring. Thus the “+” for Boolean values is not confused with the one for Ring. Since
the Polynomial constructor requires its argument to be a ring, Axiom would then refuse
to build the domain Polynomial(Boolean). Also, Axiom would refuse to wrongfully apply
algorithms to Boolean elements that presume that the ring axioms for “+” hold.

12.9 Attributes

Most axioms are not computationally useful. Those that are can be explicitly expressed by
what Axiom calls an attribute. The attribute commutative("*"), for example, is used to
assert that a domain has commutative multiplication. Its definition is given by its documen-
tation:

A domain R has commutative("*") if it has an operation ”*”: (R,R) → R such that
x ∗ y = y ∗ x.

Just as you can test whether a domain has the category Ring, you can test that a domain
has a given attribute.

Do polynomials over the integers have commutative multiplication?

Polynomial Integer has commutative("*")

Do matrices over the integers have commutative multiplication?

Matrix Integer has commutative("*")

Attributes are used to conditionally export and define operations for a domain (see sec-
tion 13.3 on page 912. Attributes can also be asserted in a category definition.

After mentioning category Ring many times in this book, it is high time that we show you
its definition:

Ring(): Category ==

Join(Rng,Monoid,LeftModule($: Rng)) with

characteristic: -> NonNegativeInteger

coerce: Integer -> $

unitsKnown

add

n:Integer

coerce(n) == n * 1$$
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There are only two new things here. First, look at the $$ on the last line. This is not a
typographic error! The first $ says that the 1 is to come from some domain. The second $

says that the domain is “this domain.” If $ is Fraction(Integer), this line reads coerce(n)
== n * 1$Fraction(Integer).

The second new thing is the presence of attribute “unitsKnown”. Axiom can always dis-
tinguish an attribute from an operation. An operation has a name and a type. An attribute
has no type. The attribute unitsKnown asserts a rather subtle mathematical fact that is
normally taken for granted when working with rings.3 Because programs can test for this at-
tribute, Axiom can correctly handle rather more complicated mathematical structures (ones
that are similar to rings but do not have this attribute).

12.10 Parameters

Like domain constructors, category constructors can also have parameters. For example,
category MatrixCategory is a parameterized category for defining matrices over a ring R
so that the matrix domains can have different representations and indexing schemes. Its
definition has the form:

MatrixCategory(R,Row,Col): Category ==

TwoDimensionalArrayCategory(R,Row,Col) with ...

The category extends TwoDimensionalArrayCategory with the same arguments. You can-
not find TwoDimensionalArrayCategory in the algebraic hierarchy listing. Rather, it is a
member of the data structure hierarchy, given inside the back cover of this book. In par-
ticular, TwoDimensionalArrayCategory is an extension of HomogeneousAggregate since its
elements are all one type.

The domain Matrix(R), the class of matrices with coefficients from domain R, asserts
that it is a member of category MatrixCategory(R, Vector(R), Vector(R)). The pa-
rameters of a category must also have types. The first parameter to MatrixCategory R
is required to be a ring. The second and third are required to be domains of category
FiniteLinearAggregate(R).4 In practice, examples of categories having parameters other
than domains are rare.

Adding the declarations for parameters to the definition for MatrixCategory, we have:

R: Ring

3With this axiom, the units of a domain are the set of elements x that each have a multiplicative inverse
y in the domain. Thus 1 and −1 are units in domain Integer. Also, for Fraction Integer, the domain of
rational numbers, all non-zero elements are units.

4This is another extension of HomogeneousAggregate that you can see in the data structure hierarchy.
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(Row, Col): FiniteLinearAggregate(R)

MatrixCategory(R, Row, Col): Category ==

TwoDimensionalArrayCategory(R, Row, Col) with ...

12.11 Conditionals

determinant As categories have parameters, the actual operations exported by a
category can depend on these parameters. As an example, the operation
from category MatrixCategory is only exported when the
underlying domain R has commutative multiplication:

if R has commutative("*") then

determinant: $ -> R

Conditionals can also define conditional extensions of a category. Here is a portion of the
definition of QuotientFieldCategory:

QuotientFieldCategory(R) : Category == ... with ...

if R has OrderedSet then OrderedSet

if R has IntegerNumberSystem then

ceiling: $ -> R

...

Think of category QuotientFieldCategory(R) as denoting the domain Fraction(R), the
class of all fractions of the form a/b for elements of R. The first conditional means in English:
“If the elements of R are totally ordered (R is an OrderedSet), then so are the fractions
a/b”.

The second conditional is used to conditionally export an operation ceiling which returns
the smallest integer greater than or equal to its argument. Clearly, “ceiling” makes sense for
integers but not for polynomials and other algebraic structures. Because of this conditional,
the domain Fraction(Integer) exports an operation ceiling: Fraction Integer → Integer,
but Fraction Polynomial Integer does not.

Conditionals can also appear in the default definitions for the operations of a category. For
example, a default definition for ceiling within the part following the add reads:

if R has IntegerNumberSystem then

ceiling x == ...

Here the predicate used is identical to the predicate in the Exports part. This need not be
the case. See section 11.8 on page 892 for a more complicated example.
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12.12 Anonymous Categories

The part of a category to the right of a with is also regarded as a category—an “anonymous
category.” Thus you have already seen a category definition in section 11 on page 885.
The Exports part of the package DrawComplex (section 11.3 on page 887) is an anonymous
category. This is not necessary. We could, instead, give this category a name:

DrawComplexCategory(): Category == with

drawComplex: (C -> C,S,S,Boolean) -> VIEW3D

drawComplexVectorField: (C -> C,S,S) -> VIEW3D

setRealSteps: INT -> INT

setImagSteps: INT -> INT

setClipValue: DFLOAT-> DFLOAT

and then define DrawComplex by:

DrawComplex(): DrawComplexCategory == Implementation

where

...

There is no reason, however, to give this list of exports a name since no other domain or
package exports it. In fact, it is rare for a package to export a named category. As you will
see in the next chapter, however, it is very common for the definition of domains to mention
one or more category before the with.

)read alql.boot

)load DLIST ICARD DBASE QEQUAT MTHING OPQUERY )update
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Chapter 13

Domains

We finally come to the domain constructor. A few subtle differences between packages and
domains turn up some interesting issues. We first discuss these differences then describe
the resulting issues by illustrating a program for the QuadraticForm constructor. After a
short example of an algebraic constructor, CliffordAlgebra, we show how you use domain
constructors to build a database query facility.

13.1 Domains vs. Packages

Packages are special cases of domains. What is the difference between a package and a
domain that is not a package? By definition, there is only one difference: a domain that
is not a package has the symbol $ appearing somewhere among the types of its exported
operations. The $ denotes “this domain.” If the $ appears before the -> in the type of a
signature, it means the operation takes an element from the domain as an argument. If it
appears after the ->, then the operation returns an element of the domain.

If no exported operations mention $, then evidently there is nothing of interest to do with
the objects of the domain. You might then say that a package is a “boring” domain! But, as
you saw in section 11 on page 885, packages are a very useful notion indeed. The exported
operations of a package depend solely on the parameters to the package constructor and
other explicit domains.

To summarize, domain constructors are versatile structures that serve two distinct practical
purposes: Those like Polynomial and List describe classes of computational objects; others,
like SortPackage, describe packages of useful operations. As in the last chapter, we focus
here on the first kind.

13.2 Definitions

The syntax for defining a domain constructor is the same as for any function in Axiom:

911



912 CHAPTER 13. DOMAINS

DomainForm : Exports == Implementation

As this definition usually extends over many lines, a where expression is generally used
instead.

A recommended format for the definition of a domain is:
DomainForm : Exports == Implementation where

optional type declarations
Exports == [Category Assertions] with

list of exported operations
Implementation == [Add Domain] add

[Rep := Representation]
list of function definitions for exported operations

Note: The brackets [ ] here denote optionality.

A complete domain constructor definition for QuadraticForm is shown in figure 13.1 on
page 913. Interestingly, this little domain illustrates all the new concepts you need to learn.

A domain constructor can take any number and type of parameters. QuadraticForm takes
a positive integer n and a field K as arguments. Like a package, a domain has a set of
explicit exports and an implementation described by a capsule. Domain constructors are
documented in the same way as package constructors.

Domain QuadraticForm(n, K), for a given positive integer n and domain K, explicitly
exports three operations:

• quadraticForm(A) creates a quadratic form from a matrix A.

• matrix(q) returns the matrix A used to create the quadratic form q.

• q.v computes the scalar vTAv for a given vector v.

Compared with the corresponding syntax given for the definition of a package, you see that
a domain constructor has three optional parts to its definition: Category Assertions, Add
Domain, and Representation.

13.3 Category Assertions

The Category Assertions part of your domain constructor definition lists those categories
of which all domains created by the constructor are unconditionally members. The word
“unconditionally” means that membership in a category does not depend on the values of
the parameters to the domain constructor. This part thus defines the link between the
domains and the category hierarchies given on the inside covers of this book. As described
in section 12.8 on page 905, it is this link that makes it possible for you to pass objects of
the domains as arguments to other operations in Axiom.

Every QuadraticForm domain is declared to be unconditionally a member of category
AbelianGroup. An abelian group is a collection of elements closed under addition. Ev-
ery object x of an abelian group has an additive inverse y such that x+ y = 0. The exports
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)abbrev domain QFORM QuadraticForm

++ Description:

++ This domain provides modest support for

++ quadratic forms.

QuadraticForm(n, K): Exports == Implementation where

n: PositiveInteger

K: Field

Exports == AbelianGroup with --The exports

quadraticForm: SquareMatrix(n,K) -> $ --export this

++ \bs{}axiom\{quadraticForm(m)\} creates a quadratic

++ quadratic form from a symmetric,

++ square matrix \bs{}axiom\{m\}.

matrix: $ -> SquareMatrix(n,K) -- export matrix

++ \bs{}axiom\{matrix(qf)\} creates a square matrix

++ from the quadratic form \bs{}axiom\{qf\}.

elt: ($, DirectProduct(n,K)) -> K -- export elt

++ \bs{}axiom\{qf(v)\} evaluates the quadratic form

++ \bs{}axiom\{qf\} on the vector \bs{}axiom\{v\},

++ producing a scalar.

Implementation == SquareMatrix(n,K) add --The exports

Rep := SquareMatrix(n,K) --representation

quadraticForm m == --definition

not symmetric? m => error

"quadraticForm requires a symmetric matrix"

m :: $

matrix q == q :: Rep --definition

elt(q,v) == dot(v, (matrix q * v)) --definition

Figure 13.1: The QuadraticForm domain.

of an abelian group include 0, +, -, and scalar multiplication by an integer. After asserting
that QuadraticForm domains are abelian groups, it is possible to pass quadratic forms to
algorithms that only assume arguments to have these abelian group properties.

In section 12.11 on page 908, you saw that Fraction(R),
a member of QuotientFieldCategory(R), is a member of
OrderedSet if R is a member of OrderedSet. Likewise,
from the Exports part of the definition of ModMonic(R, S),

UnivariatePolynomialCategory(R) with

if R has Finite then Finite

...



914 CHAPTER 13. DOMAINS

you see that ModMonic(R, S) is a member of Finite is R is.

The Exports part of a domain definition is the same kind of expression that can appear
to the right of an == in a category definition. If a domain constructor is unconditionally a
member of two or more categories, a Join form is used. The Exports part of the definition
of FlexibleArray(S) reads, for example:

Join(ExtensibleLinearAggregate(S),

OneDimensionalArrayAggregate(S)) with...

13.4 A Demo

Before looking at the Implementation part of QuadraticForm, let’s try some examples.

Build a domain QF .

QF := QuadraticForm(2,Fraction Integer)

Define a matrix to be used to construct a quadratic form.

A := matrix [ [-1,1/2],[1/2,1] ]

Construct the quadratic form. A package call $QF is necessary
since there are other QuadraticForm domains.

q : QF := quadraticForm(A)

Looks like a matrix. Try computing the number of rows. Axiom won’t let you.

nrows q

Create a direct product element v. A package call is again necessary, but Axiom understands
your list as denoting a vector.

v := directProduct([2,-1])$DirectProduct(2,Fraction Integer)

Compute the product vTAv.

q.v

What is 3 times q minus q plus q?

3*q-q+q
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13.5 Browse

The Browse facility of HyperDoc is useful for investigating the properties of domains, pack-
ages, and categories. From the main HyperDoc menu, move your mouse to Browse and
click on the left mouse button. This brings up the Browse first page. Now, with your mouse
pointer somewhere in this window, enter the string “quadraticform” into the input area (all
lower case letters will do). Move your mouse to Constructors and click. Up comes a page
describing QuadraticForm.

From here, click on Description. This gives you a page that includes a part labeled by
“Description:”. You also see the types for arguments n and K displayed as well as the fact
that QuadraticForm returns an AbelianGroup. You can go and experiment a bit by selecting

Field with your mouse. Eventually, use the button several times to return to the
first page on QuadraticForm.

SelectOperations to get a list of operations for QuadraticForm. You can select an operation
by clicking on it to get an individual page with information about that operation. Or you can
select the buttons along the bottom to see alternative views or get additional information
on the operations. Then return to the page on QuadraticForm.

Select Cross Reference to get another menu. This menu has buttons for Parents, An-
cestors, and others. Clicking on Parents, you see that QuadraticForm has one parent
AbelianMonoid.

13.6 Representation

The Implementation part of an Axiom capsule for a domain constructor uses the special
variable Rep to identify the lower level data type used to represent the objects of the domain.
The Rep for quadratic forms is SquareMatrix(n, K). This means that all objects of the
domain are required to be n by n matrices with elements from K.

The code for quadraticForm in figure 13.1 on page 913 checks that the matrix is symmetric
and then converts it to $, which means, as usual, “this domain.” Such explicit conversions
are generally required by the compiler. Aside from checking that the matrix is symmetric,
the code for this function essentially does nothing. The m :: $ on line 28 coerces m to
a quadratic form. In fact, the quadratic form you created in step (3) of section 13.4 on
page 914 is just the matrix you passed it in disguise! Without seeing this definition, you
would not know that. Nor can you take advantage of this fact now that you do know! When
we try in the next step of section 13.4 on page 914 to regard q as a matrix by asking for
nrows, the number of its rows, Axiom gives you an error message saying, in effect, “Good
try, but this won’t work!”

The definition for the matrix function could hardly be simpler: it just returns its argument
after explicitly coercing its argument to a matrix. Since the argument is already a matrix,
this coercion does no computation.

Within the context of a capsule, an object of $ is regarded both as a quadratic form and
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as a matrix.1 This makes the definition of q.v easy—it just calls the dot product from
DirectProduct to perform the indicated operation.

13.7 Multiple Representations

To write functions that implement the operations of a domain, you want to choose the most
computationally efficient data structure to represent the elements of your domain.

A classic problem in computer algebra is the optimal choice for an internal representation
of polynomials. If you create a polynomial, say 3x2 + 5, how does Axiom hold this value
internally? There are many ways. Axiom has nearly a dozen different representations of
polynomials, one to suit almost any purpose. Algorithms for solving polynomial equations
work most efficiently with polynomials represented one way, whereas those for factoring
polynomials are most efficient using another. One often-used representation is a list of
terms, each term consisting of exponent-coefficient records written in the order of decreasing
exponents. For example, the polynomial 3x2 + 5 is represented by the list [[e : 2, c : 3], [e :
0, c : 5]].

What is the optimal data structure for a matrix? It depends on the application. For large
sparse matrices, a linked-list structure of records holding only the non-zero elements may be
optimal. If the elements can be defined by a simple formula f(i, j), then a compiled function
for f may be optimal. Some programmers prefer to represent ordinary matrices as vectors
of vectors. Others prefer to represent matrices by one big linear array where elements are
accessed with linearly computable indexes.

While all these simultaneous structures tend to be confusing, Axiom provides a helpful orga-
nizational tool for such a purpose: categories. PolynomialCategory, for example, provides
a uniform user interface across all polynomial types. Each kind of polynomial implements
functions for all these operations, each in its own way. If you use only the top-level operations
in PolynomialCategory you usually do not care what kind of polynomial implementation is
used.

Within a given domain, however, you define (at most) one representation.2 If you want to
have multiple representations (that is, several domains, each with its own representation),
use a category to describe the Exports, then define separate domains for each representation.

13.8 Add Domain

The capsule part of Implementation defines functions that implement the operations ex-
ported by the domain—usually only some of the operations. In our demo in section 13.4 on
page 914, we asked for the value of 3 ∗ q − q + q. Where do the operations *, +, and - come
from? There is no definition for them in the capsule!

1In case each of $ and Rep have the same named operation available, the one from $ takes precedence.
Thus, if you want the one from Rep, you must package call it using a $Rep suffix.

2You can make that representation a Union type, however. See section 2.5 on page 76 for examples of
unions.
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The Implementation part of a definition can optionally specify an “add-domain” to the
left of an add (for QuadraticForm, defines SquareMatrix(n,K) is the add-domain). The
meaning of an add-domain is simply this: if the capsule part of the Implementation does
not supply a function for an operation, Axiom goes to the add-domain to find the function.
So do ∗, + and − (from QuadraticForm) come from SquareMatrix(n,K)?

13.9 Defaults

In section 11 on page 885, we saw that categories can provide default implementations for
their operations. How and when are they used? When Axiom finds that QuadraticForm(2,
Fraction Integer) does not implement the operations *, +, and -, it goes to SquareMatrix
(2,Fraction Integer) to find it. As it turns out, SquareMatrix(2, Fraction Integer)

does not implement any of these operations!

What does Axiom do then? Here is its overall strategy. First, Axiom looks for a function
in the capsule for the domain. If it is not there, Axiom looks in the add-domain for the
operation. If that fails, Axiom searches the add-domain of the add-domain, and so on. If
all those fail, it then searches the default packages for the categories of which the domain
is a member. In the case of QuadraticForm, it searches AbelianGroup, then its parents,
grandparents, and so on. If this fails, it then searches the default packages of the add-
domain. Whenever a function is found, the search stops immediately and the function is
returned. When all fails, the system calls error to report this unfortunate news to you. To
find out the actual order of constructors searched for QuadraticForm, consult Browse: from
the QuadraticForm, click on Cross Reference, then on Lineage.

Let’s apply this search strategy for our example 3 ∗ q − q + q. The scalar multiplication
comes first. Axiom finds a default implementation in AbelianGroup&. Remember from
section 12.6 on page 903 that SemiGroup provides a default definition for xn by repeated
squaring? AbelianGroup similarly provides a definition for nx by repeated doubling.

But the search of the defaults for QuadraticForm fails to find any + or * in the default pack-
ages for the ancestors of QuadraticForm. So it now searches among those for SquareMatrix.
Category MatrixCategory, which provides a uniform interface for all matrix domains, is
a grandparent of SquareMatrix and has a capsule defining many functions for matrices,
including matrix addition, subtraction, and scalar multiplication. The default package
MatrixCategory& is where the functions for + and − (from QuadraticForm) come from.

You can use Browse to discover where the operations for QuadraticForm are implemented.
First, get the page describing QuadraticForm. With your mouse somewhere in this window,

type a “2”, press the Tab key, and then enter “Fraction Integer” to indicate that you want
the domain QuadraticForm(2, Fraction Integer). Now click on Operations to get a
table of operations and on * to get a page describing the * operation. Finally, click on
implementation at the bottom.
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13.10 Origins

Aside from the notion of where an operation is implemented, a useful notion is the origin or
“home” of an operation. When an operation (such as quadraticForm) is explicitly exported
by a domain (such as QuadraticForm), you can say that the origin of that operation is that
domain. If an operation is not explicitly exported from a domain, it is inherited from, and
has as origin, the (closest) category that explicitly exports it. The operations + and − (from
AbelianMonoid) of QuadraticForm, for example, are inherited from AbelianMonoid. As it
turns out, AbelianMonoid is the origin of virtually every + operation in Axiom!

Again, you can use Browse to discover the origins of operations. From the Browse page on
QuadraticForm, click on Operations, then on origins at the bottom of the page.

The origin of the operation is the only place where on-line documentation is given. How-
ever, you can re-export an operation to give it special documentation. Suppose you have just
invented the world’s fastest algorithm for inverting matrices using a particular internal repre-
sentation for matrices. If your matrix domain just declares that it exports MatrixCategory,
it exports the inverse operation, but the documentation the user gets from Browse is the
standard one from MatrixCategory. To give your version of inverse the attention it de-
serves, simply export the operation explicitly with new documentation. This redundancy
gives inverse a new origin and tells Browse to present your new documentation.

13.11 Short Forms

In Axiom, a domain could be defined using only an add-domain and no capsule. Although
we talk about rational numbers as quotients of integers, there is no type RationalNumber

in Axiom. To create such a type, you could compile the following “short-form” definition:

RationalNumber() == Fraction(Integer)

The Exports part of this definition is missing and is taken to be equivalent to that of
Fraction(Integer). Because of the add-domain philosophy, you get precisely what you
want. The effect is to create a little stub of a domain. When a user asks to add two rational
numbers, Axiom would ask RationalNumber for a function implementing this +. Since
the domain has no capsule, the domain then immediately sends its request to Fraction

(Integer).

The short form definition for domains is used to define such domains as Multivariate-

Polynomial:

MultivariatePolynomial(vl: List Symbol, R: Ring) ==

SparseMultivariatePolynomial(R,

OrderedVariableList vl)
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13.12 Example 1: Clifford Algebra

Now that we have QuadraticForm available, let’s put it to use. Given some quadratic form
Q described by an n by n matrix over a field K, the domain CliffordAlgebra(n, K, Q)

defines a vector space of dimension 2n over K. This is an interesting domain since com-
plex numbers, quaternions, exterior algebras and spin algebras are all examples of Clifford
algebras.

The basic idea is this: the quadratic form Q defines a basis e1, e2 . . . , en for the vector space
Kn—the direct product of K with itself n times. From this, the Clifford algebra generates a
basis of 2n elements given by all the possible products of the ei in order without duplicates,
that is,

1, e1, e2, e1e2, e3, e1e3, e2e3, e1e2, e3, and so on.

The algebra is defined by the relations

ei ei = Q(ei)
ei ej = −ej ei for i ̸= j

Now look at the snapshot of its definition given in figure 13.2 on page 920. Lines 9-10 show
part of the definitions of the Exports. A Clifford algebra over a field K is asserted to be a
ring, an algebra over K, and a vector space over K. Its explicit exports include e(n), which
returns the n-th unit element.

The Implementation part begins by defining a local variable Qeelist to hold the list of all q.v
where v runs over the unit vectors from 1 to the dimension n. Another local variable dim is set
to 2n, computed once and for all. The representation for the domain is PrimitiveArray(K),
which is a basic array of elements from domain K. Line 18 defines New as shorthand for a
more lengthy expression new(dim,0$K)$Rep, which computes a primitive array of length 2n

filled with 0’s from domain K.

Lines 19-22 define the sum of two elements x and y straightforwardly. First, a new array of all
0’s is created, then filled with the sum of the corresponding elements. Indexing for primitive
arrays start at 0. The definition of the product of x and y first requires the definition of
a local function addMonomProd. Axiom knows it is local since it is not an exported
function. The types of all local functions must be declared.

The Implementation part begins by defining a local variable Qeelist to hold the list of all q.v
where v runs over the unit vectors from 1 to the dimension n. Another local variable dim is set
to 2n, computed once and for all. The representation for the domain is PrimitiveArray(K),
which is a basic array of elements from domain K. Line 18 defines New as shorthand for the
more lengthy expression new(dim, 0$K)$Rep, which computes a primitive array of length
2n filled with 0’s from domain K.

Lines 19-22 define the sum of two elements x and y straightforwardly. First, a new array
of all 0’s is created, then filled with the sum of the corresponding elements. Indexing for
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NNI ==> NonNegativeInteger

PI ==> PositiveInteger

CliffordAlgebra(n,K,q): Exports == Implementation where

n: PI

K: Field

q: QuadraticForm(n, K)

Exports == Join(Ring,Algebra(K),VectorSpace(K)) with

e: PI -> $

...

Implementation == add

Qeelist :=

[q.unitVector(i::PI) for i in 1..n]

dim := 2**n

Rep := PrimitiveArray K

New ==> new(dim, 0$K)$Rep

x + y ==

z := New

for i in 0..dim-1 repeat z.i := x.i + y.i

z

addMonomProd: (K, NNI, K, NNI, $) -> $

addMonomProd(c1, b1, c2, b2, z) == ...

x * y ==

z := New

for ix in 0..dim-1 repeat

if x.ix ~= 0 then for iy in 0..dim-1 repeat

if y.iy ~= 0

then addMonomProd(x.ix,ix,y.iy,iy,z)

z

...

Figure 13.2: Part of the CliffordAlgebra domain.

primitive arrays starts at 0. The definition of the product of x and y first requires the
definition of a local function addMonomProd. Axiom knows it is local since it is not an
exported function. The types of all local functions must be declared.

13.13 Example 2: Building A Query Facility

We now turn to an entirely different kind of application, building a query language for a
database.

Here is the practical problem to solve. The Browse facility of Axiom has a database for
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all operations and constructors which is stored on disk and accessed by HyperDoc. For our
purposes here, we regard each line of this file as having eight fields: class, name, type,

nargs, exposed, kind, origin, and condition. Here is an example entry:

o‘determinant‘$->R‘1‘x‘d‘Matrix(R)‘has(R,commutative("*"))

In English, the entry means:

The operation determinant: $ → R with 1 argument, is exposed and is
exported by domain Matrix(R) if R has commutative("*").

Our task is to create a little query language that allows us to get useful information from
this database.

A Little Query Language

First we design a simple language for accessing information from the database. We have the
following simple model in mind for its design. Think of the database as a box of index cards.
There is only one search operation—it takes the name of a field and a predicate (a boolean-
valued function) defined on the fields of the index cards. When applied, the search operation
goes through the entire box selecting only those index cards for which the predicate is true.
The result of a search is a new box of index cards. This process can be repeated again and
again.

The predicates all have a particularly simple form: symbol = pattern, where symbol designates
one of the fields, and pattern is a “search string”—a string that may contain a “*” as a
wildcard. Wildcards match any substring, including the empty string. Thus the pattern
"*ma*t matches "mat",doormat and smart.

To illustrate how queries are given, we give you a sneak preview of the facility we are about
to create.

Extract the database of all Axiom operations.

ops := getDatabase("o")

How many exposed three-argument map operations involving streams?

ops.(name="map").(nargs="3").(type="*Stream*")

As usual, the arguments of elt (.) associate to the left. The first elt produces the set of all
operations with name map. The second elt produces the set of all map operations with three
arguments. The third elt produces the set of all three-argument map operations having a
type mentioning Stream.

Another thing we’d like to do is to extract one field from each of the index cards in the box
and look at the result. Here is an example of that kind of request.

What constructors explicitly export a determinant operation?
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elt(elt(elt(elt(ops,name="determinant"),origin),sort),unique)

The first elt produces the set of all index cards with name determinant. The second elt
extracts the origin component from each index card. Each origin component is the name of
a constructor which directly exports the operation represented by the index card. Extracting
a component from each index card produces what we call a datalist. The third elt, sort,
causes the datalist of origins to be sorted in alphabetic order. The fourth, unique, causes
duplicates to be removed.

Before giving you a more extensive demo of this facility, we now build the necessary domains
and packages to implement it.

The Database Constructor

We work from the top down. First, we define a database, our box of index cards, as an
abstract datatype. For sake of illustration and generality, we assume that an index card is
some type S, and that a database is a box of objects of type S. Here is the Axiom program
defining the Database domain.

PI ==> PositiveInteger

Database(S): Exports == Implementation where

S: Object with

elt: ($, Symbol) -> String

display: $ -> Void

fullDisplay: $ -> Void

Exports == with

elt: ($,QueryEquation) -> $ Select by an equation

elt: ($, Symbol) -> DataList String Select by a field name

"+": ($,$) -> $ Combine two databases

"-": ($,$) -> $ Subtract one from another

display: $ -> Void A brief database display

fullDisplay: $ -> Void A full database display

fullDisplay: ($,PI,PI) -> Void A selective display

coerce: $ -> OutputForm Display a database

Implementation == add

...

The domain constructor takes a parameter S, which stands for the class of index cards. We
describe an index card later. Here think of an index card as a string which has the eight
fields mentioned above.

First, we tell Axiom what operations we are going to require from index cards. We need
an elt to extract the contents of a field (such as name and type) as a string. For example,
c.name returns a string that is the content of the name field on the index card c. We need to
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display an index card in two ways: display shows only the name and type of an operation;
fullDisplay displays all fields. The display operations return no useful information and thus
have return type Void.

Next, we tell Axiom what operations the user can apply to the database. This part defines
our little query language. The most important operation is db . field = pattern which
returns a new database, consisting of all index cards of db such that the field part of the
index card is matched by the string pattern called pattern. The expression field = pattern

is an object of type QueryEquation (defined in the next section).

Another elt is needed to produce a DataList object. Operation + is to merge two databases
together; - is used to subtract away common entries in a second database from an initial
database. There are three display functions. The fullDisplay function has two versions:
one that prints all the records, the other that prints only a fixed number of records. A
coerce to OutputForm creates a display object.

The Implementation part of Database is straightforward.

Implementation == add

s: Symbol

Rep := List S

elt(db,equation) == ...

elt(db,key) == [x.key for x in db]::DataList(String)

display(db) == for x in db repeat display x

fullDisplay(db) == for x in db repeat fullDisplay x

fullDisplay(db, n, m) == for x in db for i in 1..m

repeat

if i >= n then fullDisplay x

x+y == removeDuplicates! merge(x,y)

x-y == mergeDifference(copy(x::Rep),

y::Rep)$MergeThing(S)

coerce(db): OutputForm == (#db):: OutputForm

The database is represented by a list of elements of S (index cards). We leave the definition
of the first elt operation (on line 4) until the next section. The second elt collects all the
strings with field name key into a list. The display function and first fullDisplay function
simply call the corresponding functions from S. The second fullDisplay function provides
an efficient way of printing out a portion of a large list. The + is defined by using the existing
merge operation defined on lists, then removing duplicates from the result. The - operation
requires writing a corresponding subtraction operation. A package MergeThing (not shown)
provides this.

The coerce function converts the database to an OutputForm by computing the number
of index cards. This is a good example of the independence of the representation of an
Axiom object from how it presents itself to the user. We usually do not want to look at a
database—but do care how many “hits” we get for a given query. So we define the output
representation of a database to be simply the number of index cards our query finds.
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Query Equations

The predicate for our search is given by an object of type QueryEquation. Axiom does not
have such an object yet so we have to invent it.

QueryEquation(): Exports == Implementation where

Exports == with

equation: (Symbol, String) -> $

variable: $ -> Symbol

value: $ -> String

Implementation == add

Rep := Record(var:Symbol, val:String)

equation(x, s) == [x, s]

variable q == q.var

value q == q.val

Axiom converts an input expression of the form a = b to equation(a, b). Our equations
always have a symbol on the left and a string on the right. The Exports part thus spec-
ifies an operation equation to create a query equation, and variable and value to select
the left- and right-hand sides. The Implementation part uses Record for a space-efficient
representation of an equation.

Here is the missing definition for the elt function of Database in the last section:

elt(db,eq) ==

field\ := variable eq

value := value eq

[x for x in db | matches?(value,x.field)]

Recall that a database is represented by a list. Line 4 simply runs over that list collecting
all elements such that the pattern (that is, value) matches the selected field of the element.

DataLists

Type DataList is a new type invented to hold the result of selecting one field from each of
the index cards in the box. It is useful to make datalists extensions of lists—lists that have
special elt operations defined on them for sorting and removing duplicates.

DataList(S:OrderedSet) : Exports == Implementation where

Exports == ListAggregate(S) with
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elt: ($,"unique") -> $

elt: ($,"sort") -> $

elt: ($,"count") -> NonNegativeInteger

coerce: List S -> $

Implementation == List(S) add

Rep := List S

elt(x,"unique") == removeDuplicates(x)

elt(x,"sort") == sort(x)

elt(x,"count") == #x

coerce(x:List S) == x :: $

The Exports part asserts that datalists belong to the category ListAggregate. Therefore,
you can use all the usual list operations on datalists, such as first, rest, and concat. In
addition, datalists have four explicit operations. Besides the three elt operations, there is a
coerce operation that creates datalists from lists.

The Implementation part needs only to define four functions. All the rest are obtained from
List(S).

Index Cards

An index card comes from a file as one long string. We define functions that extract substrings
from the long string. Each field has a name that is passed as a second argument to elt.

IndexCard() == Implementation where

Exports == with

elt: ($, Symbol) -> String

display: $ -> Void

fullDisplay: $ -> Void

coerce: String -> $

Implementation == String add ...

We leave the Implementation part to the reader. All operations involve straightforward
string manipulations.

Creating a Database

We must not forget one important operation: one that builds the database in the first place!
We’ll name it getDatabase and put it in a package. This function is implemented by call-
ing the Common Lisp function getBrowseDatabase(s) to get appropriate information from
Browse. This operation takes a string indicating which lines you want from the database:
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“o” gives you all operation lines, and “k”, all constructor lines. Similarly, “c”, “d”, and “p”
give you all category, domain and package lines respectively.

OperationsQuery(): Exports == Implementation where

Exports == with

getDatabase: String -> Database(IndexCard)

Implementation == add

getDatabase(s) == getBrowseDatabase(s)$Lisp

We do not bother creating a special name for databases of index cards.
Database (IndexCard) will do. Notice that we used the package
OperationsQuery to create, in effect, a new kind of domain:
Database(IndexCard).

Putting It All Together

To create the database facility, you put all these constructors into one file.3 At the top of
the file put )abbrev commands, giving the constructor abbreviations you created.

3You could use separate files, but we are putting them all together because, organizationally, that is the
logical thing to do.
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)abbrev domain ICARD IndexCard

)abbrev domain QEQUAT QueryEquation

)abbrev domain MTHING MergeThing

)abbrev domain DLIST DataList

)abbrev domain DBASE Database

)abbrev package OPQUERY OperationsQuery

With all this in alql.spad, for example, compile it using

)compile alql

and then load each of the constructors:

)load ICARD QEQUAT MTHING DLIST DBASE OPQUERY

You are ready to try some sample queries.

Example Queries

Our first set of queries give some statistics on constructors in the current Axiom system.

How many constructors does Axiom have?

ks := getDatabase "k"

Break this down into the number of categories, domains, and packages.

[ks.(kind=k) for k in ["c","d","p"] ]

What are all the domain constructors that take no parameters?

elt(ks.(kind="d").(nargs="0"),name)

How many constructors have “Matrix” in their name?

mk := ks.(name="*Matrix*")

What are the names of those that are domains?

elt(mk.(kind="d"),name)
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How many operations are there in the library?

o := getDatabase "o"

Break this down into categories, domains, and packages.

[o.(kind=k) for k in ["c","d","p"] ]

The query language is helpful in getting information about a particular operation you might
like to apply. While this information can be obtained with Browse, the use of the query
database gives you data that you can manipulate in the workspace.

How many operations have “eigen” in the name?

eigens := o.(name="*eigen*")

What are their names?

elt(eigens,name)

Where do they come from?

elt(elt(elt(eigens,origin),sort),unique)

The operations + and - are useful for constructing small databases and combining them.
However, remember that the only matching you can do is string matching. Thus a pattern
such as "*Matrix*" on the type field matches any type containing Matrix, MatrixCategory,
SquareMatrix, and so on.

How many operations mention “Matrix” in their type?

tm := o.(type="*Matrix*")

How many operations come from constructors with “Matrix” in their name?

fm := o.(origin="*Matrix*")

How many operations are in fm but not in tm?

fm-tm

Display the operations that both mention “Matrix” in their type and come from a constructor
having “Matrix” in their name.
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fullDisplay(fm-%)

How many operations involve matrices?

m := tm+fm

Display 4 of them.

fullDisplay(m, 202, 205)

How many distinct names of operations involving matrices are there?

elt(elt(elt(m,name),unique),count)
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Chapter 14

Browse

This chapter discusses the Browse component of HyperDoc. We suggest you invoke Axiom
and work through this chapter, section by section, following our examples to gain some
familiarity with Browse.

14.1 The Front Page: Searching the Library

To enter Browse, click on Browse on the top level page of HyperDoc to get the front page
of Browse.

Figure 14.1: The Browse front page.

To use this page, you first enter a search string into the input area at the top, then click on

931
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one of the buttons below. We show the use of each of the buttons by example.

Constructors

First enter the search string Matrix into the input area and click on Constructors. What
you get is the constructor page for Matrix. We show and describe this page in detail in
section 14.2 on page 935. By convention, Axiom does a case-insensitive search for a match.
Thus matrix is just as good as Matrix, has the same effect as MaTrix, and so on. We
recommend that you generally use small letters for names however. A search string with
only capital letters has a special meaning (see section 14.3 on page 952).

Click on to return to the Browse front page.

Use the symbol “*” in search strings as a wild card. A wild card matches any substring,
including the empty string. For example, enter the search string *matrix* into the input
area and click on Constructors.1 What you get is a table of all constructors whose names
contain the string “matrix.”

Figure 14.2: Table of exposed constructors matching *matrix* .

All constructors containing the string are listed, whether exposed or unexposed. You can
hide the names of the unexposed constructors by clicking on the *=unexposed button in
the Views panel at the bottom of the window. (The button will change to exposed only.)

One of the names in this table is Matrix. Click on Matrix. What you get is again the
constructor page for Matrix. As you see, Browse gives you a large network of information
in which there are many ways to reach the same pages.

Again click on the to return to the table of constructors whose names contain

1To get only categories, domains, or packages, rather than all constructors, you can click on the corre-
sponding button to the right of Constructors.
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matrix.

Below the table is a Views panel. This panel contains buttons that let you view constructors
in different ways. To learn about views of constructors, skip to section 14.2 on page 945.

Click on to return to the Browse front page.

Operations

Enter *matrix into the input area and click on Operations. This time you get a table of
operations whose names end with matrix or Matrix.

Figure 14.3: Table of operations matching *matrix .

If you select an operation name, you go to a page describing all the operations in Axiom
of that name. At the bottom of an operation page is another kind of Views panel, one for
operation pages. To learn more about these views, skip to section 14.3 on page 949.

Click on to return to the Browse front page.

Attributes

This button gives you a table of attribute names that match the search string. Enter the
search string * and click on Attributes to get a list of all system attributes.

Click on to return to the Browse front page.

Again there is a Views panel at the bottom with buttons that let you view the attributes in
different ways.
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Figure 14.4: Table of Axiom attributes.

General

This button does a general search for all constructor, operation, and attribute names match-
ing the search string. Enter the search string *matrix* into the input area. Click onGeneral
to find all constructs that have matrix as a part of their name.

Figure 14.5: Table of all constructs matching *matrix* .

The summary gives you all the names under a heading when the number of entries is less
than 10.

Click on to return to the Browse front page.
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Documentation

Again enter the search key *matrix* and this time click on Documentation. This search
matches any constructor, operation, or attribute name whose documentation contains a
substring matching matrix.

Figure 14.6: Table of constructs with documentation matching *matrix* .

Click on to return to the Browse front page.

Complete

This search combines both General and Documentation.

14.2 The Constructor Page

In this section we look in detail at a constructor page for domain Matrix. Enter matrix into
the input area on the main Browse page and click on Constructors.

The header part tells you that Matrix has abbreviation MATRIX and one argument called R

that must be a domain of category Ring. Just what domains can be arguments of Matrix?
To find this out, click on the R on the second line of the heading. What you get is a table of
all acceptable domain parameter values of R, or a table of rings in Axiom.

Click on to return to the constructor page for Matrix.
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Figure 14.7: Table summarizing complete search for pattern *matrix* .

Figure 14.8: Constructor page for Matrix.

If you have access to the source code of Axiom, the third line of the heading gives you the
name of the source file containing the definition of Matrix. Click on it to pop up an editor
window containing the source code of Matrix.

We recommend that you leave the editor window up while working through this chapter as
you occasionally may want to refer to it.
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Figure 14.9: Table of acceptable domain parameters to Matrix.

Figure 14.10: Source code for Matrix.

Constructor Page Buttons

We examine each button on this page in order.

Description

Click here to bring up a page with a brief description of constructor Matrix. If you have
access to system source code, note that these comments can be found directly over the
constructor definition.
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Figure 14.11: Description page for Matrix.

Operations

Click here to get a table of operations exported by Matrix. You may wish to widen the
window to have multiple columns as below.

Figure 14.12: Table of operations from Matrix.

If you click on an operation name, you bring up a description page for the operations. For
a detailed description of these pages, skip to section 14.3 on page 949.
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Attributes

Click here to get a table of the two attributes exported by Matrix: finiteAggregate and
shallowlyMutable. These are two computational properties that result from Matrix being
regarded as a data structure.

Figure 14.13: Attributes from Matrix.

Examples

Click here to get an examples page with examples of operations to create and manipulate
matrices.

Read through this section. Try selecting the various buttons. Notice that if you click on
an operation name, such as new, you bring up a description page for that operation from
Matrix.

Example pages have several examples of Axiom commands. Each example has an active
button to its left. Click on it! A pre-computed answer is pasted into the page immediately
following the command. If you click on the button a second time, the answer disappears.
This button thus acts as a toggle: “now you see it; now you don’t.”

Note also that the Axiom commands themselves are active. If you want to see Axiom
execute the command, then click on it! A new Axiom window appears on your screen and
the command is executed.

At the end of the page is generally a menu of buttons that lead you to further sections.
Select one of these topics to explore its contents.
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Figure 14.14: Example page for Matrix.

Exports

Click here to see a page describing the exports of Matrix exactly as described by the source
code.

Figure 14.15: Exports of Matrix.

As you see, Matrix declares that it exports all the operations and attributes exported by
category MatrixCategory(R, Row, Col). In addition, two operations, diagonalMatrix
and inverse, are explicitly exported.

To learn a little about the structure of Axiom, we suggest you do the following exercise.
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Otherwise, go on to the next section.

Matrix explicitly exports only two operations. The other operations are thus exports of
MatrixCategory. In general, operations are usually not explicitly exported by a domain.
Typically they are inherited from several different categories. Let’s find out from where the
operations of Matrix come.

1. Click on MatrixCategory, then on Exports.
Here you see that MatrixCategory explicitly exports many matrix
operations. Also, it inherits its operations from
TwoDimensionalArrayCategory.

2. Click on TwoDimensionalArrayCategory, then on Exports. Here you see explicit
operations dealing with rows and columns. In addition, it inherits operations from
HomogeneousAggregate.

3. Click on and then click on Object, then on Exports, where you see there are
no exports.

4. Click on repeatedly to return to the constructor page for Matrix.

Related Operations

Click here bringing up a table of operations that are exported by packages but not by Matrix

itself.

Figure 14.16: Related operations of Matrix.

To see a table of such packages, use the Relatives button on the Cross Reference page
described next.
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Cross Reference

Click on the Cross Reference button on the main constructor page for Matrix. This gives
you a page having various cross reference information stored under the respective buttons.

Figure 14.17: Cross-reference page for Matrix.

Parents

The parents of a domain are the same as the categories mentioned under the Exports button
on the first page. Domain Matrix has only one parent but in general a domain can have any
number.

Ancestors

The ancestors of a constructor consist of its parents, the parents of its parents, and so on.
Did you perform the exercise in the last section under Exports? If so, you see here all the
categories you found while ascending the Exports chain for Matrix.

Relatives

The relatives of a domain constructor are package constructors that provide operations in
addition to those exported by the domain.

Try this exercise.

1. Click on Relatives, bringing up a list of packages.
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2. Click on LinearSystemMatrixPackage bringing up its constructor page.2

3. Click on Operations. Here you see rank, an operation also exported by Matrix itself.

4. Click on rank. This rank has two arguments and thus is different from the rank from
Matrix.

5. Click on to return to the list of operations for the package LinearSystem-
MatrixPackage.

6. Click on solve to bring up a solve for linear systems of equations.

7. Click on several times to return to the cross reference page for Matrix.

Dependents

The dependents of a constructor are those domains or packages that mention that constructor
either as an argument or in its exports.

If you click on Dependents two entries may surprise you:
RectangularMatrix and SquareMatrix. This happens because
Matrix, as it turns out, appears in signatures of operations
exported by these domains.

Lineage

The term lineage refers to the search order for functions. If you are an expert user or curious
about how the Axiom system works, try the following exercise. Otherwise, you best skip
this button and go on to Clients.

Clicking on Lineage gives you a list of domain constructors:
InnerIndexedTwoDimensionalArray, MatrixCategory&, TwoDimensionalArrayCat-
egory&, HomogeneousAggregate&, Aggregate&. What are these constructors and
how are they used?

We explain by an example. Suppose you create a matrix using the interpreter, then ask for
its rank. Axiom must then find a function implementing the rank operation for matrices.
The first place Axiom looks for rank is in the Matrix domain.

If not there, the lineage of Matrix tells Axiom where else to look. Associated with the matrix
domain are five other lineage domains. Their order is important. Axiom first searches
the first one, InnerIndexedTwoDimensionalArray. If not there, it searches the second
MatrixCategory&. And so on.

Where do these lineage constructors come from? The source code
for Matrix contains this syntax for the function body of
Matrix: InnerIndexedTwoDimensionalArray is a special domain

2You may want to widen your HyperDoc window to make what follows more legible.
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implemented for matrix-like domains to provide efficient
implementations of two-dimensional arrays.

For example, domains of category TwoDimensionalArrayCategory can have any integer
as their minIndex. Matrices and other members of this special “inner” array have their
minIndex defined as 1.

InnerIndexedTwoDimensionalArray(R,mnRow,mnCol,Row,Col)

add ...

where the “...” denotes all the code that follows. In English, this means: “The functions for
matrices are defined as those from InnerIndexedTwoDimensionalArray domain augmented
by those defined in ‘...’,” where the latter take precedence.

This explains InnerIndexedTwoDimensionalArray. The other names, those with names
ending with an ampersand & are default packages for categories to which Matrix belongs.
Default packages are ordered by the notion of “closest ancestor.”

Clients

A client of Matrix is any constructor that uses Matrix in its implementation. For example,
Complex is a client of Matrix; it exports several operations that take matrices as arguments
or return matrices as values.3

Benefactors

A benefactor of Matrix is any constructor that Matrix uses in its implementation. This
information, like that for clients, is gathered from run-time structures.4

Cross reference pages for categories have some different buttons on them. Starting with the
constructor page of Matrix, click on Ring producing its constructor page. Click on Cross
Reference, producing the cross-reference page for Ring. Here are buttons Parents and
Ancestors similar to the notion for domains, except for categories the relationship between
parent and child is defined through category extension.

Children

Category hierarchies go both ways. There are children as well as parents. A child can have
any number of parents, but always at least one. Every category is therefore a descendant of
exactly one category: Object.

3A constructor is a client of Matrix if it handles any matrix. For example, a constructor having internal
(unexported) operations dealing with matrices is also a client.

4The benefactors exclude constructors such as PrimitiveArray whose operations macro-expand and so
vanish from sight!
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Descendants

These are children, children of children, and so on.

Category hierarchies are complicated by the fact that categories take parameters. Where
a parameterized category fits into a hierarchy may depend on values of its parameters. In
general, the set of categories in Axiom forms a directed acyclic graph, that is, a graph with
directed arcs and no cycles.

Domains

This produces a table of all domain constructors that can possibly be rings (members of
category Ring). Some domains are unconditional rings. Others are rings for some parameters
and not for others. To find out which, select the conditions button in the views panel. For
example, DirectProduct(n, R) is a ring if R is a ring.

Views Of Constructors

Below every constructor table page is a Views panel. As an example, click on Cross Refer-
ence from the constructor page of Matrix, then on Benefactors to produce a short table
of constructor names.

The Views panel is at the bottom of the page. Two items, names and conditions, are
in italics. Others are active buttons. The active buttons are those that give you useful
alternative views on this table of constructors. Once you select a view, you notice that the
button turns off (becomes italicized) so that you cannot reselect it.

names

This view gives you a table of names. Selecting any of these names brings up the constructor
page for that constructor.

abbrs

This view gives you a table of abbreviations, in the same order as the original constructor
names. Abbreviations are in capitals and are limited to 7 characters. They can be used
interchangeably with constructor names in input areas.

kinds

This view organizes constructor names into the three kinds: categories, domains and pack-
ages.
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files

This view gives a table of file names for the source code of the constructors in alphabetic
order after removing duplicates.

parameters

This view presents constructors with the arguments. This view of the benefactors of Matrix
shows that Matrix uses as many as five different List domains in its implementation.

filter

This button is used to refine the list of names or abbreviations. Starting with the names
view, enter m* into the input area and click on filter. You then get a shorter table with
only the names beginning with m.

documentation

This gives you documentation for each of the constructors.

conditions

This page organizes the constructors according to predicates. The view is not available for
your example page since all constructors are unconditional. For a table with conditions,
return to the Cross Reference page for Matrix, click on Ancestors, then on conditions
in the view panel. This page shows you that CoercibleTo(OutputForm) and SetCategory

are ancestors of Matrix(R) only if R belongs to category SetCategory.

Giving Parameters to Constructors

Notice the input area at the bottom of the constructor page. If you leave this blank, then
the information you get is for the domain constructor Matrix(R), that is, Matrix for an
arbitrary underlying domain R.

In general, however, the exports and other information do usually depend on the actual value
of R. For example, Matrix exports the inverse operation only if the domain R is a Field.
To see this, try this from the main constructor page:

1. Enter Integer into the input area at the bottom of the page.

2. Click on Operations, producing a table of operations. Note the number of operation
names that appear at the top of the page.

3. Click on to return to the constructor page.
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4. Use the Delete or Backspace keys to erase Integer from the input area.

5. Click on Operations to produce a new table of operations. Look at the number
of operations you get. This number is greater than what you had before. Find, for
example, the operation inverse.

6. Click on inverse to produce a page describing the operation inverse. At the bottom
of the description, you notice that the Conditions line says “R has Field.” This
operation is not exported by Matrix(Integer) since Integer is not a field.

Try putting the name of a domain such as Fraction Integer (which is a field) into
the input area, then clicking on Operations. As you see, the operation inverse is
exported.

14.3 Miscellaneous Features of Browse

The Description Page for Operations

From the constructor page of Matrix, click onOperations to bring up the table of operations
for Matrix.

Find the operation inverse in the table and click on it. This takes you to a page showing
the documentation for this operation.

Figure 14.18: Operation inverse from Matrix.

Here is the significance of the headings you see.
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Arguments

This lists each of the arguments of the operation in turn, paraphrasing the signature of the
operation. As for signatures, a $ is used to designate this domain, that is, Matrix(R).

Returns

This describes the return value for the operation, analogous to the Arguments part.

Origin

This tells you which domain or category explicitly exports the operation. In this example,
the domain itself is the Origin.

Conditions

This tells you that the operation is exported by Matrix(R) only if “R has Field,” that is,
“R is a member of category Field.” When no Conditions part is given, the operation is
exported for all values of R.

Description

Here are the ++ comments that appear in the source code of its Origin, here Matrix. You
find these comments in the source code for Matrix.

Figure 14.19: Operations map from Matrix.

Click on to return to the table of operations. Click on map. Here you find three
different operations named map. This should not surprise you. Operations are identified by
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name and signature. There are three operations named map, each with different signatures.
What you see is the descriptions view of the operations. If you like, select the button in the
heading of one of these descriptions to get only that operation.

Where

This part qualifies domain parameters mentioned in the arguments to the operation.

Views of Operations

We suggest that you go to the constructor page for Matrix and click on Operations to
bring up a table of operations with a Views panel at the bottom.

names

This view lists the names of the operations. Unlike constructors, however, there may be
several operations with the same name. The heading for the page tells you the number of
unique names and the number of distinct operations when these numbers are different.

filter

As for constructors, you can use this button to cut down the list of operations you are looking
at. Enter, for example, m* into the input area to the right of filter then click on filter. As
usual, any logical expression is permitted. For example, use

*! or *?

to get a list of destructive operations and predicates.

documentation

This gives you the most information: a detailed description of all the operations in the form
you have seen before. Every other button summarizes these operations in some form.

signatures

This views the operations by showing their signatures.

parameters

This views the operations by their distinct syntactic forms with parameters.
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origins

This organizes the operations according to the constructor that explicitly exports them.

conditions

This view organizes the operations into conditional and unconditional operations.

usage

This button is only available if your user-level is set to development. The usage button
produces a table of constructors that reference this operation.5

implementation

This button is only available if your user-level is set to development. If you enter values for
all domain parameters on the constructor page, then the implementation button appears
in place of the conditions button. This button tells you what domains or packages actually
implement the various operations.6

With your user-level set to development, we suggest you try this exercise. Return to the
main constructor page for Matrix, then enter Integer into the input area at the bottom as
the value of R. Then click on Operations to produce a table of operations. Note that the
conditions part of the Views table is replaced by implementation. Click on implemen-
tation. After some delay, you get a page describing what implements each of the matrix
operations, organized by the various domains and packages.

generalize

This button only appears for an operation page of a constructor involving a unique operation
name.

From an operations page for Matrix, select any operation name, say rank. In the views
panel, the filter button is replaced by generalize. Click on it! What you get is a description
of all Axiom operations named rank.7

all domains

This button only appears on an operation page resulting from a search from the front page
of Browse or from selecting generalize from an operation page for a constructor.

5Axiom requires an especially long time to produce this table, so anticipate this when requesting this
information.

6This button often takes a long time; expect a delay while you wait for an answer.
7If there were more than 10 operations of the name, you get instead a page with a Views panel at

the bottom and the message to Select a view below. To get the descriptions of all these operations as
mentioned above, select the description button.
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Figure 14.20: Implementation domains for Matrix.

Figure 14.21: All operations named rank in Axiom.

Note that the filter button in the Views panel is replaced by all domains. Click on it to
produce a table of all domains or packages that export a rank operation.

We note that this table specifically refers to all the rank operations shown in the preceding
page. Return to the descriptions of all the rank operations and select one of them by clicking
on the button in its heading. Select all domains. As you see, you have a smaller table
of constructors. When there is only one constructor, you get the constructor page for that
constructor.
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Figure 14.22: Table of all domains that export rank.

Capitalization Convention

When entering search keys for constructors, you can use capital letters to search for abbre-
viations. For example, enter UTS into the input area and click on Constructors. Up comes
a page describing UnivariateTaylorSeries whose abbreviation is UTS.

Constructor abbreviations always have three or more capital letters. For short constructor
names (six letters or less), abbreviations are not generally helpful as their abbreviation is
typically the constructor name in capitals. For example, the abbreviation for Matrix is
MATRIX.

Abbreviations can also contain numbers. For example, POLY2 is the abbreviation for con-
structor PolynomialFunctions2. For default packages, the abbreviation is the same as the
abbreviation for the corresponding category with the “&” replaced by “-”. For example,
for the category default package MatrixCategory& the abbreviation is MATCAT- since the
corresponding category MatrixCategory has abbreviation MATCAT.



Chapter 15

What’s New in Axiom Version
2.0

Many things have changed in this new version of Axiom and we describe many of the more
important topics here.

15.1 Important Things to Read First

If you have any private .spad files (that is, library files which were not shipped with Axiom)
you will need to recompile them. For example, if you wrote the file regress.spad then you
should issue )compile regress.spad before trying to use it.

The internal representation of Union has changed. This means that Axiom data saved with
Release 1.x may not be readable by this Release. If you cannot recreate the saved data by
recomputing in Release 2.0, please contact NAG for assistance.

15.2 The NAG Library Link

The Nag Library link allows you to call NAG Fortran routines from within Axiom, passing
Axiom objects as parameters and getting them back as results.

The Nag Library and, consequently, the link are divided into chapters, which cover different
areas of numerical analysis. The statistical and sorting chapters of the Library, however,
are not included in the link and various support and utility routines (mainly the F06 and X
chapters) have been omitted.

Each chapter has a short (at most three-letter) name; for example, the chapter devoted to
the solution of ordinary differential equations is called D02. When using the link via the
HyperDoc interface. you will be presented with a complete menu of these chapters. The
names of individual routines within each chapter are formed by adding three letters to the

953
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chapter name, so for example the routine for solving ODEs by Adams method is called
d02cjf.

Interpreting NAG Documentation

Information about using the Nag Library in general, and about using individual routines
in particular, can be accessed via HyperDoc. This documentation refers to the Fortran
routines directly; the purpose of this subsection is to explain how this corresponds to the
Axiom routines.

For general information about the Nag Library users should consult Essential Introduction
to the NAG Foundation Library . The documentation is in ASCII format, and a description
of the conventions used to represent mathematical symbols is given in Introduction to NAG
On-Line Documentation . Advice about choosing a routine from a particular chapter can be
found in the Chapter Documents .

Correspondence Between Fortran and Axiom types

The NAG documentation refers to the Fortran types of objects; in general, the correspon-
dence to Axiom types is as follows.

• Fortran INTEGER corresponds to Axiom Integer.

• Fortran DOUBLE PRECISION corresponds to Axiom DoubleFloat.

• Fortran COMPLEX corresponds to Axiom Complex DoubleFloat.

• Fortran LOGICAL corresponds to Axiom Boolean.

• Fortran CHARACTER*(*) corresponds to Axiom String.

(Exceptionally, for NAG EXTERNAL parameters – ASPs in link parlance
– REAL and COMPLEX correspond to MachineFloat and
MachineComplex, respectively; see section 15.2 on page 956.)

The correspondence for aggregates is as follows.

• A one-dimensional Fortran array corresponds to a Matrix with one column.

• A two-dimensional Fortran ARRAY corresponds to a Matrix.

• A three-dimensional Fortran ARRAY corresponds to a ThreeDimensionalMatrix.

Higher-dimensional arrays are not currently needed for the Nag Library.

Arguments which are Fortran FUNCTIONs or SUBROUTINEs correspond to special ASP
domains in Axiom. See section 15.2 on page 956.
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Classification of NAG parameters

NAG parameters are classified as belonging to one (or more) of the following categories:
Input, Output, Workspace or External procedure. Within External procedures a simi-
lar classification is used, and parameters may also be Dummies, or User Workspace (data
structures not used by the NAG routine but provided for the convenience of the user).

When calling a NAG routine via the link the user only provides values for Input and
External parameters.

The order of the parameters is, in general, different from the order specified in the Nag
Library documentation. The Browser description for each routine helps in determining the
correspondence. As a rule of thumb, Input parameters come first followed by Input/Output

parameters. The External parameters are always found at the end.

IFAIL

NAG routines often return diagnostic information through a parameter called ifail. With
a few exceptions, the principle is that on input ifail takes one of the values −1, 0, 1. This
determines how the routine behaves when it encounters an error:

• a value of 1 causes the NAG routine to return without printing an error message;

• a value of 0 causes the NAG routine to print an error message and abort;

• a value of -1 causes the NAG routine to return and print an error message.

The user is STRONGLY ADVISED to set ifail to −1 when using the link. If ifail has been
set to 1 or −1 on input, then its value on output will determine the possible cause of any
error. A value of 0 indicates successful completion, otherwise it provides an index into a
table of diagnostics provided as part of the routine documentation (accessible via Browse).

Using the Link

The easiest way to use the link is via the HyperDoc interface . You will be presented with
a set of fill-in forms where you can specify the parameters for each call. Initially, the forms
contain example values, demonstrating the use of each routine (these, in fact, correspond
to the standard NAG example program for the routine in question). For some parameters,
these values can provide reasonable defaults; others, of course, represent data. When you
change a parameter which controls the size of an array, the data in that array are reset to a
“neutral” value – usually zero.

When you are satisfied with the values entered, clicking on the “Continue” button will display
the Axiom command needed to run the chosen NAG routine with these values. Clicking on
the “Do It” button will then cause Axiom to execute this command and return the result
in the parent Axiom session, as described below. Note that, for some routines, multiple
HyperDoc “pages” are required, due to the structure of the data. For these, returning to an
earlier page causes HyperDoc to reset the later pages (this is a general feature of HyperDoc);
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in such a case, the simplest way to repeat a call, varying a parameter on an earlier page, is
probably to modify the call displayed in the parent session.

An alternative approach is to call NAG routines directly in your normal Axiom session
(that is, using the Axiom interpreter). Such calls return an object of type Result. As
not all parameters in the underlying NAG routine are required in the Axiom call (and the
parameter ordering may be different), before calling a NAG routine you should consult the
description of the Axiom operation in the Browser. (The quickest route to this is to type
the routine name, in lower case, into the Browser’s input area, then click on Operations.)
The parameter names used coincide with NAG’s, although they will appear here in lower
case. Of course, it is also possible to become familiar with the Axiom form of a routine by
first using it through the HyperDoc interface .

As an example of this mode of working, we can find a zero of a function, lying between 3
and 4, as follows:

answer:=c05adf(3.0,4.0,1.0e-5,0.0,-1,sin(X)::ASP1(F))

By default, Result only displays the type of returned values, since the amount of information
returned can be quite large. Individual components can be examined as follows:

answer . x

answer . ifail

In order to avoid conflict with names defined in the workspace, you can also get the values
by using the String type (the interpreter automatically coerces them to Symbol)

answer "x"

It is possible to have Axiom display the values of scalar or array results automatically. For
more details, see the commands showScalarValues and showArrayValues.

There is also a .input file for each NAG routine, containing Axiom interpreter commands
to set up and run the standard NAG example for that routine.

)read c05adf.input

Providing values for Argument Subprograms

There are a number of ways in which users can provide values for argument subprograms
(ASPs). At the top level the user will see that NAG routines require an object from the
Union of a Filename and an ASP.

For example c05adf requires an object of type Union(fn: FileName,fp: Asp1 F)
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)display operation c05adf

The user thus has a choice of providing the name of a file containing Fortran source code, or
of somehow generating the ASP within Axiom. If a filename is specified, it is searched for
in the local machine, i.e., the machine that Axiom is running on.

Providing ASPs via FortranExpression

The FortranExpression domain is used to represent expressions which can be translated
into Fortran under certain circumstances. It is very similar to Expression except that only
operators which exist in Fortran can be used, and only certain variables can occur. For
example the instantiation FortranExpression([X],[M],MachineFloat) is the domain of
expressions containing the scalar X and the array M .

This allows us to create expressions like:

f : FortranExpression([X],[M],MachineFloat) := sin(X)+M[3,1]

but not

f : FortranExpression([X],[M],MachineFloat) := sin(M)+Y

Those ASPs which represent expressions usually export a coerce from an appropriate instan-
tiation of FortranExpression (or perhaps Vector FortranExpression etc.). For conve-
nience there are also retractions from appropriate instantiations of Expression, Polynomial
and Fraction Polynomial.

Providing ASPs via FortranCode

FortranCode allows us to build arbitrarily complex ASPs via a kind of pseudo-code. It is
described fully in section 15.2 on page 958.

Every ASP exports two coerce functions: one from FortranCode and one from List

FortranCode. There is also a coerce from Record( localSymbols: SymbolTable, code:

List FortranCode) which is used for passing extra symbol information about the ASP.

So for example, to integrate the function abs(x) we could use the built-in abs function. But
suppose we want to get back to basics and define it directly, then we could do the following:

d01ajf(-1.0, 1.0, 0.0, 1.0e-5, 800, 200, -1, cond(LT(X,0), assign(F,-X),

assign(F,X))) result

The cond operation creates a conditional clause and the assign an assignment statement.
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Providing ASPs via FileName

Suppose we have created the file “asp.f” as follows:

DOUBLE PRECISION FUNCTION F(X)

DOUBLE PRECISION X

F=4.0D0/(X*X+1.0D0)

RETURN

END

and wish to pass it to the NAG routine d01ajf which performs one-dimensional quadrature.
We can do this as follows:

d01ajf(0.0 ,1.0, 0.0, 1.0e-5, 800, 200, -1, "asp.f")

General Fortran-generation utilities in Axiom

This section describes more advanced facilities which are available to users who wish to
generate Fortran code from within Axiom. There are facilities to manipulate templates,
store type information, and generate code fragments or complete programs.

Template Manipulation

A template is a skeletal program which is “fleshed out” with data when it is processed. It
is a sequence of active and passive parts: active parts are sequences of Axiom commands
which are processed as if they had been typed into the interpreter; passive parts are simply
echoed verbatim on the Fortran output stream.

Suppose, for example, that we have the following template, stored in the file “test.tem”:

-- A simple template

beginVerbatim

DOUBLE PRECISION FUNCTION F(X)

DOUBLE PRECISION X

endVerbatim

outputAsFortran("F",f)

beginVerbatim

RETURN

END

endVerbatim

The passive parts lie between the two tokens beginVerbatim and endVerbatim. There are
two active statements: one which is simply an Axiom (--) comment, and one which produces
an assignment to the current value of f. We could use it as follows:

(4) ->f := 4.0/(1+X**2)
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4

(4) ------

2

X + 1

(5) ->processTemplate "test.tem"

DOUBLE PRECISION FUNCTION F(X)

DOUBLE PRECISION X

F=4.0D0/(X*X+1.0D0)

RETURN

END

(5) "CONSOLE"

(A more reliable method of specifying the filename will be introduced below.) Note that the
Fortran assignment F=4.0D0/(X*X+1.0D0) automatically converted 4.0 and 1 into DOU-
BLE PRECISION numbers; in general, the Axiom Fortran generation facility will convert
anything which should be a floating point object into either a Fortran REAL or DOUBLE
PRECISION object.

Which alternative is used is determined by the command

)set fortran precision

It is sometimes useful to end a template before the file itself ends (e.g. to allow the template
to be tested incrementally or so that a piece of text describing how the template works can be
included). It is of course possible to “comment-out” the remainder of the file. Alternatively,
the single token endInput as part of an active portion of the template will cause processing
to be ended prematurely at that point.

The processTemplate command comes in two flavours. In the first case, illustrated above,
it takes one argument of domain FileName, the name of the template to be processed,
and writes its output on the current Fortran output stream. In general, a filename can be
generated from directory, name and extension components, using the operation filename,
as in

processTemplate filename("","test","tem")

There is an alternative version of processTemplate, which takes two arguments (both
of domain FileName). In this case the first argument is the name of the template to be
processed, and the second is the file in which to write the results. Both versions return the
location of the generated Fortran code as their result (“CONSOLE” in the above example).

It is sometimes useful to be able to mix active and passive parts of a line or statement. For
example you might want to generate a Fortran Comment describing your data set. For this
kind of application we provide three functions as follows:
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fortranLiteral write string on the Fortran output stream

fortranCarriageReturn writes a carriage return on the Fortran out-
put stream

fortranLiteralLine writes a string followed by a return on the
Fortran output stream

So we could create our comment as follows:

m := matrix [ [1,2,3],[4,5,6] ]

fortranLiteralLine concat ["C The Matrix has ", nrows(m)::String, "

rows and ", ncols(m)::String, " columns"]

or, alternatively:

fortranLiteral "C The Matrix has "

fortranLiteral(nrows(m)::String)

fortranLiteral " rows and "

fortranLiteral(ncols(m)::String)

fortranLiteral " columns"

fortranCarriageReturn()

We should stress that these functions, together with the outputAsFortran function are
the only sure ways of getting output to appear on the Fortran output stream. Attempts to
use Axiom commands such as output or writeline may appear to give the required result
when displayed on the console, but will give the wrong result when Fortran and algebraic
output are sent to differing locations. On the other hand, these functions can be used to
send helpful messages to the user, without interfering with the generated Fortran.



15.2. THE NAG LIBRARY LINK 961

Manipulating the Fortran Output Stream

Sometimes it is useful to manipulate the Fortran output stream in a program, possibly with-
out being aware of its current value. The main use of this is for gathering type declarations
(see “Fortran Types” below) but it can be useful in other contexts as well. Thus we provide
a set of commands to manipulate a stack of (open) output streams. Only one stream can
be written to at any given time. The stack is never empty—its initial value is the console or
the current value of the Fortran output stream, and can be determined using

topFortranOutputStack()

(see below). The commands available to manipulate the stack are:

clearFortranOutputStack resets the stack to the console

pushFortranOutputStack pushes a FileName onto the stack

popFortranOutputStack pops the stack

showFortranOutputStack returns the current stack

topFortranOutputStack returns the top element of the stack

These commands are all part of FortranOutputStackPackage.

Fortran Types

When generating code it is important to keep track of the Fortran types of the objects which
we are generating. This is useful for a number of reasons, not least to ensure that we are
actually generating legal Fortran code. The current type system is built up in several layers,
and we shall describe each in turn.

FortranScalarType

This domain represents the simple Fortran datatypes: REAL, DOUBLE PRECISION, COM-
PLEX, LOGICAL, INTEGER, and CHARACTER. It is possible to coerce a String or
Symbol into the domain, test whether two objects are equal, and also apply the predicate
functions real? etc.

FortranType

This domain represents “full” types: i.e., datatype plus array dimensions (where appropri-
ate) plus whether or not the parameter is an external subprogram. It is possible to coerce
an object of FortranScalarType into the domain or construct one from an element of
FortranScalarType, a list of Polynomial Integers (which can of course be simple integers
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or symbols) representing its dimensions, and a Boolean declaring whether it is external or
not. The list of dimensions must be empty if the Boolean is true. The functions scalar-
TypeOf, dimensionsOf and external? return the appropriate parts, and it is possible to
get the various basic Fortran Types via functions like fortranReal.

For example:

type:=construct(real,[i,10],false)$FortranType

or

type:=[real,[i,10],false]$FortranType

scalarTypeOf type

dimensionsOf type

external? type

fortranLogical()

construct(integer,[],true)$FortranType

SymbolTable

This domain creates and manipulates a symbol table for generated Fortran code. This is
used by FortranProgram to represent the types of objects in a subprogram. The commands
available are:

empty creates a new SymbolTable

declare creates a new entry in a table

fortranTypeOf returns the type of an object in a table

parametersOf returns a list of all the symbols in the table

typeList returns a list of all objects of a given type

typeLists returns a list of lists of all objects sorted by type

externalList returns a list of all EXTERNAL objects

printTypes produces Fortran type declarations from a table



15.2. THE NAG LIBRARY LINK 963

symbols := empty()$SymbolTable

declare!(X,fortranReal(),symbols)

declare!(M,construct(real,[i,j],false)$FortranType,symbols)

declare!([i,j],fortranInteger(),symbols)

symbols

fortranTypeOf(i,symbols)

typeList(real,symbols)

printTypes symbols

TheSymbolTable

This domain creates and manipulates one global symbol table to be used, for example,
during template processing. It is also used when linking to external Fortran routines. The
information stored for each subprogram (and the main program segment, where relevant) is:

• its name;

• its return type;

• its argument list;

• and its argument types.

Initially, any information provided is deemed to be for the main program segment.

Issuing the following command indicates that from now on all information refers to the
subprogram F .

newSubProgram F

It is possible to return to processing the main program segment by issuing the command:
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endSubProgram()

The following commands exist:

returnType declares the return type of the current subpro-
gram

returnTypeOf returns the return type of a subprogram

argumentList declares the argument list of the current sub-
program

argumentListOf returns the argument list of a subprogram

declare provides type declarations for parameters of
the current subprogram

symbolTableOf returns the symbol table of a subprogram

printHeader produces the Fortran header for the current
subprogram

In addition there are versions of these commands which are parameterised by the name of a
subprogram, and others parameterised by both the name of a subprogram and by an instance
of TheSymbolTable.

newSubProgram F

argumentList!(F,[X])

returnType!(F,real)

declare!(X,fortranReal(),F)

printHeader F

Advanced Fortran Code Generation

This section describes facilities for representing Fortran statements, and building up complete
subprograms from them.
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Switch

This domain is used to represent statements like x < y. Although these can be represented
directly in Axiom, it is a little cumbersome, since Axiom evaluates the last statement, for
example, to true (since x is lexicographically less than y).

Instead we have a set of operations, such as LT to represent<, to let us build such statements.
The available constructors are:

LT <
GT >
LE ≤
GE ≥
EQ =
AND and

OR or

NOT not

So for example:

LT(x,y)

FortranCode

This domain represents code segments or operations: currently assignments, conditionals,
blocks, comments, gotos, continues, various kinds of loops, and return statements.

For example we can create quite a complicated conditional statement using assignments, and
then turn it into Fortran code:

c := cond(LT(X,Y),assign(F,X),cond(GT(Y,Z),assign(F,Y),assign(F,Z)))

printCode c

The Fortran code is printed on the current Fortran output stream.

FortranProgram

This domain is used to construct complete Fortran subprograms out of elements of Fortran-
Code. It is parameterised by the name of the target subprogram (a Symbol), its return
type (from Union(FortranScalarType,“void”)), its arguments (from List Symbol), and its
symbol table (from SymbolTable). One can coerce elements of either FortranCode or
Expression into it.

First of all we create a symbol table:
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symbols := empty()$SymbolTable

Now put some type declarations into it:

declare!([X,Y],fortranReal(),symbols)

Then (for convenience) we set up the particular instantiation of FortranProgram

FP := FortranProgram(F,real,[X,Y],symbols)

Create an object of type Expression(Integer):

asp := X*sin(Y)

Now coerce it into FP, and print its Fortran form:

outputAsFortran(asp::FP)

We can generate a FortranProgram using FortranCode. For example:

Augment our symbol table:

declare!(Z,fortranReal(),symbols)

and transform the conditional expression we prepared earlier:

outputAsFortran([c,returns()]::FP)

Some technical information

The model adopted for the link is a server-client configuration – Axiom acting as a client
via a local agent (a process called nagman). The server side is implemented by the nagd

daemon process which may run on a different host. The nagman local agent is started by
default whenever you start Axiom. The nagd server must be started separately. Instructions
for installing and running the server are supplied in by NAG. Use the )set naglink host

system command to point your local agent to a server in your network.

On the Axiom side, one sees a set of packages (ask Browse for Nag*) for each chapter, each
exporting operations with the same name as a routine in the Nag Library. The arguments
and return value of each operation belong to standard Axiom types.

The man pages for the Nag Library are accessible via the description of each operation in
Browse (among other places).
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In the implementation of each operation, the set of inputs is passed to the local agent nagman,
which makes a Remote Procedure Call (RPC) to the remote nagd daemon process. The local
agent receives the RPC results and forwards them to the Axiom workspace where they are
interpreted appropriately.

How are Fortran subroutines turned into RPC calls? For each Fortran routine in the Nag
Library, a C main() routine is supplied. Its job is to assemble the RPC input (numeric) data
stream into the appropriate Fortran data structures for the routine, call the Fortran routine
from C and serialize the results into an RPC output data stream.

Many Nag Library routines accept ASPs (Argument Subprogram Parameters). These specify
user-supplied Fortran routines (e.g. a routine to supply values of a function is required for
numerical integration). How are they handled? There are new facilities in Axiom to help.
A set of Axiom domains has been provided to turn values in standard Axiom types (such as
Expression Integer) into the appropriate piece of Fortran for each case (a filename pointing
to Fortran source for the ASP can always be supplied instead). Ask Browse for Asp* to see
these domains. The Fortran fragments are included in the outgoing RPC stream, but nagd
intercepts them, compiles them, and links them with the main() C program before executing
the resulting program on the numeric part of the RPC stream.

15.3 Interactive Front-end and Language

The leave keyword has been replaced by the break keyword for compatibility with the new
Axiom extension language. See section 5.4 on page 130 for more information.

Curly braces are no longer used to create sets. Instead, use set followed by a bracketed
expression. For example,

set [1,2,3,4]

Curly braces are now used to enclose a block (see section section 5.2 on page 123 for more
information). For compatibility, a block can still be enclosed by parentheses as well.

“Free functions” created by the Aldor compiler can now be loaded and used within the Axiom
interpreter. A free function is a library function that is implemented outside a domain or
category constructor.

New coercions to and from type Expression have been added. For example, it is now
possible to map a polynomial represented as an expression to an appropriate polynomial
type.

Various messages have been added or rewritten for clarity.

15.4 Library

The FullPartialFractionExpansion domain has been added. This domain computes
factor-free full partial fraction expansions. See section FullPartialFractionExpansion for
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examples.

We have implemented the Bertrand/Cantor algorithm for integrals of hyperelliptic functions.
This brings a major speedup for some classes of algebraic integrals.

We have implemented a new (direct) algorithm for integrating trigonometric functions. This
brings a speedup and an improvement in the answer quality.

The SmallFloat domain has been renamed DoubleFloat and SmallInteger has been renamed
SingleInteger. The new abbreviations as DFLOAT and SINT, respectively. We have defined
the macro SF, the old abbreviation for SmallFloat, to expand to DoubleFloat and modified
the documentation and input file examples to use the new names and abbreviations. You
should do the same in any private Axiom files you have.

There are many new categories, domains and packages related to the NAG Library Link
facility. See the file

src/algebra/exposed.lsp

for a list of constructors in the naglink Axiom exposure group.

We have made improvements to the differential equation solvers and there is a new facility for
solving systems of first-order linear differential equations. In particular, an important fix was
made to the solver for inhomogeneous linear ordinary differential equations that corrected
the calculation of particular solutions. We also made improvements to the polynomial and
transcendental equation solvers including the ability to solve some classes of systems of
transcendental equations.

The efficiency of power series have been improved and left and right expansions of tan(f(x))
at x = a pole of f(x) can now be computed. A number of power series bugs were fixed
and the GeneralUnivariatePowerSeries domain was added. The power series variable can
appear in the coefficients and when this happens, you cannot differentiate or integrate the
series. Differentiation and integration with respect to other variables is supported.

A domain was added for representing asymptotic expansions of a function at an exponential
singularity.

For limits, the main new feature is the exponential expansion domain used to treat certain
exponential singularities. Previously, such singularities were treated in an ad hoc way and
only a few cases were covered. Now Axiom can do things like

limit( (x+1)**(x+1)/x**x - x**x/(x-1)**(x-1), x = %plusInfinity)

in a systematic way. It only does one level of nesting, though. In other words, we can handle
exp(somefunctionwithapole), but not exp(exp(somefunctionwithapole)).

The computation of integral bases has been improved through careful use of Hermite row
reduction. A P-adic algorithm for function fields of algebraic curves in finite characteristic
has also been developed.

Miscellaneous: There is improved conversion of definite and indefinite integrals to
InputForm; binomial coefficients are displayed in a new way;
some new simplifications of radicals have been implemented;
the operation complexForm for converting to rectangular
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coordinates has been added; symmetric product operations have been
added to LinearOrdinaryDifferentialOperator.

15.5 HyperTex

The buttons on the titlebar and scrollbar have been replaced with ones which have a 3D
effect. You can change the foreground and background colors of these “controls” by including
and modifying the following lines in your .Xdefaults file.

Axiom.hyperdoc.ControlBackground: White

Axiom.hyperdoc.ControlForeground: Black

For various reasons, HyperDoc sometimes displays a secondary window. You can control
the size and placement of this window by including and modifying the following line in your
.Xdefaults file.

Axiom.hyperdoc.FormGeometry: =950x450+100+0

This setting is a standard X Window System geometry specification: you are requesting a
window 950 pixels wide by 450 deep and placed in the upper left corner.

Some key definitions have been changed to conform more closely with the CUA guidelines.
Press F9 to see the current definitions.

Input boxes (for example, in the Browser) now accept paste-ins from the X Window System.
Use the second button to paste in something you have previously copied or cut. An example
of how you can use this is that you can paste the type from an Axiom computation into the
main Browser input box.

15.6 Documentation

We describe here a few additions to the on-line version of the Axiom book which you can
read with HyperDoc.

A section has been added to the graphics chapter, describing how to build two-dimensional
graphs from lists of points. An example is given showing how to read the points from a file.
See section 7.1 on page 237 for details.

A further section has been added to that same chapter, describing how to add a two-dimen-
sional graph to a viewport which already contains other graphs. See section 7.1 on page 244
for details.

Chapter 3 and the on-line HyperDoc help have been unified.

An explanation of operation names ending in “?” and “!” has been added to the first
chapter. See the end of the section 1.3 on page 10 for details.

An expanded explanation of using predicates has been added to the sixth chapter. See the
example involving evenRule in the middle of the section 6.21 on page 208 for details.
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Documentation for the )compile, )library and )load commands has been greatly changed.
This reflects the ability of the )compile to now invoke the Aldor compiler, the impending
deletion of the )load command and the new )library command. The )library command
replaces )load and is compatible with the compiled output from both the old and new
compilers.



Appendix A

Axiom System Commands

This chapter describes system commands, the command-line facilities used to control the
Axiom environment. The first section is an introduction and discusses the common syntax
of the commands available.

A.1 Introduction

System commands are used to perform Axiom environment management. Among the com-
mands are those that display what has been defined or computed, set up multiple logical
Axiom environments (frames), clear definitions, read files of expressions and commands,
show what functions are available, and terminate Axiom.

Some commands are restricted: the commands

)set userlevel interpreter

)set userlevel compiler

)set userlevel development

set the user-access level to the three possible choices. All commands are available at
development level and the fewest are available at interpreter level. The default user-level
is interpreter. In addition to the )set command (discussed in section A.23 on page 994
you can use the HyperDoc settings facility to change the user-level.

Each command listing begins with one or more syntax pattern descriptions plus examples
of related commands. The syntax descriptions are intended to be easy to read and do not
necessarily represent the most compact way of specifying all possible arguments and options;
the descriptions may occasionally be redundant.

All system commands begin with a right parenthesis which should be in the first available
column of the input line (that is, immediately after the input prompt, if any). System
commands may be issued directly to Axiom or be included in .input files.

A system command argument is a word that directly follows the command name and is not

971



972 APPENDIX A. AXIOM SYSTEM COMMANDS

followed or preceded by a right parenthesis. A system command option follows the system
command and is directly preceded by a right parenthesis. Options may have arguments:
they directly follow the option. This example may make it easier to remember what is an
option and what is an argument:

)syscmd arg1 arg2 )opt1 opt1arg1 opt1arg2 )opt2 opt2arg1 ...

In the system command descriptions, optional arguments and options are enclosed in brackets
(“[” and “]”). If an argument or option name is in italics, it is meant to be a variable and
must have some actual value substituted for it when the system command call is made. For
example, the syntax pattern description

)read fileName [)quietly]

would imply that you must provide an actual file name for fileName but need not use the
)quietly option. Thus

)read matrix.input

is a valid instance of the above pattern.

System command names and options may be abbreviated and may be in upper or lower case.
The case of actual arguments may be significant, depending on the particular situation (such
as in file names). System command names and options may be abbreviated to the minimum
number of starting letters so that the name or option is unique. Thus

)s Integer

is not a valid abbreviation for the )set command, because both )set and )show begin with
the letter “s”. Typically, two or three letters are sufficient for disambiguating names. In our
descriptions of the commands, we have used no abbreviations for either command names or
options.

In some syntax descriptions we use a vertical line “|” to indicate that you must specify one
of the listed choices. For example, in

)set output fortran on | off

only on and off are acceptable words for following boot. We also sometimes use “...” to
indicate that additional arguments or options of the listed form are allowed. Finally, in the
syntax descriptions we may also list the syntax of related commands.

A.2 )abbreviation

User Level Required: compiler

Command Syntax:
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)abbreviation query [nameOrAbbrev]

)abbreviation category abbrev fullname [)quiet]

)abbreviation domain abbrev fullname [)quiet]

)abbreviation package abbrev fullname [)quiet]

)abbreviation remove nameOrAbbrev

Command Description:

This command is used to query, set and remove abbreviations for category, domain and
package constructors. Every constructor must have a unique abbreviation.

This abbreviation is part of the name of the subdirectory under which the components of the
compiled constructor are stored. Furthermore, by issuing this command you let the system
know what file to load automatically if you use a new constructor. Abbreviations must start
with a letter and then be followed by up to seven letters or digits. Any letters appearing in
the abbreviation must be in uppercase.

When used with the query argument, this command may be used to list the name associated
with a particular abbreviation or the abbreviation for a constructor. If no abbreviation or
name is given, the names and corresponding abbreviations for all constructors are listed.

The following shows the abbreviation for the constructor List:

)abbreviation query List

The following shows the constructor name corresponding to the abbreviation NNI:

)abbreviation query NNI

The following lists all constructor names and their abbreviations.

)abbreviation query

To add an abbreviation for a constructor, use this command with category, domain or
package. The following add abbreviations to the system for a category, domain and
package, respectively:

)abbreviation domain SET Set

)abbreviation category COMPCAT ComplexCategory

)abbreviation package LIST2MAP ListToMap

If the )quiet option is used, no output is displayed from this command. You would normally
only define an abbreviation in a library source file. If this command is issued for a constructor
that has already been loaded, the constructor will be reloaded next time it is referenced. In
particular, you can use this command to force the automatic reloading of constructors.

To remove an abbreviation, the remove argument is used. This is usually only used to
correct a previous command that set an abbreviation for a constructor name. If, in fact, the
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abbreviation does exist, you are prompted for confirmation of the removal request. Either
of the following commands will remove the abbreviation VECTOR2 and the constructor name
VectorFunctions2 from the system:

)abbreviation remove VECTOR2

)abbreviation remove VectorFunctions2

Also See: )compile

A.3 )browse

User Level Required: interpreter

Command Syntax:

)browse

Command Description:

The browse command changes the interpreter command loop to listen for http connections
on IP address 127.0.0.1 port 8085.

In order to access the new pages start Firefox. Assuming the path to the file rootpage.xhtml
is:
/spad/mnt/linux/doc/hypertex/rootpage.xhtml

you would visit the URL:
127.0.0.1:8085/spad/mnt/linux/doc/hypertex/rootpage.xhtml

Note that it may be necessary to install fonts into the Firefox browser in order to see correct
mathML mathematics output. See the faq file for details.

A.4 )cd

User Level Required: interpreter

Command Syntax:

)cd directory

Command Description:

This command sets the Axiom working current directory. The current directory is used for
looking for input files (for )read), Axiom library source files (for )compile), saved history
environment files (for )history )restore), compiled Axiom library files (for )library), and
files to edit (for )edit). It is also used for writing spool files (via )spool), writing history
input files (via )history )write) and history environment files (via )history )save),and
compiled Axiom library files (via )compile).

If issued with no argument, this command sets the Axiom current directory to your home
directory. If an argument is used, it must be a valid directory name. Except for the “)”
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at the beginning of the command, this has the same syntax as the operating system cd

command.

Also See: )compile , )edit , )history , )library , )read , and )spool .

A.5 )close

User Level Required: interpreter

Command Syntax:

)close

)close )quietly

Command Description:

This command is used to close down interpreter client processes. Such processes are started
by HyperDoc to run Axiom examples when you click on their text. When you have finished
examining or modifying the example and you do not want the extra window around anymore,
issue

)close

to the Axiom prompt in the window.

If you try to close down the last remaining interpreter client process, Axiom will offer to
close down the entire Axiom session and return you to the operating system by displaying
something like

This is the last Axiom session. Do you want to kill Axiom?

Type “y” (followed by the Return key) if this is what you had in mind. Type “n” (followed
by the Return key) to cancel the command.

You can use the )quietly option to force Axiom to close down the interpreter client process
without closing down the entire Axiom session.

Also See: )quit and )pquit .

A.6 )clear

User Level Required: interpreter

Command Syntax:

)clear all

)clear completely

)clear properties all
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)clear properties obj1 [obj2 ...]

)clear value all

)clear value obj1 [obj2 ...]

)clear mode all

)clear mode obj1 [obj2 ...]

Command Description:

This command is used to remove function and variable declarations, definitions and values
from the workspace. To empty the entire workspace and reset the step counter to 1, issue

)clear all

To remove everything in the workspace but not reset the step counter, issue

)clear properties all

To remove everything about the object x, issue

)clear properties x

To remove everything about the objects x, y and f, issue

)clear properties x y f

The word properties may be abbreviated to the single letter “p”.

)clear p all

)clear p x

)clear p x y f

All definitions of functions and values of variables may be removed by either

)clear value all

)clear v all

This retains whatever declarations the objects had. To remove definitions and values for the
specific objects x, y and f, issue

)clear value x y f

)clear v x y f

To remove the declarations of everything while leaving the definitions and values, issue

)clear mode all

)clear m all
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To remove declarations for the specific objects x, y and f, issue

)clear mode x y f

)clear m x y f

The )display names and )display properties commands may be used to see what is
currently in the workspace.

The command

)clear completely

does everything that )clear all does, and also clears the internal system function and
constructor caches.

Also See: )display , )history , and )undo .

A.7 )compile

User Level Required: compiler

Command Syntax:

)compile

)compile fileName

)compile fileName.spad

)compile directory/fileName.spad

)compile fileName )quiet

)compile fileName )noquiet

)compile fileName )break

)compile fileName )nobreak

)compile fileName )library

)compile fileName )nolibrary

)compile fileName )vartrace

)compile fileName )constructor nameOrAbbrev

Command Description:

You use this command to invoke the Axiom library compiler. This compiles files with file
extension .spad with the Axiom system compiler. The command first looks in the standard
system directories for files with extension .spad.

Should you not want the )library command automatically invoked, call )compile with the
)nolibrary option. For example,
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)compile mycode )nolibrary

By default, the )library system command exposes all domains and categories it processes.
This means that the Axiom intepreter will consider those domains and categories when it is
trying to resolve a reference to a function. Sometimes domains and categories should not be
exposed. For example, a domain may just be used privately by another domain and may not
be meant for top-level use. The )library command should still be used, though, so that
the code will be loaded on demand. In this case, you should use the )nolibrary option on
)compile and the )noexpose option in the )library command. For example,

)compile mycode.spad )nolibrary

)library mycode )noexpose

Once you have established your own collection of compiled code, you may find it handy to
use the )dir option on the )library command. This causes )library to process all compiled
code in the specified directory. For example,

)library )dir /u/jones/quantum

You must give an explicit directory after )dir, even if you want all compiled code in the
current working directory processed.

)library )dir .

You can compile category, domain, and package constructors contained in files with file
extension .spad. You can compile individual constructors or every constructor in a file.

The full filename is remembered between invocations of this command and )edit commands.
The sequence of commands

)compile matrix.spad

)edit

)compile

will call the compiler, edit, and then call the compiler again on the file matrix.spad. If you
do not specify a directory, the working current directory (see description of command )cd )
is searched for the file. If the file is not found, the standard system directories are searched.

If you do not give any options, all constructors within a file are compiled. Each constructor
should have an )abbreviation command in the file in which it is defined. We suggest that
you place the )abbreviation commands at the top of the file in the order in which the
constructors are defined. The list of commands serves as a table of contents for the file.

The )library option causes directories containing the compiled code for each constructor
to be created in the working current directory. The name of such a directory consists of
the constructor abbreviation and the .nrlib file extension. For example, the directory
containing the compiled code for the MATRIX constructor is called MATRIX.nrlib. The
)nolibrary option says that such files should not be created.
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The )vartrace option causes the compiler to generate extra code for the constructor to
support conditional tracing of variable assignments. (see section A.19 on page 991). With-
out this option, this code is suppressed and one cannot use the )vars option for the trace
command.

The )constructor option is used to specify a particular
constructor to compile. All other constructors in the file are
ignored. The constructor name or abbreviation follows )constructor.
Thus either

)compile matrix.spad )constructor RectangularMatrix

or

)compile matrix.spad )constructor RMATRIX

compiles the RectangularMatrix constructor defined in matrix.spad.

The )break and )nobreak options determine what the compiler does when it encounters an
error. )break is the default and it indicates that processing should stop at the first error.
The value of the )set break variable then controls what happens.

Also See: )abbreviation , )edit , and )library .

A.8 )display

User Level Required: interpreter

Command Syntax:

)display all

)display properties

)display properties all

)display properties [obj1 [obj2 ...]]

)display value all

)display value [obj1 [obj2 ...]]

)display mode all

)display mode [obj1 [obj2 ...]]

)display names
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)display operations opName

Command Description:

This command is used to display the contents of the workspace and signatures of functions
with a given name.1

The command

)display names

lists the names of all user-defined objects in the workspace. This is useful if you do not wish
to see everything about the objects and need only be reminded of their names.

The commands

)display all

)display properties

)display properties all

all do the same thing: show the values and types and declared modes of all variables in
the workspace. If you have defined functions, their signatures and definitions will also be
displayed.

To show all information about a particular variable or user functions, for example, something
named d, issue

)display properties d

To just show the value (and the type) of d, issue

)display value d

To just show the declared mode of d, issue

)display mode d

All modemaps for a given operation may be displayed by using )display operations. A
modemap is a collection of information about a particular reference to an operation. This
includes the types of the arguments and the return value, the location of the implementation
and any conditions on the types. The modemap may contain patterns. The following displays
the modemaps for the operation complex:

)d op complex

Also See: )clear , )history , )set , )show , and )what .

1A signature gives the argument and return types of a function.
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A.9 )edit

User Level Required: interpreter

Command Syntax:

)edit [filename]

Command Description:

This command is used to edit files. It works in conjunction with the )read and )compile

commands to remember the name of the file on which you are working. By specifying the
name fully, you can edit any file you wish. Thus

)edit /u/julius/matrix.input

will place you in an editor looking at the file /u/julius/matrix.input. By default, the
editor is vi, but if you have an EDITOR shell environment variable defined, that editor will
be used. When Axiom is running under the X Window System, it will try to open a separate
xterm running your editor if it thinks one is necessary. For example, under the Korn shell,
if you issue

export EDITOR=emacs

then the emacs editor will be used by )edit.

If you do not specify a file name, the last file you edited, read or compiled will be used. If
there is no “last file” you will be placed in the editor editing an empty unnamed file.

It is possible to use the )system command to edit a file directly. For example,

)system emacs /etc/rc.tcpip

calls emacs to edit the file.

Also See: )system , )compile , and )read .

A.10 )fin

User Level Required: development

Command Syntax:

)fin

Command Description:

This command is used by Axiom developers to leave the Axiom system and return to the
underlying Common Lisp system. To return to Axiom, issue the “(|spad|)” function call to
Common Lisp.

Also See: )pquit and )quit .



982 APPENDIX A. AXIOM SYSTEM COMMANDS

A.11 )frame

User Level Required: interpreter

Command Syntax:

)frame new frameName

)frame drop [frameName]

)frame next

)frame last

)frame names

)frame import frameName [objectName1 [objectName2 ...]]

)set message frame on | off

)set message prompt frame

Command Description:

A frame can be thought of as a logical session within the physical session that you get
when you start the system. You can have as many frames as you want, within the limits
of your computer’s storage, paging space, and so on. Each frame has its own step number,
environment and history. You can have a variable named a in one frame and it will have
nothing to do with anything that might be called a in any other frame.

Some frames are created by the HyperDoc program and these can have pretty strange names,
since they are generated automatically. To find out the names of all frames, issue

)frame names

It will indicate the name of the current frame.

You create a new frame “quark” by issuing

)frame new quark

The history facility can be turned on by issuing either )set history on or )history )on.
If the history facility is on and you are saving history information in a file rather than in
the Axiom environment then a history file with filename quark.axh will be created as you
enter commands. If you wish to go back to what you were doing in the “initial” frame, use

)frame next

or

)frame last
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to cycle through the ring of available frames to get back to “initial”.

If you want to throw away a frame (say “quark”), issue

)frame drop quark

If you omit the name, the current frame is dropped.

If you do use frames with the history facility on and writing to a file, you may want to delete
some of the older history files. These are directories, so you may want to issue a command
like rm -r quark.axh to the operating system.

You can bring things from another frame by using )frame import. For example, to bring
the f and g from the frame “quark” to the current frame, issue

)frame import quark f g

If you want everything from the frame “quark”, issue

)frame import quark

You will be asked to verify that you really want everything.

There are two )set flags to make it easier to tell where you are.

)set message frame on | off

will print more messages about frames when it is set on. By default, it is off.

)set message prompt frame

will give a prompt that looks like

initial (1) ->

when you start up. In this case, the frame name and step make up the prompt.

Also See: )history and )set .

A.12 )help

User Level Required: interpreter

Command Syntax:

)help

)help commandName

Command Description:

This command displays help information about system commands. If you issue
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)help

then this very text will be shown. You can also give the name or abbreviation of a system
command to display information about it. For example,

)help clear

will display the description of the )clear system command.

All this material is available in the Axiom User Guide and in HyperDoc. In HyperDoc,
choose the Commands item from the Reference menu.

A.13 )history

User Level Required: interpreter

Command Syntax:

)history )on

)history )off

)history )write historyInputFileName

)history )show [n] [both]

)history )save savedHistoryName

)history )restore [savedHistoryName]

)history )reset

)history )change n

)history )memory

)history )file

%

%%(n)

)set history on | off
Command Description:

The history facility within Axiom allows you to restore your environment to that of another
session and recall previous computational results. Additional commands allow you to review
previous input lines and to create an .input file of the lines typed to Axiom.

Axiom saves your input and output if the history facility is turned on (which is the default).
This information is saved if either of



A.13. )HISTORY 985

)set history on

)history )on

has been issued. Issuing either

)set history off

)history )off

will discontinue the recording of information.

Whether the facility is disabled or not, the value of % in Axiom always refers to the result
of the last computation. If you have not yet entered anything, % evaluates to an object of
type Variable(’%). The function %% may be used to refer to other previous results if the
history facility is enabled. In that case, %%(n) is the output from step n if n > 0. If n <

0, the step is computed relative to the current step. Thus %%(-1) is also the previous step,
%%(-2), is the step before that, and so on. If an invalid step number is given, Axiom will
signal an error.

The environment information can either be saved in a file or entirely in memory (the default).
Each frame (section A.11 on page 981) has its own history database. When it is kept in a
file, some of it may also be kept in memory for efficiency. When the information is saved in a
file, the name of the file is of the form FRAME.axh where “FRAME” is the name of the
current frame. The history file is placed in the current working directory (see section A.4
on page 974). Note that these history database files are not text files (in fact, they are
directories themselves), and so are not in human-readable format.

The options to the )history command are as follows:

)change n will set the number of steps that are saved in memory to n. This option only
has effect when the history data is maintained in a file. If you have issued )history

)memory (or not changed the default) there is no need to use )history )change.

)on will start the recording of information. If the workspace is not empty, you will be asked
to confirm this request. If you do so, the workspace will be cleared and history data
will begin being saved. You can also turn the facility on by issuing )set history on.

)off will stop the recording of information. The )history )show command will not work
after issuing this command. Note that this command may be issued to save time, as
there is some performance penalty paid for saving the environment data. You can also
turn the facility off by issuing )set history off.

)file indicates that history data should be saved in an external file on disk.

)memory indicates that all history data should be kept in memory rather than saved in a
file. Note that if you are computing with very large objects it may not be practical to
kept this data in memory.

)reset will flush the internal list of the most recent workspace calculations so that the data
structures may be garbage collected by the underlying Common Lisp system. Like
)history )change, this option only has real effect when history data is being saved
in a file.
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)restore [savedHistoryName] completely clears the environment and restores it to a saved
session, if possible. The )save option below allows you to save a session to a file with
a given name. If you had issued )history )save jacobi the command )history

)restore jacobi would clear the current workspace and load the contents of the
named saved session. If no saved session name is specified, the system looks for a file
called last.axh.

)save savedHistoryName is used to save a snapshot of the environment in a file. This file is
placed in the current working directory (see section A.4 on page 974). Use )history

)restore to restore the environment to the state preserved in the file. This option also
creates an input file containing all the lines of input since you created the workspace
frame (for example, by starting your Axiom session) or last did a )clear all or )clear
completely.

)show [n] [both] can show previous input lines and output results. )show will display up
to twenty of the last input lines (fewer if you haven’t typed in twenty lines). )show n
will display up to n of the last input lines. )show both will display up to five of the
last input lines and output results. )show n both will display up to n of the last input
lines and output results.

)write historyInputFile creates an .input file with the input lines typed since the start
of the session/frame or the last )clear all or )clear completely. If historyInput-
FileName does not contain a period (“.”) in the filename, .input is appended to
it. For example, )history )write chaos and )history )write chaos.input both
write the input lines to a file called chaos.input in your current working directory. If
you issued one or more )undo commands, )history )write eliminates all input lines
backtracked over as a result of )undo. You can edit this file and then use )read to
have Axiom process the contents.

Also See: )frame , )read , )set , and )undo .

A.14 )include

User Level Required: interpreter

Command Syntax:

)include filename

Command Description:

The )include command can be used in .input files to place the contents of another file inline
with the current file. The path can be an absolute or relative pathname.

A.15 )library

User Level Required: interpreter
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Command Syntax:

)library libName1 [libName2 ...]

)library )dir dirName

)library )only objName1 [objlib2 ...]

)library )noexpose

Command Description:

This command replaces the )load system command that was available in Axiom releases
before version 2.0. The )library command makes available to Axiom the compiled objects
in the libraries listed.

For example, if you )compile dopler.spad in your home directory, issue )library dopler

to have Axiom look at the library, determine the category and domain constructors present,
update the internal database with various properties of the constructors, and arrange for the
constructors to be automatically loaded when needed. If the )noexpose option has not been
given, the constructors will be exposed (that is, available) in the current frame.

If you compiled a file with the old system compiler, you will have an nrlib present, for exam-
ple, DOPLER.nrlib, where DOPLER is a constructor abbreviation. The command )library

DOPLER will then do the analysis and database updates as above.

To tell the system about all libraries in a directory, use )library )dir dirName where
dirName is an explicit directory. You may specify “.” as the directory, which means the
current directory from which you started the system or the one you set via the )cd command.
The directory name is required.

You may only want to tell the system about particular constructors within a library. In this
case, use the )only option. The command )library dopler )only Test1 will only cause
the Test1 constructor to be analyzed, autoloaded, etc..

Finally, each constructor in a library are usually automatically exposed when the )library
command is used. Use the )noexpose option if you not want them exposed. At a later time
you can use )set expose add constructor to expose any hidden constructors.

Note for Axiom beta testers: At various times this command was called )local and
)with before the name )library became the official name.

Also See: )cd , )compile , )frame , and )set .

A.16 )lisp

User Level Required: development

Command Syntax:

)lisp [lispExpression]

Command Description:
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This command is used by Axiom system developers to have single expressions evaluated by
the Common Lisp system on which Axiom is built. The lispExpression is read by the Com-
mon Lisp reader and evaluated. If this expression is not complete (unbalanced parentheses,
say), the reader will wait until a complete expression is entered.

Since this command is only useful for evaluating single expressions, the )fin command may
be used to drop out of Axiom into Common Lisp.

Also See: )system , )boot , and )fin .

A.17 )regress

User Level Required: development

Command Syntax:

)regress filename

)regress filename.output

)regress /path/filename

)regress /pathfilename.output

Command Description:

The regress command will run the regress function that was compiled

as part of the lisp image build process. This function expects an

input filename, possibly containing a path prefix.

If the filename contains a period then we consider it a fully formed

filename, otherwise we append ‘‘.output’’, which is the default file

extension.

)regress matrix

)regress matrix.output

)regress /path/to/file/matrix

)regress /path/to/file/matrix.output

will test the contents of the file matrix.output.

The idea behind regression testing is to check that the results

we currently get match the results we used to get. In order to

do that we create input files with a special comment format that

contains the prior results. These are easy to create as all you

need to do is run the Axiom function, capture the results, and

turn them input specially formed comments using the -- comment.

A regression file caches the result of an Axiom function so we

can automate the testing process. It is a file of many tests,
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each with their own output.

The regression file format uses the Axiom -- comment syntax to keep

a copy of the expected output from an Axiom command. This expected

output is compared character by character against the actual output.

The regression file is broken into numbered blocks, delimited by

a --S for the beginning and a --E for the end. The total number of

blocks is also given so missing or failed tests also raise an error.

There are 4 special kinds of -- comments in regression files:

--S n of M this is test n of M tests in this file

--E n this marks the end of test n

--R any output this marks the actual expected output line

--I any output this line is compared but ignored

A regression test file looks like:

)set break resume

)spool foo.output

)set message type off

)clear all

--S 1 of 3

2+3

--R this is the exact Axiom output

--R (1) 5

--E 1

--S 2 of 3

2+3

--R this should fail to match

--R (2) 7

--E 2

--S 3 of 3

2+3

--R this fails to match but we

--I (3) 7 use --I to ignore this line

--E 3

We can now run this file with

)read foo.input

Note that when this file is run it will create a spool file called

"foo.output" because of the lines:

)spool foo.output
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)spool

The "foo.output" file contains the console image of the result.

It will look like:

Starts dribbling to foo.output (2012/2/28, 12:25:7).

)set message type off

)clear all

--S 1 of 3

2+3

(1) 5

--R

--R (1) 5

--E 1

--S 2 of 3

2+3

(2) 5

--R

--R (2) 7

--E 2

--S 3 of 3

2+3

(3) 5

--R

--I (3) 7

--E 3

)spool

This "foo.output" file can now be checked using the )regress command.

When we run the )regress foo.output we see;

testing foo

passed foo 1 of 3

MISMATCH

expected:" (2) 7"

got:" (2) 5"

FAILED foo 2 of 2

passed foo 3 of 3

regression result FAILED 1 of 3 stanzas file foo

Tests either pass or fail. A passing test generates the message:
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passed foo 1 of 3

A failing test will give a reversed printout of the expected vs

actual output as well as a FAILED message, as in:

MISMATCH

expected:" (2) 7"

got:" (2) 5"

FAILED foo 2 of 3

The last line of output is a summary:

regression result FAILED 1 of 3 stanzas file foo

Also See: )tangle

A.18 )tangle

User Level Required: development

Command Syntax:

)tangle filename

)tangle filename.output

)tangle /path/filename

)tangle /pathfilename.output

Command Description:

This command is used to tangle pamphlet files.

)tangle matrix.input.pamphlet

will tangle the contents of the file matrix.input.pamphlet into

matrix.input. The ‘‘.input.pamphlet’’ is optional.

Also See: )regress

A.19 )trace

User Level Required: development

Command Syntax:
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This command has the same arguments as options as the )trace command.

Command Description:

This command is used by Axiom system developers to trace Common Lisp or BOOT func-
tions. It is not supported for general use.

Also See: )boot , )lisp , and )trace .

A.20 )pquit

User Level Required: interpreter

Command Syntax:

)pquit

Command Description:

This command is used to terminate Axiom and return to the operating system. Other than
by redoing all your computations or by using the )history )restore command to try to
restore your working environment, you cannot return to Axiom in the same state.

)pquit differs from the )quit in that it always asks for confirmation that you want to
terminate Axiom (the “p” is for “protected”). When you enter the )pquit command, Axiom
responds

Please enter y or yes if you really want to leave the interactive
environment and return to the operating system:

If you respond with y or yes, you will see the message

You are now leaving the Axiom interactive environment.
Issue the command axiom to the operating system to start a new session.

and Axiom will terminate and return you to the operating system (or the environment from
which you invoked the system). If you responded with something other than y or yes, then
the message

You have chosen to remain in the Axiom interactive environment.

will be displayed and, indeed, Axiom would still be running.

Also See: )fin , )history , )close , )quit , and )system .

A.21 )quit

User Level Required: interpreter

Command Syntax:
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)quit

)set quit protected | unprotected
Command Description:

This command is used to terminate Axiom and return to the operating system. Other than
by redoing all your computations or by using the )history )restore command to try to
restore your working environment, you cannot return to Axiom in the same state.

)quit differs from the )pquit in that it asks for confirmation only if the command

)set quit protected

has been issued. Otherwise, )quit will make Axiom terminate and return you to the oper-
ating system (or the environment from which you invoked the system).

The default setting is )set quit protected so that )quit and )pquit behave in the same
way. If you do issue

)set quit unprotected

we suggest that you do not (somehow) assign )quit to be executed when you press, say, a
function key.

Also See: )fin , )history , )close , )pquit , and )system .

A.22 )read

User Level Required: interpreter

Command Syntax:

)read [fileName]

)read [fileName] [ )quiet] [)ifthere]

Command Description:

This command is used to read .input files into Axiom. The command

)read matrix.input

will read the contents of the file matrix.input into Axiom. The “.input” file extension is
optional. See section 4.1 on page 109 for more information about .input files.

This command remembers the previous file you edited, read or compiled. If you do not
specify a file name, the previous file will be read.

The )ifthere option checks to see whether the .input file exists. If it does not, the )read
command does nothing. If you do not use this option and the file does not exist, you are
asked to give the name of an existing .input file.
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The )quiet option suppresses output while the file is being read.

Also See: )compile , )edit , and )history .

A.23 )set

User Level Required: interpreter

Command Syntax:

)set

)set label1 [... labelN]

)set label1 [... labelN] newValue

Command Description:

The )set command is used to view or set system variables that control what messages are
displayed, the type of output desired, the status of the history facility, the way Axiom user
functions are cached, and so on. Since this collection is very large, we will not discuss them
here. Rather, we will show how the facility is used. We urge you to explore the )set options
to familiarize yourself with how you can modify your Axiom working environment. There is
a HyperDoc version of this same facility available from the main HyperDoc menu.

The )set command is command-driven with a menu display. It is tree-structured. To see
all top-level nodes, issue )set by itself.

)set

Variables with values have them displayed near the right margin. Subtrees of selections have
“...” displayed in the value field. For example, there are many kinds of messages, so issue
)set message to see the choices.

)set message

The current setting for the variable that displays whether computation times are displayed
is visible in the menu displayed by the last command. To see more information, issue

)set message time

This shows that time printing is on now. To turn it off, issue

)set message time off

As noted above, not all settings have so many qualifiers. For example, to change the )quit
command to being unprotected (that is, you will not be prompted for verification), you need
only issue

)set quit unprotected

Also See: )quit .
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A.24 )show

User Level Required: interpreter

Command Syntax:

)show nameOrAbbrev

)show nameOrAbbrev )operations

)show nameOrAbbrev )attributes

Command Description: This command displays information about Axiom domain, pack-
age and category constructors. If no options are given, the )operations option is assumed.

For example,

)show POLY

)show POLY )operations

)show Polynomial

)show Polynomial )operations

each display basic information about the Polynomial domain constructor and then provide a
listing of operations. Since Polynomial requires a Ring (for example, Integer) as argument,
the above commands all refer to a unspecified ring R. In the list of operations, $ means
Polynomial(R).

The basic information displayed includes the signature of the constructor (the name and
arguments), the constructor abbreviation, the exposure status of the constructor, and the
name of the library source file for the constructor.

If operation information about a specific domain is wanted, the full or abbreviated domain
name may be used. For example,

)show POLY INT

)show POLY INT )operations

)show Polynomial Integer

)show Polynomial Integer )operations

are among the combinations that will display the operations
exported by the domain Polynomial(Integer) (as opposed
to the general domain constructor Polynomial).
Attributes may be listed by using the )attributes option.

Also See: )display , )set , and )what .

A.25 )spool

User Level Required: interpreter

Command Syntax:



996 APPENDIX A. AXIOM SYSTEM COMMANDS

)spool [fileName]

)spool

Command Description:

This command is used to save (spool) all Axiom input and output into a file, called a spool
file. You can only have one spool file active at a time. To start spool, issue this command
with a filename. For example,

)spool integrate.out

To stop spooling, issue )spool with no filename.

If the filename is qualified with a directory, then the output will be placed in that directory.
If no directory information is given, the spool file will be placed in the current directory.
The current directory is the directory from which you started Axiom or is the directory you
specified using the )cd command.

Also See: )cd .

A.26 )synonym

User Level Required: interpreter

Command Syntax:

)synonym

)synonym synonym fullCommand

)what synonyms

Command Description:

This command is used to create short synonyms for system command expressions. For
example, the following synonyms might simplify commands you often use.

)synonym save history )save

)synonym restore history )restore

)synonym mail system mail

)synonym ls system ls

)synonym fortran set output fortran

Once defined, synonyms can be used in place of the longer command expressions. Thus

)fortran on

is the same as the longer

)set fortran output on
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To list all defined synonyms, issue either of

)synonyms

)what synonyms

To list, say, all synonyms that contain the substring “ap”, issue

)what synonyms ap

Also See: )set and )what .

A.27 )system

User Level Required: interpreter

Command Syntax:

)system cmdExpression

Command Description:

This command may be used to issue commands to the operating system while remaining in
Axiom. The cmdExpression is passed to the operating system for execution.

To get an operating system shell, issue, for example, )system sh. When you enter the key

combination, Ctrl – D (pressing and holding the Ctrl key and then pressing the D
key) the shell will terminate and you will return to Axiom. We do not recommend this way
of creating a shell because Common Lisp may field some interrupts instead of the shell. If
possible, use a shell running in another window.

If you execute programs that misbehave you may not be able to return to Axiom. If this
happens, you may have no other choice than to restart Axiom and restore the environment
via )history )restore, if possible.

Also See: )boot , )fin , )lisp , )pquit , and )quit .

A.28 )trace

User Level Required: interpreter

Command Syntax:

)trace

)trace )off

)trace function [options]

)trace constructor [options]
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)trace domainOrPackage [options]

where options can be one or more of

)after S-expression

)before S-expression

)break after

)break before

)cond S-expression

)count

)count n

)depth n

)local op1 [... opN]

)nonquietly

)nt

)off

)only listOfDataToDisplay

)ops

)ops op1 [... opN ]

)restore

)stats

)stats reset

)timer

)varbreak

)varbreak var1 [... varN ]

)vars

)vars var1 [... varN ]

)within executingFunction

Command Description:

This command is used to trace the execution of functions that make up the Axiom system,
functions defined by users, and functions from the system library. Almost all options are
available for each type of function but exceptions will be noted below.

To list all functions, constructors, domains and packages that are traced, simply issue
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)trace

To untrace everything that is traced, issue

)trace )off

When a function is traced, the default system action is to display the arguments to the
function and the return value when the function is exited. Note that if a function is left
via an action such as a THROW, no return value will be displayed. Also, optimization of tail
recursion may decrease the number of times a function is actually invoked and so may cause
less trace information to be displayed.

Other information can be displayed or collected when a function is traced and this is con-
trolled by the various options. Most options will be of interest only to Axiom system devel-
opers. If a domain or package is traced, the default action is to trace all functions exported.

Individual interpreter, lisp or boot functions can be traced by listing their names after
)trace. Any options that are present must follow the functions to be traced.

)trace f

traces the function f. To untrace f, issue

)trace f )off

Note that if a function name contains a special character, it will be necessary to escape the
character with an underscore

)trace _/D_,1

To trace all domains or packages that are or will be created from a particular constructor,
give the constructor name or abbreviation after )trace.

)trace MATRIX

)trace List Integer

The first command traces all domains currently instantiated with Matrix. If additional do-
mains are instantiated with this constructor (for example, if you have used Matrix(Integer)

and Matrix(Float)), they will be automatically traced. The second command traces
List(Integer). It is possible to trace individual functions in a domain or package. See
the )ops option below.

The following are the general options for the )trace command.

)break after causes a Common Lisp break loop to be entered after exiting the traced
function.

)break before causes a Common Lisp break loop to be entered before entering the traced
function.
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)break is the same as )break before.

)count causes the system to keep a count of the number of times the traced function is
entered. The total can be displayed with )trace )stats and cleared with )trace

)stats reset.

)count n causes information about the traced function to be displayed for the first n exe-
cutions. After the n-th execution, the function is untraced.

)depth n causes trace information to be shown for only n levels of recursion of the traced
function. The command

)trace fib )depth 10

will cause the display of only 10 levels of trace information for the recursive execution
of a user function fib.

)math causes the function arguments and return value to be displayed
in the Axiom monospace two-dimensional math format.

)nonquietly causes the display of additional messages when a function is traced.

)nt This suppresses all normal trace information. This option is useful if the )count or
)timer options are used and you are interested in the statistics but not the function
calling information.

)off causes untracing of all or specific functions. Without an argument, all functions, con-
structors, domains and packages are untraced. Otherwise, the given functions and other
objects are untraced. To immediately retrace the untraced functions, issue )trace

)restore.

)only listOfDataToDisplay causes only specific trace information to be shown. The items
are listed by using the following abbreviations:

a display all arguments

v display return value

1 display first argument

2 display second argument

15 display the 15th argument, and so on

)restore causes the last untraced functions to be retraced. If additional options are present,
they are added to those previously in effect.

)stats causes the display of statistics collected by the use of the )count and )timer options.

)stats reset resets to 0 the statistics collected by the use of the )count and )timer

options.



A.29. )UNDO 1001

)timer causes the system to keep a count of execution times for the traced function. The
total can be displayed with )trace )stats and cleared with )trace )stats reset.

)varbreak var1 [... varN] causes a Common Lisp break loop to be entered after the as-
signment to any of the listed variables in the traced function.

)vars causes the display of the value of any variable after it is assigned in the traced function.
Note that library code must have been compiled (see section A.7 on page 977 using
the )vartrace option in order to support this option.

)vars var1 [... varN] causes the display of the value of any of the specified variables after
they are assigned in the traced function. Note that library code must have been
compiled (see section A.7 on page 977 using the )vartrace option in order to support
this option.

)within executingFunction causes the display of trace information only if the traced func-
tion is called when the given executingFunction is running.

The following are the options for tracing constructors, domains and packages.

)local [op1 [... opN]] causes local functions of the constructor to be traced. Note that
to untrace an individual local function, you must use the fully qualified internal name,
using the escape character before the semicolon.

)trace FRAC )local

)trace FRAC_;cancelGcd )off

)ops op1 [... opN] By default, all operations from a domain or package are traced when
the domain or package is traced. This option allows you to specify that only particular
operations should be traced. The command

)trace Integer )ops min max _+ _-

traces four operations from the domain Integer. Since + and - are special characters,
it is necessary to escape them with an underscore.

Also See: )boot , )lisp , and )ltrace .

A.29 )undo

User Level Required: interpreter

Command Syntax:

)undo

)undo integer
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)undo integer [option]

)undo )redo

where option is one of

)after

)before

Command Description:

This command is used to restore the state of the user environment to an earlier point in the
interactive session. The argument of an )undo is an integer which must designate some step
number in the interactive session.

)undo n

)undo n )after

These commands return the state of the interactive environment to that immediately after
step n. If n is a positive number, then n refers to step nummber n. If n is a negative number,
it refers to the n-th previous command (that is, undoes the effects of the last −n commands).

A )clear all resets the )undo facility. Otherwise, an )undo undoes the effect of )clear
with options properties, value, and mode, and that of a previous undo. If any such system
commands are given between steps n and n+ 1 (n > 0), their effect is undone for )undo m

for any 0 < m ≤ n..
The command )undo is equivalent to )undo -1 (it undoes the effect of the previous user
expression). The command )undo 0 undoes any of the above system commands issued since
the last user expression.

)undo n )before

This command returns the state of the interactive environment to that immediately before
step n. Any )undo or )clear system commands given before step n will not be undone.

)undo )redo

This command reads the file redo.input. created by the last )undo command. This file
consists of all user input lines, excluding those backtracked over due to a previous )undo.

Also See: )history . The command )history )write will eliminate the “undone” com-
mand lines of your program.

A.30 )what

User Level Required: interpreter

Command Syntax:
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)what categories pattern1 [pattern2 ...]

)what commands pattern1 [pattern2 ...]

)what domains pattern1 [pattern2 ...]

)what operations pattern1 [pattern2 ...]

)what packages pattern1 [pattern2 ...]

)what synonym pattern1 [pattern2 ...]

)what things pattern1 [pattern2 ...]

)apropos pattern1 [pattern2 ...]

Command Description:

This command is used to display lists of things in the system. The patterns are all strings
and, if present, restrict the contents of the lists. Only those items that contain one or more
of the strings as substrings are displayed. For example,

)what synonym

displays all command synonyms,

)what synonym ver

displays all command synonyms containing the substring “ver”,

)what synonym ver pr

displays all command synonyms containing the substring “ver” or the substring “pr”. Out-
put similar to the following will be displayed

---------------- System Command Synonyms -----------------

user-defined synonyms satisfying patterns:

ver pr

)apr ........................... )what things

)apropos ....................... )what things

)prompt ........................ )set message prompt

)version ....................... )lisp *yearweek*

Several other things can be listed with the )what command:

categories displays a list of category constructors.

commands displays a list of system commands available at your user-level. Your user-level is
set via the )set userlevel command. To get a description of a particular command,
such as “)what”, issue )help what.
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domains displays a list of domain constructors.

operations displays a list of operations in the system library. It is recommended that you
qualify this command with one or more patterns, as there are thousands of operations
available. For example, say you are looking for functions that involve computation of
eigenvalues. To find their names, try )what operations eig. A rather large list of
operations is loaded into the workspace when this command is first issued. This list
will be deleted when you clear the workspace via )clear all or )clear completely.
It will be re-created if it is needed again.

packages displays a list of package constructors.

synonym lists system command synonyms.

things displays all of the above types for items containing the pattern strings as substrings.
The command synonym )apropos is equivalent to )what things.

Also See: )display , )set , and )show .



Appendix B

Categories

This is a listing of all categories in the Axiom library at the time this book was produced.
Use the Browse facility (described in section 14 on page 931) to get more information about
these constructors.

This sample entry will help you read the following table:
CategoryNameCategoryAbbreviation:Category1. . .CategoryNwith
op1. . . opM
where
CategoryName is the full category name, e.g., Integer.
CategoryAbbreviation is the category abbreviation, e.g., INT.
Categoryi is a category to which the category belongs.
opj is an operation exported by the category.

AbelianGroup{ABELGRP}: CancellationAbelianMonoid with * -

AbelianMonoidRing{AMR}: Algebra BiModule CharacteristicNonZero CharacteristicZero
CommutativeRing IntegralDomain Ring with / coefficient degree leadingCoefficient lead-
ingMonomial map monomial monomial? reductum

AbelianMonoid{ABELMON}: AbelianSemiGroup with * Zero zero?

AbelianSemiGroup{ABELSG}: SetCategory with * +

Aggregate{AGG}: Object with # copy empty empty? eq? less? more? size?

AlgebraicallyClosedField{ACF}: Field RadicalCategory with rootOf rootsOf zeroOf ze-
rosOf

AlgebraicallyClosedFunctionSpace
{ACFS}: AlgebraicallyClosedField FunctionSpace with rootOf rootsOf zeroOf zerosOf

Algebra{ALGEBRA}: Module Ring with coerce

ArcHyperbolicFunctionCategory{AHYP}: with acosh acoth acsch asech asinh atanh

ArcTrigonometricFunctionCategory{ATRIG}: with acos acot acsc asec asin atan

1005
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AssociationListAggregate{ALAGG}: ListAggregate TableAggregate with assoc

AttributeRegistry{ATTREG}: with

BagAggregate{BGAGG}: HomogeneousAggregate with bag extract! insert! inspect

BiModule{BMODULE}: LeftModule RightModule with

BinaryRecursiveAggregate{BRAGG}: RecursiveAggregate with elt left right setelt setleft!
setright!

BinaryTreeCategory{BTCAT}: BinaryRecursiveAggregate with node

BitAggregate{BTAGG}: OneDimensionalArrayAggregate OrderedSet with ^ and nand nor
not or xor

CachableSet{CACHSET}: OrderedSet with position setPosition

CancellationAbelianMonoid{CABMON}: AbelianMonoid with -

CharacteristicNonZero{CHARNZ}: Ring with charthRoot

CharacteristicZero{CHARZ}: Ring with

CoercibleTo{KOERCE}: with coerce

Collection{CLAGG}: ConvertibleTo HomogeneousAggregate with construct find reduce re-
move removeDuplicates select

CombinatorialFunctionCategory{CFCAT}: with binomial factorial permutation

CombinatorialOpsCategory{COMBOPC}: CombinatorialFunctionCategory with factorials
product summation

CommutativeRing{COMRING}: BiModule Ring with

ComplexCategory
{COMPCAT}: CharacteristicNonZero CharacteristicZero CommutativeRing
ConvertibleTo DifferentialExtension EuclideanDomain Field
FullyEvalableOver FullyLinearlyExplicitRingOver FullyRetractableTo
IntegralDomain MonogenicAlgebra OrderedSet
PolynomialFactorizationExplicit RadicalCategory
TranscendentalFunctionCategory
with abs argument complex conjugate exquo imag imaginary norm polarCoordinates ratio-
nal rational? rationalIfCan real

ConvertibleTo{KONVERT}: with convert

DequeueAggregate{DQAGG}: QueueAggregate StackAggregate with bottom! dequeue ex-
tractBottom! extractTop! height insertBottom! insertTop! reverse! top!

DictionaryOperations{DIOPS}: BagAggregate Collection with dictionary remove! select!

Dictionary{DIAGG}: DictionaryOperations with

DifferentialExtension
{DIFEXT}: DifferentialRing PartialDifferentialRing Ring with D differentiate
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DifferentialPolynomialCategory
{DPOLCAT}: DifferentialExtension Evalable InnerEvalable PolynomialCategory
RetractableTo with degree differentialVariables initial isobaric? leader makeVariable order
separant weight weights

DifferentialRing{DIFRING}: Ring with D differentiate

DifferentialVariableCategory{DVARCAT}: OrderedSet RetractableTo with D coerce dif-
ferentiate makeVariable order variable weight

DirectProductCategory
{DIRPCAT}: AbelianSemiGroup Algebra BiModule CancellationAbelianMonoid
CoercibleTo CommutativeRing DifferentialExtension Finite
FullyLinearlyExplicitRingOver FullyRetractableTo IndexedAggregate
OrderedAbelianMonoidSup OrderedRing VectorSpace with * directProduct dot unitVector

DivisionRing{DIVRING}: Algebra EntireRing with ** inv

DoublyLinkedAggregate{DLAGG}: RecursiveAggregate with concat! head last next pre-
vious setnext! setprevious! tail

ElementaryFunctionCategory{ELEMFUN}: with ** exp log

EltableAggregate{ELTAGG}: Eltable with elt qelt qsetelt! setelt

Eltable{ELTAB}: with elt

EntireRing{ENTIRER}: BiModule Ring with

EuclideanDomain{EUCDOM}: PrincipalIdealDomain
with divide euclideanSize extendedEuclidean multiEuclidean quo rem sizeLess?

Evalable{EVALAB}: with eval

ExpressionSpace{ES}: Evalable InnerEvalable OrderedSet RetractableTo with belong?
box definingPolynomial distribute elt eval freeOf? height is? kernel kernels mainKernel map
minPoly operator operators paren subst tower

ExtensibleLinearAggregate{ELAGG}: LinearAggregate
with concat! delete! insert! merge! remove! removeDuplicates! select!

ExtensionField{XF}: CharacteristicZero Field FieldOfPrimeCharacteristic RetractableTo
VectorSpace with Frobenius algebraic? degree extensionDegree inGroundField? transcen-
denceDegree transcendent?

FieldOfPrimeCharacteristic{FPC}: CharacteristicNonZero Field with discreteLog order
primeFrobenius

Field{FIELD}: DivisionRing EuclideanDomain UniqueFactorizationDomain with /

FileCategory{FILECAT}: SetCategory with close! iomode name open read! reopen! write!

FileNameCategory{FNCAT}: SetCategory with coerce directory exists? extension file-
name name new readable? writable?
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FiniteAbelianMonoidRing{FAMR}: AbelianMonoidRing FullyRetractableTo with coeffi-
cients content exquo ground ground? mapExponents minimumDegree numberOfMonomials
primitivePart

FiniteAlgebraicExtensionField
{FAXF}: ExtensionField FiniteFieldCategory RetractableTo
with basis coordinates createNormalElement definingPolynomial degree extensionDegree
generator minimalPolynomial norm normal? normalElement represents trace

FiniteFieldCategory{FFIELDC}: FieldOfPrimeCharacteristic Finite StepThrough with

charthRoot conditionP createPrimitiveElement discreteLog factorsOfCyclicGroupSize order
primitive? primitiveElement representationType tableForDiscreteLogarithm

FiniteLinearAggregate{FLAGG}: LinearAggregate OrderedSet with copyInto! merge po-
sition reverse reverse! sort sort! sorted?

FiniteRankAlgebra{FINRALG}: Algebra CharacteristicNonZero CharacteristicZero with

characteristicPolynomial coordinates discriminant minimalPolynomial norm rank regular-
Representation represents trace traceMatrix

FiniteRankNonAssociativeAlgebra
{FINAALG}: NonAssociativeAlgebra
with JacobiIdentity? JordanAlgebra? alternative? antiAssociative?
antiCommutative? associative? associatorDependence commutative?
conditionsForIdempotents coordinates flexible? jordanAdmissible?
leftAlternative? leftCharacteristicPolynomial leftDiscriminant
leftMinimalPolynomial leftNorm leftRecip leftRegularRepresentation
leftTrace leftTraceMatrix leftUnit leftUnits lieAdmissible? lieAlgebra?
noncommutativeJordanAlgebra? powerAssociative? rank recip represents
rightAlternative? rightCharacteristicPolynomial rightDiscriminant
rightMinimalPolynomial rightNorm rightRecip rightRegularRepresentation
rightTrace rightTraceMatrix rightUnit rightUnits someBasis
structuralConstants unit

FiniteSetAggregate{FSAGG}: Dictionary Finite SetAggregate with cardinality comple-
ment max min universe

Finite{FINITE}: SetCategory with index lookup random size

FloatingPointSystem{FPS}: RealNumberSystem with base bits decreasePrecision digits
exponent float increasePrecision mantissa max order precision

FramedAlgebra{FRAMALG}: FiniteRankAlgebra with basis convert coordinates discrimi-
nant regularRepresentation represents traceMatrix

FramedNonAssociativeAlgebra
{FRNAALG}: FiniteRankNonAssociativeAlgebra with apply basis conditionsForIdempotents
convert coordinates elt leftDiscriminant leftRankPolynomial leftRegularRepresentation left-
TraceMatrix represents rightDiscriminant rightRankPolynomial rightRegularRepresentation
rightTraceMatrix structuralConstants
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FreeAbelianMonoidCategory
{FAMONC}: CancellationAbelianMonoid RetractableTo with * + coefficient highCommon-
Terms mapCoef mapGen nthCoef nthFactor size terms

FullyEvalableOver{FEVALAB}: Eltable Evalable InnerEvalable with map

FullyLinearlyExplicitRingOver{FLINEXP}: LinearlyExplicitRingOver with

FullyPatternMatchable{FPATMAB}: Object PatternMatchable with

FullyRetractableTo{FRETRCT}: RetractableTo with

FunctionFieldCategory{FFCAT}: MonogenicAlgebra
with D absolutelyIrreducible? branchPoint? branchPointAtInfinity?
complementaryBasis differentiate elt genus integral?
integralAtInfinity? integralBasis integralBasisAtInfinity
integralCoordinates integralDerivationMatrix integralMatrix
integralMatrixAtInfinity integralRepresents inverseIntegralMatrix
inverseIntegralMatrixAtInfinity nonSingularModel
normalizeAtInfinity numberOfComponents primitivePart ramified?
ramifiedAtInfinity? rationalPoint? rationalPoints
reduceBasisAtInfinity represents singular? singularAtInfinity?
yCoordinates

FunctionSpace{FS}: AbelianGroup AbelianMonoid Algebra CharacteristicNonZero Char-
acteristicZero ConvertibleTo ExpressionSpace Field FullyLinearlyExplicitRingOver Fully-
PatternMatchable FullyRetractableTo Group Monoid PartialDifferentialRing Patternable
RetractableTo Ring with ** / applyQuote coerce convert denom denominator eval ground
ground? isExpt isMult isPlus isPower isTimes numer numerator univariate variables

GcdDomain{GCDDOM}: IntegralDomain with gcd lcm

GradedAlgebra{GRALG}: GradedModule with One product

GradedModule{GRMOD}: RetractableTo SetCategory with * + - Zero degree

Group{GROUP}: Monoid with ** / commutator conjugate inv

HomogeneousAggregate{HOAGG}: Aggregate SetCategory with any? count every? map
map! member? members parts

HyperbolicFunctionCategory{HYPCAT}: with cosh coth csch sech sinh tanh

IndexedAggregate{IXAGG}: EltableAggregate HomogeneousAggregate with entries en-
try? fill! first index? indices maxIndex minIndex swap!

IndexedDirectProductCategory{IDPC}: SetCategory with leadingCoefficient leading-
Support map monomial reductum

InnerEvalable{IEVALAB}: with eval

IntegerNumberSystem{INS}: CharacteristicZero CombinatorialFunctionCategory Con-
vertibleTo DifferentialRing EuclideanDomain LinearlyExplicitRingOver OrderedRing Pat-
ternMatchable RealConstant RetractableTo StepThrough UniqueFactorizationDomain with
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addmod base bit? copy dec even? hash inc invmod length mask mulmod odd? positiveRe-
mainder powmod random rational rational? rationalIfCan shift submod symmetricRemain-
der

IntegralDomain{INTDOM}: Algebra CommutativeRing EntireRing with associates? exquo
unit? unitCanonical unitNormal

KeyedDictionary{KDAGG}: Dictionary with key? keys remove! search

LazyStreamAggregate{LZSTAGG}: StreamAggregate with complete explicitEntries? ex-
plicitlyEmpty? extend frst lazy? lazyEvaluate numberOfComputedEntries remove rst select

LeftAlgebra{LALG}: LeftModule Ring with coerce

LeftModule{LMODULE}: AbelianGroup with *

LinearAggregate{LNAGG}: Collection IndexedAggregate with concat delete elt insert map
new setelt

LinearlyExplicitRingOver{LINEXP}: Ring with reducedSystem

LiouvillianFunctionCategory{LFCAT}: PrimitiveFunctionCategory TranscendentalFunc-
tionCategory with Ci Ei Si dilog erf li

ListAggregate{LSAGG}: ExtensibleLinearAggregate FiniteLinearAggregate StreamAggre-
gate with list

ModularAlgebraicGcdOperations{MAGCDOC}: with canonicalIfCan degree MPtoMPT
packExps packModulus pseudoRem repack1 zero?

MatrixCategory{MATCAT}: TwoDimensionalArrayCategory
with * ** + - / antisymmetric? coerce determinant diagonal? diagonalMatrix elt exquo
horizConcat inverse listOfLists matrix minordet nullSpace nullity rank rowEchelon scalar-
Matrix setelt setsubMatrix! square? squareTop subMatrix swapColumns! swapRows! sym-
metric? transpose vertConcat zero

Module{MODULE}: BiModule with

MonadWithUnit{MONADWU}: Monad with ** One leftPower leftRecip one? recip right-
Power rightRecip

Monad{MONAD}: SetCategory with * ** leftPower rightPower

MonogenicAlgebra{MONOGEN}: CommutativeRing ConvertibleTo
DifferentialExtension Field Finite
FiniteFieldCategory FramedAlgebra
FullyLinearlyExplicitRingOver FullyRetractableTo
with convert definingPolynomial derivationCoordinates generator lift reduce

MonogenicLinearOperator{MLO}: Algebra BiModule Ring with coefficient degree lead-
ingCoefficient minimumDegree monomial reductum

Monoid{MONOID}: SemiGroup with ** One one? recip

MultiDictionary{MDAGG}: DictionaryOperations with duplicates insert! removeDupli-
cates!
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MultisetAggregate{MSAGG}: MultiDictionary SetAggregate with

MultivariateTaylorSeriesCategory
{MTSCAT}: Evalable InnerEvalable PartialDifferentialRing
PowerSeriesCategory RadicalCategory
TranscendentalFunctionCategory
with coefficient extend integrate monomial order polynomial

NonAssociativeAlgebra{NAALG}: Module NonAssociativeRng with plenaryPower

NonAssociativeRing{NASRING}: MonadWithUnit NonAssociativeRng with characteris-
tic coerce

NonAssociativeRng{NARNG}: AbelianGroup Monad
with antiCommutator associator commutator

Object{OBJECT}: with

OctonionCategory{OC}: Algebra CharacteristicNonZero
CharacteristicZero ConvertibleTo Finite FullyEvalableOver
FullyRetractableTo OrderedSet
with abs conjugate imagE imagI imagJ imagK imagi imagj imagk inv norm octon rational
rational? rationalIfCan real

OneDimensionalArrayAggregate{A1AGG}: FiniteLinearAggregate with

OrderedAbelianGroup
{OAGROUP}: AbelianGroup OrderedCancellationAbelianMonoid with

OrderedAbelianMonoidSup{OAMONS}: OrderedCancellationAbelianMonoid with sup

OrderedAbelianMonoid{OAMON}: AbelianMonoid OrderedAbelianSemiGroup with

OrderedAbelianSemiGroup{OASGP}: AbelianMonoid OrderedSet with

OrderedCancellationAbelianMonoid{OCAMON}: CancellationAbelianMonoid Ordered-
AbelianMonoid with

OrderedFinite{ORDFIN}: Finite OrderedSet with

OrderedMonoid{ORDMON}: Monoid OrderedSet with

OrderedMultisetAggregate{OMAGG}: MultisetAggregate PriorityQueueAggregate with

min

OrderedRing{ORDRING}: OrderedAbelianGroup OrderedMonoid Ring with abs negative?
positive? sign

OrderedSet{ORDSET}: SetCategory with < max min

PAdicIntegerCategory{PADICCT}: CharacteristicZero EuclideanDomain with approxi-
mate complete digits extend moduloP modulus order quotientByP sqrt

PartialDifferentialRing{PDRING}: Ring with D differentiate

PartialTranscendentalFunctions
{PTRANFN}: with acosIfCan acoshIfCan acotIfCan acothIfCan acscIfCan
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acschIfCan asecIfCan asechIfCan asinIfCan asinhIfCan
atanIfCan atanhIfCan cosIfCan coshIfCan cotIfCan cothIfCan
cscIfCan cschIfCan expIfCan logIfCan nthRootIfCan secIfCan
sechIfCan sinIfCan sinhIfCan tanIfCan tanhIfCan

Patternable{PATAB}: ConvertibleTo Object with

PatternMatchable{PATMAB}: SetCategory with patternMatch

PermutationCategory{PERMCAT}: Group OrderedSet
with < cycle cycles elt eval orbit

PlottablePlaneCurveCategory{PPCURVE}: CoercibleTo
with listBranches xRange yRange

PlottableSpaceCurveCategory{PSCURVE}: CoercibleTo
with listBranches xRange yRange zRange

PointCategory{PTCAT}: VectorCategory with convert cross dimension extend length point

PolynomialCategory{POLYCAT}: ConvertibleTo Evalable FiniteAbelianMonoidRing Ful-
lyLinearlyExplicitRingOver GcdDomain InnerEvalable OrderedSet PartialDifferentialRing
PatternMatchable PolynomialFactorizationExplicit RetractableTo with coefficient content
degree discriminant isExpt isPlus isTimes mainVariable minimumDegree monicDivide mono-
mial monomials multivariate primitiveMonomials primitivePart resultant squareFree square-
FreePart totalDegree univariate variables

PolynomialFactorizationExplicit
{PFECAT}: UniqueFactorizationDomain with charthRoot conditionP factorPolynomial fac-
torSquareFreePolynomial
gcdPolynomial solveLinearPolynomialEquation squareFreePolynomial

PowerSeriesCategory{PSCAT}: AbelianMonoidRing with complete monomial pole? vari-
ables

PrimitiveFunctionCategory{PRIMCAT}: with integral

PrincipalIdealDomain{PID}: GcdDomain with expressIdealMember principalIdeal

PriorityQueueAggregate{PRQAGG}: BagAggregate with max merge merge!

QuaternionCategory{QUATCAT}: Algebra CharacteristicNonZero CharacteristicZero Con-
vertibleTo DifferentialExtension DivisionRing EntireRing FullyEvalableOver FullyLinearly-
ExplicitRingOver FullyRetractableTo OrderedSet with abs conjugate imagI imagJ imagK
norm quatern rational rational? rationalIfCan real

QueueAggregate{QUAGG}: BagAggregate with back dequeue! enqueue! front length ro-
tate!

QuotientFieldCategory
{QFCAT}: Algebra CharacteristicNonZero CharacteristicZero
ConvertibleTo DifferentialExtension Field FullyEvalableOver
FullyLinearlyExplicitRingOver FullyPatternMatchable OrderedRing
OrderedSet Patternable PolynomialFactorizationExplicit
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RealConstant RetractableTo StepThrough
with / ceiling denom denominator floor fractionPart numer numerator random wholePart

RadicalCategory{RADCAT}: with ** nthRoot sqrt

RealConstant{REAL}: ConvertibleTo with

RealNumberSystem{RNS}: CharacteristicZero ConvertibleTo Field OrderedRing Pattern-
Matchable RadicalCategory RealConstant RetractableTo with abs ceiling floor fractionPart
norm round truncate wholePart

RectangularMatrixCategory
{RMATCAT}: BiModule HomogeneousAggregate Module with / antisymmetric? column di-
agonal? elt exquo listOfLists map matrix maxColIndex maxRowIndex minColIndex min-
RowIndex ncols nrows nullSpace nullity qelt rank row rowEchelon square? symmetric?

RecursiveAggregate{RCAGG}: HomogeneousAggregate with children cyclic? elt leaf?
leaves node? nodes setchildren! setelt setvalue! value

RetractableTo{RETRACT}: with coerce retract retractIfCan

RightModule{RMODULE}: AbelianGroup with *

Ring{RING}: LeftModule Monoid Rng with characteristic coerce

Rng{RNG}: AbelianGroup SemiGroup with

SegmentCategory{SEGCAT}: SetCategory with BY SEGMENT convert hi high incr lo
low segment

SegmentExpansionCategory{SEGXCAT}: SegmentCategory with expand map

SemiGroup{SGROUP}: SetCategory with * **

SetAggregate{SETAGG}: Collection SetCategory with < brace difference intersect subset?
symmetricDifference union

SetCategory{SETCAT}: CoercibleTo Object with =

SExpressionCategory{SEXCAT}: SetCategory with # atom? car cdr convert destruct elt
eq expr float float? integer integer? list? null? pair? string string? symbol symbol? uequal

SpecialFunctionCategory{SPFCAT}: with Beta Gamma abs airyAi airyBi besselI besselJ
besselK besselY digamma polygamma

SquareMatrixCategory{SMATCAT}: Algebra BiModule DifferentialExtension FullyLinear-
lyExplicitRingOver FullyRetractableTo Module RectangularMatrixCategory with * ** de-
terminant diagonal diagonalMatrix diagonalProduct inverse minordet scalarMatrix trace

StackAggregate{SKAGG}: BagAggregate with depth pop! push! top

StepThrough{STEP}: SetCategory with init nextItem

StreamAggregate{STAGG}: LinearAggregate UnaryRecursiveAggregate with explicitlyFi-
nite? possiblyInfinite?
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StringAggregate{SRAGG}: OneDimensionalArrayAggregate with coerce elt leftTrim low-
erCase lowerCase! match match? position prefix? replace rightTrim split substring? suffix?
trim upperCase upperCase!

StringCategory{STRICAT}: StringAggregate with string

TableAggregate{TBAGG}: IndexedAggregate KeyedDictionary with map setelt table

ThreeSpaceCategory{SPACEC}: SetCategory with check closedCurve closedCurve? co-
erce components composite composites copy create3Space curve curve? enterPointData lllip
lllp llprop lp lprop merge mesh mesh? modifyPointData numberOfComponents numberOf-
Composites objects point point? polygon polygon? subspace

TranscendentalFunctionCategory
{TRANFUN}: ArcHyperbolicFunctionCategory ArcTrigonometricFunctionCategory
ElementaryFunctionCategory HyperbolicFunctionCategory
TrigonometricFunctionCategory with pi

TrigonometricFunctionCategory{TRIGCAT}: with cos cot csc sec sin tan

TwoDimensionalArrayCategory{ARR2CAT}: HomogeneousAggregate with column elt
fill! map map! maxColIndex maxRowIndex minColIndex minRowIndex ncols new nrows
parts qelt qsetelt! row setColumn! setRow! setelt

UnaryRecursiveAggregate{URAGG}: RecursiveAggregate with concat concat! cycleEn-
try cycleLength cycleSplit! cycleTail elt first last rest second setelt setfirst! setlast! setrest!
split! tail third

UniqueFactorizationDomain{UFD}: GcdDomain with factor prime? squareFree square-
FreePart

UnivariateLaurentSeriesCategory
{ULSCAT}: Field RadicalCategory TranscendentalFunctionCategory UnivariatePowerSeri-
esCategory with integrate multiplyCoefficients rationalFunction

UnivariateLaurentSeriesConstructorCategory
{ULSCCAT}: QuotientFieldCategory RetractableTo UnivariateLaurentSeriesCategory with

coerce degree laurent removeZeroes taylor taylorIfCan taylorRep

UnivariatePolynomialCategory
{UPOLYC}: DifferentialExtension DifferentialRing Eltable EuclideanDomain PolynomialCat-
egory StepThrough with D composite differentiate discriminant divideExponents elt inte-
grate makeSUP monicDivide multiplyExponents order pseudoDivide pseudoQuotient pseu-
doRemainder resultant separate subResultantGcd unmakeSUP vectorise

UnivariatePowerSeriesCategory
{UPSCAT}: DifferentialRing Eltable PowerSeriesCategory with approximate center elt eval
extend multiplyExponents order series terms truncate variable

UnivariatePuiseuxSeriesCategory
{UPXSCAT}: Field RadicalCategory TranscendentalFunctionCategory
UnivariatePowerSeriesCategory with integrate multiplyExponents
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UnivariatePuiseuxSeriesConstructorCategory
{UPXSCCA}: RetractableTo UnivariatePuiseuxSeriesCategory
with coerce degree laurent laurentIfCan laurentRep puiseux rationalPower

UnivariateTaylorSeriesCategory
{UTSCAT}: RadicalCategory TranscendentalFunctionCategory
UnivariatePowerSeriesCategory
with ** coefficients integrate multiplyCoefficients polynomial quoByVar series

VectorCategory{VECTCAT}: OneDimensionalArrayAggregate with * + - dot zero

VectorSpace{VSPACE}: Module with / dimension
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Appendix C

Domains

This is a listing of all domains in the Axiom library at the time this book was produced.
Use the Browse facility (described in section 14 on page 931) to get more information about
these constructors.

This sample entry will help you read the following table:
DomainNameDomainAbbreviation:Category1. . .CategoryNwith op1. . . opM
where
DomainName is the full domain name, e.g., Integer.
DomainAbbreviation is the domain abbreviation, e.g., INT.
Categoryi is a category to which the domain belongs.
opj is an operation exported by the domain.

AlgebraGivenByStructuralConstants
{ALGSC}: FramedNonAssociativeAlgebra LeftModule with 0 * ** + - = JacobiIdentity?
JordanAlgebra? alternative? antiAssociative? antiCommutative? antiCommutator apply
associative? associator associatorDependence basis coerce commutative? commutator con-
ditionsForIdempotents convert coordinates elt flexible? jordanAdmissible? leftAlternative?
leftCharacteristicPolynomial leftDiscriminant leftMinimalPolynomial leftNorm leftPower lef-
tRankPolynomial leftRecip leftRegularRepresentation leftTrace leftTraceMatrix leftUnit lef-
tUnits lieAdmissible? lieAlgebra? noncommutativeJordanAlgebra? plenaryPower pow-
erAssociative? rank recip represents rightAlternative? rightCharacteristicPolynomial right-
Discriminant rightMinimalPolynomial rightNorm rightPower rightRankPolynomial rightRe-
cip rightRegularRepresentation rightTrace rightTraceMatrix rightUnit rightUnits someBasis
structuralConstants unit zero?

AlgebraicFunctionField{ALGFF}: FunctionFieldCategory with 0 1 * ** + - / = D ab-
solutelyIrreducible? associates? basis branchPoint? branchPointAtInfinity? characteristic
characteristicPolynomial charthRoot coerce complementaryBasis convert coordinates defin-
ingPolynomial derivationCoordinates differentiate discriminant divide elt euclideanSize ex-
pressIdealMember exquo extendedEuclidean factor gcd generator genus integral? integralAt-
Infinity? integralBasis integralBasisAtInfinity integralCoordinates integralDerivationMatrix
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integralMatrix integralMatrixAtInfinity integralRepresents inv inverseIntegralMatrix inver-
seIntegralMatrixAtInfinity knownInfBasis lcm lift minimalPolynomial multiEuclidean non-
SingularModel norm normalizeAtInfinity numberOfComponents one? prime? primitivePart
principalIdeal quo ramified? ramifiedAtInfinity? rank rationalPoint? rationalPoints recip
reduce reduceBasisAtInfinity reducedSystem regularRepresentation rem represents retract
retractIfCan singular? singularAtInfinity? sizeLess? squareFree squareFreePart trace trace-
Matrix unit? unitCanonical unitNormal yCoordinates zero?

AlgebraicNumber{AN}: AlgebraicallyClosedField CharacteristicZero ConvertibleTo Dif-
ferentialRing ExpressionSpace LinearlyExplicitRingOver RealConstant RetractableTo with

0 1 * ** + - / < = D associates? belong? box characteristic coerce convert definingPolyno-
mial denom differentiate distribute divide elt euclideanSize eval expressIdealMember exquo
extendedEuclidean factor freeOf? gcd height inv is? kernel kernels lcm mainKernel map max
min minPoly multiEuclidean nthRoot numer one? operator operators paren prime? princi-
palIdeal quo recip reduce reducedSystem rem retract retractIfCan rootOf rootsOf sizeLess?
sqrt squareFree squareFreePart subst tower unit? unitCanonical unitNormal zero? zeroOf
zerosOf

AnonymousFunction{ANON}: SetCategory with = coerce

AntiSymm{ANTISYM}: LeftAlgebra RetractableTo with 0 1 * ** + - = characteristic coef-
ficient coerce degree exp generator homogeneous? leadingBasisTerm leadingCoefficient map
one? recip reductum retract retractIfCan retractable? zero?

Any{ANY}: SetCategory with = any coerce domain domainOf obj objectOf showTypeInOut-
put

ArrayStack{ASTACK}: StackAggregate with # = any? arrayStack bag coerce copy count
depth empty empty? eq? every? extract! insert! inspect less? map map! member? members
more? parts pop! push! size? top

AssociatedJordanAlgebra{JORDAN}: CoercibleTo
FiniteRankNonAssociativeAlgebra FramedNonAssociativeAlgebra
NonAssociativeAlgebra with 0 * ** + - = JacobiIdentity?
JordanAlgebra? alternative? antiAssociative? antiCommutative?
antiCommutator apply associative? associator associatorDependence
basis coerce commutative? commutator conditionsForIdempotents
convert coordinates elt flexible? jordanAdmissible?
leftAlternative? leftCharacteristicPolynomial leftDiscriminant
leftMinimalPolynomial leftNorm leftPower leftRankPolynomial
leftRecip leftRegularRepresentation leftTrace leftTraceMatrix
leftUnit leftUnits lieAdmissible? lieAlgebra?
noncommutativeJordanAlgebra? plenaryPower powerAssociative?
rank recip represents rightAlternative?
rightCharacteristicPolynomial rightDiscriminant
rightMinimalPolynomial rightNorm rightPower rightRankPolynomial
rightRecip rightRegularRepresentation rightTrace rightTraceMatrix
rightUnit rightUnits someBasis structuralConstants unit zero?
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AssociatedLieAlgebra{LIE}: CoercibleTo
FiniteRankNonAssociativeAlgebra FramedNonAssociativeAlgebra
NonAssociativeAlgebra with 0 * ** + - = JacobiIdentity?
JordanAlgebra? alternative? antiAssociative? antiCommutative?
antiCommutator apply associative? associator associatorDependence
basis coerce commutative? commutator conditionsForIdempotents
convert coordinates elt flexible? jordanAdmissible?
leftAlternative? leftCharacteristicPolynomial leftDiscriminant
leftMinimalPolynomial leftNorm leftPower leftRankPolynomial
leftRecip leftRegularRepresentation leftTrace leftTraceMatrix
leftUnit leftUnits lieAdmissible? lieAlgebra?
noncommutativeJordanAlgebra? plenaryPower powerAssociative?
rank recip represents rightAlternative?
rightCharacteristicPolynomial rightDiscriminant
rightMinimalPolynomial rightNorm rightPower rightRankPolynomial
rightRecip rightRegularRepresentation rightTrace
rightTraceMatrix rightUnit rightUnits someBasis
structuralConstants unit zero?

AssociationList{ALIST}: AssociationListAggregate with # = any? assoc bag child? chil-
dren coerce concat concat! construct copy copyInto! count cycleEntry cycleLength cycle-
Split! cycleTail cyclic? delete delete! dictionary distance elt empty empty? entries entry?
eq? every? explicitlyFinite? extract! fill! find first index? indices insert insert! inspect key?
keys last leaf? less? list map map! maxIndex member? members merge merge! minIndex
more? new node? nodes parts position possiblyInfinite? qelt qsetelt! reduce remove re-
move! removeDuplicates removeDuplicates! rest reverse reverse! search second select select!
setchildren! setelt setfirst! setlast! setrest! setvalue! size? sort sort! sorted? split! swap!
table tail third value

BalancedBinaryTree{BBTREE}: BinaryTreeCategory with # = any? balancedBinaryTree
children coerce copy count cyclic? elt empty empty? eq? every? leaf? leaves left less?
map map! mapDown! mapUp! member? members more? node node? nodes parts right
setchildren! setelt setleaves! setleft! setright! setvalue! size? value

BalancedPAdicInteger{BPADIC}: PAdicIntegerCategory with 0 1 * ** + - = approximate
associates? characteristic coerce complete digits divide euclideanSize expressIdealMember
exquo extend extendedEuclidean gcd lcm moduloP modulus multiEuclidean one? order
principalIdeal quo quotientByP recip rem sizeLess? sqrt unit? unitCanonical unitNormal
zero?

BalancedPAdicRational{BPADICRT}: QuotientFieldCategory with 0 1 * ** + - / = D ap-
proximate associates? characteristic coerce continuedFraction denom denominator differen-
tiate divide euclideanSize expressIdealMember exquo extendedEuclidean factor fractionPart
gcd inv lcm map multiEuclidean numer numerator one? prime? principalIdeal quo recip
reducedSystem rem removeZeroes retract retractIfCan sizeLess? squareFree squareFreePart
unit? unitCanonical unitNormal wholePart zero?
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BasicOperator{BOP}: OrderedSet with < = arity assert coerce comparison copy
deleteProperty! display equality has? input is? max min
name nary? nullary? operator properties property setProperties
setProperty unary? weight

BinaryExpansion{BINARY}: QuotientFieldCategory with 0 1 * ** + - / < = D abs asso-
ciates? binary ceiling characteristic coerce convert denom denominator differentiate divide
euclideanSize expressIdealMember exquo extendedEuclidean factor floor fractionPart gcd
init inv lcm map max min multiEuclidean negative? nextItem numer numerator one? pat-
ternMatch positive? prime? principalIdeal quo random recip reducedSystem rem retract
retractIfCan sign sizeLess? squareFree squareFreePart unit? unitCanonical unitNormal
wholePart zero?

BinarySearchTree{BSTREE}: BinaryTreeCategory with # = any? binarySearchTree chil-
dren coerce copy count cyclic? elt empty empty? eq? every? insert! insertRoot! leaf? leaves
left less? map map! member? members more? node node? nodes parts right setchildren!
setelt setleft! setright! setvalue! size? split value

BinaryTournament{BTOURN}: BinaryTreeCategory with # = any? binaryTournament
children coerce copy count cyclic? elt empty empty? eq? every? insert! leaf? leaves
left less? map map! member? members more? node node? nodes parts right setchildren!
setelt setleft! setright! setvalue! size? value

BinaryTree{BTREE}: BinaryTreeCategory with # = any? binaryTree children coerce copy
count cyclic? elt empty empty? eq? every? leaf? leaves left less? map map! member?
members more? node node? nodes parts right setchildren! setelt setleft! setright! setvalue!
size? value

Bits{BITS}: BitAggregate with # < = ^ and any? bits coerce concat construct convert copy
copyInto! count delete elt empty empty? entries entry? eq? every? fill! find first index?
indices insert less? map map! max maxIndex member? members merge min minIndex
more? nand new nor not or parts position qelt qsetelt! reduce remove removeDuplicates
reverse reverse! select setelt size? sort sort! sorted? swap! xor

Boolean{BOOLEAN}: ConvertibleTo Finite OrderedSet with < = ^ and coerce convert false
implies index lookup max min nand nor not or random size true xor

CardinalNumber{CARD}: CancellationAbelianMonoid Monoid OrderedSet RetractableTo
with 0 1 * ** + - < = Aleph coerce countable? finite? generalizedContinuumHypothesisAs-
sumed generalizedContinuumHypothesisAssumed? max min one? recip retract retractIfCan
zero?

CartesianTensor{CARTEN}: GradedAlgebra with 0 1 * + - = coerce contract degree elt
kroneckerDelta leviCivitaSymbol product rank ravel reindex retract retractIfCan transpose
unravel

CharacterClass{CCLASS}: ConvertibleTo FiniteSetAggregate SetCategory with # < = al-
phabetic alphanumeric any? bag brace cardinality charClass coerce complement construct
convert copy count dictionary difference digit empty empty? eq? every? extract! find
hexDigit index insert! inspect intersect less? lookup lowerCase map map! max member?
members min more? parts random reduce remove remove! removeDuplicates select select!
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size size? subset? symmetricDifference union universe upperCase

Character{CHAR}: OrderedFinite with < = alphabetic? alphanumeric? char coerce digit?
escape hexDigit? index lookup lowerCase lowerCase? max min ord quote random size space
upperCase upperCase?

CliffordAlgebra{CLIF}: Algebra Ring VectorSpace with 0 1 * ** + - / = characteristic
coefficient coerce dimension e monomial one? recip zero?

Color{COLOR}: AbelianSemiGroup with * + = blue coerce color green hue numberOfHues
red yellow

Commutator{COMM}: SetCategory with = coerce mkcomm

Complex{COMPLEX}: ComplexCategory with 0 1 * ** + - / < = D abs acos acosh acot acoth
acsc acsch argument asec asech asin asinh associates? atan atanh basis characteristic char-
acteristicPolynomial charthRoot coerce complex conditionP conjugate convert coordinates
cos cosh cot coth createPrimitiveElement csc csch definingPolynomial derivationCoordinates
differentiate discreteLog discriminant divide elt euclideanSize eval exp expressIdealMem-
ber exquo extendedEuclidean factor factorPolynomial factorSquareFreePolynomial factor-
sOfCyclicGroupSize gcd gcdPolynomial generator imag imaginary index init inv lcm lift log
lookup map max min minimalPolynomial multiEuclidean nextItem norm nthRoot one? or-
der pi polarCoordinates prime? primeFrobenius primitive? primitiveElement principalIdeal
quo random rank rational rational? rationalIfCan real recip reduce reducedSystem regular-
Representation rem representationType represents retract retractIfCan sec sech sin sinh size
sizeLess? solveLinearPolynomialEquation sqrt squareFree squareFreePart squareFreePolyno-
mial tableForDiscreteLogarithm tan tanh trace traceMatrix unit? unitCanonical unitNormal
zero?

ContinuedFraction{CONTFRAC}: Algebra Field with 0 1 * ** + - / = approximants
associates? characteristic coerce complete continuedFraction
convergents denominators divide euclideanSize expressIdealMember
exquo extend extendedEuclidean factor gcd inv lcm multiEuclidean
numerators one? partialDenominators partialNumerators
partialQuotients prime? principalIdeal quo recip
reducedContinuedFraction reducedForm rem sizeLess? squareFree
squareFreePart unit? unitCanonical unitNormal wholePart zero?

Database{DBASE}: SetCategory with + - = coerce display elt fullDisplay

DoubleFloat{DFLOAT}: ConvertibleTo DifferentialRing FloatingPointSystem Transcenden-
talFunctionCategory with 0 1 * ** + - / < = D abs acos acosh acot acoth acsc acsch asec
asech asin asinh associates? atan atanh base bits ceiling characteristic coerce convert cos cosh
cot coth csc csch decreasePrecision differentiate digits divide euclideanSize exp exp1 expo-
nent expressIdealMember exquo extendedEuclidean factor float floor fractionPart gcd hash
increasePrecision inv lcm log log10 log2 mantissa max min multiEuclidean negative? norm
nthRoot one? order patternMatch pi positive? precision prime? principalIdeal quo ratio-
nalApproximation recip rem retract retractIfCan round sec sech sign sin sinh sizeLess? sqrt
squareFree squareFreePart tan tanh truncate unit? unitCanonical unitNormal wholePart
zero?
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DataList{DLIST}: ListAggregate with # < = any? children coerce concat concat! construct
convert copy copyInto! count cycleEntry cycleLength cycleSplit! cycleTail cyclic? datalist
delete delete! elt empty empty? entries entry? eq? every? explicitlyFinite? fill! find
first index? indices insert insert! last leaf? leaves less? list map map! max maxIndex
member? members merge merge! min minIndex more? new node? nodes parts position
possiblyInfinite? qelt qsetelt! reduce remove remove! removeDuplicates removeDuplicates!
rest reverse reverse! second select select! setchildren! setelt setfirst! setlast! setrest! setvalue!
size? sort sort! sorted? split! swap! tail third value

DecimalExpansion{DECIMAL}: QuotientFieldCategory with 0 1 * ** + - / < = D abs
associates? ceiling characteristic coerce convert decimal denom denominator differentiate
divide euclideanSize expressIdealMember exquo extendedEuclidean factor floor fractionPart
gcd init inv lcm map max min multiEuclidean negative? nextItem numer numerator one?
patternMatch positive? prime? principalIdeal quo random recip reducedSystem rem retract
retractIfCan sign sizeLess? squareFree squareFreePart unit? unitCanonical unitNormal
wholePart zero?

DenavitHartenbergMatrix{DHMATRIX}: MatrixCategory with # * ** + - / = antisym-
metric? any? coerce column copy count determinant diagonal? diagonalMatrix elt empty
empty? eq? every? exquo fill! horizConcat identity inverse less? listOfLists map map! ma-
trix maxColIndex maxRowIndex member? members minColIndex minRowIndex minordet
more? ncols new nrows nullSpace nullity parts qelt qsetelt! rank rotatex rotatey rotatez
row rowEchelon scalarMatrix scale setColumn! setRow! setelt setsubMatrix! size? square?
squareTop subMatrix swapColumns! swapRows! symmetric? translate transpose vertCon-
cat zero

Dequeue{DEQUEUE}: DequeueAggregate with # = any? back bag bottom! coerce copy
count depth dequeue dequeue! empty empty? enqueue! eq? every? extract! extractBottom!
extractTop! front height insert! insertBottom! insertTop! inspect length less? map map!
member? members more? parts pop! push! reverse! rotate! size? top top!

DeRhamComplex{DERHAM}: LeftAlgebra RetractableTo with 0 1 * ** + - = characteris-
tic coefficient coerce degree exteriorDifferential generator homogeneous? leadingBasisTerm
leadingCoefficient map one? recip reductum retract retractIfCan retractable? totalDifferen-
tial zero?

DifferentialSparseMultivariatePolynomial
{DSMP}: DifferentialPolynomialCategory RetractableTo with 0 1 * ** + - / < = D associates?
characteristic charthRoot coefficient coefficients coerce conditionP content convert degree dif-
ferentialVariables differentiate discriminant eval exquo factor factorPolynomial factorSquare-
FreePolynomial gcd gcdPolynomial ground ground? initial isExpt isPlus isTimes isobaric?
lcm leader leadingCoefficient leadingMonomial mainVariable makeVariable map mapExpo-
nents max min minimumDegree monicDivide monomial monomial? monomials multivariate
numberOfMonomials one? order patternMatch prime? primitiveMonomials primitivePart
recip reducedSystem reductum resultant retract retractIfCan separant solveLinearPolynomi-
alEquation squareFree squareFreePart squareFreePolynomial totalDegree unit? unitCanon-
ical unitNormal univariate variables weight weights zero?
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DirectProductMatrixModule{DPMM}: DirectProductCategory LeftModule with 0 1 # *

** + - / < = D abs any? characteristic coerce copy count differentiate dimension directProd-
uct dot elt empty empty? entries entry? eq? every? fill! first index index? indices less?
lookup map map! max maxIndex member? members min minIndex more? negative? one?
parts positive? qelt qsetelt! random recip reducedSystem retract retractIfCan setelt sign
size size? sup swap! unitVector zero?

DirectProductModule{DPMO}: DirectProductCategory LeftModule with 0 1 # * ** + -

/ < = D abs any? characteristic coerce copy count differentiate dimension directProduct dot
elt empty empty? entries entry? eq? every? fill! first index index? indices less? lookup
map map! max maxIndex member? members min minIndex more? negative? one? parts
positive? qelt qsetelt! random recip reducedSystem retract retractIfCan setelt sign size size?
sup swap! unitVector zero?

DirectProduct{DIRPROD}: DirectProductCategory with 0 1 # * ** + - / < = D abs any?
characteristic coerce copy count differentiate dimension directProduct dot elt empty empty?
entries entry? eq? every? fill! first index index? indices less? lookup map map! max
maxIndex member? members min minIndex more? negative? one? parts positive? qelt
qsetelt! random recip reducedSystem retract retractIfCan setelt sign size size? sup swap!
unitVector zero?

DistributedMultivariatePolynomial{DMP}: PolynomialCategory with 0 1 * ** + - / <

= D
associates? characteristic charthRoot coefficient coefficients
coerce conditionP const content convert degree differentiate
discriminant eval exquo factor factorPolynomial
factorSquareFreePolynomial gcd gcdPolynomial ground ground? isExpt
isPlus isTimes lcm leadingCoefficient leadingMonomial mainVariable
map mapExponents max min minimumDegree monicDivide monomial monomial?
monomials multivariate numberOfMonomials one? prime? primitiveMonomials
primitivePart recip reducedSystem reductum reorder resultant retract
retractIfCan solveLinearPolynomialEquation squareFree squareFreePart
squareFreePolynomial totalDegree unit? unitCanonical unitNormal
univariate variables zero?

DrawOption{DROPT}: SetCategory with = adaptive clip coerce colorFunction coordinate
coordinates curveColor option option? pointColor range ranges space style title toScale
tubePoints tubeRadius unit var1Steps var2Steps

ElementaryFunctionsUnivariateLaurentSeries
{EFULS}: PartialTranscendentalFunctions with ** acos acosIfCan acosh acoshIfCan acot
acotIfCan acoth acothIfCan acsc acscIfCan acsch acschIfCan asec asecIfCan asech asechIf-
Can asin asinIfCan asinh asinhIfCan atan atanIfCan atanh atanhIfCan cos cosIfCan cosh
coshIfCan cot cotIfCan coth cothIfCan csc cscIfCan csch cschIfCan exp expIfCan log logIf-
Can nthRootIfCan sec secIfCan sech sechIfCan sin sinIfCan sinh sinhIfCan tan tanIfCan
tanh tanhIfCan

ElementaryFunctionsUnivariatePuiseuxSeries{EFUPXS}: PartialTranscendentalFunc-
tions with ** acos acosIfCan acosh acoshIfCan acot acotIfCan acoth acothIfCan acsc ac-
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scIfCan acsch acschIfCan asec asecIfCan asech asechIfCan asin asinIfCan asinh asinhIfCan
atan atanIfCan atanh atanhIfCan cos cosIfCan cosh coshIfCan cot cotIfCan coth cothIf-
Can csc cscIfCan csch cschIfCan exp expIfCan log logIfCan nthRootIfCan sec secIfCan sech
sechIfCan sin sinIfCan sinh sinhIfCan tan tanIfCan tanh tanhIfCan

EqTable{EQTBL}: TableAggregate with # = any? bag coerce construct copy count dictio-
nary elt empty empty? entries entry? eq? every? extract! fill! find first index? indices
insert! inspect key? keys less? map map! maxIndex member? members minIndex more?
parts qelt qsetelt! reduce remove remove! removeDuplicates search select select! setelt size?
swap! table

Equation{EQ}: CoercibleTo InnerEvalable Object SetCategory with * ** + - = coerce
equation eval lhs map rhs

EuclideanModularRing{EMR}: EuclideanDomain with 0 1 * ** + - = associates? char-
acteristic coerce divide euclideanSize exQuo expressIdealMember exquo extendedEuclidean
gcd inv lcm modulus multiEuclidean one? principalIdeal quo recip reduce rem sizeLess?
unit? unitCanonical unitNormal zero?

Exit{EXIT}: SetCategory with = coerce

Expression{EXPR}: AlgebraicallyClosedFunctionSpace CombinatorialOpsCategory Func-
tionSpace LiouvillianFunctionCategory RetractableTo SpecialFunctionCategory Transcen-
dentalFunctionCategory with 0 1 * ** + - / < = Beta Ci D Ei Gamma Si abs acos acosh
acot acoth acsc acsch airyAi airyBi applyQuote asec asech asin asinh associates? atan atanh
belong? besselI besselJ besselK besselY binomial box characteristic charthRoot coerce com-
mutator conjugate convert cos cosh cot coth csc csch definingPolynomial denom denominator
differentiate digamma dilog distribute divide elt erf euclideanSize eval exp expressIdealMem-
ber exquo extendedEuclidean factor factorial factorials freeOf? gcd ground ground? height
integral inv is? isExpt isMult isPlus isPower isTimes kernel kernels lcm li log mainKernel
map max min minPoly multiEuclidean nthRoot numer numerator one? operator operators
paren patternMatch permutation pi polygamma prime? principalIdeal product quo recip re-
duce reducedSystem rem retract retractIfCan rootOf rootsOf sec sech sin sinh sizeLess? sqrt
squareFree squareFreePart subst summation tan tanh tower unit? unitCanonical unitNormal
univariate variables zero? zeroOf zerosOf

ExtAlgBasis{EAB}: OrderedSet with < = Nul coerce degree exponents max min

Factored{FR}: Algebra DifferentialExtension Eltable Evalable FullyEvalableOver FullyRe-
tractableTo GcdDomain InnerEvalable IntegralDomain RealConstant UniqueFactorization-
Domain with 0 1 * ** + - = D associates? characteristic coerce convert differentiate
elt eval expand exponent exquo factor factorList factors flagFactor gcd irreducibleFactor
lcm makeFR map nilFactor nthExponent nthFactor nthFlag numberOfFactors one? prime?
primeFactor rational rational? rationalIfCan recip retract retractIfCan sqfrFactor squareFree
squareFreePart unit unit? unitCanonical unitNormal unitNormalize zero?

FileName{FNAME}: FileNameCategory with = coerce directory exists? extension filename
name new readable? writable?

File{FILE}: FileCategory with = close! coerce iomode name open read! readIfCan! reopen!
write!
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FiniteDivisor{FDIV}: AbelianGroup with 0 * + - = algsplit coerce divisor finiteBasis gen-
erator ideal lSpaceBasis mkBasicDiv principal? reduce zero?

FiniteFieldCyclicGroupExtensionByPolynomial{FFCGP}: FiniteAlgebraicExtension-
Field with 0 1 * ** + - / = Frobenius algebraic? associates? basis characteristic charthRoot
coerce conditionP coordinates createNormalElement createPrimitiveElement definingPoly-
nomial degree dimension discreteLog divide euclideanSize expressIdealMember exquo extend-
edEuclidean extensionDegree factor factorsOfCyclicGroupSize gcd generator getZechTable
inGroundField? index init inv lcm lookup minimalPolynomial multiEuclidean nextItem
norm normal? normalElement one? order prime? primeFrobenius primitive? primitiveEle-
ment principalIdeal quo random recip rem representationType represents retract retract-
IfCan size sizeLess? squareFree squareFreePart tableForDiscreteLogarithm trace transcen-
denceDegree transcendent? unit? unitCanonical unitNormal zero?

FiniteFieldCyclicGroupExtension{FFCGX}: FiniteAlgebraicExtensionField with 0 1 *

** + - / = Frobenius algebraic? associates? basis characteristic charthRoot coerce con-
ditionP coordinates createNormalElement createPrimitiveElement definingPolynomial de-
gree dimension discreteLog divide euclideanSize expressIdealMember exquo extendedEu-
clidean extensionDegree factor factorsOfCyclicGroupSize gcd generator getZechTable in-
GroundField? index init inv lcm lookup minimalPolynomial multiEuclidean nextItem norm
normal? normalElement one? order prime? primeFrobenius primitive? primitiveElement
principalIdeal quo random recip rem representationType represents retract retractIfCan size
sizeLess? squareFree squareFreePart tableForDiscreteLogarithm trace transcendenceDegree
transcendent? unit? unitCanonical unitNormal zero?

FiniteFieldCyclicGroup{FFCG}: FiniteAlgebraicExtensionField with 0 1 * ** + - / =

Frobenius algebraic? associates? basis characteristic charthRoot coerce conditionP coor-
dinates createNormalElement createPrimitiveElement definingPolynomial degree dimension
discreteLog divide euclideanSize expressIdealMember exquo extendedEuclidean extension-
Degree factor factorsOfCyclicGroupSize gcd generator getZechTable inGroundField? index
init inv lcm lookup minimalPolynomial multiEuclidean nextItem norm normal? normalEle-
ment one? order prime? primeFrobenius primitive? primitiveElement principalIdeal quo
random recip rem representationType represents retract retractIfCan size sizeLess? square-
Free squareFreePart tableForDiscreteLogarithm trace transcendenceDegree transcendent?
unit? unitCanonical unitNormal zero?

FiniteFieldExtensionByPolynomial{FFP}: FiniteAlgebraicExtensionField with 0 1 *

** + - / = Frobenius algebraic? associates? basis characteristic charthRoot coerce condi-
tionP coordinates createNormalElement createPrimitiveElement definingPolynomial degree
dimension discreteLog divide euclideanSize expressIdealMember exquo extendedEuclidean
extensionDegree factor factorsOfCyclicGroupSize gcd generator inGroundField? index init
inv lcm lookup minimalPolynomial multiEuclidean nextItem norm normal? normalElement
one? order prime? primeFrobenius primitive? primitiveElement principalIdeal quo ran-
dom recip rem representationType represents retract retractIfCan size sizeLess? squareFree
squareFreePart tableForDiscreteLogarithm trace transcendenceDegree transcendent? unit?
unitCanonical unitNormal zero?
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FiniteFieldExtension{FFX}: FiniteAlgebraicExtensionField with 0 1 * ** + - / = Frobe-
nius
algebraic? associates? basis characteristic charthRoot coerce
conditionP coordinates createNormalElement createPrimitiveElement
definingPolynomial degree dimension discreteLog divide euclideanSize
expressIdealMember exquo extendedEuclidean extensionDegree factor
factorsOfCyclicGroupSize gcd generator inGroundField? index init inv
lcm lookup minimalPolynomial multiEuclidean nextItem norm normal?
normalElement one? order prime? primeFrobenius primitive?
primitiveElement principalIdeal quo random recip rem representationType
represents retract retractIfCan size sizeLess? squareFree squareFreePart
tableForDiscreteLogarithm trace transcendenceDegree transcendent?
unit? unitCanonical unitNormal zero?

FiniteFieldNormalBasisExtensionByPolynomial{FFNBP}: FiniteAlgebraicExtension-
Field with 0 1 * ** + - / = Frobenius algebraic? associates? basis characteristic charth-
Root coerce conditionP coordinates createNormalElement createPrimitiveElement defining-
Polynomial degree dimension discreteLog divide euclideanSize expressIdealMember exquo
extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize gcd generator getMul-
tiplicationMatrix getMultiplicationTable inGroundField? index init inv lcm lookup mini-
malPolynomial multiEuclidean nextItem norm normal? normalElement one? order prime?
primeFrobenius primitive? primitiveElement principalIdeal quo random recip rem repre-
sentationType represents retract retractIfCan size sizeLess? sizeMultiplication squareFree
squareFreePart tableForDiscreteLogarithm trace transcendenceDegree transcendent? unit?
unitCanonical unitNormal zero?

FiniteFieldNormalBasisExtension{FFNBX}: FiniteAlgebraicExtensionField with 0 1 *

** + - / = Frobenius algebraic? associates? basis characteristic charthRoot coerce condi-
tionP coordinates createNormalElement createPrimitiveElement definingPolynomial degree
dimension discreteLog divide euclideanSize expressIdealMember exquo extendedEuclidean
extensionDegree factor factorsOfCyclicGroupSize gcd generator getMultiplicationMatrix get-
MultiplicationTable inGroundField? index init inv lcm lookup minimalPolynomial multiEu-
clidean nextItem norm normal? normalElement one? order prime? primeFrobenius primi-
tive? primitiveElement principalIdeal quo random recip rem representationType represents
retract retractIfCan size sizeLess? sizeMultiplication squareFree squareFreePart tableForDis-
creteLogarithm trace transcendenceDegree transcendent? unit? unitCanonical unitNormal
zero?

FiniteFieldNormalBasis{FFNB}: FiniteAlgebraicExtensionField with 0 1 * ** + - / =

Frobenius algebraic? associates? basis characteristic charthRoot coerce conditionP coor-
dinates createNormalElement createPrimitiveElement definingPolynomial degree dimension
discreteLog divide euclideanSize expressIdealMember exquo extendedEuclidean extension-
Degree factor factorsOfCyclicGroupSize gcd generator getMultiplicationMatrix getMultipli-
cationTable inGroundField? index init inv lcm lookup minimalPolynomial multiEuclidean
nextItem norm normal? normalElement one? order prime? primeFrobenius primitive?
primitiveElement principalIdeal quo random recip rem representationType represents re-
tract retractIfCan size sizeLess? sizeMultiplication squareFree squareFreePart tableForDis-
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creteLogarithm trace transcendenceDegree transcendent? unit? unitCanonical unitNormal
zero?

FiniteField{FF}: FiniteAlgebraicExtensionField with 0 1 * ** + - / = Frobenius alge-
braic? associates? basis characteristic charthRoot coerce conditionP coordinates creat-
eNormalElement createPrimitiveElement definingPolynomial degree dimension discreteLog
divide euclideanSize expressIdealMember exquo extendedEuclidean extensionDegree factor
factorsOfCyclicGroupSize gcd generator inGroundField? index init inv lcm lookup mini-
malPolynomial multiEuclidean nextItem norm normal? normalElement one? order prime?
primeFrobenius primitive? primitiveElement principalIdeal quo random recip rem represen-
tationType represents retract retractIfCan size sizeLess? squareFree squareFreePart table-
ForDiscreteLogarithm trace transcendenceDegree transcendent? unit? unitCanonical unit-
Normal zero?

FlexibleArray{FARRAY}: ExtensibleLinearAggregate
OneDimensionalArrayAggregate with # < = any? coerce concat concat! construct convert
copy copyInto! count delete delete! elt empty empty? entries entry? eq? every? fill! find
first flexibleArray index? indices insert insert! less? map map! max maxIndex member?
members merge merge! min minIndex more? new parts physicalLength physicalLength!
position qelt qsetelt! reduce remove remove! removeDuplicates removeDuplicates! reverse
reverse! select select! setelt shrinkable size? sort sort! sorted? swap!

Float{FLOAT}: CoercibleTo ConvertibleTo DifferentialRing FloatingPointSystem Transcen-
dentalFunctionCategory with 0 1 * ** + - / < = D abs acos acosh acot acoth acsc acsch
asec asech asin asinh associates? atan atanh base bits ceiling characteristic coerce convert
cos cosh cot coth csc csch decreasePrecision differentiate digits divide euclideanSize exp exp1
exponent expressIdealMember exquo extendedEuclidean factor float floor fractionPart gcd
increasePrecision inv lcm log log10 log2 mantissa max min multiEuclidean negative? norm
normalize nthRoot one? order outputFixed outputFloating outputGeneral outputSpacing
patternMatch pi positive? precision prime? principalIdeal quo rationalApproximation recip
relerror rem retract retractIfCan round sec sech shift sign sin sinh sizeLess? sqrt squareFree
squareFreePart tan tanh truncate unit? unitCanonical unitNormal wholePart zero?

FractionalIdeal{FRIDEAL}: Group with 1 * ** / = basis coerce commutator conjugate
denom ideal inv minimize norm numer one? randomLC recip

Fraction{FRAC}: QuotientFieldCategory with 0 1 * ** + - / < = D abs associates? ceil-
ing characteristic charthRoot coerce conditionP convert denom denominator differentiate
divide elt euclideanSize eval expressIdealMember exquo extendedEuclidean factor factor-
Polynomial factorSquareFreePolynomial floor fractionPart gcd gcdPolynomial init inv lcm
map max min multiEuclidean negative? nextItem numer numerator one? patternMatch pos-
itive? prime? principalIdeal quo random recip reducedSystem rem retract retractIfCan sign
sizeLess? solveLinearPolynomialEquation squareFree squareFreePart squareFreePolynomial
unit? unitCanonical unitNormal wholePart zero?

FramedModule{FRMOD}: Monoid with 1 * ** = basis coerce module norm one? recip

FreeAbelianGroup{FAGROUP}: AbelianGroup FreeAbelianMonoidCategory Module Or-
deredSet with 0 * + - < = coefficient coerce highCommonTerms mapCoef mapGen max
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min nthCoef nthFactor retract retractIfCan size terms zero?

FreeAbelianMonoid{FAMONOID}: FreeAbelianMonoidCategory with 0 * + - = coefficient
coerce highCommonTerms mapCoef mapGen nthCoef nthFactor retract retractIfCan size
terms zero?

FreeGroup{FGROUP}: Group RetractableTo with 1 * ** / = coerce commutator conjugate
factors inv mapExpon mapGen nthExpon nthFactor one? recip retract retractIfCan size

FreeModule{FM}: BiModule IndexedDirectProductCategory Module with 0 * + - = coerce
leadingCoefficient leadingSupport map monomial reductum zero?

FreeMonoid{FMONOID}: Monoid OrderedSet RetractableTo with 1 * ** < = coerce divide
factors hclf hcrf lquo mapExpon mapGen max min nthExpon nthFactor one? overlap recip
retract retractIfCan rquo size

FreeNilpotentLie{FNLA}: NonAssociativeAlgebra with 0 * ** + - = antiCommutator as-
sociator coerce commutator deepExpand dimension generator leftPower rightPower shallow-
Expand zero?

FunctionCalled{FUNCTION}: SetCategory with = coerce name

GeneralDistributedMultivariatePolynomial{GDMP}: PolynomialCategory with 0 1 *

** + - / < = D associates? characteristic charthRoot coefficient coefficients coerce condi-
tionP const content convert degree differentiate discriminant eval exquo factor factorPoly-
nomial factorSquareFreePolynomial gcd gcdPolynomial ground ground? isExpt isPlus is-
Times lcm leadingCoefficient leadingMonomial mainVariable map mapExponents max min
minimumDegree monicDivide monomial monomial? monomials multivariate numberOf-
Monomials one? prime? primitiveMonomials primitivePart recip reducedSystem reductum
reorder resultant retract retractIfCan solveLinearPolynomialEquation squareFree square-
FreePart squareFreePolynomial totalDegree unit? unitCanonical unitNormal univariate vari-
ables zero?

GeneralSparseTable{GSTBL}: TableAggregate with # = any? bag coerce construct copy
count dictionary elt empty empty? entries entry? eq? every? extract! fill! find first index?
indices insert! inspect key? keys less? map map! maxIndex member? members minIndex
more? parts qelt qsetelt! reduce remove remove! removeDuplicates search select select!
setelt size? swap! table

GenericNonAssociativeAlgebra
{GCNAALG}: FramedNonAssociativeAlgebra LeftModule with 0 * ** + - = JacobiIdentity?
JordanAlgebra? alternative? antiAssociative? antiCommutative? antiCommutator apply
associative? associator associatorDependence basis coerce commutative? commutator condi-
tionsForIdempotents convert coordinates elt flexible? generic genericLeftDiscriminant gener-
icLeftMinimalPolynomial genericLeftNorm genericLeftTrace genericLeftTraceForm generi-
cRightDiscriminant genericRightMinimalPolynomial genericRightNorm genericRightTrace
genericRightTraceForm jordanAdmissible? leftAlternative? leftCharacteristicPolynomial
leftDiscriminant leftMinimalPolynomial leftNorm leftPower leftRankPolynomial leftRecip
leftRegularRepresentation leftTrace leftTraceMatrix leftUnit leftUnits lieAdmissible? lieAl-
gebra? noncommutativeJordanAlgebra? plenaryPower powerAssociative? rank recip repre-
sents rightAlternative? rightCharacteristicPolynomial rightDiscriminant rightMinimalPoly-
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nomial rightNorm rightPower rightRankPolynomial rightRecip rightRegularRepresentation
rightTrace rightTraceMatrix rightUnit rightUnits someBasis structuralConstants unit zero?

GraphImage{GRIMAGE}: SetCategory with = appendPoint coerce component graphImage
key makeGraphImage point pointLists putColorInfo ranges units

HashTable{HASHTBL}: TableAggregate with # = any? bag coerce construct copy count
dictionary elt empty empty? entries entry? eq? every? extract! fill! find first index? indices
insert! inspect key? keys less? map map! maxIndex member? members minIndex more?
parts qelt qsetelt! reduce remove remove! removeDuplicates search select select! setelt size?
swap! table

Heap{HEAP}: PriorityQueueAggregate with # = any? bag coerce copy count empty empty?
eq? every? extract! heap insert! inspect less? map map! max member? members merge
merge! more? parts size?

HexadecimalExpansion{HEXADEC}: QuotientFieldCategory with 0 1 * ** + - / < = D
abs associates? ceiling characteristic coerce convert denom denominator differentiate divide
euclideanSize expressIdealMember exquo extendedEuclidean factor floor fractionPart gcd
hex init inv lcm map max min multiEuclidean negative? nextItem numer numerator one?
patternMatch positive? prime? principalIdeal quo random recip reducedSystem rem retract
retractIfCan sign sizeLess? squareFree squareFreePart unit? unitCanonical unitNormal
wholePart zero?

IndexCard{ICARD}: OrderedSet with < = coerce display elt fullDisplay max min

IndexedBits{IBITS}: BitAggregate with # < = And Not Or ^ and any? coerce concat
construct convert copy copyInto! count delete elt empty empty? entries entry? eq? every?
fill! find first index? indices insert less? map map! max maxIndex member? members
merge min minIndex more? nand new nor not or parts position qelt qsetelt! reduce remove
removeDuplicates reverse reverse! select setelt size? sort sort! sorted? swap! xor

IndexedDirectProductAbelianGroup
{IDPAG}: AbelianGroup IndexedDirectProductCategory with 0 * + - = coerce leadingCoef-
ficient leadingSupport map monomial reductum zero?

IndexedDirectProductAbelianMonoid
{IDPAM}: AbelianMonoid IndexedDirectProductCategory with 0 * + = coerce leadingCoef-
ficient leadingSupport map monomial reductum zero?

IndexedDirectProductObject
{IDPO}: IndexedDirectProductCategory with = coerce leadingCoefficient leadingSupport
map monomial reductum

IndexedDirectProductOrderedAbelianMonoidSup
{IDPOAMS}: IndexedDirectProductCategory
OrderedAbelianMonoidSup
with 0 * + - < = coerce leadingCoefficient leadingSupport map max min monomial reductum
sup zero?

IndexedDirectProductOrderedAbelianMonoid{IDPOAM}: IndexedDirectProductCat-
egory OrderedAbelianMonoid with 0 * + < = coerce leadingCoefficient leadingSupport map
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max min monomial reductum zero?

IndexedExponents{INDE}: IndexedDirectProductCategory
OrderedAbelianMonoidSup with 0 * + - < = coerce leadingCoefficient leadingSupport map
max min monomial reductum sup zero?

IndexedFlexibleArray{IFARRAY}: ExtensibleLinearAggregate OneDimensionalArrayAg-
gregate with # < = any? coerce concat concat! construct convert copy copyInto! count
delete delete! elt empty empty? entries entry? eq? every? fill! find first flexibleArray index?
indices insert insert! less? map map! max maxIndex member? members merge merge! min
minIndex more? new parts physicalLength physicalLength! position qelt qsetelt! reduce
remove remove! removeDuplicates removeDuplicates! reverse reverse! select select! setelt
shrinkable size? sort sort! sorted? swap!

IndexedList{ILIST}: ListAggregate with # < = any? child? children coerce concat concat!
construct convert copy copyInto! count cycleEntry cycleLength cycleSplit! cycleTail cyclic?
delete delete! distance elt empty empty? entries entry? eq? every? explicitlyFinite? fill!
find first index? indices insert insert! last leaf? less? list map map! max maxIndex
member? members merge merge! min minIndex more? new node? nodes parts position
possiblyInfinite? qelt qsetelt! reduce remove remove! removeDuplicates removeDuplicates!
rest reverse reverse! second select select! setchildren! setelt setfirst! setlast! setrest! setvalue!
size? sort sort! sorted? split! swap! tail third value

IndexedMatrix{IMATRIX}: MatrixCategory with # * ** + - / = antisymmetric? any?
coerce column copy count determinant diagonal? diagonalMatrix elt empty empty? eq?
every? exquo fill! horizConcat inverse less? listOfLists map map! matrix maxColIndex
maxRowIndex member? members minColIndex minRowIndex minordet more? ncols new
nrows nullSpace nullity parts qelt qsetelt! rank row rowEchelon scalarMatrix setColumn!
setRow! setelt setsubMatrix! size? square? squareTop subMatrix swapColumns! swapRows!
symmetric? transpose vertConcat zero

IndexedOneDimensionalArray{IARRAY1}: OneDimensionalArrayAggregate with # < =

any? coerce concat construct convert copy copyInto! count delete elt empty empty? entries
entry? eq? every? fill! find first index? indices insert less? map map! max maxIndex
member? members merge min minIndex more? new parts position qelt qsetelt! reduce
remove removeDuplicates reverse reverse! select setelt size? sort sort! sorted? swap!

IndexedString{ISTRING}: StringAggregate with # < = any? coerce concat construct copy
copyInto! count delete elt empty empty? entries entry? eq? every? fill! find first hash
index? indices insert leftTrim less? lowerCase lowerCase! map map! match? max maxIndex
member? members merge min minIndex more? new parts position prefix? qelt qsetelt!
reduce remove removeDuplicates replace reverse reverse! rightTrim select setelt size? sort
sort! sorted? split substring? suffix? swap! trim upperCase upperCase!

IndexedTwoDimensionalArray
{IARRAY2}: TwoDimensionalArrayCategory with # = any? coerce column copy count elt
empty empty? eq? every? fill! less? map map! maxColIndex maxRowIndex member? mem-
bers minColIndex minRowIndex more? ncols new nrows parts qelt qsetelt! row setColumn!
setRow! setelt size?
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IndexedVector{IVECTOR}: VectorCategory with # * + - < = any? coerce concat construct
convert copy copyInto! count delete dot elt empty empty? entries entry? eq? every? fill!
find first index? indices insert less? map map! max maxIndex member? members merge min
minIndex more? new parts position qelt qsetelt! reduce remove removeDuplicates reverse
reverse! select setelt size? sort sort! sorted? swap! zero

InfiniteTuple{ITUPLE}: CoercibleTo with coerce construct filterUntil filterWhile generate
map select

InnerFiniteField{IFF}: FiniteAlgebraicExtensionField with 0 1 * ** + - / = Frobenius
algebraic? associates? basis characteristic charthRoot coerce conditionP coordinates creat-
eNormalElement createPrimitiveElement definingPolynomial degree dimension discreteLog
divide euclideanSize expressIdealMember exquo extendedEuclidean extensionDegree factor
factorsOfCyclicGroupSize gcd generator inGroundField? index init inv lcm lookup mini-
malPolynomial multiEuclidean nextItem norm normal? normalElement one? order prime?
primeFrobenius primitive? primitiveElement principalIdeal quo random recip rem represen-
tationType represents retract retractIfCan size sizeLess? squareFree squareFreePart table-
ForDiscreteLogarithm trace transcendenceDegree transcendent? unit? unitCanonical unit-
Normal zero?

InnerFreeAbelianMonoid{IFAMON}: FreeAbelianMonoidCategory with 0 * + - = coeffi-
cient coerce highCommonTerms mapCoef mapGen nthCoef nthFactor retract retractIfCan
size terms zero?

InnerIndexedTwoDimensionalArray
{IIARRAY2}: TwoDimensionalArrayCategory with

# = any? coerce column copy count elt empty empty? eq?
every? fill! less? map map! maxColIndex maxRowIndex member? members
minColIndex minRowIndex more? ncols new nrows parts qelt qsetelt!
row setColumn! setRow! setelt size?

InnerPAdicInteger{IPADIC}: PAdicIntegerCategory with 0 1 * ** + - = approximate
associates? characteristic coerce complete digits divide euclideanSize expressIdealMember
exquo extend extendedEuclidean gcd lcm moduloP modulus multiEuclidean one? order
principalIdeal quo quotientByP recip rem sizeLess? sqrt unit? unitCanonical unitNormal
zero?

InnerPrimeField{IPF}: ConvertibleTo
FiniteAlgebraicExtensionField FiniteFieldCategory with 0 1 * ** + - / = Frobenius al-
gebraic? associates? basis characteristic charthRoot coerce conditionP convert coordi-
nates createNormalElement createPrimitiveElement definingPolynomial degree dimension
discreteLog divide euclideanSize expressIdealMember exquo extendedEuclidean extension-
Degree factor factorsOfCyclicGroupSize gcd generator inGroundField? index init inv lcm
lookup minimalPolynomial multiEuclidean nextItem norm normal? normalElement one?
order prime? primeFrobenius primitive? primitiveElement principalIdeal quo random recip
rem representationType represents retract retractIfCan size sizeLess? squareFree square-
FreePart tableForDiscreteLogarithm trace transcendenceDegree transcendent? unit? unit-
Canonical unitNormal zero?
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InnerTaylorSeries{ITAYLOR}: IntegralDomain Ring with 0 1 * ** + - = associates? char-
acteristic coefficients coerce exquo one? order pole? recip series unit? unitCanonical unit-
Normal zero?

InputForm{INFORM}: ConvertibleTo SExpressionCategory with 0 1 # * ** + / = atom?
binary car cdr coerce compile convert declare destruct elt eq expr flatten float float? function
integer integer? interpret lambda list? null? pair? string string? symbol symbol? uequal
unparse

IntegerMod{ZMOD}: CommutativeRing ConvertibleTo Finite StepThrough with 0 1 * **

+ - = characteristic coerce convert index init lookup nextItem one? random recip size zero?

Integer{INT}: ConvertibleTo IntegerNumberSystem with 0 1 * ** + - < = D abs addmod
associates? base binomial bit? characteristic coerce convert copy dec differentiate divide
euclideanSize even? expressIdealMember exquo extendedEuclidean factor factorial gcd hash
inc init invmod lcm length mask max min mulmod multiEuclidean negative? nextItem
odd? one? patternMatch permutation positive? positiveRemainder powmod prime? prin-
cipalIdeal quo random rational rational? rationalIfCan recip reducedSystem rem retract
retractIfCan shift sign sizeLess? squareFree squareFreePart submod symmetricRemainder
unit? unitCanonical unitNormal zero?

IntegrationResult{IR}: Module RetractableTo with 0 * + - = D coerce differentiate elem?
integral logpart mkAnswer notelem ratpart retract retractIfCan zero?

Kernel{KERNEL}: CachableSet ConvertibleTo Patternable with < = argument coerce con-
vert height is? kernel max min name operator position setPosition symbolIfCan

KeyedAccessFile{KAFILE}: FileCategory TableAggregate with # = any? bag close! coerce
construct copy count dictionary elt empty empty? entries entry? eq? every? extract! fill!
find first index? indices insert! inspect iomode key? keys less? map map! maxIndex
member? members minIndex more? name open pack! parts qelt qsetelt! read! reduce
remove remove! removeDuplicates reopen! search select select! setelt size? swap! table
write!

LaurentPolynomial{LAUPOL}: CharacteristicNonZero CharacteristicZero ConvertibleTo
DifferentialExtension EuclideanDomain FullyRetractableTo IntegralDomain RetractableTo
with 0 1 * ** + - = D associates? characteristic charthRoot coefficient coerce convert
degree differentiate divide euclideanSize expressIdealMember exquo extendedEuclidean gcd
lcm leadingCoefficient monomial monomial? multiEuclidean one? order principalIdeal quo
recip reductum rem retract retractIfCan separate sizeLess? trailingCoefficient unit? unit-
Canonical unitNormal zero?

Library{LIB}: TableAggregate with # = any? bag coerce construct copy count dictionary
elt empty empty? entries entry? eq? every? extract! fill! find first index? indices insert!
inspect key? keys less? library map map! maxIndex member? members minIndex more?
pack! parts qelt qsetelt! reduce remove remove! removeDuplicates search select select! setelt
size? swap! table

LieSquareMatrix{LSQM}: CoercibleTo FramedNonAssociativeAlgebra SquareMatrixCate-
gory with 0 1 # * ** + - / = D
JacobiIdentity? JordanAlgebra? alternative? antiAssociative?
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antiCommutative? antiCommutator antisymmetric? any? apply
associative? associator associatorDependence basis characteristic
coerce column commutative? commutator conditionsForIdempotents
convert coordinates copy count determinant diagonal diagonal?
diagonalMatrix diagonalProduct differentiate elt empty empty? eq?
every? exquo flexible? inverse jordanAdmissible? leftAlternative?
leftCharacteristicPolynomial leftDiscriminant leftMinimalPolynomial
leftNorm leftPower leftRankPolynomial leftRecip
leftRegularRepresentation leftTrace leftTraceMatrix leftUnit leftUnits
less? lieAdmissible? lieAlgebra? listOfLists map map! matrix
maxColIndex maxRowIndex member? members minColIndex minRowIndex
minordet more? ncols noncommutativeJordanAlgebra? nrows nullSpace
nullity one? parts plenaryPower powerAssociative? qelt rank recip
reducedSystem represents retract retractIfCan rightAlternative?
rightCharacteristicPolynomial rightDiscriminant rightMinimalPolynomial
rightNorm rightPower rightRankPolynomial rightRecip
rightRegularRepresentation rightTrace rightTraceMatrix rightUnit
rightUnits row rowEchelon scalarMatrix size? someBasis square?
structuralConstants symmetric? trace unit zero?

LinearOrdinaryDifferentialOperator{LODO}: MonogenicLinearOperator with 0 1 * **

+ - = D characteristic coefficient coerce degree elt leadingCoefficient leftDivide leftExac-
tQuotient leftGcd leftLcm leftQuotient leftRemainder minimumDegree monomial one? recip
reductum rightDivide rightExactQuotient rightGcd rightLcm rightQuotient rightRemainder
zero?

ListMonoidOps{LMOPS}: RetractableTo SetCategory with

= coerce leftMult listOfMonoms
makeMulti makeTerm makeUnit mapExpon mapGen nthExpon nthFactor
outputForm plus retract retractIfCan reverse reverse! rightMult size

ListMultiDictionary{LMDICT}: MultiDictionary with # = any? bag coerce construct con-
vert copy count dictionary duplicates duplicates? empty empty? eq? every? extract! find
insert! inspect less? map map! member? members more? parts reduce remove remove!
removeDuplicates removeDuplicates! select select! size? substitute

List{LIST}: ListAggregate with # < = any? append child? children coerce concat concat!
cons construct convert copy copyInto! count cycleEntry cycleLength cycleSplit! cycleTail
cyclic? delete delete! distance elt empty empty? entries entry? eq? every? explicitlyFinite?
fill! find first index? indices insert insert! last leaf? less? list map map! max maxIndex
member? members merge merge! min minIndex more? new nil node? nodes null parts
position possiblyInfinite? qelt qsetelt! reduce remove remove! removeDuplicates removeDu-
plicates! rest reverse reverse! second select select! setDifference setIntersection setUnion
setchildren! setelt setfirst! setlast! setrest! setvalue! size? sort sort! sorted? split! swap!
tail third value

LocalAlgebra{LA}: Algebra OrderedRing with 0 1 * ** + - / < = abs characteristic coerce
denom max min negative? numer one? positive? recip sign zero?
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Localize{LO}: Module OrderedAbelianGroup with 0 * + - / < = coerce denom max min
numer zero?

MakeCachableSet{MKCHSET}: CachableSet CoercibleTo with < = coerce max min position
setPosition

MakeOrdinaryDifferentialRing{MKODRING}: CoercibleTo DifferentialRing with 0 1 * **

+ - = D characteristic coerce differentiate one? recip zero?

Matrix{MATRIX}: MatrixCategory with # * ** + - / = antisymmetric? any? coerce column
copy count determinant diagonal? diagonalMatrix elt empty empty? eq? every? exquo
fill! horizConcat inverse less? listOfLists map map! matrix maxColIndex maxRowIndex
member? members minColIndex minRowIndex minordet more? ncols new nrows nullSpace
nullity parts qelt qsetelt! rank row rowEchelon scalarMatrix setColumn! setRow! setelt
setsubMatrix! size? square? squareTop subMatrix swapColumns! swapRows! symmetric?
transpose vertConcat zero

ModMonic{MODMON}: Finite UnivariatePolynomialCategory with 0 1 * ** + - / < = An
D UnVectorise Vectorise associates? characteristic charthRoot coefficient coefficients coerce
composite computePowers conditionP content degree differentiate discriminant divide di-
videExponents elt euclideanSize eval expressIdealMember exquo extendedEuclidean factor
factorPolynomial factorSquareFreePolynomial gcd gcdPolynomial ground ground? index init
integrate isExpt isPlus isTimes lcm leadingCoefficient leadingMonomial lift lookup mainVari-
able makeSUP map mapExponents max min minimumDegree modulus monicDivide mono-
mial monomial? monomials multiEuclidean multiplyExponents multivariate nextItem num-
berOfMonomials one? order pow prime? primitiveMonomials primitivePart principalIdeal
pseudoDivide pseudoQuotient pseudoRemainder quo random recip reduce reducedSystem
reductum rem resultant retract retractIfCan separate setPoly size sizeLess? solveLinear-
PolynomialEquation squareFree squareFreePart squareFreePolynomial subResultantGcd to-
talDegree unit? unitCanonical unitNormal univariate unmakeSUP variables vectorise zero?

ModularField{MODFIELD}: Field with 0 1 * ** + - / = associates? characteristic coerce
divide euclideanSize exQuo expressIdealMember exquo extendedEuclidean factor gcd inv
lcm modulus multiEuclidean one? prime? principalIdeal quo recip reduce rem sizeLess?
squareFree squareFreePart unit? unitCanonical unitNormal zero?

ModularRing{MODRING}: Ring with 0 1 * ** + - = characteristic coerce exQuo inv modulus
one? recip reduce zero?

MoebiusTransform{MOEBIUS}: Group with 1 * ** / = coerce commutator conjugate eval
inv moebius one? recip scale shift

MonoidRing{MRING}: Algebra CharacteristicNonZero CharacteristicZero
Finite RetractableTo Ring with 0 1 * ** + - = characteristic charthRoot coefficient coef-
ficients coerce index leadingCoefficient leadingMonomial lookup map monomial monomial?
monomials numberOfMonomials one? random recip reductum retract retractIfCan size terms
zero?

Multiset{MSET}: MultisetAggregate with # < = any? bag brace coerce construct convert
copy count dictionary difference duplicates empty empty? eq? every? extract! find insert!
inspect intersect less? map map! member? members more? multiset parts reduce remove re-
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move! removeDuplicates removeDuplicates! select select! size? subset? symmetricDifference
union

MultivariatePolynomial{MPOLY}: PolynomialCategory with 0 1 * ** + - / < = D asso-
ciates? characteristic charthRoot coefficient coefficients coerce conditionP content convert
degree differentiate discriminant eval exquo factor factorPolynomial factorSquareFreePoly-
nomial gcd gcdPolynomial ground ground? isExpt isPlus isTimes lcm leadingCoefficient
leadingMonomial mainVariable map mapExponents max min minimumDegree monicDivide
monomial monomial? monomials multivariate numberOfMonomials one? prime? primi-
tiveMonomials primitivePart recip reducedSystem reductum resultant retract retractIfCan
solveLinearPolynomialEquation squareFree squareFreePart squareFreePolynomial totalDe-
gree unit? unitCanonical unitNormal univariate variables zero?

NewDirectProduct{NDP}: DirectProductCategory with 0 1 # * ** + - / < = D abs any?
characteristic coerce copy count differentiate dimension directProduct dot elt empty empty?
entries entry? eq? every? fill! first index index? indices less? lookup map map! max
maxIndex member? members min minIndex more? negative? one? parts positive? qelt
qsetelt! random recip reducedSystem retract retractIfCan setelt sign size size? sup swap!
unitVector zero?

NewDistributedMultivariatePolynomial{NDMP}: PolynomialCategory with 0 1 * **

+ - / < = D associates? characteristic charthRoot coefficient coefficients coerce condi-
tionP const content convert degree differentiate discriminant eval exquo factor factorPoly-
nomial factorSquareFreePolynomial gcd gcdPolynomial ground ground? isExpt isPlus is-
Times lcm leadingCoefficient leadingMonomial mainVariable map mapExponents max min
minimumDegree monicDivide monomial monomial? monomials multivariate numberOf-
Monomials one? prime? primitiveMonomials primitivePart recip reducedSystem reductum
reorder resultant retract retractIfCan solveLinearPolynomialEquation squareFree square-
FreePart squareFreePolynomial totalDegree unit? unitCanonical unitNormal univariate vari-
ables zero?

None{NONE}: SetCategory with = coerce

NonNegativeInteger{NNI}: Monoid OrderedAbelianMonoidSup with 0 1 * ** + - < =

coerce divide exquo gcd max min one? quo recip rem sup zero?

Octonion{OCT}: FullyRetractableTo OctonionCategory with 0 1 * ** + - < = abs char-
acteristic charthRoot coerce conjugate convert elt eval imagE imagI imagJ imagK imagi
imagj imagk index inv lookup map max min norm octon one? random rational rational?
rationalIfCan real recip retract retractIfCan size zero?

OneDimensionalArray{ARRAY1}: OneDimensionalArrayAggregate with # < = any? co-
erce concat construct convert copy copyInto! count delete elt empty empty? entries entry?
eq? every? fill! find first index? indices insert less? map map! max maxIndex member?
members merge min minIndex more? new oneDimensionalArray parts position qelt qsetelt!
reduce remove removeDuplicates reverse reverse! select setelt size? sort sort! sorted? swap!

OnePointCompletion{ONECOMP}: AbelianGroup FullyRetractableTo
OrderedRing SetCategory with

0 1 * ** + - < = abs
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characteristic coerce finite? infinite? infinity max min
negative? one? positive? rational rational? rationalIfCan
recip retract retractIfCan sign zero?

Operator{OP}: Algebra CharacteristicNonZero CharacteristicZero Eltable RetractableTo
Ring with 0 1 * ** + - = characteristic charthRoot coerce elt evaluate one? opeval recip
retract retractIfCan zero?

OppositeMonogenicLinearOperator{OMLO}: DifferentialRing MonogenicLinearOpera-
tor with 0 1 * ** + - = D characteristic coefficient coerce degree differentiate leading-
Coefficient minimumDegree monomial one? op po recip reductum zero?

OrderedCompletion{ORDCOMP}: AbelianGroup FullyRetractableTo OrderedRing SetCat-
egory with 0 1 * ** + - < = abs characteristic coerce finite? infinite? max min minusInfinity
negative? one? plusInfinity positive? rational rational? rationalIfCan recip retract retract-
IfCan sign whatInfinity zero?

OrderedDirectProduct{ODP}: DirectProductCategory with 0 1 # * ** + - / < = D abs
any? characteristic coerce copy count differentiate dimension directProduct dot elt empty
empty? entries entry? eq? every? fill! first index index? indices less? lookup map map!
max maxIndex member? members min minIndex more? negative? one? parts positive? qelt
qsetelt! random recip reducedSystem retract retractIfCan setelt sign size size? sup swap!
unitVector zero?

OrderedVariableList{OVAR}: ConvertibleTo OrderedFinite with < = coerce convert index
lookup max min random size variable

OrderlyDifferentialPolynomial{ODPOL}: DifferentialPolynomialCategory RetractableTo
with 0 1 * ** + - / < = D associates? characteristic charthRoot coefficient coefficients coerce
conditionP content degree differentialVariables differentiate discriminant eval exquo factor
factorPolynomial factorSquareFreePolynomial gcd gcdPolynomial ground ground? initial is-
Expt isPlus isTimes isobaric? lcm leader leadingCoefficient leadingMonomial mainVariable
makeVariable map mapExponents max min minimumDegree monicDivide monomial mono-
mial? monomials multivariate numberOfMonomials one? order prime? primitiveMono-
mials primitivePart recip reducedSystem reductum resultant retract retractIfCan separant
solveLinearPolynomialEquation squareFree squareFreePart squareFreePolynomial totalDe-
gree unit? unitCanonical unitNormal univariate variables weight weights zero?

OrderlyDifferentialVariable{ODVAR}: DifferentialVariableCategory with < = D coerce
differentiate makeVariable max min order retract retractIfCan variable weight

OrdinaryDifferentialRing{ODR}: Algebra DifferentialRing Field with 0 1 * ** + - / =

D associates? characteristic coerce differentiate divide euclideanSize expressIdealMember
exquo extendedEuclidean factor gcd inv lcm multiEuclidean one? prime? principalIdeal quo
recip rem sizeLess? squareFree squareFreePart unit? unitCanonical unitNormal zero?

OrdSetInts{OSI}: OrderedSet with < = coerce max min value

OutputForm{OUTFORM}: SetCategory with * ** + - / < <= = > >= D SEGMENT ^= and
assign blankSeparate box brace bracket center coerce commaSeparate differentiate div dot
elt empty exquo hconcat height hspace infix infix? int label left matrix message messagePrint
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not or outputForm over overbar paren pile postfix prefix presub presuper prime print prod
quo quote rarrow rem right root rspace scripts semicolonSeparate slash string sub subHeight
sum super superHeight supersub vconcat vspace width zag

PAdicInteger{PADIC}: PAdicIntegerCategory with 0 1 * ** + - = approximate associates?
characteristic coerce complete digits divide euclideanSize expressIdealMember exquo extend
extendedEuclidean gcd lcm moduloP modulus multiEuclidean one? order principalIdeal quo
quotientByP recip rem sizeLess? sqrt unit? unitCanonical unitNormal zero?

PAdicRationalConstructor{PADICRC}: QuotientFieldCategory with 0 1 * ** + - / <

= D abs approximate associates? ceiling characteristic charthRoot coerce conditionP con-
tinuedFraction convert denom denominator differentiate divide elt euclideanSize eval ex-
pressIdealMember exquo extendedEuclidean factor factorPolynomial factorSquareFreePoly-
nomial floor fractionPart gcd gcdPolynomial init inv lcm map max min multiEuclidean neg-
ative? nextItem numer numerator one? patternMatch positive? prime? principalIdeal quo
random recip reducedSystem rem removeZeroes retract retractIfCan sign sizeLess? solveLin-
earPolynomialEquation squareFree squareFreePart squareFreePolynomial unit? unitCanon-
ical unitNormal wholePart zero?

PAdicRational{PADICRAT}: QuotientFieldCategory with 0 1 * ** + - / = D approximate
associates? characteristic coerce continuedFraction denom denominator differentiate divide
euclideanSize expressIdealMember exquo extendedEuclidean factor fractionPart gcd inv lcm
map multiEuclidean numer numerator one? prime? principalIdeal quo recip reducedSystem
rem removeZeroes retract retractIfCan sizeLess? squareFree squareFreePart unit? unit-
Canonical unitNormal wholePart zero?

Palette{PALETTE}: SetCategory with = bright coerce dark dim hue light pastel shade

ParametricPlaneCurve{PARPCURV}: with coordinate curve

ParametricSpaceCurve{PARSCURV}: with coordinate curve

ParametricSurface{PARSURF}: with coordinate surface

PartialFraction{PFR}: Algebra Field with 0 1 * ** + - / = associates? characteristic
coerce compactFraction divide euclideanSize expressIdealMember exquo extendedEuclidean
factor firstDenom firstNumer gcd inv lcm multiEuclidean nthFractionalTerm numberOfFrac-
tionalTerms one? padicFraction padicallyExpand partialFraction prime? principalIdeal quo
recip rem sizeLess? squareFree squareFreePart unit? unitCanonical unitNormal wholePart
zero?

Partition{PRTITION}: ConvertibleTo OrderedCancellationAbelianMonoid with 0 * + - <

= coerce conjugate convert max min partition pdct powers zero?

PatternMatchListResult{PATLRES}: SetCategory with = atoms coerce failed failed? lists
makeResult new

PatternMatchResult{PATRES}: SetCategory with = addMatch addMatchRestricted co-
erce construct destruct failed failed? getMatch insertMatch new satisfy? union

Pattern{PATTERN}: RetractableTo SetCategory with 0 1 * ** + / = addBadValue coerce
constant? convert copy depth elt generic? getBadValues hasPredicate? hasTopPredicate?
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inR? isExpt isList isOp isPlus isPower isQuotient isTimes multiple? optional? optpair
patternVariable predicates quoted? resetBadValues retract retractIfCan setPredicates set-
TopPredicate symbol? topPredicate variables withPredicates

PendantTree{PENDTREE}: BinaryRecursiveAggregate with # = any? children coerce copy
count cyclic? elt empty empty? eq? every? leaf? leaves left less? map map! member?
members more? node? nodes parts ptree right setchildren! setelt setleft! setright! setvalue!
size? value

PermutationGroup{PERMGRP}: SetCategory with < <= = base coerce degree elt gener-
ators initializeGroupForWordProblem member? movedPoints orbit orbits order permu-
tationGroup random strongGenerators wordInGenerators wordInStrongGenerators words-
ForStrongGenerators

Permutation{PERM}: PermutationCategory with 1 * ** / < = coerce coerceImages co-
erceListOfPairs coercePreimagesImages commutator conjugate cycle cyclePartition cycles
degree elt eval even? fixedPoints inv listRepresentation max min movedPoints numberOf-
Cycles odd? one? orbit order recip sign sort

Pi{HACKPI}: CharacteristicZero CoercibleTo ConvertibleTo
Field RealConstant RetractableTo with

0 1 * ** + - / = associates?
characteristic coerce convert divide euclideanSize expressIdealMember
exquo extendedEuclidean factor gcd inv lcm multiEuclidean one? pi
prime? principalIdeal quo recip rem retract retractIfCan sizeLess?
squareFree squareFreePart unit? unitCanonical unitNormal zero?

PlaneAlgebraicCurvePlot{ACPLOT}: PlottablePlaneCurveCategory with

coerce listBranches makeSketch refine xRange yRange

Plot3D{PLOT3D}: PlottableSpaceCurveCategory with adaptive3D? coerce debug3D list-
Branches maxPoints3D minPoints3D
numFunEvals3D plot pointPlot refine screenResolution3D setAdaptive3D
setMaxPoints3D setMinPoints3D setScreenResolution3D tRange tValues
xRange yRange zRange zoom

Plot{PLOT}: PlottablePlaneCurveCategory with adaptive? coerce debug listBranches max-
Points minPoints numFunEvals parametric? plot plotPolar pointPlot refine screenResolution
setAdaptive setMaxPoints setMinPoints setScreenResolution tRange xRange yRange zoom

Point{POINT}: PointCategory with # * + - < = any? coerce concat construct convert copy
copyInto! count cross delete dimension dot elt empty empty? entries entry? eq? every?
extend fill! find first index? indices insert length less? map map! max maxIndex member?
members merge min minIndex more? new parts point position qelt qsetelt! reduce remove
removeDuplicates reverse reverse! select setelt size? sort sort! sorted? swap! zero

PolynomialIdeals{IDEAL}: SetCategory with * ** + = backOldPos coerce contract di-
mension element? generalPosition generators groebner groebner? groebnerIdeal ideal in?
inRadical? intersect leadingIdeal quotient relationsIdeal saturate zeroDim?
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PolynomialRing{PR}: FiniteAbelianMonoidRing with 0 1 * ** + - / = associates? char-
acteristic charthRoot coefficient coefficients coerce content degree exquo ground ground?
leadingCoefficient leadingMonomial map mapExponents minimumDegree monomial mono-
mial? numberOfMonomials one? primitivePart recip reductum retract retractIfCan unit?
unitCanonical unitNormal zero?

Polynomial{POLY}: PolynomialCategory with 0 1 * ** + - / < = D associates? characteris-
tic charthRoot coefficient coefficients coerce conditionP content convert degree differentiate
discriminant eval exquo factor factorPolynomial factorSquareFreePolynomial gcd gcdPoly-
nomial ground ground? integrate isExpt isPlus isTimes lcm leadingCoefficient leadingMono-
mial mainVariable map mapExponents max min minimumDegree monicDivide monomial
monomial? monomials multivariate numberOfMonomials one? patternMatch prime? prim-
itiveMonomials primitivePart recip reducedSystem reductum resultant retract retractIfCan
solveLinearPolynomialEquation squareFree squareFreePart squareFreePolynomial totalDe-
gree unit? unitCanonical unitNormal univariate variables zero?

PositiveInteger{PI}: AbelianSemiGroup Monoid OrderedSet with 1 * ** + < = coerce gcd
max min one? recip

PrimeField{PF}: ConvertibleTo FiniteAlgebraicExtensionField FiniteFieldCategory with

0 1 * ** + - / = Frobenius algebraic? associates? basis characteristic charthRoot coerce
conditionP convert coordinates createNormalElement createPrimitiveElement definingPoly-
nomial degree dimension discreteLog divide euclideanSize expressIdealMember exquo ex-
tendedEuclidean extensionDegree factor factorsOfCyclicGroupSize gcd generator inGround-
Field? index init inv lcm lookup minimalPolynomial multiEuclidean nextItem norm nor-
mal? normalElement one? order prime? primeFrobenius primitive? primitiveElement prin-
cipalIdeal quo random recip rem representationType represents retract retractIfCan size
sizeLess? squareFree squareFreePart tableForDiscreteLogarithm trace transcendenceDegree
transcendent? unit? unitCanonical unitNormal zero?

PrimitiveArray{PRIMARR}: OneDimensionalArrayAggregate with # < = any? coerce con-
cat construct convert copy copyInto! count delete elt empty empty? entries entry? eq? ev-
ery? fill! find first index? indices insert less? map map! max maxIndex member? members
merge min minIndex more? new parts position qelt qsetelt! reduce remove removeDuplicates
reverse reverse! select setelt size? sort sort! sorted? swap!

Product{PRODUCT}: AbelianGroup AbelianMonoid
CancellationAbelianMonoid Finite Group Monoid OrderedAbelianMonoidSup
OrderedSet SetCategory with 0 1 * ** + - /

< = coerce commutator conjugate index inv lookup makeprod
max min one? random recip selectfirst selectsecond size sup zero?

QuadraticForm{QFORM}: AbelianGroup with 0 * + - = coerce elt matrix quadraticForm
zero?

QuasiAlgebraicSet{QALGSET}: CoercibleTo SetCategory with = coerce definingEquations
definingInequation empty? idealSimplify quasiAlgebraicSet setStatus simplify

Quaternion{QUAT}: QuaternionCategory with 0 1 * ** + - < = D abs characteristic charth-
Root coerce conjugate convert differentiate elt eval imagI imagJ imagK inv map max min
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norm one? quatern rational rational? rationalIfCan real recip reducedSystem retract retrac-
tIfCan zero?

QueryEquation{QEQUAT}: with equation value variable

Queue{QUEUE}: QueueAggregate with # = any? back bag coerce copy count dequeue!
empty empty? enqueue! eq? every? extract! front insert! inspect length less? map map!
member? members more? parts queue rotate! size?

RadicalFunctionField{RADFF}: FunctionFieldCategory with 0 1 * ** + - / = D abso-
lutelyIrreducible? associates? basis branchPoint? branchPointAtInfinity? characteristic
characteristicPolynomial charthRoot coerce complementaryBasis convert coordinates defin-
ingPolynomial derivationCoordinates differentiate discriminant divide elt euclideanSize ex-
pressIdealMember exquo extendedEuclidean factor gcd generator genus integral? integralAt-
Infinity? integralBasis integralBasisAtInfinity integralCoordinates integralDerivationMatrix
integralMatrix integralMatrixAtInfinity integralRepresents inv inverseIntegralMatrix inver-
seIntegralMatrixAtInfinity lcm lift minimalPolynomial multiEuclidean nonSingularModel
norm normalizeAtInfinity numberOfComponents one? prime? primitivePart principalIdeal
quo ramified? ramifiedAtInfinity? rank rationalPoint? rationalPoints recip reduce reduce-
BasisAtInfinity reducedSystem regularRepresentation rem represents retract retractIfCan
singular? singularAtInfinity? sizeLess? squareFree squareFreePart trace traceMatrix unit?
unitCanonical unitNormal yCoordinates zero?

RadixExpansion{RADIX}: QuotientFieldCategory with

0 1 * ** + - / < = D
abs associates? ceiling characteristic coerce convert cycleRagits
denom denominator differentiate divide euclideanSize
expressIdealMember exquo extendedEuclidean factor floor fractRadix
fractRagits fractionPart gcd init inv lcm map max min multiEuclidean
negative? nextItem numer numerator one? patternMatch positive?
prefixRagits prime? principalIdeal quo random recip reducedSystem
rem retract retractIfCan sign sizeLess? squareFree squareFreePart
unit? unitCanonical unitNormal wholePart wholeRadix wholeRagits zero?

RectangularMatrix{RMATRIX}: CoercibleTo
RectangularMatrixCategory VectorSpace with
0 # * + - / = antisymmetric?
any? coerce column copy count diagonal? dimension elt empty empty?
eq? every? exquo less? listOfLists map map! matrix maxColIndex
maxRowIndex member? members minColIndex minRowIndex more? ncols
nrows nullSpace nullity parts qelt rank rectangularMatrix row
rowEchelon size? square? symmetric? zero?

Reference{REF}: Object SetCategory with = coerce deref elt ref setelt setref

RewriteRule{RULE}: Eltable RetractableTo SetCategory with = coerce elt lhs pattern
quotedOperators retract retractIfCan rhs rule suchThat

RomanNumeral{ROMAN}: IntegerNumberSystem with 0 1 * ** + - < = D abs addmod
associates? base binomial bit? characteristic coerce convert copy dec differentiate divide
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euclideanSize even? expressIdealMember exquo extendedEuclidean factor factorial gcd hash
inc init invmod lcm length mask max min mulmod multiEuclidean negative? nextItem
odd? one? patternMatch permutation positive? positiveRemainder powmod prime? prin-
cipalIdeal quo random rational rational? rationalIfCan recip reducedSystem rem retract
retractIfCan roman shift sign sizeLess? squareFree squareFreePart submod symmetricRe-
mainder unit? unitCanonical unitNormal zero?

RuleCalled{RULECOLD}: SetCategory with = coerce name

Ruleset{RULESET}: Eltable SetCategory with = coerce elt rules ruleset

ScriptFormulaFormat1{FORMULA1}: Object with coerce

ScriptFormulaFormat{FORMULA}: SetCategory with = coerce convert display epilogue
formula new prologue setEpilogue! setFormula! setPrologue!

SegmentBinding{SEGBIND}: SetCategory with = coerce equation segment variable

Segment{SEG}: SegmentCategory SegmentExpansionCategory with = BY SEGMENT co-
erce convert expand hi high incr lo low map segment

SemiCancelledFraction{SCFRAC}: ConvertibleTo QuotientFieldCategory with

0 1 * ** + - / < = D
abs associates? ceiling characteristic charthRoot coerce conditionP
convert denom denominator differentiate divide elt euclideanSize
eval expressIdealMember exquo extendedEuclidean factor
factorPolynomial factorSquareFreePolynomial floor fractionPart
gcd gcdPolynomial init inv lcm map max min multiEuclidean negative?
nextItem normalize numer numerator one? patternMatch positive?
prime? principalIdeal quo random recip reducedSystem rem retract
retractIfCan sign sizeLess? solveLinearPolynomialEquation squareFree
squareFreePart squareFreePolynomial unit? unitCanonical unitNormal
wholePart zero?

SequentialDifferentialPolynomial{SDPOL}: DifferentialPolynomialCategory
RetractableTo with

0 1 * ** + - / < =D
associates? characteristic charthRoot coefficient coefficients
coerce conditionP content degree differentialVariables
differentiate discriminant eval exquo factor factorPolynomial
factorSquareFreePolynomial gcd gcdPolynomial ground ground?
initial isExpt isPlus isTimes isobaric? lcm leader
leadingCoefficient leadingMonomial mainVariable makeVariable
map mapExponents max min minimumDegree monicDivide monomial
monomial? monomials multivariate numberOfMonomials one? order
prime? primitiveMonomials primitivePart recip reducedSystem
reductum resultant retract retractIfCan separant
solveLinearPolynomialEquation squareFree squareFreePart
squareFreePolynomial totalDegree unit? unitCanonical unitNormal
univariate variables weight weights zero?
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SequentialDifferentialVariable{SDVAR}: DifferentialVariableCategory with

< = D coerce differentiate makeVariable max min order
retract retractIfCan variable weight

Set{SET}: FiniteSetAggregate with # < = any? bag brace cardinality coerce complement
construct convert copy count dictionary difference empty empty? eq? every? extract! find
index insert! inspect intersect less? lookup map map! max member? members min more?
parts random reduce remove remove! removeDuplicates select select! size size? subset?
symmetricDifference union universe

SExpressionOf{SEXOF}: SExpressionCategory with # = atom? car cdr coerce convert
destruct elt eq expr float float? integer integer? list? null? pair? string string? symbol
symbol? uequal

SExpression{SEX}: SExpressionCategory with # = atom? car cdr coerce convert destruct
elt eq expr float float? integer integer? list? null? pair? string string? symbol symbol?
uequal

SimpleAlgebraicExtension{SAE}: MonogenicAlgebra with

0 1 * ** + - / = D
associates? basis characteristic characteristicPolynomial
charthRoot coerce conditionP convert coordinates
createPrimitiveElement definingPolynomial derivationCoordinates
differentiate discreteLog discriminant divide euclideanSize
expressIdealMember exquo extendedEuclidean factor
factorsOfCyclicGroupSize gcd generator index init inv lcm
lift lookup minimalPolynomial multiEuclidean nextItem norm one?
order prime? primeFrobenius primitive? primitiveElement
principalIdeal quo random rank recip reduce reducedSystem
regularRepresentation rem representationType represents retract
retractIfCan size sizeLess? squareFree squareFreePart
tableForDiscreteLogarithm trace traceMatrix unit? unitCanonical
unitNormal zero?

SingletonAsOrderedSet{SAOS}: OrderedSet with < = coerce create max min

SingleInteger{SINT}: IntegerNumberSystem with

0 1 * ** + - < =

And D Not Or ^ abs addmod and associates? base
binomial bit? characteristic coerce convert copy dec
differentiate divide euclideanSize even? expressIdealMember
exquo extendedEuclidean factor factorial gcd hash inc init
invmod lcm length mask max min mulmod multiEuclidean
negative? nextItem not odd? one? or patternMatch permutation
positive? positiveRemainder powmod prime? principalIdeal
quo random rational rational? rationalIfCan recip
reducedSystem rem retract retractIfCan shift sign sizeLess?
squareFree squareFreePart submod symmetricRemainder unit?
unitCanonical unitNormal xor zero?
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SparseMultivariatePolynomial{SMP}: PolynomialCategory with

0 1 * ** + - / <

= D associates? characteristic charthRoot coefficient
coefficients coerce conditionP content convert degree
differentiate discriminant eval exquo factor factorPolynomial
factorSquareFreePolynomial gcd gcdPolynomial ground ground?
isExpt isPlus isTimes lcm leadingCoefficient leadingMonomial
mainVariable map mapExponents max min minimumDegree monicDivide
monomial monomial? monomials multivariate numberOfMonomials one?
patternMatch prime? primitiveMonomials primitivePart recip
reducedSystem reductum resultant retract retractIfCan
solveLinearPolynomialEquation squareFree squareFreePart
squareFreePolynomial totalDegree unit? unitCanonical unitNormal
univariate variables zero?

SparseMultivariateTaylorSeries{SMTS}:
MultivariateTaylorSeriesCategory with 0 1 * **

+ - / = D acos acosh acot acoth
acsc acsch asec asech asin asinh associates? atan atanh
characteristic charthRoot coefficient coerce complete cos
cosh cot coth csc csch csubst degree differentiate eval
exp exquo extend fintegrate integrate leadingCoefficient
leadingMonomial log map monomial monomial? nthRoot one?
order pi pole? polynomial recip reductum sec sech sin sinh
sqrt tan tanh unit? unitCanonical unitNormal variables zero?

SparseTable{STBL}: TableAggregate with # =

any? bag coerce construct copy count dictionary elt empty
empty? entries entry? eq? every? extract! fill! find first
index? indices insert! inspect key? keys less? map map!
maxIndex member? members minIndex more? parts qelt qsetelt!
reduce remove remove! removeDuplicates search select select!
setelt size? swap! table

SparseUnivariatePolynomial{SUP}: UnivariatePolynomialCategory with 0 1 * ** + -

/ < = D associates? characteristic charthRoot coefficient coefficients coerce composite con-
ditionP content degree differentiate discriminant divide divideExponents elt euclideanSize
eval expressIdealMember exquo extendedEuclidean factor factorPolynomial factorSquare-
FreePolynomial gcd gcdPolynomial ground ground? init integrate isExpt isPlus isTimes
lcm leadingCoefficient leadingMonomial mainVariable makeSUP map mapExponents max
min minimumDegree monicDivide monomial monomial? monomials multiEuclidean multi-
plyExponents multivariate nextItem numberOfMonomials one? order outputForm prime?
primitiveMonomials primitivePart principalIdeal pseudoDivide pseudoQuotient pseudoRe-
mainder quo recip reducedSystem reductum rem resultant retract retractIfCan separate
sizeLess? solveLinearPolynomialEquation squareFree squareFreePart squareFreePolynomial
subResultantGcd totalDegree unit? unitCanonical unitNormal univariate unmakeSUP vari-
ables vectorise zero?
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SparseUnivariateTaylorSeries{SUTS}: UnivariateTaylorSeriesCategory with 0 1 * ** +

- / = D acos acosh acot acoth acsc acsch approximate asec asech asin asinh associates?
atan atanh center characteristic charthRoot coefficient coefficients coerce complete cos cosh
cot coth csc csch degree differentiate elt eval exp exquo extend integrate leadingCoefficient
leadingMonomial log map monomial monomial? multiplyCoefficients multiplyExponents
nthRoot one? order pi pole? polynomial quoByVar recip reductum sec sech series sin sinh
sqrt tan tanh terms truncate unit? unitCanonical unitNormal variable variables zero?

SquareMatrix{SQMATRIX}: CoercibleTo SquareMatrixCategory with 0 1 # * ** + - /

= D antisymmetric? any? characteristic coerce column copy count determinant diagonal
diagonal? diagonalMatrix diagonalProduct differentiate elt empty empty? eq? every? exquo
inverse less? listOfLists map map! matrix maxColIndex maxRowIndex member? members
minColIndex minRowIndex minordet more? ncols nrows nullSpace nullity one? parts qelt
rank recip reducedSystem retract retractIfCan row rowEchelon scalarMatrix size? square?
squareMatrix symmetric? trace transpose zero?

Stack{STACK}: StackAggregate with # = any? bag coerce copy count depth empty empty?
eq? every? extract! insert! inspect less? map map! member? members more? parts pop!
push! size? stack top

Stream{STREAM}: LazyStreamAggregate with # = any? child? children coerce complete
concat concat! cons construct convert copy count cycleEntry cycleLength cycleSplit! cycle-
Tail cyclic? delay delete distance elt empty empty? entries entry? eq? every? explicitEn-
tries? explicitlyEmpty? explicitlyFinite? extend fill! filterUntil filterWhile find findCycle
first frst generate index? indices insert last lazy? lazyEvaluate leaf? less? map map!
maxIndex member? members minIndex more? new node? nodes numberOfComputedEn-
tries output parts possiblyInfinite? qelt qsetelt! reduce remove removeDuplicates repeating
repeating? rest rst second select setchildren! setelt setfirst! setlast! setrest! setvalue!
showAll? showAllElements size? split! swap! tail third value

StringTable{STRTBL}: TableAggregate with # = any? bag coerce construct copy count
dictionary elt empty empty? entries entry? eq? every? extract! fill! find first index? indices
insert! inspect key? keys less? map map! maxIndex member? members minIndex more?
parts qelt qsetelt! reduce remove remove! removeDuplicates search select select! setelt size?
swap! table

String{STRING}: StringCategory with # < = any? coerce concat construct copy copyInto!
count delete elt empty empty? entries entry? eq? every? fill! find first index? indices
insert leftTrim less? lowerCase lowerCase! map map! match? max maxIndex member?
members merge min minIndex more? new parts position prefix? qelt qsetelt! reduce remove
removeDuplicates replace reverse reverse! rightTrim select setelt size? sort sort! sorted?
split string substring? suffix? swap! trim upperCase upperCase!

SubSpaceComponentProperty{COMPPROP}: SetCategory with = close closed? coerce
copy new solid solid?

SubSpace{SUBSPACE}: SetCategory with = addPoint addPoint2 addPointLast birth child
children closeComponent coerce deepCopy defineProperty extractClosed extractIndex ex-
tractPoint extractProperty internal? leaf? level merge modifyPoint new numberOfChildren
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parent pointData root? separate shallowCopy subspace traverse

SuchThat{SUCH}: SetCategory with = coerce construct lhs rhs

Symbol{SYMBOL}: ConvertibleTo OrderedSet PatternMatchable with < = argscript coerce
convert elt list max min name new patternMatch resetNew script scripted? scripts string
subscript superscript

SymmetricPolynomial{SYMPOLY}: FiniteAbelianMonoidRing with 0 1 * ** + - / = asso-
ciates? characteristic charthRoot coefficient coefficients coerce content degree exquo ground
ground? leadingCoefficient leadingMonomial map mapExponents minimumDegree mono-
mial monomial? numberOfMonomials one? primitivePart recip reductum retract retract-
IfCan unit? unitCanonical unitNormal zero?

Tableau{TABLEAU}: Object with coerce listOfLists tableau

Table{TABLE}: TableAggregate with # = any? bag coerce construct copy count dictionary
elt empty empty? entries entry? eq? every? extract! fill! find first index? indices insert!
inspect key? keys less? map map! maxIndex member? members minIndex more? parts qelt
qsetelt! reduce remove remove! removeDuplicates search select select! setelt size? swap!
table

TaylorSeries{TS}: MultivariateTaylorSeriesCategory with 0 1 * ** + - / = D acos acosh
acot acoth acsc acsch asec asech asin asinh associates? atan atanh characteristic charthRoot
coefficient coerce complete cos cosh cot coth csc csch degree differentiate eval exp exquo ex-
tend fintegrate integrate leadingCoefficient leadingMonomial log map monomial monomial?
nthRoot one? order pi pole? polynomial recip reductum sec sech sin sinh sqrt tan tanh unit?
unitCanonical unitNormal variables zero?

TexFormat1{TEX1}: Object with coerce

TexFormat{TEX}: SetCategory with

= coerce convert display epilogue new prologue
setEpilogue! setPrologue! setTex! tex

TextFile{TEXTFILE}: FileCategory with = close! coerce endOfFile? iomode name open
read! readIfCan! readLine! readLineIfCan! reopen! write! writeLine!

ThreeDimensionalViewport{VIEW3D}: SetCategory with

= axes clipSurface close coerce colorDef controlPanel
diagonals dimensions drawStyle eyeDistance hitherPlane
intensity key lighting makeViewport3D modifyPointData move
options outlineRender perspective reset resize rotate
showClipRegion showRegion subspace title translate
viewDeltaXDefault viewDeltaYDefault viewPhiDefault
viewThetaDefault viewZoomDefault viewpoint viewport3D write zoom

ThreeSpace{SPACE3}: ThreeSpaceCategory with = check closedCurve closedCurve? co-
erce components composite composites copy create3Space curve curve? enterPointData lllip
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lllp llprop lp lprop merge mesh mesh? modifyPointData numberOfComponents numberOf-
Composites objects point point? polygon polygon? subspace

Tree{TREE}: RecursiveAggregate with # = any? children coerce copy count cyclic? elt
empty empty? eq? every? leaf? leaves less? map map! member? members more? node?
nodes parts setchildren! setelt setvalue! size? tree value

TubePlot{TUBE}: with closed? getCurve listLoops open? setClosed tube

Tuple{TUPLE}: CoercibleTo SetCategory with = coerce length select

TwoDimensionalArray{ARRAY2}: TwoDimensionalArrayCategory with # = any? coerce
column copy count elt empty empty? eq? every? fill! less? map map! maxColIndex
maxRowIndex member? members minColIndex minRowIndex more? ncols new nrows parts
qelt qsetelt! row setColumn! setRow! setelt size?

TwoDimensionalViewport{VIEW2D}: SetCategory with = axes close coerce connect con-
trolPanel dimensions getGraph graphState graphStates graphs key makeViewport2D move
options points putGraph region reset resize scale show title translate units viewport2D write

UnivariateLaurentSeriesConstructor{ULSCONS}: UnivariateLaurentSeriesConstructor-
Category with 0 1 * ** + - / < = D abs acos acosh acot acoth acsc acsch approximate
asec asech asin asinh associates? atan atanh ceiling center characteristic charthRoot co-
efficient coerce complete conditionP convert cos cosh cot coth csc csch degree denom de-
nominator differentiate divide elt euclideanSize eval exp expressIdealMember exquo extend
extendedEuclidean factor factorPolynomial factorSquareFreePolynomial floor fractionPart
gcd gcdPolynomial init integrate inv laurent lcm leadingCoefficient leadingMonomial log
map max min monomial monomial? multiEuclidean multiplyCoefficients multiplyExponents
negative? nextItem nthRoot numer numerator one? order patternMatch pi pole? posi-
tive? prime? principalIdeal quo random rationalFunction recip reducedSystem reductum
rem removeZeroes retract retractIfCan sec sech series sign sin sinh sizeLess? solveLinear-
PolynomialEquation sqrt squareFree squareFreePart squareFreePolynomial tan tanh taylor
taylorIfCan taylorRep terms truncate unit? unitCanonical unitNormal variable variables
wholePart zero?

UnivariateLaurentSeries{ULS}: UnivariateLaurentSeriesConstructorCategory with 0 1
* ** + - / = D acos acosh acot acoth acsc acsch approximate asec asech asin asinh as-
sociates? atan atanh center characteristic charthRoot coefficient coerce complete cos cosh
cot coth csc csch degree denom denominator differentiate divide elt euclideanSize eval exp
expressIdealMember exquo extend extendedEuclidean factor gcd integrate inv laurent lcm
leadingCoefficient leadingMonomial log map monomial monomial? multiEuclidean multi-
plyCoefficients multiplyExponents nthRoot numer numerator one? order pi pole? prime?
principalIdeal quo rationalFunction recip reducedSystem reductum rem removeZeroes retract
retractIfCan sec sech series sin sinh sizeLess? sqrt squareFree squareFreePart tan tanh tay-
lor taylorIfCan taylorRep terms truncate unit? unitCanonical unitNormal variable variables
zero?

UnivariatePolynomial{UP}: UnivariatePolynomialCategory with 0 1 * ** + - / < = D
associates? characteristic charthRoot coefficient coefficients coerce composite conditionP
content degree differentiate discriminant divide divideExponents elt euclideanSize eval ex-
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pressIdealMember exquo extendedEuclidean factor factorPolynomial factorSquareFreePoly-
nomial gcd gcdPolynomial ground ground? init integrate isExpt isPlus isTimes lcm lead-
ingCoefficient leadingMonomial mainVariable makeSUP map mapExponents max min min-
imumDegree monicDivide monomial monomial? monomials multiEuclidean multiplyExpo-
nents multivariate nextItem numberOfMonomials one? order prime? primitiveMonomials
primitivePart principalIdeal pseudoDivide pseudoQuotient pseudoRemainder quo recip re-
ducedSystem reductum rem resultant retract retractIfCan separate sizeLess? solveLinear-
PolynomialEquation squareFree squareFreePart squareFreePolynomial subResultantGcd to-
talDegree unit? unitCanonical unitNormal univariate unmakeSUP variables vectorise zero?

UnivariatePuiseuxSeriesConstructor{UPXSCONS}:
with UnivariatePuiseuxSeriesConstructorCategory

0 1 * ** + - / = D acos acosh acot acoth acsc acsch approximate asec asech asin asinh asso-
ciates? atan atanh center characteristic charthRoot coefficient coerce complete cos cosh cot
coth csc csch degree differentiate divide elt euclideanSize eval exp expressIdealMember exquo
extend extendedEuclidean factor gcd integrate inv laurent laurentIfCan laurentRep lcm lead-
ingCoefficient leadingMonomial log map monomial monomial? multiEuclidean multiplyEx-
ponents nthRoot one? order pi pole? prime? principalIdeal puiseux quo rationalPower
recip reductum rem retract retractIfCan sec sech series sin sinh sizeLess? sqrt squareFree
squareFreePart tan tanh terms truncate unit? unitCanonical unitNormal variable variables
zero?

UnivariatePuiseuxSeries{UPXS}:
with UnivariatePuiseuxSeriesConstructorCategory

0 1 * ** + - / = D acos acosh acot acoth acsc acsch approximate asec asech asin asinh asso-
ciates? atan atanh center characteristic charthRoot coefficient coerce complete cos cosh cot
coth csc csch degree differentiate divide elt euclideanSize eval exp expressIdealMember exquo
extend extendedEuclidean factor gcd integrate inv laurent laurentIfCan laurentRep lcm lead-
ingCoefficient leadingMonomial log map monomial monomial? multiEuclidean multiplyEx-
ponents nthRoot one? order pi pole? prime? principalIdeal puiseux quo rationalPower
recip reductum rem retract retractIfCan sec sech series sin sinh sizeLess? sqrt squareFree
squareFreePart tan tanh terms truncate unit? unitCanonical unitNormal variable variables
zero?

UnivariateTaylorSeries{UTS}: UnivariateTaylorSeriesCategory with 0 1 * ** + - / = D
acos acosh acot acoth acsc acsch approximate asec asech asin asinh associates? atan atanh
center characteristic charthRoot coefficient coefficients coerce complete cos cosh cot coth csc
csch degree differentiate elt eval evenlambert exp exquo extend generalLambert integrate
invmultisect lagrange lambert leadingCoefficient leadingMonomial log map monomial mono-
mial? multiplyCoefficients multiplyExponents multisect nthRoot oddlambert one? order pi
pole? polynomial quoByVar recip reductum revert sec sech series sin sinh sqrt tan tanh terms
truncate unit? unitCanonical unitNormal univariatePolynomial variable variables zero?

UniversalSegment{UNISEG}: SegmentCategory SegmentExpansionCategory with = BY
SEGMENT coerce convert expand hasHi hi high incr lo low map segment

Variable{VARIABLE}: CoercibleTo SetCategory with = coerce variable
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Vector{VECTOR}: VectorCategory with # * + - < = any? coerce concat construct convert
copy copyInto! count delete dot elt empty empty? entries entry? eq? every? fill! find
first index? indices insert less? map map! max maxIndex member? members merge min
minIndex more? new parts position qelt qsetelt! reduce remove removeDuplicates reverse
reverse! select setelt size? sort sort! sorted? swap! vector zero

Void{VOID}: with coerce void



Appendix D

Packages

This is a listing of all packages in the Axiom library at the time this book was produced.
Use the Browse facility (described in section 14 on page 931) to get more information about
these constructors.

This sample entry will help you read the following table:
PackageNamePackageAbbreviation:Category1. . .CategoryNwith op1. . . opM
where
PackageName is the full package name, e.g., PadeApproximantPackage.
PackageAbbreviation is the package abbreviation, e.g., PADEPAC.
Categoryi is a category to which the package belongs.
opj is an operation exported by the package.

AlgebraicFunction{AF}: with ** belong? definingPolynomial inrootof iroot minPoly
operator rootOf

AlgebraicHermiteIntegration{INTHERAL}: with HermiteIntegrate

AlgebraicIntegrate{INTALG}: with algintegrate palginfieldint palgintegrate

AlgebraicIntegration{INTAF}: with algint

AlgebraicManipulations{ALGMANIP}: with ratDenom ratPoly rootKerSimp rootSimp
rootSplit

AlgebraicMultFact{ALGMFACT}: with factor

AlgebraPackage{ALGPKG}: with basisOfCenter basisOfCentroid basisOfCommutingEle-
ments basisOfLeftAnnihilator basisOfLeftNucleus basisOfLeftNucloid basisOfMiddleNucleus
basisOfNucleus basisOfRightAnnihilator basisOfRightNucleus basisOfRightNucloid biRank
doubleRank leftRank radicalOfLeftTraceForm rightRank weakBiRank

AlgFactor{ALGFACT}: with doublyTransitive? factor split

AnyFunctions1{ANY1}: with coerce retract retractIfCan retractable?
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ApplyRules{APPRULE}: with applyRules localUnquote

AttachPredicates{PMPRED}: with suchThat

BalancedFactorisation{BALFACT}: with balancedFactorisation

BasicOperatorFunctions1{BOP1}: with constantOpIfCan constantOperator derivative
evaluate

BezoutMatrix{BEZOUT}: with bezoutDiscriminant bezoutMatrix bezoutResultant

BoundIntegerRoots{BOUNDZRO}: with integerBound

CartesianTensorFunctions2{CARTEN2}: with map reshape

ChangeOfVariable{CHVAR}: with chvar eval goodPoint mkIntegral radPoly rootPoly

CharacteristicPolynomialPackage{CHARPOL}: with characteristicPolynomial

CoerceVectorMatrixPackage{CVMP}: with coerce coerceP

CombinatorialFunction{COMBF}: with ** belong? binomial factorial factorials iibinom
iidprod iidsum iifact iiperm iipow ipow operator permutation product summation

CommonDenominator{CDEN}: with clearDenominator commonDenominator splitDe-
nominator

CommonOperators{COMMONOP}: with operator

CommuteUnivariatePolynomialCategory{COMMUPC}: with swap

ComplexFactorization{COMPFACT}: with factor

ComplexFunctions2{COMPLEX2}: with map

ComplexIntegerSolveLinearPolynomialEquation{CINTSLPE}: with

solveLinearPolynomialEquation

ComplexRootFindingPackage{CRFP}: with complexZeros divisorCascade factor gra-
effe norm pleskenSplit reciprocalPolynomial rootRadius schwerpunkt setErrorBound start-
Polynomial

ComplexRootPackage{CMPLXRT}: with complexZeros

ConstantLODE{ODECONST}: with constDsolve

CoordinateSystems{COORDSYS}: with bipolar
bipolarCylindrical cartesian conical cylindrical
elliptic ellipticCylindrical oblateSpheroidal parabolic
parabolicCylindrical paraboloidal polar prolateSpheroidal
spherical toroidal

CRApackage{CRAPACK}: with chineseRemainder modTree multiEuclideanTree

CycleIndicators{CYCLES}: with SFunction alternating cap complete cup cyclic dihedral
elementary eval graphs powerSum skewSFunction wreath
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CyclicStreamTools{CSTTOOLS}: with

computeCycleEntry computeCycleLength cycleElt

CyclotomicPolynomialPackage{CYCLOTOM}: with cyclotomic cyclotomicDecomposi-
tion cyclotomicFactorization

DegreeReductionPackage{DEGRED}: with expand reduce

DiophantineSolutionPackage{DIOSP}: with dioSolve

DirectProductFunctions2{DIRPROD2}: with map reduce scan

DiscreteLogarithmPackage{DLP}: with shanksDiscLogAlgorithm

DisplayPackage{DISPLAY}: with bright center copies newLine say sayLength

DistinctDegreeFactorize{DDFACT}: with distdfact exptMod factor irreducible? sepa-
rateDegrees separateFactors tracePowMod

DoubleResultantPackage{DBLRESP}: with doubleResultant

DrawNumericHack{DRAWHACK}: with coerce

DrawOptionFunctions0{DROPT0}: with adaptive
clipBoolean coordinate curveColorPalette pointColorPalette
ranges space style title toScale tubePoints tubeRadius units
var1Steps var2Steps

DrawOptionFunctions1{DROPT1}: with option

EigenPackage{EP}: with characteristicPolynomial eigenvalues eigenvector eigenvectors
inteigen

ElementaryFunctionODESolver{ODEEF}: with solve

ElementaryFunctionSign{SIGNEF}: with sign

ElementaryFunctionStructurePackage{EFSTRUC}: with

normalize realElementary rischNormalize validExponential

ElementaryFunctionsUnivariateTaylorSeries{EFUTS}: with ** acos acosh acot acoth
acsc acsch asec asech asin asinh atan atanh cos cosh cot coth csc csch exp log sec sech sin
sincos sinh sinhcosh tan tanh

ElementaryFunction{EF}: with acos acosh acot acoth acsc acsch asec asech asin asinh
atan atanh belong? cos cosh cot coth csc csch exp iiacos iiacosh iiacot iiacoth iiacsc iiacsch
iiasec iiasech iiasin iiasinh iiatan iiatanh iicos iicosh iicot iicoth iicsc iicsch iiexp iilog iisec
iisech iisin iisinh iitan iitanh log operator pi sec sech sin sinh specialTrigs tan tanh

ElementaryIntegration{INTEF}: with lfextendedint lfextlimint lfinfieldint lfintegrate
lflimitedint

ElementaryRischDE{RDEEF}: with rischDE
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EllipticFunctionsUnivariateTaylorSeries{ELFUTS}: with cn dn sn sncndn

EquationFunctions2{EQ2}: with map

ErrorFunctions{ERROR}: with error

EuclideanGroebnerBasisPackage{GBEUCLID}: with euclideanGroebner euclideanNor-
malForm

EvaluateCycleIndicators{EVALCYC}: with eval

ExpressionFunctions2{EXPR2}: with map

ExpressionSpaceFunctions1{ES1}: with map

ExpressionSpaceFunctions2{ES2}: with map

ExpressionSpaceODESolver{EXPRODE}: with seriesSolve

ExpressionToUnivariatePowerSeries{EXPR2UPS}: with laurent puiseux series taylor

ExpressionTubePlot{EXPRTUBE}: with constantToUnaryFunction tubePlot

FactoredFunctions2{FR2}: with map

FactoredFunctions{FACTFUNC}: with log nthRoot

FactoredFunctionUtilities{FRUTIL}: with mergeFactors refine

FactoringUtilities{FACUTIL}: with completeEval degree lowerPolynomial normalDeriv
raisePolynomial ran variables

FindOrderFinite{FORDER}: with order

FiniteDivisorFunctions2{FDIV2}: with map

FiniteFieldFunctions{FFF}: with createMultiplicationMatrix createMultiplicationTable
createZechTable sizeMultiplication

FiniteFieldHomomorphisms{FFHOM}: with coerce

FiniteFieldPolynomialPackage2{FFPOLY2}: with rootOfIrreduciblePoly

FiniteFieldPolynomialPackage{FFPOLY}: with

createIrreduciblePoly createNormalPoly createNormalPrimitivePoly
createPrimitiveNormalPoly createPrimitivePoly leastAffineMultiple
nextIrreduciblePoly nextNormalPoly nextNormalPrimitivePoly
nextPrimitiveNormalPoly nextPrimitivePoly normal?
numberOfIrreduciblePoly numberOfNormalPoly numberOfPrimitivePoly
primitive? random reducedQPowers

FiniteFieldSolveLinearPolynomialEquation{FFSLPE}: with solveLinearPolynomial-
Equation

FiniteLinearAggregateFunctions2{FLAGG2}: with map reduce scan

FiniteLinearAggregateSort{FLASORT}: with heapSort quickSort shellSort
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FiniteSetAggregateFunctions2{FSAGG2}: with map reduce scan

FloatingComplexPackage{FLOATCP}: with complexRoots complexSolve

FloatingRealPackage{FLOATRP}: with realRoots solve

FractionalIdealFunctions2{FRIDEAL2}: with map

FractionFunctions2{FRAC2}: with map

FunctionalSpecialFunction{FSPECF}: with Beta Gamma abs airyAi airyBi belong?
besselI besselJ besselK besselY digamma iiGamma iiabs operator polygamma

FunctionFieldCategoryFunctions2{FFCAT2}: with map

FunctionFieldIntegralBasis{FFINTBAS}: with integralBasis

FunctionSpaceAssertions{PMASSFS}: with assert constant multiple optional

FunctionSpaceAttachPredicates{PMPREDFS}: with suchThat

FunctionSpaceComplexIntegration{FSCINT}: with

complexIntegrate internalIntegrate

FunctionSpaceFunctions2{FS2}: with map

FunctionSpaceIntegration{FSINT}: with integrate

FunctionSpacePrimitiveElement{FSPRMELT}: with primitiveElement

FunctionSpaceReduce{FSRED}: with bringDown newReduc

FunctionSpaceSum{SUMFS}: with sum

FunctionSpaceToUnivariatePowerSeries{FS2UPS}: with exprToGenUPS exprToUPS

FunctionSpaceUnivariatePolynomialFactor{FSUPFACT}: with ffactor qfactor

GaussianFactorizationPackage{GAUSSFAC}: with factor prime? sumSquares

GeneralHenselPackage{GHENSEL}: with HenselLift completeHensel

GeneralPolynomialGcdPackage{GENPGCD}: with gcdPolynomial randomR

GenerateUnivariatePowerSeries{GENUPS}: with laurent puiseux series taylor

GenExEuclid{GENEEZ}: with compBound reduction solveid tablePow testModulus

GenUFactorize{GENUFACT}: with factor

GenusZeroIntegration{INTG0}: with palgLODE0 palgRDE0 palgextint0 palgint0 pal-
glimint0

GosperSummationMethod{GOSPER}: with GospersMethod

GraphicsDefaults{GRDEF}: with adaptive clipPointsDefault
drawToScale maxPoints minPoints screenResolution

GrayCode{GRAY}: with firstSubsetGray nextSubsetGray
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GroebnerFactorizationPackage{GBF}: with factorGroebnerBasis groebnerFactorize

GroebnerInternalPackage{GBINTERN}: with credPol critB critBonD critM critMTonD1
critMonD1 critT critpOrder fprindINFO gbasis hMonic lepol makeCrit minGbasis prinb
prindINFO prinpolINFO prinshINFO redPo redPol sPol updatD updatF virtualDegree

GroebnerPackage{GB}: with groebner normalForm

GroebnerSolve{GROEBSOL}: with genericPosition groebSolve testDim

HallBasis{HB}: with generate inHallBasis? lfunc

HeuGcd{HEUGCD}: with content contprim gcd gcdcofact gcdcofactprim gcdprim lintgcd

IdealDecompositionPackage{IDECOMP}: with primaryDecomp
prime? radical zeroDimPrimary? zeroDimPrime?

IncrementingMaps{INCRMAPS}: with increment incrementBy

InfiniteTupleFunctions2{ITFUN2}: with map

InfiniteTupleFunctions3{ITFUN3}: with map

Infinity{INFINITY}: with infinity minusInfinity plusInfinity

InnerAlgFactor{IALGFACT}: with factor

InnerCommonDenominator{ICDEN}: with clearDenominator
commonDenominator splitDenominator

InnerMatrixLinearAlgebraFunctions{IMATLIN}: with determinant inverse nullSpace
nullity rank rowEchelon

InnerMatrixQuotientFieldFunctions{IMATQF}: with inverse nullSpace nullity rank
rowEchelon

InnerModularGcd{INMODGCD}: with modularGcd reduction

InnerMultFact{INNMFACT}: with factor

InnerNormalBasisFieldFunctions{INBFF}: with * ** / basis dAndcExp expPot in-
dex inv lookup minimalPolynomial norm normal? normalElement pol qPot random repSq
setFieldInfo trace xn

InnerNumericEigenPackage{INEP}: with charpol innerEigenvectors

InnerNumericFloatSolvePackage{INFSP}: with innerSolve innerSolve1 makeEq

InnerPolySign{INPSIGN}: with signAround

InnerPolySum{ISUMP}: with sum

InnerTrigonometricManipulations{ITRIGMNP}: with F2FG
FG2F GF2FG explogs2trigs trigs2explogs

InputFormFunctions1{INFORM1}: with interpret packageCall

IntegerCombinatoricFunctions{COMBINAT}: with binomial factorial multinomial par-
tition permutation stirling1 stirling2
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IntegerFactorizationPackage{INTFACT}: with BasicMethod PollardSmallFactor factor
squareFree

IntegerLinearDependence{ZLINDEP}: with linearDependenceOverZ linearlyDependen-
tOverZ? solveLinearlyOverQ

IntegerNumberTheoryFunctions{INTHEORY}: with bernoulli chineseRemainder divi-
sors euler eulerPhi fibonacci harmonic jacobi legendre moebiusMu numberOfDivisors sumOf-
Divisors sumOfKthPowerDivisors

IntegerPrimesPackage{PRIMES}: with nextPrime prevPrime prime? primes

IntegerRetractions{INTRET}: with integer integer? integerIfCan

IntegerRoots{IROOT}: with approxNthRoot approxSqrt perfectNthPower? perfectNth-
Root perfectSqrt perfectSquare?

IntegralBasisTools{IBATOOL}: with diagonalProduct idealiser leastPower

IntegrationResultFunctions2{IR2}: with map

IntegrationResultRFToFunction{IRRF2F}: with complexExpand
complexIntegrate expand integrate split

IntegrationResultToFunction{IR2F}: with complexExpand expand split

IntegrationTools{INTTOOLS}: with kmax ksec mkPrim union vark varselect

InverseLaplaceTransform{INVLAPLA}: with inverseLaplace

IrredPolyOverFiniteField{IRREDFFX}: with generateIrredPoly

IrrRepSymNatPackage{IRSN}: with dimensionOfIrreducibleRepresentation
irreducibleRepresentation

KernelFunctions2{KERNEL2}: with constantIfCan constantKernel

Kovacic{KOVACIC}: with kovacic

LaplaceTransform{LAPLACE}: with laplace

LeadingCoefDetermination{LEADCDET}: with distFact polCase

LinearDependence{LINDEP}: with linearDependence linearlyDependent? solveLinear

LinearPolynomialEquationByFractions{LPEFRAC}: with

solveLinearPolynomialEquationByFractions

LinearSystemMatrixPackage{LSMP}: with aSolution hasSolution? rank solve

LinearSystemPolynomialPackage{LSPP}: with linSolve

LinGrobnerPackage{LGROBP}: with anticoord choosemon computeBasis
coordinate groebgen intcompBasis linGenPos
minPol totolex transform

LiouvillianFunction{LF}: with Ci Ei Si belong? dilog erf integral li operator
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ListFunctions2{LIST2}: with map reduce scan

ListFunctions3{LIST3}: with map

ListToMap{LIST2MAP}: with match

MakeBinaryCompiledFunction{MKBCFUNC}: with binaryFunction compiledFunction

MakeFloatCompiledFunction{MKFLCFN}: with makeFloatFunction

MakeFunction{MKFUNC}: with function

MakeRecord{MKRECORD}: with makeRecord

MakeUnaryCompiledFunction{MKUCFUNC}: with compiledFunction unaryFunction

MappingPackage1{MAPPKG1}: with ** coerce fixedPoint id nullary recur

MappingPackage2{MAPPKG2}: with const constant curry diag

MappingPackage3{MAPPKG3}: with * constantLeft constantRight curryLeft curryRight
twist

MappingPackageInternalHacks1{MAPHACK1}: with iter recur

MappingPackageInternalHacks2{MAPHACK2}: with arg1 arg2

MappingPackageInternalHacks3{MAPHACK3}: with comp

MatrixCategoryFunctions2{MATCAT2}: with map reduce

MatrixCommonDenominator{MCDEN}: with clearDenominator commonDenominator
splitDenominator

MatrixLinearAlgebraFunctions{MATLIN}: with determinant inverse
minordet nullSpace nullity rank rowEchelon

MergeThing{MTHING}: with mergeDifference

MeshCreationRoutinesForThreeDimensions{MESH}: with meshFun2Var
meshPar1Var meshPar2Var ptFunc

ModularDistinctDegreeFactorizer{MDDFACT}: with ddFact exptMod factor gcd sepa-
rateFactors

ModularHermitianRowReduction{MHROWRED}: with rowEch rowEchelon

MonoidRingFunctions2{MRF2}: with map

MoreSystemCommands{MSYSCMD}: with systemCommand

MPolyCatFunctions2{MPC2}: with map reshape

MPolyCatFunctions3{MPC3}: with map

MPolyCatRationalFunctionFactorizer{MPRFF}: with factor pushdown pushdterm
pushucoef pushuconst pushup totalfract

MRationalFactorize{MRATFAC}: with factor

MultFiniteFactorize{MFINFACT}: with factor
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MultipleMap{MMAP}: with map

MultivariateFactorize{MULTFACT}: with factor

MultivariateLifting{MLIFT}: with corrPoly lifting lifting1

MultivariateSquareFree{MULTSQFR}: with squareFree squareFreePrim

NonCommutativeOperatorDivision{NCODIV}: with leftDivide leftExactQuotient left-
Gcd leftLcm leftQuotient leftRemainder

NoneFunctions1{NONE1}: with coerce

NonLinearFirstOrderODESolver{NODE1}: with solve

NonLinearSolvePackage{NLINSOL}: with solve solveInField

NPCoef{NPCOEF}: with listexp npcoef

NumberFieldIntegralBasis{NFINTBAS}: with discriminant integralBasis

NumberFormats{NUMFMT}: with FormatArabic FormatRoman ScanArabic ScanRoman

NumberTheoreticPolynomialFunctions{NTPOLFN}: with bernoulliB cyclotomic eu-
lerE

NumericalOrdinaryDifferentialEquations{NUMODE}: with rk4 rk4a rk4f rk4qc

NumericalQuadrature{NUMQUAD}: with

aromberg asimpson atrapezoidal romberg rombergo
simpson simpsono trapezoidal trapezoidalo

NumericComplexEigenPackage{NCEP}: with characteristicPolynomial complexEigen-
values complexEigenvectors

NumericContinuedFraction{NCNTFRAC}: with continuedFraction

NumericRealEigenPackage{NREP}: with

characteristicPolynomial realEigenvalues realEigenvectors

NumericTubePlot{NUMTUBE}: with tube

Numeric{NUMERIC}: with complexNumeric numeric

OctonionCategoryFunctions2{OCTCT2}: with map

ODEIntegration{ODEINT}: with expint int

ODETools{ODETOOLS}: with particularSolution variationOfParameters wronskianMatrix

OneDimensionalArrayFunctions2{ARRAY12}: with map reduce scan

OnePointCompletionFunctions2{ONECOMP2}: with map

OperationsQuery{OPQUERY}: with getDatabase

OrderedCompletionFunctions2{ORDCOMP2}: with map
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OrderingFunctions{ORDFUNS}: with pureLex reverseLex totalLex

OrthogonalPolynomialFunctions{ORTHPOL}: with ChebyshevU chebyshevT hermiteH
laguerreL legendreP

OutputPackage{OUT}: with output

PadeApproximantPackage{PADEPAC}: with pade

PadeApproximants{PADE}: with pade padecf

ParadoxicalCombinatorsForStreams{YSTREAM}: with Y

PartitionsAndPermutations{PARTPERM}: with conjugate conjugates partitions
permutations sequences shuffle shufflein

PatternFunctions1{PATTERN1}: with addBadValue badValues predicate satisfy?
suchThat

PatternFunctions2{PATTERN2}: with map

PatternMatchAssertions{PMASS}: with assert constant multiple optional

PatternMatchFunctionSpace{PMFS}: with patternMatch

PatternMatchIntegerNumberSystem{PMINS}: with patternMatch

PatternMatchKernel{PMKERNEL}: with patternMatch

PatternMatchListAggregate{PMLSAGG}: with patternMatch

PatternMatchPolynomialCategory{PMPLCAT}: with patternMatch

PatternMatchPushDown{PMDOWN}: with fixPredicate patternMatch

PatternMatchQuotientFieldCategory{PMQFCAT}: with patternMatch

PatternMatchResultFunctions2{PATRES2}: with map

PatternMatchSymbol{PMSYM}: with patternMatch

PatternMatchTools{PMTOOLS}: with patternMatch patternMatchTimes

PatternMatch{PATMATCH}: with Is is?

Permanent{PERMAN}: with permanent

PermutationGroupExamples{PGE}: with abelianGroup alternatingGroup cyclicGroup
dihedralGroup janko2 mathieu11 mathieu12 mathieu22 mathieu23 mathieu24 rubiksGroup
symmetricGroup youngGroup

PiCoercions{PICOERCE}: with coerce

PlotFunctions1{PLOT1}: with plot plotPolar

PlotTools{PLOTTOOL}: with calcRanges

PointFunctions2{PTFUNC2}: with map

PointPackage{PTPACK}: with color hue phiCoord rCoord shade thetaCoord xCoord yCo-
ord zCoord
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PointsOfFiniteOrderRational{PFOQ}: with order torsion? torsionIfCan

PointsOfFiniteOrderTools{PFOTOOLS}: with badNum doubleDisc getGoodPrime mix
polyred

PointsOfFiniteOrder{PFO}: with order torsion? torsionIfCan

PolToPol{POLTOPOL}: with dmpToNdmp dmpToP ndmpToDmp ndmpToP pToDmp
pToNdmp

PolyGroebner{PGROEB}: with lexGroebner totalGroebner

PolynomialAN2Expression{PAN2EXPR}: with coerce

PolynomialCategoryLifting{POLYLIFT}: with map

PolynomialCategoryQuotientFunctions{POLYCATQ}: with isExpt isPlus isPower is-
Times mainVariable multivariate univariate variables

PolynomialFactorizationByRecursionUnivariate{PFBRU}: with

bivariateSLPEBR factorByRecursion factorSFBRlcUnit
factorSquareFreeByRecursion randomR
solveLinearPolynomialEquationByRecursion

PolynomialFactorizationByRecursion{PFBR}: with

bivariateSLPEBR factorByRecursion factorSFBRlcUnit
factorSquareFreeByRecursion randomR
solveLinearPolynomialEquationByRecursion

PolynomialFunctions2{POLY2}: with map

PolynomialGcdPackage{PGCD}: with gcd gcdPrimitive

PolynomialInterpolationAlgorithms{PINTERPA}: with LagrangeInterpolation

PolynomialInterpolation{PINTERP}: with interpolate

PolynomialNumberTheoryFunctions{PNTHEORY}: with bernoulli chebyshevT cheby-
shevU cyclotomic euler fixedDivisor hermite laguerre legendre

PolynomialRoots{POLYROOT}: with froot qroot rroot

PolynomialSolveByFormulas{SOLVEFOR}: with aCubic aLinear aQuadratic aQuartic
aSolution cubic linear mapSolve quadratic quartic solve

PolynomialSquareFree{PSQFR}: with squareFree

PolynomialToUnivariatePolynomial{POLY2UP}: with univariate

PowerSeriesLimitPackage{LIMITPS}: with complexLimit limit

PrimitiveArrayFunctions2{PRIMARR2}: with map reduce scan

PrimitiveElement{PRIMELT}: with primitiveElement
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PrimitiveRatDE{ODEPRIM}: with denomLODE

PrimitiveRatRicDE{ODEPRRIC}: with

changevar constantCoefficientRicDE denomRicDE
leadingCoefficientRicDE polyRicDE singRicDE

PrintPackage{PRINT}: with print

PureAlgebraicIntegration{INTPAF}: with palgLODE palgRDE palgextint palgint pal-
glimint

PureAlgebraicLODE{ODEPAL}: with algDsolve

QuasiAlgebraicSet2{QALGSET2}: with radicalSimplify

QuaternionCategoryFunctions2{QUATCT2}: with map

QuotientFieldCategoryFunctions2{QFCAT2}: with map

RadicalEigenPackage{REP}: with eigenMatrix gramschmidt normalise orthonormalBa-
sis radicalEigenvalues radicalEigenvector radicalEigenvectors

RadicalSolvePackage{SOLVERAD}: with contractSolve radicalRoots radicalSolve

RadixUtilities{RADUTIL}: with radix

RandomNumberSource{RANDSRC}: with randnum reseed size

RationalFactorize{RATFACT}: with factor

RationalFunctionDefiniteIntegration{DEFINTRF}: with integrate

RationalFunctionFactorizer{RFFACTOR}: with factorFraction

RationalFunctionFactor{RFFACT}: with factor

RationalFunctionIntegration{INTRF}: with extendedIntegrate infieldIntegrate inter-
nalIntegrate limitedIntegrate

RationalFunctionLimitPackage{LIMITRF}: with complexLimit limit

RationalFunctionSign{SIGNRF}: with sign

RationalFunctionSum{SUMRF}: with sum

RationalFunction{RF}: with coerce eval mainVariable multivariate univariate variables

RationalIntegration{INTRAT}: with extendedint infieldint integrate limitedint

RationalLODE{ODERAT}: with ratDsolve

RationalRetractions{RATRET}: with rational rational? rationalIfCan

RationalRicDE{ODERTRIC}: with changevar constantCoefficientRicDE polyRicDE ricD-
solve singRicDE

RatODETools{RTODETLS}: with genericPolynomial

RealSolvePackage{REALSOLV}: with realSolve solve
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RealZeroPackageQ{REAL0Q}: with realZeros refine

RealZeroPackage{REAL0}: with midpoint midpoints realZeros refine

RectangularMatrixCategoryFunctions2{RMCAT2}: with map reduce

ReducedDivisor{RDIV}: with order

ReduceLODE{ODERED}: with reduceLODE

ReductionOfOrder{REDORDER}: with ReduceOrder

RepeatedDoubling{REPDB}: with double

RepeatedSquaring{REPSQ}: with expt

RepresentationPackage1{REP1}: with antisymmetricTensors createGenericMatrix per-
mutationRepresentation symmetricTensors tensorProduct

RepresentationPackage2{REP2}: with

areEquivalent? completeEchelonBasis createRandomElement
cyclicSubmodule isAbsolutelyIrreducible? meatAxe
scanOneDimSubspaces split standardBasisOfCyclicSubmodule

ResolveLatticeCompletion{RESLATC}: with coerce

RetractSolvePackage{RETSOL}: with solveRetract

SAERationalFunctionAlgFactor{SAERFFC}: with factor

SegmentBindingFunctions2{SEGBIND2}: with map

SegmentFunctions2{SEG2}: with map

SimpleAlgebraicExtensionAlgFactor{SAEFACT}: with factor

DoubleFloatSpecialFunctions{DFLOATSFUN}: with Beta Gamma airyAi airyBi besselI
besselJ besselK besselY digamma hypergeometric0F1 logGamma polygamma

SortedCache{SCACHE}: with cache clearCache enterInCache

SparseUnivariatePolynomialFunctions2{SUP2}: with map

SpecialOutputPackage{SPECOUT}: with outputAsFortran outputAsScript outputAsTex

StorageEfficientMatrixOperations{MATSTOR}: with ** copy! leftScalarTimes! minus!
plus! power! rightScalarTimes! times!

StreamFunctions1{STREAM1}: with concat

StreamFunctions2{STREAM2}: with map reduce scan

StreamFunctions3{STREAM3}: with map

StreamTaylorSeriesOperations{STTAYLOR}: with * + - / addiag coerce compose deriv
eval evenlambert gderiv generalLambert int integers integrate invmultisect lagrange lambert
lazyGintegrate lazyIntegrate mapdiv mapmult monom multisect nlde oddintegers oddlam-
bert power powern recip revert
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StreamTranscendentalFunctions{STTF}: with ** acos acosh acot acoth acsc acsch asec
asech asin asinh atan atanh cos cosh cot coth csc csch exp log sec sech sin sincos sinh sinhcosh
tan tanh

SubResultantPackage{SUBRESP}: with primitivePart subresultantVector

SymmetricFunctions{SYMFUNC}: with symFunc

SymmetricGroupCombinatoricFunctions{SGCF}: with

coleman inverseColeman listYoungTableaus makeYoungTableau
nextColeman nextLatticePermutation nextPartition
numberOfImproperPartitions subSet unrankImproperPartitions0
unrankImproperPartitions1

SystemODESolver{ODESYS}: with solveInField triangulate

SystemSolvePackage{SYSSOLP}: with solve triangularSystems

TableauxBumpers{TABLBUMP}: with bat bat1 bumprow bumptab bumptab1 inverse lex
maxrow mr slex tab tab1 untab

TangentExpansions{TANEXP}: with tanAn tanNa tanSum

ToolsForSign{TOOLSIGN}: with direction nonQsign sign

TopLevelDrawFunctionsForAlgebraicCurves{DRAWCURV}: with draw

TopLevelDrawFunctionsForCompiledFunctions{DRAWCFUN}: with draw makeObject
recolor

TopLevelDrawFunctions{DRAW}: with draw makeObject

TopLevelThreeSpace{TOPSP}: with createThreeSpace

TranscendentalHermiteIntegration{INTHERTR}: with HermiteIntegrate

TranscendentalIntegration{INTTR}: with expextendedint expintegrate expintfldpoly
explimitedint primextendedint primextintfrac primintegrate primintegratefrac primintfld-
poly primlimintfrac primlimitedint

TranscendentalManipulations{TRMANIP}: with

cos2sec cosh2sech cot2tan cot2trig coth2tanh
coth2trigh csc2sin csch2sinh expand expandLog
expandPower htrigs removeCosSq removeCoshSq
removeSinSq removeSinhSq sec2cos sech2cosh
simplify simplifyExp sin2csc sinh2csch
tan2cot tan2trig tanh2coth tanh2trigh

TranscendentalRischDE{RDETR}: with DSPDE SPDE baseRDE expRDE primRDE

TransSolvePackageService{SOLVESER}: with decomposeFunc unvectorise

TransSolvePackage{SOLVETRA}: with solve
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TriangularMatrixOperations{TRIMAT}: with LowTriBddDenomInv UpTriBddDenom-
Inv

TrigonometricManipulations{TRIGMNIP}: with complexElementary complexNormal-
ize imag real real? trigs

TubePlotTools{TUBETOOL}: with * + - cosSinInfo cross dot loopPoints point unitVector

TwoDimensionalPlotClipping{CLIP}: with clip clipParametric clipWithRanges

TwoFactorize{TWOFACT}: with generalSqFr generalTwoFactor twoFactor

UnivariateFactorize{UNIFACT}: with factor factorSquareFree genFact henselFact hen-
selfact quadratic sqroot trueFactors

UnivariateLaurentSeriesFunctions2{ULS2}: with map

UnivariatePolynomialCategoryFunctions2{UPOLYC2}: with map

UnivariatePolynomialCommonDenominator{UPCDEN}: with clearDenominator com-
monDenominator splitDenominator

UnivariatePolynomialFunctions2{UP2}: with map

UnivariatePolynomialSquareFree{UPSQFREE}: with BumInSepFFE
squareFree squareFreePart

UnivariatePuiseuxSeriesFunctions2{UPXS2}: with map

UnivariateTaylorSeriesFunctions2{UTS2}: with map

UnivariateTaylorSeriesODESolver{UTSODE}: with mpsode ode ode1 ode2 stFunc1
stFunc2 stFuncN

UniversalSegmentFunctions2{UNISEG2}: with map

UserDefinedPartialOrdering{UDPO}: with getOrder largest less? more? setOrder
userOrdered?

UserDefinedVariableOrdering{UDVO}: with getVariableOrder resetVariableOrder set-
VariableOrder

VectorFunctions2{VECTOR2}: with map reduce scan

ViewDefaultsPackage{VIEWDEF}: with axesColorDefault lineColorDefault pointColor-
Default
pointSizeDefault tubePointsDefault tubeRadiusDefault
unitsColorDefault var1StepsDefault var2StepsDefault
viewDefaults viewPosDefault viewSizeDefault
viewWriteAvailable viewWriteDefault

ViewportPackage{VIEW}: with coerce drawCurves graphCurves

WeierstrassPreparation{WEIER}: with cfirst clikeUniv crest qqq sts2stst weierstrass

WildFunctionFieldIntegralBasis{WFFINTBS}: with integralBasis listSquaredFactors
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Appendix E

Operations

This appendix contains a partial list of Axiom operations with brief descriptions. For more
details, use the Browse facility of HyperDoc: enter the name of the operation for which
you want more information in the input area on the main Browse menu and then click on
Operations.

#aggregate

#a returns the number of items in a.

x∗∗y
x ∗ ∗y returns x to the power y. Also, this operation returns, if x is: 1pc 0

an equation: a new equation by raising both sides of x to the power y.

a float or small float: sign (x) exp (y log(|x|)).
See also InputForm and OutputForm.

x∗y
The binary operator ∗ denotes multiplication. Its meaning depends on the type of its
arguments: 1pc 0

if x and y are members of a ring (more generally, a domain of category
SemiGroup), x ∗ y returns the product of x and y.

if r is an integer and x is an element of a ring, or if r is a scalar and x is a
vector, matrix, or direct product: r ∗ x returns the left multiplication of r
by x. More generally, if r is an integer and x is a member of a domain of
category AbelianMonoid, or r is a member of domain R and x is a domain
of category Module(R), GradedModule, or GradedAlgebra defined over R,
r ∗ x returns the left multiplication of r by x. Here x can be a vector, a
matrix, or a direct product. Similarly, x ∗ n returns the right integer
multiple of x.
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if a and b are monad elements, the product of a and b (see Monad).

if A and B are matrices, returns the product of A and B. If v is a row
vector, v ∗A returns the product of v and A. If v is column vector, A ∗ v
returns the product of A with column vector v. In each case, the
operation calls error if the dimensions are incompatible.

if s is an integer or float and c is a color, s ∗ c returns the weighted shade
scaled by s.

if s and t are Cartesian tensors, s ∗ t is the inner product of the tensors s
and t. This contracts the last index of s with the first index of t, that is,
t ∗ s = contract(t, rank t, s, 1),

t ∗ s =
∑N

k=1 t([i1, .., iN , k] ∗ s[k, j1, .., jM ]).

if eq is an equation, r ∗ eq multiplies both sides of eq by r.

if I and J are ideals, the product of ideals.

See also OutputForm, Monad, LeftModule, RightModule, and
FreeAbelianMonoidCategory,

See also InputForm and OutputForm.

x+y

The binary operator + denotes addition. Its meaning depends on the type of its
arguments. If x and y are: 1pc 0

members of a ring (more generally, of a domain of category
AbelianSemiGroup): the sum of x and y.

matrices: the matrix sum if x and y have the same dimensions, and error
otherwise.

vectors: the component-wise sum if x and y have the same length, and
error otherwise.

colors: a color which additively mixes colors x and y.

equations: an equation created by adding the respective left- and
right-hand sides of x and y.

elements of graded module or algebra: the sum of x and y in the module
of elements of the same degree as x and y.

ideals: the ideal generated by the union of x and y.

See also FreeAbelianMonoidCategory, InputForm and OutputForm.

[x]−y

−x returns the negative (additive inverse) of x, where x is a member of a ring (more
generally, a domain of category AbelianGroup). Also, x may be a matrix, a vector, or a
member of a graded module.
x− y returns x+ (−y).
See also CancellationAbelianMonoid and OutputForm.
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x/y
The binary operator / generally denotes binary division. Its precise meaning, however,
depends on the type of its arguments: 1pc 0

x and y are elements of a group: multiplies x by the inverse inv (y) of y.

x and y are elements of a field: divides x by y, calling error if y = 0.

x is a matrix or a vector and y is a scalar: divides each element of x by y.

x and y are floats or small floats: divides x by y.

x and y are fractions: returns the quotient as another fraction.

x and y are polynomials: returns the quotient as a fraction of
polynomials.

See also AbelianMonoidRing, InputForm and OutputForm.

0
The additive identity element for a ring (more generally, for an AbelianMonoid). Also, for a
graded module or algebra, the zero of degree 0 (see GradedModule). See also InputForm.

1
The multiplicative identity element for a ring (more generally, for a Monoid and
MonadWithUnit). or a graded algebra. See also InputForm.

x<y

The binary operator < denotes the boolean-valued “less than” function. Its meaning
depends on the type of its arguments. The operation x < y for x and y: 1pc 0

elements of a totally ordered set (such as integer and floating point
numbers): tests if x is less than y.

sets: tests if all the elements of x are also elements of y.

permutations: tests if x is less than y; see Permutation for details. Note:
this order relation is total if and only if the underlying domain is of
category Finite or OrderedSet.

permutation groups: tests if x is a proper subgroup of y.

See also OutputForm.

x=y

The meaning of binary operator x = y depends on the value expected of the operation. If
the value is expected to be: 1pc 0

a boolean: x = y tests that x and y are equal.

an equation: x = y creates an equation.

See also OutputForm.

abelianGroup ( listOfPositiveIntegers)

abelianGroup ([p1, . . . , pk]) constructs the abelian group that is the direct product of
cyclic groups with order pi.
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absolutelyIrreducible? ()

absolutelyIrreducible? ()$F tests if the algebraic function field F remains irreducible
over the algebraic closure of the ground field. See FunctionFieldCategory using Browse.

abs (element)

abs (x) returns the absolute value of x, an element of an OrderedRing or a Complex,
Quaternion, or Octonion value.

acos (expression)
acosIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
acos (x) returns the arccosine of x.
acosIfCan (x) returns acos (x) if possible, and "failed" otherwise.

acosh ( expression)
acoshIfCan ( expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
acosh (x) returns the hyperbolic arccosine of x.
acoshIfCan (x) returns acosh (x) if possible, and "failed" otherwise.

acoth (expression)
acothIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
acoth (x) returns the hyperbolic arccotangent of x.
acothIfCan (x) returns acoth (x) if possible, and "failed" otherwise.

acot (expression)
acotIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
acot (x) returns the arccotangent of x.
acotIfCan (x) returns acot (x) if possible, and "failed" otherwise.

acsch (expression)
acschIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
acsch (x) returns the hyperbolic arccosecant of x.
acschIfCan (x) returns acsch (x) if possible, and "failed" otherwise.

acsc (expression)
acscIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
acsc (x) returns the arccosecant of x.
acscIfCan (x) returns acsc (x) if possible, and "failed" otherwise.

adaptive ( [boolean])

adaptive () tests whether plotting will be done adaptively.
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adaptive (true) turns adaptive plotting on; adaptive (false) turns it off. Note: this
command can be expressed by the draw option adaptive == b.

addmod ( integer, integer, integer)

addmod (a, b, p), 0 ≤ a, b < p > 1, means a+ b mod p.

airyAi ( complexDoubleFloat)
airyBi ( complexDoubleFloat)

airyAi (x) is the Airy function Ai(x) satisfying the differential equation
Ai′′(x)− xAi(x) = 0.
airyBi (x) is the Airy function Bi(x) satisfying the differential equation
Bi′′(x)− xBi(x) = 0.

Aleph ( nonNegativeInteger)

Aleph (n) provides the named (infinite) cardinal number.

algebraic? ()

algebraic? (a) tests whether an element a is algebraic with respect to the ground field F .

alphabetic ()
alphabetic? ( character)

alphabetic () returns the class of all characters ch for which alphabetic? (ch) is true.
alphabetic? (ch) tests if ch is an alphabetic character a. . .z, A. . .B.

alphanumeric ()
alphanumeric? ( character)

alphanumeric () returns the class of all characters ch for which alphanumeric? (ch) is
true.
alphanumeric? (ch) tests if ch is either an alphabetic character a. . .z, A. . .B or digit 0. . .9.

alternating (integer)

alternating (n) is the cycle index of the alternating group of degree n. See CycleIndicators
for details.

alternatingGroup ( listOfIntegers)

alternatingGroup (li) constructs the alternating group acting on the integers in the list
li. If n is odd, the generators are in general the (n− 2)-cycle (li.3, . . . , li.n) and the 3-cycle
(li.1, li.2, li.3). If n is even, the generators are the product of the 2-cycle (li.1, li.2) with
(n− 2)-cycle (li.3, . . . , li.n) and the 3-cycle (li.1, li.2, li.3). Duplicates in the list will be
removed.
alternatingGroup (n) constructs the alternating group An acting on the integers 1, . . . , n.
If n is odd, the generators are in general the (n− 2)-cycle (3, . . . , n) and the 3-cycle
(1, 2, 3). If n is even, the generators are the product of the 2-cycle (1, 2) with (n− 2)-cycle
(3, . . . , n) and the 3-cycle (1, 2, 3) if n is even.

alternative? ()

alternative? ()$F tests if 2associator(a, a, b) = 0 = 2associator(a, b, b) for all a, b in the
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algebra F . Note: in general, 2a = 0 does not necessarily imply a = 0.

and ( boolean, boolean)

x and y returns the logical and of two BitAggregates x and y.
b1 and b2 returns the logical and of Boolean b1 and b2.
si1 and si2 returns the bit-by-bit logical and of the small integers si1 and si2.
See also OutputForm.

approximants ( continuedFraction)

approximants (cf) returns the stream of approximants of the continued fraction cf . If
the continued fraction is finite, then the stream will be infinite and periodic with period 1.

approximate ( series, integer)

approximate (s, r) returns a truncated power series as an expression in the coefficient
domain of the power series. For example, if R is Fraction Polynomial Integer and s is a series
over R, then approximate(s, r) returns the power series s truncated after the exponent r
term.

approximate ( pAdicInteger, integer)

approximate (x, n), x a p-adic integer, returns an integer y such that y = x mod pn when
n is positive, and 0 otherwise.

approxNthRoot ( integer, nonNegativeInteger)

approxNthRoot (n, p) returns an integer approximation i to n1/p such that
−1 < i− n1/p < 1.

approxSqrt (integer)

approxSqrt (n) returns an integer approximation i to
√
(n) such that −1 < i−

√
(n) < 1.

A variable precision Newton iteration is used with running time O(log(n)2).

areEquivalent? (listOfMatrices, listOfMatrices [ , randomElements?, numberOfTries])

areEquivalent? (lM, lM ′, b, numberOfTries) tests whether the two lists of matrices,
assumed of the same square shape, can be simultaneously conjugated by a non-singular
matrix. If these matrices represent the same group generators, the representations are
equivalent. The algorithm tries numberOfTries times to create elements in the generated
algebras in the same fashion. For details, consult HyperDoc.
areEquivalent? (aG0, aG1, numberOfTries) calls areEquivalent? (aG0, aG1, true, 25).
areEquivalent? (aG0, aG1) calls areEquivalent? (aG0, aG1, true, 25).

argscript ( symbol, listOfOutputForms)

argscript (f, [o1, . . . , on]) returns a new symbol with f with scripts o1, . . . , on.

argument ( complexExpression)

argument (c) returns the angle made by complex expression c with the positive real axis.

arity ( basicOperator)

arity (op) returns n if op is n-ary, and "failed" if op has arbitrary arity.
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asec ( expression)
asecIfCan ( expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
asec (x) returns the arcsecant of x.
asecIfCan (x) returns asec (x) if possible, and "failed" otherwise.

asech ( expression)
asechIfCan ( expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
asech (x) returns the hyperbolic arcsecant of x.
asechIfCan (x) returns asech (x) if possible, and "failed" otherwise.

asin ( expression)
asinIfCan ( expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
asin (x) returns the arcsine of x.
asinIfCan (x) returns asin (x) if possible, and "failed" otherwise.

asinh ( expression)
asinhIfCan ( expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
asinh (x) returns the hyperbolic arcsine of x.
asinhIfCan (x) returns asinh (x) if possible, and "failed" otherwise.

assign ( outputForm, outputForm)

assign (f, g) creates an OutputForm object for the assignment f :=g.

associates? ( element, element)

associates? (x, y) tests whether x and y are associates, that is, that x and y differ by a
unit factor.

associative? ()

associative? ()$F tests if multiplication in F is associative, where F is a
FiniteRankNonAssociativeAlgebra.

associatorDependence ()

associatorDependence ()$F computes associator identities for F . Consult
FiniteRankNonAssociativeAlgebra using Browse for details..

associator (element, element, element)

associator (a, b, c) returns (ab)c− a(bc), where a, b, and c are all members of a domain of
category NonAssociateRng.

assoc (element, associationList)

assoc (k, al) returns the element x in the AssociationList al stored under key k, or
"failed" if no such element exists.
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atan ( expression [, phase])
atanIfCan ( expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
atan (x) returns the arctangent of x.
atan (x, y) computes the arc tangent from x with phase y.
atanIfCan (x) returns the atan (x) if possible, and "failed" otherwise.

atanh (expression)
atanhIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
atanh (x) returns the hyperbolic arctangent of x.
atanhIfCan (x) returns atanh (x) if possible, and "failed" otherwise.

atom? (sExpression)

atom? (s) tests if x is atomic, where x is an SExpression or OutputForm.

antiCommutator ( element, element)

antiCommutator (x, y) returns xy + yx, where x and y are elements of a non-associative
ring, possibly without identity. See NonAssociativeRng using Browse.

antisymmetric? ( matrix)

antisymmetric? (m) tests if the matrix m is square and antisymmetric, that is,
mi,j = −mj,i for all i and j.

antisymmetricTensors ( matrices, positiveInteger)

antisymmetricTensors (A,n), where A is an m by m matrix, returns a matrix obtained
by applying to A the irreducible, polynomial representation of the general linear group
GLm corresponding to the partition (1, 1, . . . , 1, 0, 0, . . . , 0) of n. A call to error occurs if n
is greater than m. Note: this corresponds to the symmetrization of the representation with
the sign representation of the symmetric group Sn. The carrier spaces of the representation
are the antisymmetric tensors of the n-fold tensor product.
antisymmetricTensors (lA, n), where lA is a list of m by m matrices, similarly applies
the representation of GLm to each matrix A of lA, returning a list of matrices.

any? (predicate, aggregate)

any? (pred, a) tests if predicate pred (x) is true for any element x of aggregate a. Note:
for collections, any?(p, u) = reduce(or, map(p, u), false, true).

any (type, object)

any (type, object) is a technical function for creating an object of Any. Argument type is a
LISP form for the type of object.

append (list, list)

append (l1, l2) appends the elements of list l1 onto the front of list l2. See also concat.

axesColorDefault ( [palette])

axesColorDefault (p) sets the default color of the axes in a two-dimensional viewport to
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the palette p.
axesColorDefault () returns the default color of the axes in a two-dimensional viewport.

back (queue)

back (q) returns the element at the back of the queue, or calls error if q is empty.

bag ( [bag])

bag ([x, y, . . . , z]) creates a bag with elements x, y, . . ., z.

balancedBinaryTree ( nonNegativeInteger, element)

balancedBinaryTree (n, s) creates a balanced binary tree with n nodes, each with value
s.

base (group)

base (gp) returns a base for the group gp. Consult PermutationGroup using Browse for
details.

basis ()

basis ()$R returns a fixed basis of R or a subspace of R. See FiniteAlgebraicExtensionField,
FramedAlgebra, FramedNonAssociativeAlgebra using HyperDoc for details.

basisOfCenter ()

basisOfCenter ()$R returns a basis of the space of all x in R satisfying
commutator (x, a) = 0 and associator (x, a, b) = associator (a, x, b) = associator (a, b,
x) = 0 for all a, b in R. Domain R is a domain of category FramedNonAssociativeAlgebra.

basisOfCentroid ()

basisOfCentroid ()$R returns a basis of the centroid of R, that is, the endomorphism ring
of R considered as (R,R)-bimodule. Domain R is a domain of category
FramedNonAssociativeAlgebra.

basisOfCommutingElements ()

basisOfCommutingElements ()$R returns a basis of the space of all x of R satisfying
commutator (x, a) = 0 for all a in R. Domain R is a domain of category
FramedNonAssociativeAlgebra.

basisOfLeftAnnihilator ( element)
basisOfRightAnnihilator ( element)

These operations return a basis of the space of all x in R of category
FramedNonAssociativeAlgebra, satisfying 1pc 0

basisOfLeftAnnihilator (a): 0 = xa.

basisOfRightAnnihilator (a): 0 = ax.

basisOfNucleus ()
basisOfLeftNucleus ()
basisOfMiddleNucleus ()
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basisOfRightNucleus ()

Each operation returns a basis of the space of all x of R, a domain of category
FramedNonAssociativeAlgebra, satisfying for all a and b: 1pc 0

basisOfNucleus ()$R: associator (x, a, b) = associator (a, x, b) =
associator (a, b, x) = 0;

basisOfLeftNucleus ()$R: associator (x, a, b) = 0;

basisOfMiddleNucleus ()$R: associator (a, x, b) = 0;

basisOfRightNucleus ()$R: associator (a, b, x) = 0.

basisOfLeftNucloid ()

basisOfRightNucloid ()

Each operation returns a basis of the space of endomorphisms of R, a domain of category
FramedNonAssociativeAlgebra, considered as: 1pc 0

basisOfLeftNucloid (): a right module.

basisOfRightNucloid (): a left module.

Note: if R has a unit, the left and right nucloid coincide with the left and right nucleus.

belong? (operator)

belong? (op)$R tests if op is known as an operator to R. For example, R is an Expression
domain or AlgebraicNumber.

bernoulli (integer)

bernoulli (n) returns the n th Bernoulli number, that is, B(n, 0) where B(n, x) is the n th

Bernoulli polynomial.

besselI (complexDoubleFloat, complexDoubleFloat)
besselJ (complexDoubleFloat, complexDoubleFloat)
besselK (complexDoubleFloat, complexDoubleFloat)
besselY (complexDoubleFloat, complexDoubleFloat)

besselI (v, x) is the modified Bessel function of the first kind, I(v, x), satisfying the
differential equation x2w′′(x) + xw′(x)− (x2 + v2)w(x) = 0.

besselJ (v, x) is the Bessel function of the second kind, J(v, x), satisfying the differential
equation x2w′′(x) + xw′(x) + (x2 − v2)w(x) = 0.

besselK (v, x) is the modified Bessel function of the first kind, K(v, x), satisfying the
differential equation x2w′′(x) + xw′(x)− (x2 + v2)w(x) = 0. Note: The default
implementation uses the relation K(v, x) = π/2(I(−v, x)− I(v, x))/ sin(vπ) so is not valid
for integer values of v.

besselY (v, x) is the Bessel function of the second kind, Y (v, x), satisfying the differential
equation x2w′′(x) + xw′(x) + (x2 − v2)w(x) = 0. Note: The default implementation uses
the relation Y (v, x) = (J(v, x) cos(vπ)− J(−v, x))/ sin(vπ) so is not valid for integer values
of v.
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Beta (complexDoubleFloat, complexDoubleFloat)

Beta (x, y) is the Euler beta function, B(x, y), defined by Beta (x, y)
∫ 1

0
tx−1(1− t)y−1dt.

Note: this function is defined by Beta (x, y) = Γ(x)Γ(y)
Γ(x+y) .

binaryTournament ( listOfElements)

binaryTournament (ls) creates a BinaryTournament tree with the elements of ls as values
at the nodes.

binaryTree (value)

binaryTree (x) creates a binary tree consisting of one node for which the value is x and
the left and right subtrees are empty.

binary (various)

binary (rn) converts rational number rn to a binary expansion.
binary (op, [a1, . . . , an]) returns the input form corresponding to a1op . . . opan, where op
and the ai’s are of type InputForm.

binomial ( integerNumber, integerNumber)

binomial (x, y) returns the binomial coefficient C(x, y) = x!/(y!(x− y)!), where x ≥ y ≥ 0,
the number of combinations of x objects taken y at a time. Arguments x and y can come
from any Expression or IntegerNumberSystem domain.

bipolar (x)
bipolarCylindrical (x)

bipolar (a) returns a function for transforming bipolar coordinates to Cartesian
coordinates; this function maps the point (u, v) to
(x = a sinh(v)/(cosh(v)− cos(u)), y = a sin(u)/(cosh(v)− cos(u))).
bipolarCylindrical (a) returns a function for transforming bipolar cylindrical coordinates
to Cartesian coordinates; this function maps the point (u, v, z) to
(x = a sinh(v)/(cosh(v)− cos(u)), y = a sin(u)/(cosh(v)− cos(u)), z).

biRank ( element)

biRank (x)$R, where R is a domain of category FramedNonAssociativeAlgebra, returns the
number of linearly independent elements among x, xbi, bix, bixbj , i, j = 1, . . . , n, where
b = [b1, . . . , bn] is the fixed basis for R. Note: if R has a unit, then doubleRank,
weakBiRank and biRank coincide.

bit? ( integer, integer)

bit? (i, n) tests if the n th bit of i is a 1.

bits ()

bits () returns the precision of floats in bits. Also see precision.

blankSeparate ( listOfOutputForms)

blankSeparate (lo), where lo is a list of objects of type OutputForm (normally unexposed),
returns a single output form consisting of the elements of lo separated by blanks.
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blue ()

blue () returns the position of the blue hue from total hues.

bottom! (dequeue)

bottom! (q) removes then returns the element at the bottom (back) of the dequeue q.

box (expression)

box (e), where e is an expression, returns e with a box around it that prevents e from
being evaluated when operators are applied to it. For example, log (1) returns 0, but
log (box(1)) returns the formal kernel log (1).
box (f1, . . . , fn), where the fi are expressions, returns (f1, . . . , fn) with a box around them
that prevents the fi from being evaluated when operators are applied to them, and makes
them applicable to a unary operator. For example, atan (box[x, 2]) returns the formal
kernel atan (x, 2).
box (o), where o is an object of type OutputForm (normally unexposed), returns an output
form enclosing o in a box.

brace (outputForm)

brace (o), where o is an object of type OutputForm (normally unexposed), returns an
output form enclosing o in braces.

bracket (outputForm)

bracket (o), where o is an object of type OutputForm (normally unexposed), returns an
output form enclosing o in brackets.

branchPoint ( element)
branchPointAtInfinity? ()

branchPoint? (a)$F tests if x = a is a branch point of the algebraic function field F .
branchPointAtInfinity? ()$F tests if the algebraic function field F has a branch point at
infinity.

bright (color)

bright (c) sets the shade of a hue, c, above dim but below pastel.
bright (ls) sets the font property of a list of strings ls to bold-face type.

cap (symmetricPolynomial, symmetricPolynomial)

cap (s1, s2), introduced by Redfield, is the scalar product of two cycle indices, where the si
are SymmetricPolynomials with rational number coefficients. See also cup. See
CycleIndicators for details.

cardinality ( finiteSetAggregate)

cardinality (u) returns the number of elements of u. Note: cardinality(u) = #u.

car (sExpression)

car (se) returns a1 when se is the SExpression object (a1, . . . , an).
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cdr ( sExpression)

cdr (se) returns (a2, . . . , an) when se is the SExpression object (a1, . . . , an).

ceiling ( floatOrRationalNumber)

Argument x is a floating point number or fraction of numbers.
ceiling (x) returns the smallest integral element above x.

center (stringsOrSeries )

center (s) returns the point about which the series s is expanded.
center (ls, n, s) takes a list of strings ls, and centers them within a list of strings which is n
characters long. The remaining spaces are filled with strings composed of as many
repetitions as possible of the last string parameter s.
center (s1, n, s2) is equivalent to center ([s1], n, s2).

char (character)

char (i) returns a Character object with integer code i. Note: ord(char(i)) = i.
char (s) returns the unique character of a string s of length one.

characteristic ()

characteristic ()$R returns the characteristic of ring R: the smallest positive integer n
such that nx = 0 for all x in the ring, or zero if no such n exists.

characteristicPolynomial ( matrix [, symbol])

characteristicPolynomial (a) returns the characteristic polynomial of the regular
representation of a with respect to any basis.
characteristicPolynomial (m) returns the characteristic polynomial of the matrix m
expressed as polynomial with a new symbol as variable.
characteristicPolynomial (m, sy) is similar except that the resulting polynomial has
variable sy.
characteristicPolynomial (m, r), where r is a member of the coefficient domain of
matrix m, evaluates the characteristic polynomial at r. In particular, if r is the polynomial
′x, then it returns the characteristic polynomial expressed as a polynomial in ′x.

charClass (strings)

charClass (s) creates a character class containing exactly the characters given in the string
s.
charClass (ls) creates a character class which contains exactly the characters given in the
list ls of strings.

charthRoot (element)

charthRoot (r), where r is an element of domain with characteristic p ̸= 0, returns the

p th root of r, or "failed" if none exists in the domain.
charthRoot (f)$R takes the p th root of finite field element f , where p is the
characteristic of the finite field R. Note: such a root is always defined in finite fields.
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chebyshevT (positiveInteger, element)

chebyshevT (n, x) returns the n th Chebyshev polynomial of the first kind, Tn(x), defined
by (1− tx)/(1− 2tx+ t2) =

∑∞
n=0 Tn(x) t

n.

children ( recursiveAggregate)

children (u) returns a list of the children of aggregate u.

chineseRemainder ( listOfElements, listOfModuli)
chineseRemainder ( integer, modulus, integer, modulus)

chineseRemainder (lv, lm) where lv is a list of values [v1, . . . , vn] and lm is a list of
moduli [m1, . . . ,mn], returns m such that m = ni mod pi; the pi must be relatively prime.
chineseRemainder (n1, p1, n2, p2) is equivalent to chineseRemainder ([n1, n2], [p1, p2]),
where all arguments are integers.

clearDenominator ( fraction)

clearDenominator ([q1, . . . , ]) returns [p1, . . . , ] such that qi = pi/d where d is a common
denominator for the qi’s.
clearDenominator (A), where A is a matrix of fractions, returns matrix B such that
A = B/d where d is a common denominator for the elements of A.
clearDenominator (p) returns polynomial q such that p = q/d where d is a common
denominator for the coefficients of polynomial p.

clip ( rangeOrBoolean)

clip (b) turns two-dimensional clipping on if b is true, and off if b is false. This command
may be given as a draw option: clip == b.
clip ([a..b]) defines the range for user-defined clipping. This command may be given as a
draw option: range == [a..b].

clipPointsDefault ( [boolean])

clipPointsDefault () tests if automatic clipping is to be done.
clipPointsDefault (b) turns on automatic clipping for b = true, and off if b = false. This
command may be given as a draw option: clip == b.

close (filename)

close (v) closes the viewport window of the given two-dimensional or three-dimensional
viewport v and terminates the corresponding Unix process. Argument v is a member of
domain TwoDimensionalViewport or ThreeDimensionalViewport.

close! (filename)

close! (fn) returns the file fn closed to input and output.

closedCurve? ( threeSpace)

closedCurve? (sp) tests if the ThreeSpace object sp contains a single closed curve
component.

closedCurve ( listsOfPoints [, listOfPoints])

closedCurve (lpt) returns a ThreeSpace object containing a single closed curve described
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by the list of points lpt of the form [p0, p1, . . . , pn, p0].
closedCurve (sp) returns a closed curve as a list of points, where sp must be a ThreeSpace
object containing a single closed curve.
closedCurve (sp, lpt) returns ThreeSpace object with the closed curve denoted by lpt
added. Argument lpt is a list of points of the form [p0, p1, . . . , pn, p0].

coefficient ( polynomialOrSeries, nonNegativeInteger)

coefficient (p, n) extracts the coefficient of the monomial with exponent n from
polynomial p, or returns zero if exponent is not present.
coefficient (u, x, n) returns the coefficient of variable x to the power n in u, a multivariate
polynomial or series.
coefficient (u, [x1, . . . , ], [n1, . . . , ]) returns the coefficient of xn1

1 · · ·x
nk

k in u, a multivariate
series or polynomial.
Also defined for domain CliffordAlgebra and categories AbelianMonoidRing,
FreeAbelianCategory, and MonogenicLinearOperator.
coefficient (s, n) returns the terms of total degree n of series s as a polynomial.

coefficients ( polynomialOrStream)

coefficients (p) returns the list of non-zero coefficients of polynomial p starting with the
coefficient of the maximum degree.
coefficients (s) returns a stream of coefficients [a0, a1, a2, . . .] for the stream s:
a0 + a1x+ a2x

2 + · · ·. Note: the entries of the stream may be zero.

coerceImages ( listOfElements)

coerceImages (ls) coerces the list ls to a permutation whose image is given by ls and
whose preimage is fixed to be [1, . . . , n]. Note: coerceImages (ls)=
coercePreimagesImages([1, . . . , n], ls).

coerceListOfPairs ( listOfPairsOfElements)

coerceListOfPairs (lls) coerces a list of pairs lls to a permutation, or calls error if not
consistent, that is, the set of the first elements coincides with the set of second elements.

coercePreimagesImages ( listOfListOfElements)

coercePreimagesImages (lls) coerces the representation lls of a permutation as a list of
preimages and images to a permutation.

coleman ( listOfIntegers, listOfIntegers, listOfIntegers)

coleman (alpha, beta, pi) generates the Coleman-matrix of a certain double coset of the
symmetric group given by an representing element pi and alpha and beta. The matrix has
nonnegative entries, row sums alpha and column sums beta. Consult
SymmetricGroupCombinatoricFunctions using Browse for details.

color (integer)

color (i) returns a color of the indicated hue i.

colorDef (viewPort, color, color)

colorDef (v, c1, c2) sets the range of colors along the colormap so that the lower end of the
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colormap is defined by c1 and the top end of the colormap is defined by c2 for the given
three-dimensional viewport v.

colorFunction ( smallFloatFunction)

colorFunction (fn) specifies the color for three-dimensional plots. Function fn can take
one to three DoubleFloat arguments and always returns a DoubleFloat value. If one
argument, the color is based upon the z-component of plot. If two arguments, the color is
based on two parameter values. If three arguments, the color is based on the x, y, and z
components. This command may be given as a draw option: colorFunction == fn.

column ( matrix, positiveInteger)

column (M, j) returns the j th column of the matrix or TwoDimensionalArrayCategory
object M , or calls error if the index is outside the proper range.

commaSeparate ( listOfOutputForms)

commaSeparate (lo), where lo is a list of objects of type OutputForm (normally
unexposed), returns an output form which separates the elements of lo by commas.

commonDenominator ( fraction)

commonDenominator ([q1, . . . , ]) returns a common denominator for the qi’s.
commonDenominator (A), where A is a matrix of fractions, returns a common
denominator for the elements of A.
commonDenominator (p) returns a common denominator for the coefficients of
polynomial p.

commutative? ()

commutative? ()$R tests if multiplication in the algebra R is commutative.

commutator ( groupElement, groupElement)

commutator (p, q) computes inv (p) ∗ inv(q) ∗ p ∗ q where p and q are members of a Group
domain.
commutator (a, b) returns ab− ba where a and b are members of a NonAssociativeRing
domain.

compactFraction ( partialFraction)

compactFraction (u) normalizes the partial fraction u to a compact representation where
it has only one fractional term per prime in the denominator.

comparison ( basicOperator, property)

comparison (op, p) attaches p as the "%less?" property to op. If op1 and op2 have the
same name, and one of them has a "%less?" property p, then p(op1, op2) is called to
decide whether op1 < op2.

compile ( symbol, listOfTypes)

compile (f, [T1, . . . , Tn]) forces the interpreter to compile the function with name f with
signature (T1, . . . , Tn)− > T , where T is a type determined by type analysis of the function
body of f . If the compilation is successful, the operation returns the name f . The
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operation calls error if f is not defined beforehand in the interpreter, or if the Ti’s are not
valid types, or if the compiler fails. See also function, interpret, lambda, and
compiledFunction.

compiledFunction ( expression, symbol [ , symbol])

Argument expression may be of any type that is coercible to type InputForm (most
commonly used types). These functions must be package called to define the type of the
function produced.
compiledFunction (expr, x)$P , where P is MakeUnaryCompiledFunction(E, S, T), returns
an anonymous function of type ST defined by defined by x 7→ expr. The anonymous
function is compiled and directly applicable to objects of type S.
compiledFunction (expr, x, y)$P , where P is MakeBinaryCompiledFunction(E, A, B, T)
returns an anonymous function of type (A, B) → T defined by (x, y) 7→ expr. The
anonymous function is compiled and is then directly applicable to objects of type (A,B).
See also compile, function, and lambda.

complement ( finiteSetElement)

complement (u) returns the complement of the finite set u, that is, the set of all values
not in u.

complementaryBasis ( vector)

complementaryBasis (b1, . . . , bn) returns the complementary basis (b
′

1, . . . , b
′

n) of
(b1, . . . , bn) for a domain of category FunctionFieldCategory.

complete ( streamOrInteger)

complete (u) causes all terms of a stream or continued fraction u to be computed. If not
called on a finite stream or continued fraction, this function will compute until interrupted.
complete (n) is the n th complete homogeneous symmetric function expressed in terms of
power sums. Alternatively, it is the cycle index of the symmetric group of degree n. See
CycleIndicators for details.

completeEchelonBasis ( vectorOfVectors)

completeEchelonBasis (vv) returns a completed basis from vv, a vector of vectors of
domain elements. Consult RepresentationPackage2 using Browse for details.

complex (element, element)

complex (x, y) creates the complex expression x + %i*y.

complexEigenvalues (matrix, precision)

complexEigenvalues (m, eps) computes the eigenvalues of the matrix m to precision eps,
chosen as a float or a rational number so as to agree with the type of the coefficients of the
matrix m.

complexEigenvectors ( matrix, precision)

complexEigenvectors (m, eps) (m, a matrix) returns a list of records, each containing a
complex eigenvalue, its algebraic multiplicity, and a list of associated eigenvectors. All
results are expressed as complex floats or rationals with precision eps.
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complexElementary ( expression [, symbol])

complexElementary (e) rewrites e in terms of the two fundamental complex
transcendental elementary functions: log, exp.
complexElementary (e, x) does the same but only rewrites kernels of e involving x.

complexExpand ( integrationResult)

complexExpand (ir), where ir is an IntegrationResult, returns the expanded complex
function corresponding to ir.

complexIntegrate ( expression, variable)

complexIntegrate (f, x) returns
∫
f(x)dx where x is viewed as a complex variable.

complexLimit ( expression, equation)

complexLimit (f(x), x = a) computes the complex limit of f as its argument x
approaches a.

complexNormalize ( expression [, symbol])

complexNormalize (e) rewrites e using the least possible number of complex independent
kernels.
complexNormalize (e, x) rewrites e using the least possible number of complex
independent kernels involving x.

complexNumeric ( expression [, positiveInteger])

complexNumeric (u) returns a complex approximation of u, where u is a polynomial or
an expression.
complexNumeric (u, n) does the same but requires accuracy to be up to n decimal places.

complexRoots ( rationalFunctions [, options])

complexRoots (rf, eps) finds all the complex solutions of a univariate rational function
with rational number coefficients with precision given by eps. The complex solutions are
returned either as rational numbers or floats depending on whether eps is a rational
number or a float.
complexRoots (lrf, lv, eps) similarly finds all the complex solutions of a list of rational
functions with rational number coefficients with respect the variables appearing in lv.
Solutions are computed to precision eps and returned as a list of values corresponding to
the order of variables in lv.

complexSolve ( eq, x)

See solve (u, v).

complexZeros ( polynomial, floatOrRationaNumber)

complexZeros (poly, eps) finds the complex zeros of the univariate polynomial poly to
precision eps. Solutions are returned either as complex floats or rationals depending on the
type of eps.

components ( threeSpace)

components (sp) takes the ThreeSpace object sp, and returns a list of ThreeSpace objects,
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each having a single component.

composite (polynomial, polynomial)

composite (p, q), for polynomials p and q, returns f if p = f(q), and "failed" if no such
f exists.
composite (lsp), where lsp is a list [sp1, sp2, . . . , spn] of ThreeSpace objects, returns a
single ThreeSpace object containing the union of all objects in the parameter list grouped
as a single composite.

composites ( threeSpace)

composites (sp) takes the ThreeSpace object sp and returns a list of ThreeSpace objects,
one for each single composite of sp. If sp has no defined composites (composites need to be
explicitly created), the list returned is empty. Note that not all the components need to be
part of a composite.

concat ( aggregate, aggregate)
concat! ( aggregate, aggregate)

concat (u, x) returns list u with additional element x at the end. Note: equivalent to
concat (u, [x]).
concat (u, v) returns an aggregate consisting of the elements of u followed by the elements
of v.
concat (u), where u is a list of aggregates [a, b,. . . , c], returns a single aggregate consisting
of the elements of a followed by those of b followed . . . by the elements of c.
concat! (u, x), where u is extensible, destructively adds element x to the end of aggregate
u; if u is a stream, it must be finite.
concat! (u, v) destructively appends v to the end of u; if u is a stream, it must be finite.

conditionP (matrix)

conditionP (M), given a matrix M representing a homogeneous system of equations over

a field F with characteristic p, returns a non-zero vector whose p th power is a non-trivial
solution to these equations, or "failed" if no such vector exists.

conditionsForIdempotents ()

conditionsForIdempotents () determines a complete list of polynomial equations for the
coefficients of idempotents with respect to the R-module basis. See also
FramedNonAssociativeAlgebra for an alternate definition.

conical ( smallFloat, smallFloat)

conical (a, b) returns a function of two parameters for mapping conical coordinates to
Cartesian coordinates. The function maps the point (λ, µ, ν) to x = λµν/(ab),
y = λ/a

√
((mu2 − a2)(ν2 − a2)/(a2 − b2)), z = λ/b

√
((mu2 − b2)(nu2 − b2)/(b2 − a2)).

conjugate ( element [, element])

conjugate (u) returns the conjugate of a complex, quaternion, or octonian expression u.
For example, if u is the complex expression x+%iy, conjugate (u) returns x−%iy.
conjugate (pt) returns the conjugate of a partition pt. See PartitionsAndPermutations
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using Browse.
conjugate (p, q) returns inv (q) ∗ p ∗ q for elements p and q of a group. Note: this
operation is called right action by conjugation.

conjugates ( streamOfPartitions)

conjugates (lp) is the stream of conjugates of a stream of partitions lp.

connect ( twoDimensionalViewport, positiveInteger, string)

connect (v, n, s) displays the lines connecting the graph points in field n of the
two-dimensional viewport v if s = ”on”, and does not display the lines if s = ”off”.

constant ( variableOrfunction)
constantLeft ( function, element)
constantRight ( function, element)

These operations add an argument to a function and must be package-called from package
P as indicated. See also curry, curryLeft, and curryRight.
constant (f)$P returns the function g such that g(a) = f(), where function f has type →
C and a has type A. The function must be package-called from P = MappingPackage2(A,
C).
constantRight (f)$P returns the function g such that g(a, b) = f(a), where function f
has type A → C and b has type B. This function must be package-called from P =
MappingPackage3(A, B, C).
constantLeft (f)$P returns the function g such that g(a, b) = f(b), where function f has
type B → C and a has type A. The function must be package-called from P =
MappingPackage3(A, B, C).
constant (x) tells the pattern matcher that x should match the symbol ′x and no other
quantity, or calls error if x is not a symbol.

constantOperator ( property)
constantOpIfCan (f)

constantOperator (f) returns a nullary operator op such that op() always evaluate to f .
constantOpIfCan (op) returns f if op is the constant nullary operator always returning f ,
and "failed" otherwise.

construct ( element, ..)

construct (x, y, . . . , z)$R returns the collection of elements x, y, . . . , z from domain R
ordered as given. This is equivalently written as [x, y, . . . , z]. The qualification R may be
omitted for domains of type List. Infinite tuples such as [xi for i in 1..] are converted to a
Stream object.

cons (element, listOrStream)

cons (x, u), where u is a list or stream, creates a new list or stream whose first element is
x and whose rest is u. Equivalent to concat (x, u).

content ( polynomial [, symbol])

content (p) returns the greatest common divisor (gcd) of the coefficients of polynomial p.
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content (p, v), where p is a multivariate polynomial type, returns the gcd of the coefficients
of the polynomial p viewed as a univariate polynomial with respect to the variable v. For
example, if p = 7x2y + 14xy2, the gcd of the coefficients with respect to x is 7y.

continuedFraction ( fractionOrFloat [, options])

continuedFraction (f) converts the floating point number f to a reduced continued
fraction.
continuedFraction (r) converts the fraction r with components of type R to a continued
fraction over R.
continuedFraction (r, s, s′), where s and s′ are streams over a domain R, constructs a
continued fraction in the following way: if s = [a1, a2,. . . ] and s′ = [b1, b2,. . . ] then the
result is the continued fraction r + a1/(b1 + a2/(b2+. . . )).

contract ( idealOrTensors [, options])

contract (I, lvar) contracts the ideal I to the polynomial ring F [lvar].

contract (t, i, j) is the contraction of tensor t which sums along the i th and j th indices.
For example, if r = contract(t, 1, 3) for a rank 4 tensor t, then r is the rank 2 (= 4− 2)

tensor given by r(i, j) =
∑dim

h=1 t(h, i, h, j).
contract (t, i, s, j) is the inner product of tensors s and t which sums along the k1st index
of t and the k2st index of s. For example, if r = contract(s, 2, t, 1) for rank 3 tensors s and

t, then r is the rank 4 (= 3 + 3− 2) tensor given by r(i, j, k, l) =
∑dim

h=1 s(i, h, j)t(h, k, l).

contractSolve ( equation, symbol)

contractSolve (eq, x) finds the solutions expressed in terms of radicals of the equation of
rational functions eq with respect to the symbol x. The result contains new symbols for
common subexpressions in order to reduce the size of the output. Alternatively, an
expression u may be given for eq in which case the equation eq is defined as u = 0

controlPanel ( viewport, string)

controlPanel (v, s) displays the control panel of the given two-dimensional or
three-dimensional viewport v if s = ”on”, or hides the control panel if s = ”off”.

convergents ( continuedFraction)

convergents (cf) returns the stream of the convergents of the continued fraction cf . If the
continued fraction is finite, then the stream will be finite.

coordinate ( curveOrSurface, nonNegativeInteger)

coordinate (u, n) returns the n th coordinate function for the curve or surface u. See
ParametericPlaneCurve, ParametricSpaceCurve, and ParametericSurface, using HyperDoc.

coordinates ( pointOrvector [, basis])

coordinates (pt) specifies a change of coordinate systems of point pt. This option is
expressed in the form coordinates == pt.

The following operations return a matrix representation of the coordinates of an argument
vector v of the form [v1 . . . vn] with respect to the basis a domain R. The coordinates of vi
are contained in the i th row of the matrix returned.
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coordinates (v, b) returns the matrix representation with respect to the basis b for vector
v of elements from domain R of category FiniteRankNonAssociativeAlgebra or
FiniteRankAlgebra. If a second argument is not given, the basis is taken to be the fixed
basis of R.
coordinates (v)$R, returns a matrix representation for v with respect to a fixed basis for
domain R of category FiniteAlgebraicExtensionField, FramedNonAssociativeAlgebra, or
FramedAlgebra.

copies (integer, string)

copies (n, s) returns a string composed of n copies of string s.

copy (aggregate)

copy (u) returns a top-level (non-recursive) copy of an aggregate u. Note: for lists,
copy(u) == [x for x in u].

copyInto! (aggregate, aggregate, integer)

copyInto! (u, v, p) returns linear aggregate u with elements of u replaced by the successive
elements of v starting at index p. Arguments u and v can be elements of any
FiniteLinearAggregate.

cos (expression)
cosIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
cos (x) returns the cosine of x.
cosIfCan (x) returns cos (x) if possible, and "failed" otherwise.

cos2sec (expression)

cos2sec (e) converts every cos (u) appearing in e into 1/ sec(u).

cosh2sech ( expression)

cosh2sech (e) converts every cosh (u) appearing in e into 1/sech(u).

cosh (expression)
coshIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
cosh (x) returns the hyperbolic cosine of x.
coshIfCan (x) returns cosh (x) if possible, and "failed" otherwise.

cot (expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
cot (x) returns the cotangent of x.
cotIfCan (x) returns cot (x) if possible, and "failed" otherwise.

cot2tan (expression)

cot2tan (expression) converts every cot(u) appearing in e into 1/ tan(u).
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cot2trig ( expression)

cot2trig (expression) converts every cot(u) appearing in e into cos(u)/ sin(u).

coth ( expression)
cothIfCan ( expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
coth (x) returns the hyperbolic cotangent of x.
cothIfCan (x) returns coth (x) if possible, and "failed" otherwise.

coth2tanh ( expression)

coth2tanh (expression) converts every coth(u) appearing in e into 1/tanh(u).

coth2trigh ( expression)

coth2trigh (expression) converts every coth(u) appearing in e into cosh(u)/sinh(u).

count ( predicate, aggregate)

count (pred, u) returns the number of elements x in u such that pred (x) is true. For
collections, count(p, u) = reduce(+, [1 for x in u | p(x)], 0).
count (x, u) returns the number of occurrences of x in u. For collections, count(x, u) =

reduce(+, [x=y for y in u], 0).

countable? (cardinal)

countable? (u) tests if the cardinal number u is countable, that is, if u ≤Aleph0.

createThreeSpace ()

createThreeSpace () $ThreeSpace(R) creates a ThreeSpace object capable of holding
point, curve, mesh components or any combination of the three. The ring R is usually
DoubleFloat. If you do not package call this function, DoubleFloat is assumed.
createThreeSpace (s) creates a ThreeSpace object containing objects pre-defined within
some SubSpace s.

createGenericMatrix ( nonNegativeInteger)

createGenericMatrix (n) creates a square matrix of dimension n whose entry at the i-th
row and j-th column is the indeterminate xi,j (double subscripted). See
RepresentationPackage1 using Browse.

createIrreduciblePoly ( nonNegativeInteger)

createIrreduciblePoly (n) $FFPOLY(GF) generates a monic irreducible polynomial of
degree n over the finite field GF .

createNormalElement ()

createNormalElement ()$F computes a normal element over the ground field of a finite
algebraic extension field F , that is, an element a such that
aq

i

, 0 ≤ i < extensionDegree()$F is an F -basis, where q is the size of the ground field.

createNormalPrimitivePoly ( element)

createNormalPrimitivePoly (n) $FFPOLY(GF) generates a normal and primitive
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polynomial of degree n over the field GF .

createPrimitiveElement ()

createPrimitiveElement ()$F computes a generator of the (cyclic) multiplicative group
of a finite field F .

createRandomElement ( listOfMatrices, matrix)

createRandomElement (lm,m) creates a random element of the group algebra
generated by lm, where lm is a list of matrices and m is a matrix. See
RepresentationPackage2 using Browse.

csc2sin (expression)

csc2sin (expression) converts every csc (u) appearing in f into 1/sin(u).

csch2sinh ( expression)

csch2sinh (expression) converts every csch (u) appearing in f into 1/sinh(u).

csch ( expression)
cschIfCan ( expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
csch (x) returns the hyperbolic cosecant of x.
cschIfCan (x) returns csch (x) if possible, and "failed" otherwise.

cscIfCan ( expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
csc (x) returns the cosecant of x.
cscIfCan (x) returns csc (x) if possible, and "failed" otherwise.

cup ( symmetricPolynomial, symmetricPolynomial)

cup (s1, s2), introduced by Redfield, is the scalar product of two cycle indices, where the si
are of type SymmetricPolynomial with rational number coefficients. See also cap. See
CycleIndicators for details.

curry (function)
curryLeft ( function, element)
curryRight ( function, element)

These functions drop an argument from a function.
curry (f, a) returns the function g such that g() = f(a), where function f has type A → C
and element a has type A.
curryRight (f, b) returns the function g such that g(a) = f(a, b), where function f has
type (A, B) → C and element b has type B.
curryLeft (f, a) is the function g such that g(b) = f(a, b), where function f has type (A,
B) → C and element a has type A.
See also constant, constantLeft, and constantRight.

curve ( listOfPoints [, options])

curve ([p0, p1,. . . , pn]) creates a space curve defined by the list of points p0 through pn and
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returns a ThreeSpace object whose component is the curve.
curve (sp) checks to see if the ThreeSpace object sp is composed of a single curve defined
by a list of points; if so, the list of points defining the curve is returned. Otherwise, the
operation calls error.
curve (c1, c2) creates a plane curve from two component functions c1 and c2. See
ComponentFunction using Browse.
curve(sp, [[p0], [p1],. . . , [pn]]) adds a space curve defined by a list of points p0 through pn to
a ThreeSpace object sp. Each pi is from a domain PointDomain (m,R), where R is the
Ring over which the point elements are defined and m is the dimension of the points.
curve (s, [p0, p1,. . . , pn]) adds the space curve component designated by the list of points
p0 through pn to the ThreeSpace object sp.
curve (c1, c2, c3) creates a space curve from three component functions c1, c2, and c3.

curve? (threeSpace)

curve? (sp) tests if the ThreeSpace object sp contains a single curve object.

curveColor (float)

curveColor (p) specifies a color index for two-dimensional graph curves from the palette p.
This option is expressed in the form curveColor == p.

cycle ( listOfPermutations)

cycle (ls) converts a cycle ls, a list with no repetitions, to the permutation, which maps
ls.i to ls.(i+ 1) (index modulo the length of the list).

cycleEntry ( aggregate)

cycleEntry (u) returns the head of a top-level cycle contained in aggregate u, or empty ()
if none exists.

cycleLength ( aggregate)

cycleLength (u) returns the length of a top-level cycle contained in aggregate u, or 0 if u
has no such cycle.

cyclePartition ( permutation)

cyclePartition (p) returns the cycle structure of a permutation p including cycles of length
1. The permutation is assumed to be a member of Permutation(S) where S is a finite set.

cycleRagits ( radixExpansion)

cycleRagits (rx) returns the cyclic part of the ragits of the fractional part of a radix
expansion. For example, if x = 3/28 = 0.10714285714285 . . ., then cycleRagits(x) = [7,

1, 4, 2, 8, 5].

cycleSplit! ( aggregate)

cycleSplit! (u) splits the recursive aggregate (for example, a list) u into two aggregates by
dropping off the cycle. The value returned is the cycle entry, or nil if none exists. For
example, if w = concat(u, v) is the cyclic list where v is the head of the cycle,
cycleSplit! (w) will drop v off w. Thus w is destructively changed to u, and v is returned.
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cycles ( listOfListOfElements)

cycles (lls) coerces a list of list of cycles lls to a permutation. Each cycle, represented as a
list ls with no repetitions, is coerced to the permutation, which maps ls.i to ls.(i+ 1)
(index modulo the length of the list). These permutations are then multiplied.

cycleTail ( aggregate)

cycleTail (u) returns the last node in the cycle of a recursive aggregate (for example, a
list) u, or empty if none exists.

cyclic (integer)

cyclic (n) returns the cycle index of the cyclic group of degree n. CycleIndicators for details.

cyclic? ( aggregate)

cyclic? (u) tests if recursive aggregate (for example, a list) u has a cycle.

cyclicGroup ( listOfIntegers)

cyclicGroup ([i1, . . . , ik]) constructs the cyclic group of order k acting on the list of
integers i1, . . . , ik. Note: duplicates in the list will be removed.

cyclicGroup ( positiveInteger)

cyclicGroup (n) constructs the cyclic group of order n acting on the integers 1, . . . , n,
n > 0.

cyclicSubmodule ( listOfMatrices, vector)

cyclicSubmodule (lm, v), where lm is a list of n by n square matrices and v is a vector of
size n, generates a basis in echelon form. Consult RepresentationPackage2 using
Browse for details.

cylindrical (point)

cylindrical (pt) transforms pt from polar coordinates to Cartesian coordinates, by
mapping the point (r, theta, z) to x = r cos(theta), y = r sin(theta), z.

D ( expression [, options])

D (x) returns the derivative of x. This function is a simple differential operator where no
variable needs to be specified.
D (x, [s1, . . . sn]) computes successive partial derivatives, that is, D(. . .D(x, s1) . . . , sn).
D (u, x) computes the partial derivative of u with respect to x.
D (u, deriv[, n]) differentiates u n times using a derivation which extends deriv on R.
Argument n defaults to 1.
D (p, d, x′) extends the R-derivation d to an extension R in R[x] where Dx is given by x′,
and returns Dp.
D(x, [s1, . . . , sn], [n1, . . . , nm]) computes multiple partial derivatives, that is,
D ( . . .D(x, s1, n1) . . . , sn, nm).

D (u, x, n) computes multiple partial derivatives, that is, n th derivative of u with respect
to x.
D (of [, n]), where of is an object of type OutputForm (normally unexposed), returns an
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output form for the n th derivative of f , for example, f ′, f ′′

, f ′′′, fiv, and so on.
D ()$A provides the operator corresponding to the derivation in the differential ring A.

dark (color)

dark (color) returns the shade of the indicated hue of color to its lowest value.

ddFact ( polynomial, primeInteger)

ddFact (q, p) computes a distinct degree factorization of the polynomial q modulo the
prime p, that is, such that each factor is a product of irreducibles of the same degrees.

decimal ( rationalNumber)

decimal (rn) converts a rational number rn to a decimal expansion.

declare ( listOfInputForms)

declare (t) returns a name f such that f has been declared to the interpreter to be of type
t, but has not been assigned a value yet.

decreasePrecision ( integer)

decreasePrecision (n)$R decreases the current precision by n decimal digits.

definingPolynomial ()

definingPolynomial ()$R returns the minimal polynomial for a MonogenicAlgebra domain
R, that is, one which generator ()$R satisfies.
definingPolynomial (x) returns an expression p such that p(x) = 0, where x is an
AlgebraicNumber or an object of type Expression.

degree ( polynomial [, symbol])

The meaning of degree(u[, s]) depends on the type of u. 1pc 0

if u is a polynomial: degree (u, x) returns the degree of polynomial u
with respect to the variable x. Similarly, degree (u, lv), where lv is a list
of variables, returns a list of degrees of polynomial u with respect to each
of the variables in lv.

if u is an element of an AbelianMonoidRing or GradedModule domain:
degree (u) returns the maximum of the exponents of the terms of u.

if u is a series: degree (u) returns the degree of the leading term of u.

if u is an element of a domain of category ExtensionField: degree (u)
returns the degree of the minimal polynomial of u if u is algebraic with
respect to the ground field F , and %infinity otherwise.

if u is a permutation: degree (u) returns the number of points moved by
the permutation.

if u is a permutation group: degree (u) returns the number of points
moved by all permutations of the group u. For additional information on
degree, consult Browse.
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delete ( aggregate, integerOrSegment)

delete (u, i) returns a copy of linear aggregate u with the i th element deleted. Note: for
lists, delete(a, i) == concat(a(0..i-1), a(i + 1, ..)).

delete (u, i..j) returns a copy of u with the i th through j th element deleted. Note: for
lists, delete(a, i..j) = concat(a(0..i-1), a(j+1..)).

delete! (u, i) destructively deletes the i th element of u.
delete! (u, i..j) destructively deletes elements u.i through u.j of u.

deleteProperty ( basicOperator, string)

deleteProperty (op, s) destructively removes property s from op.

denom ( expression)
denominator ( expression)

Argument x can be from domain Fraction(R) for some domain R, or of type Expression if
the result is of type R.
denom (x) returns the denominator of x as an object of domain R; if x is of type
Expression, it returns an object of domain SMP(R, Kernel(Expression R)).
denominator (x) returns the denominator of x as an element of Fraction(R); if x is of type
Expression, it returns an object of domain Expression(R).

denominators ( fractionOrContinuedFraction)

denominator (frac) is the denominator of the fraction frac.
denominators (cf) returns the stream of denominators of the approximants of the
continued fraction x. If the continued fraction is finite, then the stream will be finite.

depth (stack)

depth (st) returns the number of elements of stack st.

dequeue (queue)
dequeue! (queue)

dequeue ([x, y, . . . , z]) creates a dequeue with first (top or front) element x, second
element y, . . ., and last (bottom or back) element z.
dequeue! (q) destructively extracts the first (top) element from queue q. The element
previously second in the queue becomes the first element. A call to error occurs if q is
empty.

derivationCoordinates ( vectorOfElements, derivationFunction)

derivationCoordinates (v, ′) returns a matrix M such that v′ =Mv. Argument v is a
vector of elements from R, a domain of category MonogenicAlgebra over a ring R.
Argument ′ is a derivation function defined on R.

derivative ( basicOperator [, property])

derivative (op) returns the value of the "%diff" property of op if it has one, and
"failed" otherwise.
derivative (op, dprop) attaches dprop as the "%diff" property of op. Note: if op has a
"%diff" property f , then applying a derivation D to op(a) returns f(a)D(a). Argument op
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must be unary.
derivative (op, [f1, . . . , fn]) attaches [f1, . . . , fn] as the "%diff" property of op. Note: if op
has such a "%diff" property, then applying a derivation D to op(a1, . . . , an) returns
f1(a1, . . . , an)D(a1) + · · ·+ fn(a1, . . . , an)D(an).
See also D.

destruct ( sExpression)

destruct (se), where se is the SExpression (a1, . . . , an), returns the list [a1, . . . , an].

determinant (matrix)

determinant (m) returns the determinant of the matrix m, or calls error if the matrix is
not square. Note: the underlying coefficient domain of m is assumed to have a
commutative “*”.

diagonal (matrix)

diagonal (m), where m is a square matrix, returns a vector consisting of the diagonal
elements of m.
diagonal (f), where f is a function of type (A, A) → T is the function g such that
g(a) = f(a, a). See MappingPackage for related functions.

diagonal? ( matrix)

diagonal? (m) tests if the matrix m is square and diagonal.

diagonalMatrix ( listOfElements)

diagonalMatrix (l), where l is a list or vector of elements, returns a (square) diagonal
matrix with those elements of l on the diagonal.
diagonalMatrix ([m1, . . . ,mk]) creates a block diagonal matrix M with block matrices
m1, . . . , mk down the diagonal, with 0 block matrices elsewhere.

diagonalProduct ( matrix)

diagonalProduct (m) returns the product of the elements on the diagonal of the matrix
m.

dictionary ()

dictionary ()$R creates an empty dictionary of type R.
dictionary ([x, y, . . . , z]) creates a dictionary consisting of entries x, y, . . . , z.

difference ( setAggregate, element)

difference (u, x) returns the set aggregate u with element x removed.
difference (u, v) returns the set aggregate w consisting of elements in set aggregate u but
not in set aggregate v.

differentialVariables ( differentialPolynomial)

differentialVariables (p) returns a list of differential indeterminates occurring in a
differential polynomial p.
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differentiate ( expression [, options])

See D.

digamma ( complexDoubleFloat)

digamma (x) is the function, ψ(x), defined by ψ(x) = Γ′(x)/Γ(x). Argument x is either a
small float or a complex small float.

digit ()

digit () returns the class of all characters for which digit? is true.

digit? (character)

digit? (ch) tests if character c is a digit character, that is, one of 0..9.

digits ( [positiveInteger])

digits () returns the current precision of floats in numbers of digits.
digits (n) set the precision of floats to n digits.
digits (x) returns a stream of p-adic digits of p-adic integer n. See PAdicInteger using
Browse.

dihedral (integer)

dihedral (n) is the cycle index of the dihedral group of degree n.

dihedralGroup ( listOfIntegers)

dihedralGroup ([i1, . . . , ik]) constructs the dihedral group of order 2k acting on the
integers i1, . . . , ik. Note: duplicates in the list will be removed.
dihedralGroup (n) constructs the dihedral group of order 2n acting on integers 1, . . . , n.

dilog (expression)

dilog (x) returns the dilogarithm of x, that is,
∫
log(x)/(1− x)dx.

dim (color)

dim (c) sets the shade of a hue c, above dark but below bright.

dimension ( [various])

dimension ()$R returns the dimensionality of the vector space or rank of Lie algebra R.
dimension (I) gives the dimension of the ideal I.
dimension (s) returns the dimension of the point category s.

dioSolve (equation)

dioSolve (eq) computes a basis of all minimal solutions for a linear homomogeneous
Diophantine equation eq, then all minimal solutions of the inhomogeneous equation.
Alternatively, an expression u may be given for eq in which case the equation eq is defined
as u = 0.

directory ( filename)

directory (f) returns the directory part of the file name.
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directProduct ( vector)

directProduct (v) converts the vector v to become a direct product

discreteLog ( finiteFieldElement)

discreteLog (a)$F computes the discrete logarithm of a with respect to
primitiveElement ()$F of the field F .

discreteLog ( finiteFieldElement, finiteFieldElement)

discreteLog (b, a) computes s such that bs = a if such an s exists.

discriminant ( polynomial [, symbol])

discriminant (p[, x]) returns the discriminant of the polynomial p with respect to the
variable x. If x is univariate, the second argument may be omitted.
discriminant ()$R returns determinant (traceMatrix()$R) of a FramedAlgebra domain
R.
discriminant ([v1, .., vn]) returns determinant (traceMatrix([v1, .., vn])) where the vi
each have n elements.

display ( text [, width])

display (t[, w]), where t is either IBM SCRIPT Formula Format or TEX text, outputs t so
that each line has length ≤ w. The default value of w is that length set by the system
command )set output length.
display (op, f) attaches f as the "%display" property of op.
display (op) returns the "%display" property of op if it has one attached, and "failed"

otherwise.
Value f either has type OutputForm → OutputForm or else List(OutputForm) →
OutputForm. Argument op must be unary. Note: if op has a "%display" property f of the
former type, then op(a) gets converted to OutputForm as f(a). If f has the latter type,
then op(a1, . . . , an) gets converted to OutputForm as f(a1, . . . , an).

distance ( aggregate, aggregate)

distance (u, v), where u and v are recursive aggregates (for example, lists) returns the
path length (an integer) from node u to v.

distdfact ( polynomial, boolean)

distdfact (p, squareFreeF lag) produces the complete factorization of the polynomial p
returning an internal data structure. If argument squareFreeF lag is true, the polynomial
is assumed square free.

distribute ( expression [, f])

distribute (f [, g]) expands all the kernels in f that contain g in their arguments and that
are formally enclosed by a box or a paren expression. By default, g is the list of all
kernels in f .

divide (element, element)

divide (x, y) divides x by y producing a record containing a quotient and remainder,
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where the remainder is smaller (see sizeLess?) than the divisor y.

divideExponents (polynomial, nonNegativeInteger)

divideExponents (p, n) returns a new polynomial resulting from dividing all exponents of
the polynomial p by the non negative integer n, or "failed" if no exponent is exactly
divisible by n.

divisors (integer)

divisors (i) returns a list of the divisors of integer i.

domain ( typeAnyObject)

domain (a) returns the type of the original object that was converted to Any as object of
type SExpression

domainOf ( typeAnyObject)

domainOf (a) returns a printable form of the type of the original type of a, an object of
type Any.

dot (vector, vector)

dot (v1, v2) computes the inner product of the vectors v1 and v2, or calls error if x and y
are not of the same length.
dot (of), where of is an object of type OutputForm (normally unexposed), returns an
output form with one dot overhead (ẋ).

doubleRank (element)

doubleRank (x), where x is an element of a domain R of category
FramedNonAssociativeAlgebra, determines the number of linearly independent elements in
b1x, . . . , bnx, where b = [b1, . . . , bn] is the fixed basis for R.

doublyTransitive? ()

doublyTransitive? (p) tests if polynomial p, is irreducible over the field K generated by
its coefficients, and if p(X)/(X − a) is irreducible over K(a) where p(a) = 0.

draw (functionOrExpression, range [ , options])

f , g, and h below denote user-defined functions which map one or more DoubleFloat values
to a DoubleFloat value.

draw (f, a..b) draws the two-dimensional graph of y = f(x) as x ranges from min (a, b) to
max (a, b).

draw (curve(f, g), a..b) draws the two-dimensional graph of the parametric curve
x = f(t), y = g(t) as t ranges from min (a, b) to max (a, b).

draw (f, a..b, c..d) draws the three-dimensional graph of z = f(x, y) as x ranges from
min (a, b) to max (a, b) and y ranges from min (c, d) to max (c, d).

draw (curve(f, g, h), a..b) draws a three-dimensional graph of the parametric curve
x = f(t), y = g(t), z = h(t) as t ranges from min (a, b) to max (a, b).

draw (surface(f, g, h), a..b, c..d) draws the three-dimensional graph of the parametric
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surface x = f(u, v), y = g(u, v), z = h(u, v) as u ranges from min (a, b) to max (a, b) and v
ranges from min (c, d) to max (c, d).

Arguments f , g, and h below denote an Expression involving the variables indicated as
arguments. For example, f(x, y) denotes an expression involving the variables x and y.

draw (f(x), x = a..b) draws the two-dimensional graph of y = f(x) as x ranges from
min (a, b) to max (a, b).

draw (curve(f(t), g(t)), t = a..b) draws the two-dimensional graph of the parametric curve
x = f(t), y = g(t) as t ranges from min (a, b) to max (a, b).

draw (f(x, y), x = a..b, y = c..d) draws the three-dimensional graph of z = f(x, y) as x
ranges from min (a, b) to max (a, b) and y ranges from min (c, d) to max (c, d).

draw (curve(f(t), g(t), h(t)), t = a..b) draws the three-dimensional graph of the parametric
curve x = f(t), y = g(t), z = h(t) as t ranges from min (a, b) to max (a, b).

draw(surface(f(u, v), g(u, v), h(u, v)), u = a..b, v = c..d) draws the three-dimensional
graph of the parametric surface x = f(u, v), y = g(u, v), z = h(u, v) as u ranges from
min (a, b) to max (a, b) and v ranges from min (c, d) to max (c, d).

Each of the draw operations optionally take options given as extra arguments.
adaptive== true turns on adaptive plotting.
clip== true turns on two-dimensional clipping.
colorFunction== f specifies the color based on a function.
coordinates== p specifies a change of coordinate systems of point p: bipolar,
bipolarCylindrical, conical, elliptic, ellipticCylindrical, oblateSpheroidal, parabolic,
parabolicCylindrical, paraboloidal, prolateSpheroidal, spherical, and toroidal
curveColor== p specifies a color index for two-dimensional graph curves from the pallete
p.
pointColor== p specifies a color index for two-dimensional graph points from the palette
p.
range== [a..b] provides a user-specified range for implicit curve plots.
space== sp adds the current graph to ThreeSpace object sp.
style== s specifies the drawing style in which the graph will be plotted: wire, solid,
shade, smooth.
title== s titles the graph with string s.
toScale== true causes the graph to be drawn to scale.
tubePoints== n specifies the number of points n defining the circle which creates the
tube around a three-dimensional curve. The default value is 6.
tubeRadius== r specifies a Float radius r for a tube plot around a three-dimensional
curve.
unit== [a, b] marks off the units of a two-dimensional graph in increments a along the
x-axis, b along the y-axis.
var1Steps== n indicates the number of subdivisions n of the first range variable.
var2Steps== n indicates the number of subdivisions n of the second range variable.

drawToScale ( [boolean])

drawToScale () tests if plots are currently to be drawn to scale.
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drawToScale (true) causes plots to be drawn to scale. drawToScale (false) causes plots
to be drawn to fill up the viewport window. The default setting is false.

duplicates ( dictionary)

duplicates (d) returns a list of values which have duplicates in d

Ei (variable)

Ei (x) returns the exponential integral of x:
∫
exp(x)/xdx.

eigenMatrix (matrix)

eigenMatrix (A) returns the matrix B such that BA(inverse B) is diagonal, or "failed"
if no such B exists.

eigenvalues (matrix)

eigenvalues (A), where A is a matrix with rational function coefficients, returns the
eigenvalues of the matrix A which are expressible as rational functions over the rational
numbers.

eigenvector ( eigenvalue, matrix)

eigenvector (eigval, A) returns the eigenvectors belonging to the eigenvalue eigval for the
matrix A.

eigenvectors ( matrix)

eigenvectors (A) returns the eigenvalues and eigenvectors for the matrix A. The rational
eigenvalues and the corresponding eigenvectors are explicitly computed. The non-rational
eigenvalues are defined via their minimal polynomial. Their corresponding eigenvectors are
expressed in terms of a “generic” root of this polynomial.

element? (polynomial, ideal)

element? (f, I) tests if the polynomial f belongs to the ideal I.

elementary (integer)

elementary (n) is the n th elementary symmetric function expressed in terms of power
sums. See CycleIndicators for details.

elliptic ( scaleFactor)

elliptic (r) returns a function for transforming elliptic coordinates to Cartesian
coordinates. The function returned will map the point (u, v) to x = r cosh(u) cos(v),
y = r sinh(u) sin(v).

ellipticCylindrical ( scaleFactor)

ellipticCylindrical (r) returns a function for transforming elliptic cylindrical coordinates
to Cartesian coordinates as a function of the scale factor r. The function returned will map
the point (u, v, z) to x = r cosh(u) cos(v), y = r sinh(u) sin(v), z.

elt (structure, various [ , . . . ])

elt (u, v), usually written as u.v or u(v), regards the structure u as a function and applies
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structure u to argument v. Many types export elt with multiple arguments; elt (u, v, w . . . )
is generally written u(v, w . . .). The interpretation of u depends on its type. If u is: 1pc 0

an indexed aggregate such as a list, stream, vector, or string: u.i,

1 ≤ i ≤ maxIndex(u), is equivalently written u(i) and returns the i th

element of u. Also, u(i, y) returns u(i) if i is an appropriate index for u,
and y otherwise.

a linear aggregate: u(i..j) returns the aggregate of elements of u(k) for
k = i, i+ 1, . . . , j in that order.

a basic operator: u(x) applies the unary operator u to x; similarly,
u.[x1, . . . , xn] applies the n-ary operator u to x1, . . . , xn. Also, u(x, y),
u(x, y, z), and u(x, y, z, w) respectively apply the binary, ternary, or 4-ary
operator u to arguments.

a univariate polynomial or rational function: u(y) evaluates the rational
function or polynomial with the distinguished variable replaced by the
value of y; this value may either be another rational function or
polynomial or a member of the underlying coefficient domain.

a list: u.first is equivalent to first (u) and returns the first element of list
u. Also, u.last is equivalent to last (u) and returns the last element of list
u. Both of these call error if u is the empty list. Similarly, u.rest is
equivalent to rest (u) and returns the list u beginning at its second
element, or calls error if u has less than two elements.

a library: u(name) returns the entry in the library stored under the key
name.

a linear ordinary differential operator: u(x) applies the differential
operator u to the value x.

a matrix or two-dimensional array: u(i, j[, x]),

1 ≤ i ≤ nrows(u), 1 ≤ j ≤ ncols(m), returns the element in the i th row

and j th column of the matrix m. If the indices are out of range and an
extra argument x is provided, then x is returned; otherwise, error is
called. Also, u([i1, . . . , im], [j1, . . . , jm]) returns the m-by-n matrix
consisting of elements u(ik, jl) of u.

a permutation group: u(i) returns the i-th generator of the group u.

a point: u.i returns the i th component of the point u.

a rewrite rule: u(f [, n]) applies rewrite rule u to expression f at most n
times, where n =∞ by default. When the left-hand side of u matches a
subexpression of f , the subexpression is replaced by the right-hand side
of u producing a new f . After n iterations or when no further match
occurs, the transformed f is returned.

a ruleset: u(f [, n]) applies ruleset u to expression f at most n times,
where n =∞ by default. Similar to last case, except that on each
iteration, each rule in the ruleset is applied in turn in attempt to find a
match.
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an SExpression (a1, . . . , an . b) (where b denotes the cdr of the last
node): u.i returns ai; similarly u.[i1, . . . , im] returns (ai1 , . . . , aim).

a univariate series: u(r) returns the coefficient of the term of degree r in
u.

a symbol: u[a1, . . . , an] returns u subscripted by a1, . . . , an.

a cartesian tensor: u(r) gives a component of a rank 1 tensor;
u([i1, . . . , ln]) gives a component of a rank n tensor; u() gives the
component of a rank 0 tensor. Also: u(i, j), u(i, j, k), and u(i, j, k, l) gives
a component of a rank 2, 3, and 4 tensors respectively.

See also QuadraticForm, FramedNonAssociativeAlgebra, and
FunctionFieldCategory.

empty ()

empty ()$R creates an aggregate of type R with 0 elements.

empty? (aggregate)

empty? (u) tests if aggregate u has 0 elements.

endOfFile? (file)

endOfFile? (f) tests whether the file f is positioned after the end of all text. If the file is
open for output, then this test always returns true.

enqueue! (value, queue)

enqueue! (x, q) inserts x into the queue q at the back end.

enterPointData (space, listOfPoints)

enterPointData (s, [p0, p1, . . . , pn]) adds a list of points from p0 through pn to the
ThreeSpace s, and returns the index of the start of the list.

entry? (value, aggregate)

entry? (x, u), where u is an indexed aggregate (such as a list, vector, or string), tests if x
equals u.i for some index i.

epilogue ( formattedObject)

epilogue (t) extracts the epilogue section of an IBM SCRIPT Formula Format or TEX
formatted object t.

eq (sExpression, sExpression)

eq(s, t), for SExpressions s and t returns true if EQ(s, t) is true in Common Lisp.

eq? (aggregate, aggregate)

eq? (u, v) tests if two aggregates u and v are same objects in the Axiom store.

equality ( operator, function)

equality (op, f) attaches f as the "%equal?" property to op. Argument f must be a
boolean-valued “equality” function defined on BasicOperator objects. If op1 and op2 have
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the same name, and one of them has an "%equal?" property f , then f(op1, op2) is called
to decide whether op1 and op2 should be considered equal.

equation ( expression, expression)

equation (a, b) creates the equation a = b.
equation (v, a..b), also written: v = a..b, creates a segment binding value with variable v
and segment a..b.

erf (variable)

erf (x) returns the error function of x: 2√
(π)

∫
exp−x2

dx.

error ( string [, string])

error (msg) displays error message msg and terminates. Argument msg is either a string
or a list of strings.
error (name,msg) is similar except that the error message is preceded by a message saying
that the error occured in a function named name.

euclideanGroebner ( ideal [, string, string])

euclideanGroebner (lp[, ”info”, ”redcrit]) computes a Gröbner basis for a polynomial
ideal over a Euclidean domain generated by the list of polynomials lp. If the string "info"

is given as a second argument, a summary is given of the critical pairs. If the string
"redcrit" is given as a third argument, the critical pairs are printed.

euclideanNormalForm ( polynomial, groebnerBasis)

euclideanNormalForm (poly, gb) reduces the polynomial poly modulo the precomputed
Gröbner basis gb giving a canonical representative of the residue class.

euclideanSize ( element)

euclideanSize (x) returns the Euclidean size of the element x, or calls error if x is zero.

eulerPhi ( positiveInteger)

eulerPhi (n) returns the number of integers between 1 and n (including 1) which are
relatively prime to n. This is the Euler phi function ϕ(n), also called the totient function.

euler ( positiveInteger)

euler (n) returns the n th Euler number. This is 2nE(n, 1/2), where E(n, x) is the n th

Euler polynomial.

eval ( expression [, options])

Many domains have forms of the eval defined. Here are some the most common forms.
eval (f) unquotes all the quoted operators in f .
eval (f, x = v) replaces symbol or expression x by v in f ; if x is an expression, it must be
retractable to a single Kernel.
eval (f, [x1 = v1, . . . , xn = vn]) returns f with symbols or expressions xi replaced by vi in
parallel; if xi is an expression, it must be retractable to a single Kernel.
eval (f, [x1, . . . , xn]) unquotes all the quoted operations in f whose name is one of the
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xi.’s.
eval (f, x) unquotes all quoted operators in f whose name is x.
eval (e, s, f) replaces every subexpression of e of the form s(a1, . . . , an) by f(a1, . . . , an).
The function f can have type Expression → Expression if s is a unary operator; otherwise f
must have signature List(Expression) → Expression.
eval (e, [s1, . . . , sn], [f1, . . . , fn]), replaces every subexpression of e of the form
si(a1, . . . , ani) by fi(a1, . . . , ani). If all the si’s are unary operators, the functions fi can
have signature Expression → Expression; otherwise, the fi must have signature
List(Expression) → Expression.
eval (p, el), where p is a permutation, returns the image of element el under p.
eval (s), where s is of type SymmetricPolynomial with rational number coefficients, returns
the sum of the coefficients of a cycle index. See CycleIndicators for details.
eval (f, s), where s is of type SymmetricPolynomial with rational number coefficients and f
is a function of type Integer → Algebra Fraction Integer, evaluates the cycle index s by
applying the function f to each integer in a monomial partition, forms their product and
sums the results over all monomials. See EvaluateCycleIndicators for details.

evaluate ( operator, function)

evaluate (op) returns the value of the "%eval" property of BasicOperator object op if it has
one, and "failed" otherwise.
evaluate (op, f) attaches f as the "%eval" property of op. If op has an "%eval" property
f , then applying op to a returns the result of f(a). If f takes a single argument, then
applying op to a value a returns the result f(a). If f takes a list of arguments, then
applying op to a1, . . . , an returns the result of f(a1, . . . , an).
Argument f may also be an anonymous function of the form u+− > g(u). In this case, g
must be additive, that is, g(a+ b) = g(a) + g(b) for any a and b in R. This implies that
g(na) = ng(a) for any a in R and integer n > 0.

even? ( integerNumber)

even? (n) tests if integer n is even.
even? (p) tests if permutation p is an even permutation, that is, that the sign (p) = 1.

every? (predicate, aggregate)

every? (pred, u) tests if pred(x) is true for all elements x of u.

exists? (file)

exists? (f) tests if the file f exists in the file system.

exp (expression)
expIfCan (x)

exp (x) returns %e to the power x.
expIfCan (z) returns exp(z) if possible, and "failed" otherwise.

exp1 ()

exp1 ()$R returns exp 1: 2.7182818284 . . . either a float or a small float according to
whether R = Float or R = DoubleFloat.
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expand (expression)

expand (f) performs the following expansions on Expression f : 1pc 0

Logs of products are expanded into sums of logs.

Trigonometric and hyperbolic trigonometric functions of sums are
expanded into sums of products of trigonometric and hyperbolic
trigonometric functions.

Formal powers of the form (a/b)c are expanded into acb(−c).

expand (ir), where ir is an IntegrationResult, returns the list of possible real functions
corresponding to ir.
expand (lseg), where lseg is a list of segments, returns a list with all segments expanded.
For example, expand [1..4, 7..9] = [1, 2, 3, 4, 7, 8, 9].
expand (l..h by k) returns a list of explicit elements. For example, expand(1..5 by 2) =

[1, 3, 5].
expand (f) returns an unfactored form of factored object f .

expandLog ( expression)

expandLog (f) converts every log (a/b) appearing in Expression f into log(a)− log(b).

expandPower ( expression)

expandPower (f) converts every power (a/b)c appearing in Expression f into acb−c.

explicitEntries? ( stream)

explicitEntries? (s) tests if the stream s has explicitly computed entries.

explicitlyEmpty? ( stream)

explicitlyEmpty? (s) tests if the stream is an (explicitly) empty stream. Note: this is a
null test which will not cause lazy evaluation.

explicitlyFinite? ( stream)

explicitlyFinite? (s) tests if the stream s has a finite number of elements. Note: for many
datatypes, explicitlyFinite?(s) = not possiblyInfinite?(s).

exponent ( floatOrFactored)

exponent (fl) returns the exponent part of a float or small float fl.
exponent (u), where u is a factored object, returns the exponent of the first factor of u, or
0 if the factored object consists solely of a unit.

expressIdealMember ( listOfIdeals, ideal)

expressIdealMember ([f1, . . . , fn], h) returns a representation of ideal h as a linear
combination of the ideals fi or "failed" if h is not in the ideal generated by the fi.

exptMod ( polynomial, nonNegativeInteger, polynomial [ , prime])

exptMod (u, k, v[, p]) raises the polynomial u to the k th power modulo the polynomial v.
If a prime p is given, the power is also computed modulo that prime.
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exquo ( element, element)

exquo (a, b) either returns an element c such that cb = a or "failed" if no such element
can be found. Values a and b are members of a domain of category IntegralDomain.
exquo (A, r) returns the exact quotient of the elements of matrix A by coefficient r, or
calls error if this is not possible.

extend ( stream, integer)

extend (ps, n), where ps is a power series, causes all terms of ps of degree ≤ n to be
computed.
extend (st, n), where st is a stream, causes entries to be computed so that st has at least n
explicit entries, or so that all entries of st are finite with length ≤ n.

extendedEuclidean ( element, element [ , element])

Argments x, y, and z are members of a domain of category EuclideanDomain.
extendedEuclidean (x, y) returns a record rec containing three fields: coef1, coef2, and
generator where rec.coef1 ∗ x+ rec.coef2 ∗ y = rec.generator and rec.generator is a gcd
of x and y. The gcd is unique only up to associates if canonicalUnitNormal is not
asserted. Note: See principalIdeal for a version of this operation which accepts an
arbitrary length list of arguments.
extendedEuclidean (x, y, z) either returns a record rec of two fields coef1 and coef2
where rec.coef1 ∗ x+ rec.coef2 ∗ y = z, and "failed" if z cannot be expressed as such a
linear combination of x and y.

extendedIntegrate ( rationalFnct, symbol, rationalFnct)

extendedIntegrate (f, x, g) returns fractions [h, c] such that dc/dx = 0 and
dh/dx = f − cg if (h, c) exist, and "failed" otherwise.

extensionDegree ()

extensionDegree ()$F returns the degree of the field extension F if the extension is
algebraic, and infinity if it is not.

extension (filename)

extension (fn) returns the type part of the file name fn as a string.

extract! (bag)

extract! (bg) destructively removes a (random) item from bag bg.

extractBottom! ( dequeue)

extractBottom! (d) destructively extracts the bottom (back) element from the dequeue d,
or calls error if d is empty.

extractTop! (dequeue)

extractTop! (d) destructively extracts the top (front) element from the dequeue d, or calls
error if d is empty.

e (positiveInteger)

e (n) produces the appropriate unit element of a CliffordAlgebra.
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factor ( polynomial [, numbers])

factor (x) returns the factorization of x into irreducibles, where x is a member of any
domain of category UniqueFactorizationDomain.
factor (p, lan), where p is a polynomial and lan is a list of algebraic numbers, factors p
over the extension generated by the algebraic numbers given by the list lan.
factor (upoly, prime), where upoly is a univariate polynomial and prime is a prime integer,
returns the list of factors of upoly modulo the integer prime p, or calls error if upoly is not
square-free modulo p.

factorFraction ( fraction)

factorFraction (r) factors the numerator and the denominator of the polynomial fraction
r.

factorGroebnerBasis ( listOfPolynomials [, boolean])

factorGroebnerBasis (basis[, f lag]) checks whether the basis contains reducible
polynomials and uses these to split the basis. Information about partial results is given if a
second argument of true is given.

factorials ( expression [, symbol])

factorials (f [, x]) rewrites the permutations and binomials in f in terms of factorials. If a
symbol x is given as a second argument, the operation rewrites only those terms involving
x.

factorial ( expression)

factorial (n), where n is an integer, returns the integer value of n! =
∏n

1 i.
factorial (n), where n is an expression, returns a formal expression denoting n! Note:
n! = n(n− 1)! when n > 0; also, 0! = 1.

factorList ( factoredForm)

factorList (f), for a factored form f , returns list of records. Each record corresponds to a
factor of f and has three fields: flg, fctr, and xpnt. The fctr lists the factor and xpnt, the
exponent. The flg is one of the strings: "nil", "sqfr", "irred", or "prime".

factorPolynomial ( polynomial)

factorPolynomial (p) returns the factorization of a sparse univariate polynomial p as a
factored form.

factors ( factoredForm)

factors (u) returns a list of the factors of a factored form u in a form as a list suitable for
iteration. Each element in the list is a record containing both a factor and exponent field.

factorsOfCyclicGroupSize ()

factorsOfCyclicGroupSize () returns the factorization of size ()− 1

factorSquareFreePolynomial ( polynomial)

factorSquareFreePolynomial (p) factors the univariate polynomial p into irreducibles,
where p is known to be square free and primitive with respect to its main variable.
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fibonacci ( nonNegativeInteger)

fibonacci (n) returns the n th Fibonacci number. The Fibonacci numbers F [n] are defined
by F [0] = F [1] = 1 and F [n] = F [n− 1] + F [n− 2]. The algorithm has running time
O(log(n)3).

filename (directory, name, extension)

filename (d, n, e) creates a file name with string d as its directory, string n as its name and
string e as its extension.

fill! (aggregate, value)

fill! (a, x) replaces each entry in aggregate a by x. The modified a is returned. If a is a
domain of category TwoDimensionalArrayCategory such as a matrix, fill! (a, x) sets
every element of a to x.

filterUntil ( predicate, stream)

filterUntil (p, s) returns [x0, x1, . . . , xn], where stream s = [x0, x1, x2, ..] and n is the
smallest index such that p(xn) = true.

filterWhile ( predicate, stream)

filterWhile (pred, s) returns [x0, x1, . . . , x(n−1)] where s = [x0, x1, x2, ..] and n is the
smallest index such that p(xn) = false.

find (predicate, aggregate)

find (pred, u) returns the first x in u such that pred (x) is true, and "failed" if no such x
exists.

findCycle ( nonNegativeInteger, stream)

findCycle (n, st) determines if stream st is periodic within n terms. The operation returns
a record with three fields: cycle?, prefix, and period. If cycle? has value true, period
denotes the period of the cycle, and prefix gives the number of terms in the stream before
the cycle begins.

finite? ( cardinalNumber)

finite? (f) tests if expression f is finite.
finite? (a) tests if cardinal number a is a finite cardinal, that is, an integer.

fintegrate ( taylorSeries, symbol, coefficient)

fintegrate (s, v, c) integrates the series s with respect to variable v and having c as the
constant of integration.

first ( aggregate [, nonNegativeInteger])

first (u) returns the first element x of aggregate u.
first (u, n) returns a copy of the first n elements of u.

fixedPoint ( function [, positiveInteger])

fixedPoint (f), a function of type A → A, is the fixed point of function f . That is,
fixedPoint (f) = f(fixedPoint(f)).
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fixedPoint (f, n), where f is a function of type List(A) → List(A) and n is a positive
integer, is the fixed point of function f which is assumed to transform a list of length n.

fixedPoints ( permutation)

fixedPoints (p) returns the points fixed by the permutation p.

flagFactor (base, exponent, flag)

flagFactor (base, exponent, flag) creates a factored object with a single factor whose base
is asserted to be properly described by the information flag: one of the strings "nil",
"sqfr", "irred", and "prime".

flatten (inputForm)

flatten (s) returns an input form corresponding to s with all the nested operations
flattened to triples using new local variables. This operation is used to optimize compiled
code.

flexible? ()

flexible? ()$R tests if 2associator(a, b, a) = 0 for all a, b in a domain R of category
FiniteRankNonAssociativeAlgebra. Note: only this can be tested since, in general, it is not
known whether 2a = 0 implies a = 0.

flexibleArray ( listOfElements)

flexibleArray (ls) creates a flexible array from a list of elements ls.

float? (sExpression)

float? (s) is true if s is an atom and belongs o Flt.

float ( integer, integer [ , positiveinteger])

float (a, e) returns abase()
e
as a float.

float (a, e, b) returns abe as a float.

floor ( rationalNumber)

floor (fr), where fr is a fraction, returns the largest integral element below fr.
floor (fl), where fl is a float, returns the largest integer <= fl.

formula ( formulaFormat)

formula (t) extracts the formula section of an IBM SCRIPT Formula formatted object t.

fractionPart ( fraction)

fractionPart (x) returns the fractional part of x. Argument x can be a fraction, a radix
(binary, decimal, or hexadecimal) expansion, or a float. Note: x = whole(x) +
fractionPart(x).

fractRadix ( listOfIntegers, listOfIntegers)

fractRadix (pre, cyc) creates a fractional radix expansion from a list of prefix ragits and a
list of cyclic ragits. For example, fractRadix ([1], [6]) will return 0.16666666 . . ..
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fractRagits ( radixExpansion)

fractRagits (rx) returns the ragits of the fractional part of a radix expansion as a stream
of integers.

freeOf? (expression, kernel)

freeOf? (x, k) tests if expression x does not contain any operator whose name is the
symbol or kernel k.

Frobenius (element)

Frobenius (a)$F returns aq where q is the size ()$F of extension field F .

front (queue)

front (q) returns the element at the front of the queue, or calls error if q is empty.

frst (stream)

frst (s) returns the first element of stream s. Warning: this function should only be called
after a empty? test has been made since there is no error check.

function ( expression, name [ , options])

Most domains provide an operation which converts objects to type InputForm. Argument e
below denotes an object from such a domain. These operations create user-functions from
already computed results.
function (e, f) creates a function f() == e.
function (e, f, [x1, . . . , xn]) creates a function f(x1, . . . , xn) == e.
function (e, f, x) creates a function f(x) == e.
function (e, f, x, y) creates a function f(x, y) == e.
function (expr, [x1, . . . , xn], f), where expr is an input form and where f and the xi’s are
symbols, returns the input form corresponding to f(x1, . . . , xn) == i. See also unparse.

Gamma (smallFloat)

Gamma (x) is the Euler gamma function, Gamma (x), defined by
Γ(x) =

∫∞
0
t(x−1) ∗ exp(−t)dt.

gcdPolynomial (polynomial, polynomial)

gcdPolynomial (p, q) returns the gcd of the univariate polynomials p and q.

gcd ( element [, element, element])

gcd (x, y) returns the greatest common divisor of x and y. Arguments x and y are elements
of a domain of category GcdDomain.
gcd ([x1, . . . , xn]) returns the common gcd of the elements of the list of xi.
gcd (p1, p2, prime) computes the gcd of the univariate polynomials p1 and p2 modulo the
prime integer prime.

generalizedContinuumHypothesisAssumed? ( [bool])

generalizedContinuumHypothesisAssumed? () tests if the hypothesis is currently
assumed.
generalizedContinuumHypothesisAssumed (bool) dictates that the hypothesis is or is
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not to be assumed, according to whether bool is true or false.

generalPosition ( ideal, listOfVariables)

generalPosition (I, listvar) performs a random linear transformation on the variables in
listvar and returns the transformed ideal I along with the change of basis matrix.

generate ( function [, element])

generate (f), where f is a function of no arguments, creates an infinite stream all of whose
elements are equal to the value of f(). Note: generate (f) = [f(), f(), f(), . . .].
generate (f, x), where f is a function of one argument, creates an infinite stream whose

first element is x and whose n th element (n > 1) is f applied to the previous element.
Note: generate (f, x) = [x, f(x), f(f(x)), . . .].
See also HallBasis.

generator ()

generator ()$R returns a root of the defining polynomial of a domain of category
FiniteAlgebraicExtensionField R. This element generates the field as an algebra over the
ground field.
See also MonogenicAlgebra and FreeNilpotentLie.

generators (ideal)

generators (I) returns a list of generators for the ideal I.
generators (gp) returns the generators of a permutation group gp.

genus ()

genus ()$R returns the genus of the algebraic function field R. If R has several absolutely
irreducible components, then the genus of one of them is returned.

getMultiplicationMatrix ()

getMultiplicationTable ()

getMultiplicationMatrix ()$R returns a matrix multiplication table for domain
FiniteFieldNormalBasis(p, n), a finite extension field of degree n over the domain
PrimeField(p) with p elements. Each element of the matrix is a member of the underlying
prime field.
getMultiplicationTable ()$R is similar except that the multiplication table for the
normal basis of the field is represented by a vector of lists of records, each record having
two fields: value, an element of the prime field over which the domain is built, and index,
a small integer. This table is used to perform multiplications between field elements.

getVariableOrder ()

getVariableOrder () returns [[b1, . . . , bm], [a1, . . . , an]] such that the ordering on the
variables was given by setVariableOrder ([b1, . . . , bm], [a1, . . . , an]).

getZechTable ()

getZechTable ()$F returns the Zech logarithm table of the field F where F is some
domain FiniteFieldCyclicGroup(p, extdeg). This table is used to perform additions in the
field quickly.
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gramschmidt ( listOfMatrices)

Argument lv has the form of a list of matrices of elements of type Expression.
gramschmidt (lv) converts the list of column vectors lv into a set of orthogonal column
vectors of Euclidean length 1 using the Gram-Schmidt algorithm.

graphs (integer)

graphs (n) is the cycle index of the group induced on the edges of a graph by applying the
symmetric function to the n nodes. See CycleIndicators for details.

green ()

green () returns the position of the green hue from total hues.

groebner ( listOfPolynomials)

groebner (lp) computes a Gröbner basis for a polynomial ideal generated by the list of
polynomials lp.
groebner (I) returns a set of generators of ideal I that are a Gröbner basis for I.
groebner (lp, infoflag) computes a Gröbner basis for a polynomial ideal generated by the
list of polynomials lp. Argument infoflag is used to get information on the computation.
If infoflag is "info", then summary information is displayed for each s-polynomial
generated. If infoflag is "redcrit", the reduced critical pairs are displayed. To get the
display of both kinds of information, use groebner (lp, ”info”, ”redcrit”).

groebner? (ideal)

groebner? (I) tests if the generators of the ideal I are a Gröbner basis.

groebnerIdeal ( listOfPolynomials)

groebnerIdeal (lp) constructs the ideal generated by the list of polynomials lp assumed to
be a Gröbner basis. Note: this operation avoids a Gröbner basis computation.

groebnerFactorize ( listOfPolynomials [options])

groebnerFactorize (lp[, bool]) returns a list of list of polynomials, each inner list denoting
a Gröbner basis. The union of the solutions of the bases is the solution of the system of
equations given by lp. Information about partial results is printed if a second argument is
given with value true.
groebnerFactorize (lp, nonZeroRestrictions[, bool]), where nonZeroRestrictions is a list
of polynomials, is similar. Here, however, the solutions to the system of equations are
computed under the restriction that the polynomials in the second argument do not vanish.
Information about partial results is printed if a third argument with value true is given.

ground (expression)
ground? (expression)

ground (p) retracts expression polynomial p to the coefficient ring, or calls error if such a
retraction is not possible.
ground? (p) tests if an expression or polynomial p is a member of the coefficient ring. See
also ground?.
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harmonic ( positiveInteger)

harmonic (n) returns the n th harmonic number, defined by H[n] =
∑n

k=1 1/k.

has ( domain, property)

has (R, prop) tests if domain R has property prop. Argument prop is either a category,
operation, an attribute, or a combination of these. For example, Integer has Ring and
Integer has commutative("*").

has? ( operation, property)

has? (op, s) tests if property s is attached to op.

hash (number)

hash (n) returns the hash code for n, an integer or a float.

hasHi ( segment)

hasHi (seg) tests whether the segment seg has an upper bound. For example,
hasHi (1..) = false.

hasSolution? ( matrix, vector)

hasSolution? (A,B) tests if the linear system AX = B has a solution, where A is a matrix
and B is a (column) vector.

hconcat ( outputForms [, outputForm])

hconcat (o1, o2), where o1 and o2 are objects of type OutputForm (normally unexposed),
returns an output form for the horizontal concatenation of forms o1 and o2.
hconcat (lof), where lof is a list of objects of type OutputForm (normally unexposed),
returns an output form for the horizontal concatenation of the elements of lof .

heap ( listOfElements)

heap (ls) creates a Heap of elements consisting of the elements of ls.

heapSort ( predicate, aggregate)

heapSort (pred, agg) sorts the aggregate agg with the ordering function pred using the
heapsort algorithm.

height (expression)

height (f), where f is an expression, returns the highest nesting level appearing in f .
Constants have height 0. Symbols have height 1. For any operator op and expressions f1,
. . . , fn, op(f1, . . . , fn) has height equal to 1 +max(height(f1), . . . , height(fn)).
height (d) returns the number of elements in dequeue d. Note: height (d) = #d.

hermiteH ( nonNegativeInteger, element)

hermiteH (n, x) is the n th Hermite polynomial, H[n](x), defined by
exp (2tx− t2) =

∑∞
n=0H[n](x)tn/n!.

hexDigit ()

hexDigit () returns the class of all characters for which hexDigit? is true.
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hexDigit? ( character)

hexDigit? (c) tests if c is a hexadecimal numeral, that is, one of 0..9, a..f or A..F .

hex (rationalNumber)

hex (r) converts a rational number to a hexadecimal expansion.

hi (segment)

hi (s) returns the second endpoint of segment s. For example, hi (l..h) = h.

horizConcat ( matrix, matrix)

horizConcat (x, y) horizontally concatenates two matrices with an equal number of rows.
The entries of y appear to the right of the entries of x. The operation calls error if the
matrices do not have the same number of rows.

htrigs (expression)

htrigs (f) converts all the exponentials in expression f into hyperbolic sines and cosines.

hue (palette)

hue (p) returns the hue field of the indicated palette p.

hue (color)

hue (c) returns the hue index of the indicated color c.

hypergeometric0F1 ( complexDF, complexSF)

hypergeometric0F1 (c, z) is the hypergeometric function 0F1(c; z). Arguments c and z
are both either small floats or complex small floats.

ideal (polyList)

ideal (polyList) constructs the ideal generated by the list of polynomials polyList.

imag (expression)
imagi ( quaternionOrOctonion)
imagI (octonion)

imag (x) extracts the imaginary part of a complex value or expression x.
imagI (q) extracts the i part of quaternion q. Similarly, operations imagJ, and imagK are
used to extract the j and k parts.
imagi (o) extracts the i part of octonion o. Similarly, imagj, imagk, imagE, imagI,
imagJ, and imagK are used to extract other parts.

implies (boolean, boolean)

implies (a, b) tests if boolean value a implies boolean value b. The result is true except
when a is true and b is false.

in? (ideal, ideal)

in? (I, J) tests if the ideal I is contained in the ideal J .
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inHallBasis ( integer, integer, integer, integer)

inHallBasis?(n, leftCandidate, rightCandidate, left) tests to see if a new element should
be added to the P . Hall basis being constructed. The list
[leftCandidate, wt, rightCandidate] is included in the basis if in the unique factorization
of rightCandidate, we have left factor leftOfRight, and leftOfRight <= leftCandidate

increasePrecision ( integer)

increasePrecision (n) increases the current precision by n decimal digits.

index ( positiveInteger)

index (i) takes a positive integer i less than or equal to size () and returns the i th element
of the set. This operation establishes a bijection between the elements of the finite set and
1..size().

index? (index, aggregate)

index? (i, u) tests if i is an index of aggregate u. For example, index?(2, [1, 2, 3]) is
true but index?(4, [1, 2, 3]) is false.

infieldIntegrate ( rationalFunction, symbol)

infieldIntegrate (f, x), where f is a fraction of polynomials, returns a fraction g such that
dg
dx = f if g exists, and "failed" otherwise.

infinite? ( orderedCompletion)

infinite? (x) tests if x is infinite, where x is a member of the ordered completion of a
domain. See OrderedCompletion using Browse.

infinity ()

infinity () returns infinity denoting +∞ as a one point completion of the integers. See
OnePointCompletion using Browse. See also minusInfinity and plusInfinitity.

infix (outputForm, outputForms [ , OutputForm])

infix (o, lo), where o is an object of type OutputForm (normally unexposed) and lo is a list
of objects of type OutputForm, creates a form depicting the nary application of infix
operation o to a tuple of arguments lo.
infix (o, a, b), where o, a, and b are objects of type OutputForm (normally unexposed),
creates an output form which displays as: a op b.

initial ( differentialPolynomial)

initial (p) returns the leading coefficient of differential polynomial p expressed as a
univariate polynomial in its leader.

initializeGroupForWordProblem ( group [, integer, integer])

initializeGroupForWordProblem (gp[, n,m]) initializes the group gp for the word
problem. Consult PermutationGroup using Browse for details.

input ( operator [, function])

input (op) returns the "%input" property of op if it has one attached, and "failed"
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otherwise.
input (op, f) attaches f as the "%input" property of op. If op has a "%input" property f ,
then op(a1, . . . , an) is converted to InputForm using f(a1, . . . , an). Argument f must be a
function with signature List(InputForm) → InputForm.

inRadical? (polynomial, ideal)

inRadical? (f, I) tests if some power of the polynomial f belongs to the ideal I.

insert (x, aggregate [ , integer])

insert (x, u, i) returns a copy of u having x as its i th element.

insert (v, u, k) returns a copy of u having v inserted beginning at the i th element.
insert! (x, u) destructively inserts item x into bag u.
insert! (x, u) destructively inserts item x as a leaf into binary search tree or binary
tournament u.
insert! (x, u, i) destructively inserts x into aggregate u at position i.
insert! (v, u, i) destructively inserts aggregate v into u at position i.
insert! (x, d, n) destructively inserts n copies of x into dictionary d.

insertBottom! ( element, queue)

insertBottom! (x, d) destructively inserts x into the dequeue d at the bottom (back) of
the dequeue.

insertTop! (element, dequeue)

insertTop! (x, d) destructively inserts x into the dequeue d at the top (front). The element
previously at the top of the dequeue becomes the second in the dequeue, and so on.

integer (expression)
integer? (expression)
integerIfCan ( expression)

integer (x) returns x as an integer, or calls error if this is not possible.
integer? (x) tests if expression x is an integer.
integerIfCan (x) returns expression x as of type Integer or else "failed" if it cannot.

integerPart (float)

integerPart (fl) returns the integer part of the mantissa of float fl.

integral ( expression, symbol)
integral ( expression, segmentBinding)

integral (f, x) returns the formal integral
∫
fdx.

integral (f, x = a..b) returns the formal definite integral
∫ b

a
f(x)dx.

integralBasis ()
integralBasisAtInfinity ()

Domain F is the domain of functions on a fixed curve. See FunctionFieldCategory using
Browse.
integralBasisAtInfinity ()$F returns the local integral basis at infinity.
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integralBasis ()$F returns the integral basis for the curve.

integralCoordinates ( function)

integralCoordinates (f), where f is a function on a curve defined by domain F , returns
the coordinates of f with respect to the integralBasis ()$F as polynomials Ai together
with a common denominator d. Specifically, the operation returns a record having selector
num with value [A1, . . . , An] and selector den with value d such that
f = (A1w1 + . . .+Anwn)/d where (w1, . . . , wn) is the integral basis. See
FunctionFieldCategory using Browse.

integralDerivationMatrix ( function)

integralDerivationMatrix (d) extends the derivation d and returns the coordinates of
the derivative of f with respect to the integralBasis ()$F as a matrix of polynomials and
a common denominator Q. Specifically, the operation returns a record having selector num

with value M and selector den with value Q such that the i th row of M divided by Q form
the coordinates of f with respect to integral basis (w1, . . . , wn). See
FunctionFieldCategory using Browse.

integralMatrix ()

integralMatrixAtInfinity ()

Domain F is a domain of functions on a fixed curve. These operations return a matrix
which transform the natural basis to an integral basis. See FunctionFieldCategory using
Browse.
integralMatrix () returns M such that (w1, . . . , wn) =M(1, y, . . . , yn−1), where
(w1, . . . , wn) is the integral basis returned by integralBasis ()$F .
integralMatrixAtInfinity ()$F returns matrix M which transforms the natural basis
such that (v1, . . . , vn) =M(1, y, . . . , yn−1) where (v1, . . . , vn) is the local integral basis at
infinity returned by integralBasisAtInfinity ()$F .

integralRepresents (vector, commonDenominator)

integralRepresents ([A1, . . . , An], d) is the inverse of the operation
integralCoordinates defined for domain F , a domain of functions on a fixed curve.
Given the coordinates as polynomials [A1, . . . , An] over a common denominator d, this
operation returns the function represented as(A1w1 + . . .+Anwn)/d where (w1, . . . , wn) is
the integral basisreturned by integralBasis ()$F . See FunctionFieldCategory using
Browse.

integrate ( expression)
integrate ( expression, variable [ , options])

integrate (f) returns the integral of a univariate polynomial or power series f with respect
to its distinguished variable.
integrate (f, x) returns the integral of f(x)dx, where x is viewed as a real variable.
integrate (f, x = a..b[, ”noPole”]) returns the integral of f(x)dx from a to b. If it is not
possible to check whether f has a pole for x between a and b, then a third argument
"noPole" will make this function assume thatf has no such pole.This operation calls error
if f has a pole for x between a and b or if a third argument different from "noPole" is
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given.

interpret (inputForm)

interpret (f) passes f of type InputForm to the interpreter.
interpret (f)$P , where P is the package InputFormFunctions1(R) for some type R, passes f
of type InputForm to the interpreter, and transforms the result into an object of type R.

intersect ( elements [, element])

intersect (li), where li is a list of ideals, computes the intersection of the list of ideals li.
intersect (u, v), where u and v are sets, returns the set w consisting of elements common
to both sets u and v. See also Multiset.
intersect (I, J), where I and J are ideals, computes the intersection of the ideals I and J .

inv (element)

inv (x) returns the multiplicative inverse of x, where x is an element of a domain of
category Group or DivisionRing, or calls error if x is 0.

inverse (matrix)

inverse (A) returns the inverse of the matrix A, or "failed" if the matrix is not invertible,
or calls error if the matrix is not square.

inverseColeman ( listOfIntegers, listOfIntegers, matrix)

inverseColeman (alpha, beta, C) returns the lexicographically smallest permutation in a
double coset of the symmetric group corresponding to a non-negative Coleman-matrix.
Consult SymmetricGroupCombinatoricFunctions using Browse for details.

inverseIntegralMatrix ( )

inverseIntegralMatrixAtInfinity ()

Domain F is a domain of functions on a fixed curve. These operations return a matrix
which transform an integral basis to a natural basis. See FunctionFieldCategory using
Browse.
inverseIntegralMatrix ()$F returns M such that M(w1, . . . , wn) = (1, y, . . . , yn−1) where
(w1, . . . , wn) is the integral basis returned by integralBasis ()$F . See also
integralMatrix.
inverseIntegralMatrixAtInfinity () returns M such that
M(v1, . . . , vn) = (1, y, . . . , y(n− 1)) where (v1, . . . , vn) is the local integral basis at infinity
returned by integralBasisAtInfinity ()$F . See also integralMatrixAtInfinity.

inverseLaplace (expression, symbol, symbol)

inverseLaplace (f, s, t) returns the Inverse Laplace transform of f(s) using t as the new
variable, or "failed" if unable to find a closed form.

invmod (positiveInteger, positiveInteger)

invmod (a, b), for relatively prime positive integers a and b such that a < b, returns
1/a mod b.
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iomode (file)

iomode (f) returns the status of the file f as one of the following strings: "input",
"output" or "closed".

irreducible? ( polynomial)

irreducible? (p) tests whether the polynomial p is irreducible.

irreducibleFactor ( element, integer)

irreducibleFactor (base, exponent) creates a factored object with a single factor whose
base is asserted to be irreducible (flag = "irred").

irreducibleRepresentation ( listOfIntegers [, permutations])

irreducibleRepresentation (lambda[, pi]) returns a matrix giving the irreducible
representation corresponding to partition lambda, represented as a list of integers, in
Young’s natural form of the permutation pi in the symmetric group whose elements
permute 1, 2, . . . , n. If a second argument is not given, the permutation is taken to be the
following two generators of the symmetric group, namely (12) (2-cycle) and (12 . . . n)
((n)-cycle).

is? (expression, pattern)

is? (expr, pat) tests if the expression expr matches the pattern pat.
is? (expression, op) tests if expression is a kernel and is its operator is op.

isAbsolutelyIrreducible? ( listOfMatrices, integer)

isAbsolutelyIrreducible? (aG, numberOfTries) uses Norton’s irreducibility test to
check for absolute irreduciblity. Consult RepresentationPackage2 using Browse for
details.

isExpt ( expression [, operator])

isExpt (p[, op]) returns a record with two fields: var denoting a kernel x, and exponent
denoting an integer n, if expression p has the form p = xn and n ̸= 0. If a second argument
op is given, x must have the form op(a) for some a.

isMult (expression)

isMult (p) returns a record with two fields: coef denoting an integer n, and var denoting a
kernel x, if p has the form n ∗ x and n ̸= 0, and "failed" if this is not possible.

isobaric? ( differentialPolynomial)

isobaric? (p) tests if every differential monomial appearing in the differential polynomial p
has the same weight.

isPlus (expression)

isPlus (p) returns [m1, . . . ,mn] if p has the form m1 + . . .+mn for n > 1 and mi ̸= 0, and
"failed" if this is not possible.

isTimes (expression)

isTimes (p) returns [a1, . . . , an] if p has the form a1 ∗ . . . ∗ an for n > 1 and mi ̸= 1, and
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"failed" if this is not possible.

Is ( subject, pattern)

Is(expr, pat) matches the pattern pat on the expression expr and returns a list of matches
[v1 = e1, . . . , vn = en] or "failed" if matching fails. An empty list is returned if either
expr is exactly equal to pat or if pat does not match expr.

jacobi (integer, integer)

jacobi (a, b) returns the Jacobi symbol J(a/b). When b is odd,
J(a/b) =

∏
p∈factors(b) L(a/p). Note: by convention, 0 is returned if gcd (a, b) ̸= 1.

jacobiIdentity? ()

jacobiIdentity? () tests if (ab)c+ (bc)a+ (ca)b = 0 for all a, b, c in a domain of
FiniteRankNonAssociativeAlgebra. For example, this relation holds for crossed products of
three-dimensional vectors.

janko2 ( [listOfIntegers])

janko2 () constructs the janko group acting on the integers 1, . . . , 100.
janko2 ([li]) constructs the janko group acting on the 100 integers given in the list li. The
default value of li is [1, . . . , 100]. This operation removes duplicates in the list and calls
error if li does not have exactly 100 distinct entries.

jordanAdmissible? ()
jordanAlgebra? ()

jordanAdmissible? ()$F , where F is a member of FiniteRankNonAssociativeAlgebra(R)
over a commutative ring R, tests if 2 is invertible in R and if the algebra defined by {a, b}
defined by (1/2)(ab+ ba) is a Jordan algebra, that is, satisfies the Jordan identity.
jordanAlgebra? ()$F tests if the algebra is commutative, that characteristic ()$F ̸= 2,
and (ab)a2 − a(ba2) = 0 for all a and b in the algebra (Jordan identity). Example: for every
associative algebra (A,+,@), you can construct a Jordan algebra (A,+, ∗), where
a ∗ b := (a@b+ b@a)/2.

kernel (operator, expression)

kernel (op, x) constructs op(x) without evaluating it.
kernel (op, [f1, . . . , fn]) constructs op(f1, . . . , fn) without evaluating it.

kernels (expression)

kernels (f) returns the list of all the top-level kernels appearing in expression f , but not
the ones appearing in the arguments of the top-level kernels.

key? (key, dictionary)
keys (dictionary)

key? (k, d) tests if k is a key in dictionary d. Dictionary d is an element of a domain of
category KeyedDictionary(K, E), where K and E denote the domains of keys and entries.
keys (d) returns the list the keys in table d.
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kroneckerDelta ( [integer, integer])

kroneckerDelta () is the rank 2 tensor defined by kroneckerDelta (i, j) = 1 if i = j, and
0 otherwise.

label ( outputForm, outputForm)

label (o1, o2), where o1 and o2 are objects of type OutputForm (normally unexposed),
returns an output form displaying equation o2 with label o1.

laguerreL (nonNegativeInteger, x)
laguerreL (nonNegativeInteger, nonNegativeInteger, x)

laguerreL (n, x) is the n th Laguerre polynomial, L[n](x), defined by
exp(−tx

1−t )/(1− t) =
∑∞

n=0 L[n](x)t
n/n!.

laguerreL (m,n, x) is the associated Laguerre polynomial, Lm[n](x), defined as the m th

derivative of L[n](x).

lambda (inputForm, listOfSymbols)

lambda (i, [x1, . . . xn]) returns the input form corresponding to (x1, . . . , xn) 7→ i if n > 1.
See also compiledFunction, flatten, and unparse.

laplace (expression, symbol, symbol)

laplace (f, t, s) returns the Laplace transform of f(t), defined by
∫∞
t=0

exp(−st)f(t)dt. If
the transform cannot be computed, the formal object laplace (f, t, s) is returned.

last (indexedAggregate [, nonNegativeInteger])

last (u) returns the last element of u.
last (u, n) returns a copy of the last n (n ≥ 0) elements of u.

laurent ( expression)
laurentIfCan ( expression)

laurent (u) converts u to a Laurent series, or calls error if this is not possible.
laurentIfCan (u) converts the Puiseux series u to a Laurent series, or returns "failed" if
this is not possible.
laurent (f, x = a) expands the expression f as a Laurent series in powers of (x− a).
laurent (f, n) expands the expression f as a Laurent series in powers of x; at least n terms
are computed.
laurent (n 7→ an, x = a, n0..[n1]) returns a Laurent series defined by

∑n1

n=n0
an(x− a)n,

where n1 is ∞ by default.
laurent (an, n, x = a, n0..[n1]) returns a Laurent series defined by

∑n1

n=n0
an(x− a)n,

where n1 is ∞ by default.

laurentRep ( expression)

laurentRep (f(x)) returns g(x) where the Puiseux series f(x) = g(xr) is represented by
[r, g(x)].

lazy? (stream)

lazy? (s) tests if the first node of the stream s is a lazy evaluation mechanism which could
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produce an additional entry to s.

lazyEvaluate ( stream)

lazyEvaluate (s) causes one lazy evaluation of stream s. Caution: s must be a “lazy
node” satisfying lazy? (s) = true, as there is no error check. A call to this function may or
may not produce an explicit first entry.

lcm ( elements [, element])

lcm (x, y) returns the least common multiple of x and y.
lcm (lx) returns the least common multiple of the elements of the list lx.

ldexquo (lodOperator, lodOperator)

ldexquo (a, b) returns q such that a = b ∗ q, or "failed" if no such q exists.

leftDivide ( lodOperator, lodOperator)
leftQuotient ( lodOperator, lodOperator)
leftRemainder ( lodOperator, lodOperator)

leftDivide (a, b) returns a record with two fields: “quotient” q and “remainder” r such
that a = bq+ r and the degree of r is less than the degree of b. This operation is called “left
division.” Operation leftQuotient (a, b) returns q, and leftRemainder (a, b) returns r.

leader ( differentialPolynomial)

leader (p) returns the derivative of the highest rank appearing in the differential
polynomial p, or calls error if p is in the ground ring.

leadingCoefficient ( polynomial)

leadingCoefficient (p) returns the coefficient of the highest degree term of polynomial p.
See also IndexedDirectProductCategory and MonogenicLinearOperator.

leadingIdeal (ideal)

leadingIdeal (I) is the ideal generated by the leading terms of the elements of the ideal I.

leadingMonomial ( polynomial)

leadingMonomial (p) returns the monomial of polynomial p with the highest degree.

leaf? (aggregate)
leafValues (aggregate)
leaves (aggregate)

These operations apply to a recursive aggregate a. See, for example, BinaryTree.
leaf? (a) tests if a is a terminal node.
leaves (a) returns the list of values at the leaf nodes in left-to-right order.

left ( binaryRecursiveAggregate)

left (a) returns the left child of binary aggregate a.

leftAlternative? ()

leftAlternative? ()$F , where F is a domain of FiniteRankNonAssociativeAlgebra, tests if
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2 ∗ associator(a, a, b) = 0 for all a, b in F . Note: in general, you do not know whether
2 ∗ a = 0 implies a = 0.

leftCharacteristicPolynomial (polynomial)

leftCharacteristicPolynomial (p)$F returns the characteristic polynomial of the left
regular representation of p of domain F with respect to any basis. Argument p is a member
of a domain of category FiniteRankNonAssociativeAlgebra(R) where R is a commutative ring.

leftDiscriminant ( [listOfVectors])

leftDiscriminant ([v1, . . . , vn])$F where F is a domain of category
FramedNonAssociativeAlgebra over a commutative ring R, returns the determinant of the

n-by-n matrix whose element at the i th row and j th column is given by the left trace of
the product vi ∗ vj . Same as determinant(leftTraceMatrix ([v1, . . . , vn])). If no
argument is given, v1, . . . , vn are taken to elements of the fixed R-basis.

leftGcd (lodOperator, lodOperator)

leftGcd (a, b) computes the value g of highest degree such that a = aa ∗ g and b = bb ∗ g for
some values aa and bb. The value g is computed using left-division.

leftLcm (lodOperator, lodOperator)

leftLcm (a, b) computes the value m of lowest degree such that m = a ∗ aa = b ∗ bb for
some values aa and bb. The value m is computed using left-division.

leftMinimalPolynomial ( element)

leftMinimalPolynomial (a) returns the polynomial determined by the smallest
non-trivial linear combination of left powers of a, an element of a domain of category
FiniteRankNonAssociativeAlgebra. Note: the polynomial has no a constant term because, in
general, the algebra has no unit.

leftNorm (element)

leftNorm (a) returns the determinant of the left regular representation of a, an element of
a domain of category FiniteRankNonAssociativeAlgebra.

leftPower ( monad, nonNegativeInteger)

leftPower (a, n) returns the n th left power of monad a, that is,
leftPower (a, n) := aleftPower(a, n− 1). If the monad has a unit then
leftPower (a, 0) := 1. Otherwise, define leftPower (a, 1) = a See Monad and
MonadWithUnit for details. See also leftRecip.

leftRankPolynomial ()

leftRankPolynomial ()$F calculates the left minimal polynomial of a generic element of
an algebra of domain F , a domain of category FramedNonAssociativeAlgebra over a
commutative ring R. This generic element is an element of the algebra defined by the same
structural constants over the polynomial ring in symbolic coefficients with respect to the
fixed basis.
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leftRank (element)

leftRank (x) returns the number of linearly independent elements in xb1, . . . , xbn, where
b = [b1, . . . , bn] is a basis. Argument x is an element of a domain of category
FramedNonAssociativeAlgebra over a commutative ring R.

leftRecip (element)

leftRecip (a) returns an element that is a left inverse of a, or "failed", if there is no unit
element, such an element does not exist, or the left reciprocal cannot be determined (see
unitsKnown).

leftRecip (element)

leftRecip (a) returns an element, which is a left inverse of a, or "failed" if such an
element doesn’t exist or cannot be determined (see unitsKnown).

leftRegularRepresentation ( element [, vectorOfElements])

This operation is defined on a domain F of category NonAssociativeAlgebra.
leftRegularRepresentation(a[, [v1, . . . , vn]]) returns the matrix of the linear map defined
by left multiplication by a with respect to the basis [v1, . . . , vn]. If a second argument is
missing, the basis is taken to be the fixed basis for F .

leftTraceMatrix ( [vectorOfElements])

This operation is defined on a domain F of category NonAssociativeAlgebra.
leftTraceMatrix ([v]), where v is an optional vector [v1, . . . , vn], returns the n-by-n
matrix M such that Mi,j is the left trace of the product vi ∗ vj of elements from the basis
[v1, . . . , vn]. If the argument is missing, the basis is taken to be the fixed basis for F .

leftTrace ( element)

leftTrace (a) returns the trace of the left regular representation of a, an element of a
domain of category FiniteRankNonAssociativeAlgebra.

leftTrim (string, various)

leftTrim (s, c) returns string s with all leading characters c deleted. For example,
leftTrim(" abc ", " ") returns "abc ".
leftTrim (s, cc) returns s with all leading characters in cc deleted. For example,
leftTrim("(abc)", charClass "()") returns "abc".

leftUnit ()
leftUnits ()

These operations are defined on a domain F of category NonAssociativeAlgebra.
leftUnit ()$F returns a left unit of the algebra (not necessarily unique), or "failed" if
there is none.
leftUnits ()$F returns the affine space of all left units of an algebra F , or "failed" if
there is none, where F is a domain of category FiniteRankNonAssociativeAlgebra. The
normal result is returned as a record with selector particular for an element of F , and
basis for a list of elements of F .
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legendreSymbol ( integer, integer)

legendreSymbol (a, p) returns the Legendre symbol L(a/p), L(a/p) = (−1)(p−1)/2 mod p
for prime p. This is 0 if a = 0, 1 if a is a quadratic residue mod p, and −1 otherwise.
Note: because the primality test is expensive, use jacobi (a, p) if you know that p is prime.

LegendreP (nonNegativeInteger, element)

LegendreP (n, x) is the n th Legendre polynomial, P [n](x), defined by
1√

(1−2xt+t2)
=
∑∞

n=0 P [n](x)t
n.

length (various)

length (a) returns the length of integer a in digits.

less? (aggregate, nonNegativeInteger)

less? (u, n) tests if u has less than n elements.

leviCivitaSymbol ()

leviCivitaSymbol () is the rank dim tensor defined by leviCivitaSymbol ()(i1, . . . idim),
which is +1, −1 or 0 according to whether the permutation i1, . . . , idim is an even
permutation, an odd permutation, or not a permutation of i0, . . . , i0 + dim− 1,
respectively, where i0 is the minimum index.

lexGroebner ( listOfPolynomials, listOfSymbols)

lexGroebner (lp, lv) computes a Gröbner basis for the list of polynomials lp in
lexicographic order. The variables lv are ordered by their position in the list lp.

lhs ( equationOrRewriteRule)

lhs (x) returns the left hand side of an equation or rewrite-rule.

library (filename)

library (name) creates a new library file with filename name.

lieAdmissible? ()

lieAdmissible? ()$F tests if the algebra defined by the commutators is a Lie algebra. The
domain F is a member of the category FiniteRankNonAssociativeAlgebra(R). The property
of anticommutativity follows from the definition.

lieAlgebra? ()

lieAlgebra? ()$F tests if the algebra of F is anticommutative and that the Jacobi identity
(a ∗ b) ∗ c+ (b ∗ c) ∗ a+ (c ∗ a) ∗ b = 0 is satisfied for all a, b, c in F .

light (color)

light (c) sets the shade of a hue c to its highest value.

limit ( expression, equation [ , direction])

limit (f(x), x = a) computes the real two-sided limit of f as its argument x approaches a.
limit (f(x), x = a, ”left”) computes the real limit of f as its argument x approaches a
from the left.
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limit (f(x), x = a, ”right”) computes the corresponding limit as x approaches a from the
right.

limitedIntegrate ( rationalFunction, symbol, listOfRationalFunctions)

limitedIntegrate (f, x, [g1, . . . , gn]) returns fractions [h, [ci, gi]] such that the gi’s are
among [g1, . . . , gn], dci/dx = 0, and d(h+

∑
i ciloggi)/dx = f if possible, "failed"

otherwise.

linearDependenceOverZ ( vector)
linearlyDependentOverZ? ( vector)

linearlyDependenceOverZ ([v1, . . . , vn]) tests if the elements vi of a ring (typically
algebraic numbers or Expressions) are linearly dependent over the integers. If so, the
operation returns [c1, . . . , cn] such that c1v1 + · · ·+ cnvn = 0 (for which not all the ci’s are
0). If linearly independent over the integers, "failed" is returned.
linearlyDependentOverZ? ([v1, . . . , vn]) returns true if the vi’s are linearly dependent
over the integers, and false otherwise.

lineColorDefault ( [palette])

lineColorDefault () returns the default color of lines connecting points in a
two-dimensional viewport.
lineColorDefault (p) sets the default color of lines connecting points in a two-dimensional
viewport to the palette p.

linSolve ( listOfPolynomials, listOfVariables)

linSolve (lp, lvar) finds the solutions of the linear system of polynomials lp = 0 with
respect to the list of symbols lvar.

li (expression)

li(x) returns the logarithmic integral of x defined by,
∫

dx
log(x) .

list (element)

list (x) creates a list consisting of the one element x.

list? ( sExpression)

list? (s) tests if SExpression value s is a Lisp list, possibly the null list.

listBranches ( listOfListsOfPoints)

listBranches (c) returns a list of lists of points representing the branches of the curve c.

listRepresentation ( permutation)

listRepresentation (p) produces a representation rep of the permutation p as a list of
preimages and images i, that is, permutation p maps (rep.preimage).k to (rep.image).k for
all indices k.

listYoungTableaus ( listOfIntegers)

listYoungTableaus (lambda), where lambda is a proper partition, generates the list of all
standard tableaus of shape lambda by means of lattice permutations. The numbers of the
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lattice permutation are interpreted as column labels.

listOfComponents ( threeSpace)

listOfComponents (sp) returns a list of list of list of points for threeSpace object sp
assumed to be composed of a list of components, each a list of curves, which in turn is each
a list of points, or calls error if this is not possible.

listOfCurves (sp) returns a list of list of subspace component properties for threeSpace
object sp assumed to be a list of curves, each of which is a list of subspace components, or
calls error if this is not possible.

lo (segment)

lo (s) returns the first endpoint of s. For example, lo(l..h) = l.

log ( expression)
logIfCan ( expression)

log (x) returns the natural logarithm of x.
logIfCan (z) returns log (z) if possible, and "failed" otherwise.

log2 ( [float])

log2 () returns ln(2) = 0.6931471805 . . ..
log2 (x) computes the base 2 logarithm for x.

log10 ( [float])

log10 () returns ln(10) = 2.3025809299 . . ..
log10 (x) computes the base 10 logarithm for x.

logGamma (float)

logGamma (x) is the natural log of Γ(x). Note: this can often be computed even if Γ(x)
cannot.

lowerCase ( [string])
lowerCase? ( character)

lowerCase () returns the class of all characters for which lowerCase? is true.
lowerCase (c) returns a corresponding lower case alphabetic character c if c is an upper
case alphabetic character, and c otherwise.
lowerCase (s) returns the string with all characters in lower case.
lowerCase? (c) tests if character c is an lower case letter, that is, one of a. . . z.

listOfProperties ( threeSpace)

listOfProperties (sp) returns a list of subspace component properties for sp of type
ThreeSpace, or calls error if this is not possible.

listOfPoints ( threeSpace)

listOfPoints (sp), where sp is a ThreeSpace object, returns the list of points component
contained in sp.
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mainKernel ( expression)

mainKernel (f) returns a kernel of f with maximum nesting level, or "failed" if f has
no kernels (that is, f is a constant).

mainVariable ( polynomial)

mainVariable (u) returns the variable of highest ordering that actually occurs in the
polynomial p, or "failed" if no variables are present. Argument u can be either a
polynomial or a rational function.

makeFloatFunction ( expression, symbol [ , symbol])

Argument expr may be of any type that is coercible to type InputForm (objects of the most
common types can be so coerced).
makeFloatFunction (expr, x) returns an anonymous function of type Float → Float
defined by x 7→ expr.
makeFloatFunction (expr, x, y) returns an anonymous function of type (Float, Float) →
Float defined by (x, y) 7→ expr.

makeVariable ( element)

makeVariable (s), where s is a symbol, differential indeterminate, or a differential
polynomial, returns a function f defined on the non-negative integers such that f(n)

returns the n th derivative of s.
makeVariable (s, n) returns the n th derivative of a differential indeterminate s as an
algebraic indeterminate.

makeObject (functions, range [ , range])

Arguments f , g, and h appearing below with arguments (for example, f(x, y)) denote
symbolic expressions involving those arguments.

Arguments f , g, and h appearing below as symbols without arguments denote user-defined
functions which map one or more DoubleFloat values to DoubleFloat values.

Values a, b, c, and d denote numerical values.

makeObject (curve(f, g, h), a..b) returns the space sp of the domain ThreeSpace with the
addition of the graph of the parametric curve x = f(t), y = g(t), z = h(t) as t ranges from
min (a, b) to max (a, b).

makeObject (curve(f(t), g(t), h(t)), t = a..b) returns the space sp of the domain
ThreeSpace with the addition of the graph of the parametric curve x = f(t), y = g(t),
z = h(t) as t ranges from min (a, b) to max (a, b).

makeObject (f, a..b, c..d) returns the space sp of the domain ThreeSpace with the addition
of the graph of z = f(x, y) as x ranges from min (a, b) to max (a, b) and y ranges from
min (c, d) to max (c, d).

makeObject (f(x, y), x = a..b, y = c..d) returns the space sp of the domain ThreeSpace
with the addition of the graph of z = f(x, y) as x ranges from min (a, b) to max (a, b) and
y ranges from min (c, d) to max (c, d).

makeObject (surface(f, g, h), a..b, c..d) returns the space sp of the domain ThreeSpace
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with the addition of the graph of the parametric surface x = f(u, v), y = g(u, v), z = h(u, v)
as u ranges from min (a, b) to max (a, b) and v ranges from min (c, d) to max (c, d).

makeObject(surface(f(u, v), g(u, v), h(u, v)), u = a..b, v = c..d) returns the space sp of the
domain ThreeSpace with the addition of the graph of the parametric surface x = f(u, v),
y = g(u, v), z = h(u, v) as u ranges from min (a, b) to max (a, b) and v ranges from min (c,
d) to max (c, d).

makeYoungTableau ( listOfIntegers, listOfIntegers)

makeYoungTableau (lambda, gitter) computes for a given lattice permutation gitter and
for an improper partition lambda the corresponding standard tableau of shape lambda. See
listYoungTableaus.

mantissa (float)

mantissa (x) returns the mantissa part of x.

map (function, structure [ , structure])
map! (function, structure)

map (fn, u) maps the one-argument function fn onto the components of a structure,
returning a new structure. Most structures allow f to have different source and target
domains. Specifically, the function f is mapped onto the following components of the
structure as follows. If u is: 1pc 0

a series: the coefficients of the series.

a polynomial: the coefficients of the non-zero monomials.

a direct product of elements: the elements.

an aggregate, tuple, table, or a matrix: all its elements.

an operation of the form op(a1, . . . , an): each ai, returning
op(f(a1), . . . , f(an)).

a fraction: the numerator and denominator.

complex: the real and imaginary parts.

a quaternion or octonion: the real and all imaginary parts.

a finite or infinite series or stream: all the coefficients.

a factored object: onto all the factors.

a segment a..b or a segment binding of the form x = a..b: each of the
elements from a to b.

an equation: both sides of the equation.

map (fn, u, v) maps the two argument function fn onto the components of a structure,
returning a new structure. Arguments u and v can be matrices, finite aggregates such as
lists, tables, and vectors, and infinite aggregates such as streams and series.

map! (f, u), where u is homogeneous aggregate, destructively replaces each element x of u
by f(x).

See also match.



1128 APPENDIX E. OPERATIONS

mapCoef ( function, freeAbelianMonoid)
mapGen ( function, freeAbelianMonoid)

mapCoeff (f,m) maps unary function f onto the coefficients of a free abelian monoid of
the form e1a1 + . . .+ enan returning f(e1)a1 + . . .+ f(en)an.
mapGen (fn,m) similarly returns e1f(a1) + . . .+ enf(an). See
FreeAbelianMonoidCategory using Browse.

mapDown! (tree, value, function)

These operations make a preorder traversal (node then left branch then right branch) of a
tree t of type BalancedBinaryTree(S), destructively mapping values of type S from the root
to the leaves of the tree, then returning the modified tree as value; p is a value of type S.
mapDown! (t, p, f), where f is a function of type (S, S) → S, replaces the successive
interior nodes of t as follows. The root value x is replaced by q = f(x, p). Then
mapDown! is recursively applied to (l, q, f) and (r, q, f) where l and r are respectively the
left and right subtrees of t.
mapDown! (t, p, f), where f is a function of type (S, S, S) → List S, is similar. The root
value of t is first replaced by p. Then f is applied to three values: the value at the current,
left, and right node (in that order) to produce a list of two values l and r, which are then
passed recursively as the second argument of mapDown! to the left and right subtrees.

mapExponents ( function, polynomial)

mapExponents (fn, u) maps function fn onto the exponents of the non-zero monomials
of polynomial u.

mapUp! ( [tree, ]tree, function)

These operations make an endorder traversal (left branch then right branch then node) of a
tree t of type BalancedBinaryTree(S), destructively mapping values of type S from the leaves
to the root of the tree, then returning the modified tree as value; p is a value of type S.
mapUp! (t, f), where f has type (S, S) → S, replaces the value at each interior node by
f(l, r), where l and r are the values at the immediate left and right nodes.
mapUp! (t, t1, f) makes an endorder traversal of both t and t1 (of identical shape) in
parallel. The value at each successive interior node of t is replaced by f(l, r, l1, r1), where l
and r are the values at the immediate left and right nodes of t, and l1 and r1 are
corresponding values of t1.

mask (integer)

mask (n) returns 2n − 1 (an n-bit mask).

match? (string, string, character)

match? (s, t, char) tests if s matches t except perhaps for multiple and consecutive
occurrences of character char. Typically char is the blank character.

match (list, list [ , option])

match (la, lb[, u]), where la and lb are lists of equal length, creates a function that can be
used by map. The target of a source value x in la is the value y with the corresponding
index in lb. Optional argument u defines the target for a source value a which is not in la.
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If u is a value of the source domain, then a is replaced by u, which must be a member of la.
If u is a value of the target domain, the value returned by the map for a is u. If u is a
function f , then the value returned is f(a). If no third argument is given, an error occurs
when such a a is found.

mathieu11 ( [listOfIntegers])
mathieu12 ( [listOfIntegers])
mathieu22 ( [listOfIntegers])
mathieu23 ( [listOfIntegers])
mathieu24 ( [listOfIntegers])

mathieu11 ([li]) constructs the mathieu group acting on the eleven integers given in the
list li. Duplicates in the list will be removed and error will be called if li has fewer or
more than eleven different entries. The default value of li is [1, . . . , 11]. Operations
mathieu12, mathieu22, and mathieu23 and mathieu24 are similar. These operations
provide examples of permutation groups in Axiom.

matrix (listOfLists)

matrix (l) converts the list of lists l to a matrix, where the list of lists is viewed as a list of
the rows of the matrix.
matrix (llo), where llo is a list of list of objects of type OutputForm (normally unexposed),
returns an output form displaying llo as a matrix.

max ( [various])

max () returns the largest small integer.
max (u) returns the largest element of aggregate u.
max (x, y) returns the maximum of x and y relative to a total ordering “<”.

maxColIndex (matrix)

maxColIndex (m) returns the index of the last column of the matrix or two-dimensional
array m.

maxIndex (aggregate)

maxIndex (u) returns the maximum index i of indexed aggregate u. For most indexed
aggregates (vectors, strings, lists), maxIndex (u) is equivalent to #u.

maxRowIndex (matrix)

maxRowIndex (m) returns the index of the “last” row of the matrix or two-dimensional
array m.

meatAxe ( listOfListsOfMatrices [, boolean, integer, integer])

meatAxe (aG[, randomElts, numOfTries,maxTests]) tries to split the representation
given by aG and returns a 2-list of representations. All matrices of argument aG are
assumed to be square and of equal size. The default values of arguments randomElts,
numOfTries and maxTests are false, 25, and 7, respectively.

member? (element, aggregate)

member? (x, u) tests if x is a member of u.
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member? (pp, gp), where pp is a permutation and gp is a group, tests whether pp is in the
group gp.

merge (various)
merge! (various)

merge ([s1, s2, . . . , sn]) will create a new ThreeSpace object that has the components of all
the ones in the list; groupings of components into composites are maintained.
merge (s1, s2) will create a new ThreeSpace object that has the components of s1 and s2;
groupings of components into composites are maintained.
merge ([p, ]a, b) returns an aggregate c which merges a and b. The result is produced by
examining each element x of a and y of b successively. If p(x, y) is true, then x is inserted
into the result. Otherwise y is inserted. If x is chosen, the next element of a is examined,
and so on. When all the elements of one aggregate are examined, the remaining elements of
the other are appended. For example, merge ( <, [1, 3], [2, 7, 5]) returns [1, 2, 3, 7, 5]. By
default, function p is ≤.
merge! ([p], u, v) destructively merges the elements u and v into u using comparison
function p. Function p is ≤ by default.

mesh ( u [, v, w, x])

Argument sp below is a ThreeSpace object sp. Argument lc is a list of curves. Each curve
is either a list of points (objects of type Point) or else a list of lists of small floats.
mesh (lc) returns a ThreeSpace object defined by lc.
mesh (sp) returns the list of curves contained in space sp.
mesh ([sp, ], lc, close1, close2) adds the list of curves lc to the ThreeSpace object sp.
Boolean arguments close1 and close2 tell how the curves and surface are to be closed. If
close1 is true, each individual curve will be closed, that is, the last point of the list will be
connected to the first point. If close2 is true, the first and last curves are regarded as
boundaries and are connected. By default, the argument sp is empty.

midpoints ( listOfIntervals)

These operations are defined on “intervals” represented by records with keys right and
left, and rational number values.
midpoints (isolist) returns the list of midpoints for the list of intervals isolist.
midpoint (int) returns the midpoint of the interval int.

min ( [u, v])

min () returns the element of type SingleInteger.
min (u) returns the smallest element of aggregate u.
min (x, y) returns the minimum of x and y relative to total ordering <.

minColIndex (matrix)

minColIndex (m) returns the index of the “first” column of the matrix or
two-dimensional array m.

minimalPolynomial ( element, positiveInteger)

minimalPolynomial (x[, n]) computes the minimal polynomial of x over the field of
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extension degree n over the ground field F . The default value of n is 1.

minimalPolynomial ( element)

minimalPolynomial (a) returns the minimal polynomial of element a of a finite rank
algebra. See FiniteRankAlgebra using Browse.

minimumDegree ( polynomial, variable)

minimumDegree (p, v) gives the minimum degree of polynomial p with respect to v, that
is, viewed as a univariate polynomial in v.
minimumDegree (p, lv) gives the list of minimum degrees of the polynomial p with
respect to each of the variables in the list lv.
See also FiniteAbelianMonoidRing and MonogenicLinearOperator.

minIndex (aggregate)

minIndex (aggregate) returns the minimum index i of aggregate u. Note: the minIndex
of most system-defined indexed aggregates is 1. See also PointCategory.

minordet (matrix)

minordet (m) computes the determinant of the matrix m using minors, or calls error if
the matrix is not square.

minPoly (expression)

minPoly (k) returns polynomial p such that p(k) = 0.

minRowIndex (matrix)

minRowIndex (m) returns the index of the “first” row of the matrix or two-dimensional
array m.

minusInfinity ()

minusInfinity () returns %minusInfinity, the Axiom name for −∞.

modifyPointData (space, nonNegativeInteger, point)

modifyPointData (sp, i, p) changes the point at the indexed location i in the ThreeSpace
object sp to p. This operation is useful for making changes to existing data.

moduloP (integer)

moduloP (x), such that p = modulus(), returns a, where x = a+ bp where x is a p-adic
integer. See PAdicIntegerCategory using Browse.

modulus ()

modulus ()$R returns the value of the modulus p of a p-adic integer domain R. See
PAdicIntegerCategory using Browse.

moebiusMu (integer)

moebiusMu (n) returns the Moebius function µ(n), defined as −1, 0 or 1 as follows:
µ(n) = 0 if n is divisible by a square > 1, and (−1)k if n is square-free and has k distinct
prime divisors.
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monicDivide ( polynomial, polynomial [ , variable])

monicDivide (p, q[, v]) divides the polynomial p by the monic polynomial q, returning the
record containing a quotient and remainder. For multivariate polynomials, the
polynomials are viewed as a univariate polynomials in v. If p and q are univariate
polynomials, then the third argument may be omitted. The operation calls error if q is not
monic with respect to v.

monomial (coefficient, exponent [ , option])

monomial (coef, exp) creates a term of a univariate polynomial or series object from a
coefficient coef and exponent exp. The variable name must be given by context (as
through a declaration for the result).
monomial (c, [x1, . . . , xk], [n1, . . . , nk]) creates a term cxn1

1 . . . xnk

k of a multivariate power
series or polynomial from coefficient c, variables xj and exponents nj .
monomial (c, x, n) creates a term cxn of a polynomial or series from a coefficient c,
variable x, and exponent n.
monomial (c, [n1, . . . , nk]) creates a CliffordAlgebra element ce(n1), . . . , ce(nk) from a
coefficient c and basis elements c(ij)

monomial? ( polynomialOrSeries)

monomial? (p) tests if polynomial or series p is a single monomial.

monomials ( polynomial)

monomials (p) returns the list of non-zero monomials of polynomial p,
[a1X

(1), . . . , anX
(n)].

more? ( aggregate, nonNegativeInteger)

more? (u, n) tests if u has greater than n elements.

movedPoints ( permutation)

movedPoints (p) returns the set of points moved by the permutation p.
movedPoints (gp) returns the points moved by the group gp.

mulmod (integer, integer, integer)

mulmod (a, b, p), where a, b are non-negative integers both < integer p, returns ab mod p.

multiEuclidean ( listOfElements, element)

multiEuclidean ([f1, . . . , fn], z) returns a list of coefficients [a1, . . . , an] such that
z/
∏n

i=1 fi =
∑n

j=1 aj/fj . If no such list of coefficients exists, "failed" is returned.

multinomial (integer, listOfIntegers)

multinomial (n, [m1,m2, . . . ,mk]) returns the multinomial coefficient n!/(m1!m2! . . .mk!).

multiple ( expression)

multiple (x) directs the pattern matcher that x should preferably match a multi-term
quantity in a sum or product. For matching on lists, multiple(x) tells the pattern matcher
that x should match a list instead of an element of a list. This operation calls error if x is
not a symbol.
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multiplyCoefficients ( function, series)

multiplyCoefficients (f, s) returns
∑∞

n=0 f(n)anx
n where s is the series

∑∞
n=0 anx

n.

multiplyExponents ( various, nonNegativeInteger)

multiplyExponents (p, n), where p is a univariate polynomial or series, returns a new
polynomial or series resulting from multiplying all exponents by the non negative integer n.

multiset ( listOfElements)

multiset (ls) creates a multiset with elements from ls.

multivariate ( polynomial, symbol)

multivariate (p, v) converts an anonymous univariate polynomial p to a polynomial in the
variable v.

name (various)

name (f) returns the name part of the file name for file f .
name (op) returns the name of basic operator op.
name (s) returns symbol s without its scripts.

nand (boolean, boolean)

nand (a, b) returns the logical negation of a and b, either booleans or bit aggregates. Note:
nand (a, b) = true if and only if one of a and b is false.

nary? (basicOperator)

nary? (op) tests if op accepts an arbitrary number of arguments.

ncols (matrix)

ncols (m) returns the number of columns in the matrix or two-dimensional array m.

new ( [various])

new ()$R create a new object of type R. When R is an aggregate, new creates an empty
object. Other variations are as follows: 1pc 0

new (s), where s is a symbol, returns a new symbol whose name starts
with %s.

new (n, x) returns fill! (new(n), x), an aggregate of n elements, each with
value x.

new (m,n, r)$R creates an m-by-n array or matrix of type R all of whose
entries are r.

new (d, pre, e), where d, smathpre, and smathe are strings, constructs the
name of a new writable file with d as its directory, pre as a prefix of its
name and e as its extension. When d or e is the empty string, a default is
used. The operation calls error if a new file cannot be written in the
given directory.
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newLine ()

newLine () sends a new line command to output. See DisplayPackage.

nextColeman (listOfIntegers, listOfIntegers, matrix)

nextColeman (alpha, beta, C) generates the next Coleman-matrix of column sums alpha
and row sums beta according to the lexicographical order from bottom-to-top. The first
Coleman matrix is created using C = new(1, 1, 0). Also, new (1, 1, 0) indicates that C is
the last Coleman matrix. See SymmetricGroupCombinatoricFunctions for details.

nextLatticePermutation ( integers, integers, boolean)

nextLatticePermutation (lambda, lattP, constructNotF irst) generates the lattice
permutation according to the proper partition lambda succeeding the lattice permutation
lattP in lexicographical order as long as constructNotF irst is true. If constructNotF irst
is false, the first lattice permutation is returned. The result nil indicates that lattP has
no successor. See SymmetricGroupCombinatoricFunctions for details.

nextPartition ( vectorOfIntegers, vectorOfIntegers, integer)

nextPartition (gamma, part, number) generates the partition of number which follows
part according to the right-to-left lexicographical order. The partition has the property
that its components do not exceed the corresponding components of gamma. the first
partition is achieved by part = []. Also, [] indicates that part is the last partition. See
SymmetricGroupCombinatoricFunctions for details.

nextPrime ( positiveInteger)

nextPrime (n) returns the smallest prime strictly larger than n.

nil ()

nil ()$R returns the empty list of type R.

nilFactor ( element, nonNegativeInteger)

nilFactor (base, exponent) creates a factored object with a single factor with no
information about the kind of base. See Factored for details.

node? ( aggregate, aggregate)

node? (u, v) tests if node u is contained in node v (either as a child, a child of a child, etc.).

nodes ( recursiveAggregate)

nodes (a) returns a list of all the nodes of aggregate a.

noncommutativeJordanAlgebra? ()

noncommutativeJordanAlgebra? ()$F tests if the algebra F is flexible and Jordan
admissible. See FiniteRankNonAssociativeAlgebra.

nor ( boolean, boolean)

nor (a, b) returns the logical nor of booleans or bit aggregates a and b. Note: nor (a, b) =
true if and only if both a and b are false.
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norm ( element [, option])

norm (x) returns: 1pc 0

for complex x: conjugate (x) .

for floats: the absolute value.

for quaternions or octonions: the sum of the squares of its coefficients.

for a domain of category FiniteRankAlgebra: the determinant of the
regular representation of x with respect to any basis.

norm (x[, p]), where p is a positiveInteger and x is an element of a domain of category
FiniteAlgebraExtensionField over ground field F , returns the norm of x with respect to the
field of extension degree d over the ground field of size. The default value of p is 1. The
operation calls error if p does not divide the extension degree of x. Note:

norm (x, p) =
∏n/p

i=0 x
qpi

normal? (element)

normal? (a), where a is a member of a domain of category
FiniteAlgebraicExtensionField over a field F , tests whether the element a is normal over
the ground field F , that is, if aq

i

, 0 ≤ i ≤ extensionDegree()− 1 is an F -basis, where
q = size().

normalElement ()

normalElement ()$R, where R is a domain of category FiniteAlgebraicExtensionField
over a field F , returns a element, normal over the ground field F , that is,
aq

i

, 0 ≤ i < extensionDegree() is an F -basis, where q = size(). At the first call, the
element is computed by createNormalElement then cached in a global variable. On
subsequent calls, the element is retrieved by referencing the global variable.

normalForm ( polynomial, listOfpolynomials)

normalForm (poly, gb) reduces the polynomial poly modulo the precomputed Gröbner
basis gb giving a canonical representative of the residue class.

normalise (element)

normalise (v) returns the column vector v divided by its Euclidean norm; when possible,
the vector v is expressed in terms of radicals.

normalize ( element [,] option)

normalize (flt) normalizes float flt at current precision.
normalize (f [, x]) rewrites f using the least possible number of real algebraically
independent kernels involving symbol x. If no symbol x is given, the operation rewrites f
using the least possible number of real algebraically independent kernels.

normalizeAtInfinity ( vectorOfFunctions)

normalizeAtInfinity (v) makes v normal at infinity, where v is a vector of functions
defined on a curve.
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not (boolean)

not (n) returns the negation of boolean or bit aggregate n.
not (n) returns the bit-by-bit logical not of the small integer n.

nrows (matrix)

nrows (m) returns the number of rows in the matrix or two-dimensional array m.

nthExponent ( factored, positiveInteger)

nthExponent (u, n) returns the exponent of the n th factor of u, or 0 if u has no such
factor.

nthFactor ( factor, positiveInteger)

nthFactor (u, n) returns the base of the n th factor of u, or 1 if n is not a valid index for a
factor. If u consists only of a unit, the unit is returned.

nthFlag ( factored, positiveInteger)

nthFlag (u, n) returns the information flag of the n th factor of u, "nil" if n is not a valid
index for a factor.

nthFractionalTerm ( partialFraction, integer)

nthFractionalTerm (p, n) extracts the n th fractional term from the partial fraction p, or
0 if the index n is out of range.

nthRoot ( expression, integer)
nthRootIfCan ( expression, integer)

Argument x can be of type Expression, Complex, Float and DoubleFloat, or a series.
nthRoot (x, n) returns the n th root of x. If x is not an expression, the operation calls
error if this is not possible.
nthRootIfCan (z, n) returns the n th root of z if possible, and "failed" otherwise.

null? (sExpression)

null? (s) is true if s is the SExpression object ().

nullary ()

nullary (x), where x has type R, returns a function f of type → R such that such that f()
returns the value c. See also constant for a similar operation.

nullary? ( basicOperator)

nullary? (op) tests if basic operator op is nullary.

nullity (matrix)

nullity (m) returns the dimension of the null space of the matrix m.

nullSpace ( matrix)

nullSpace (m) returns a basis for the null space of the matrix m.
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numberOfComponents ( [threeSpace])

numberOfComponents ()$F returns the number of absolutely irreducible components
for a domain F of functions defined over a curve.
numberOfComponents (sp) returns the number of distinct object components in the
ThreeSpace object s such as points, curves, and polygons.

numberOfComputedEntries ( stream)

numberOfComputedEntries (st) returns the number of explicitly computed entries of
stream st.

numberOfCycles ( permutation)

numberOfCycles (p) returns the number of non-trivial cycles of the permutation p.

numberOfDivisors ( integer)

numberOfDivisors (n) returns the number of integers between 1 and n inclusive which
divide n. The number of divisors of n is often denoted by τ(n).

numberOfFactors ( factored)

numberOfFactors (u) returns the number of factors in factored form u.

numberOfFractionalTerms ( partialFraction)

numberOfFractionalTerms (p) computes the number of fractional terms in p, or 0 if
there is no fractional part.

numberOfHues ()

numberOfHues () returns the number of total hues. See also totalHues.

numberOfImproperPartitions ( integer, integer)

numberOfImproperPartitions (n,m) computes the number of partitions of the
nonnegative integer n in m nonnegative parts with regarding the order (improper
partitions). Example: numberOfImproperPartitions (3, 3) is 10, since [0, 0, 3], [0,

1, 2], [0, 2, 1], [0, 3, 0], [1, 0, 2], [1, 1, 1], [1, 2, 0], [2, 0, 1], [2,

1, 0], [3, 0, 0] are the possibilities. Note: this operation has a recursive
implementation.

numberOfMonomials ( polynomial)

numberOfMonomials (p) gives the number of non-zero monomials in polynomial p.

numer (fraction)
numerator (fraction)

Argument x is from domain Fraction(R) for some domain R, or of type Expression
numer (x) returns the numerator of x as an object of domain R; if x is of type Expression,
it returns an object of domain SMP(D, Kernel(Expression R)).
numerator (x) returns the numerator of x as an element of Fraction(R); if x if of type
Expression, it returns an object of domain Expression.
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numerators ( continuedFraction)

numerators (cf) returns the stream of numerators of the approximants of the continued
fraction cf . If the continued fraction is finite, then the stream will be finite.

numeric ( expression [, n])

numeric (x, n) returns a float approximation of expression x to n decimal digits accurary.

objectOf ( typeAnyObject)

objectOf (a) returns a printable form of an object of type Any.

objects (threeSpace)

objects (sp) returns the ThreeSpace object sp. The result is returned as record with fields:
points, the number of points; curves, the number of curves; polygons, the number of
polygons; and constructs, the number of constructs.

oblateSpheroidal ( function)

oblateSpheroidal (a), where a is a small float, returns a function to map the point
(ξ, η, ϕ) to cartesian coordinates x = asinh(ξ)sin(η)cos(ϕ), y = asinh(ξ)sin(η)sin(ϕ),
z = acosh(ξ)cos(η).

octon ( element, element [ , elements])

octon (qe, qE) constructs an octonion whose first 4 components are given by a quaternion
qe and whose last 4 components are given by a quaternion qE .
octon (re, ri, rj , rk, rE , rI , rJ , rK) constructs an octonion from scalars.

odd? (x)

odd? (n) tests if integer n is odd.
odd? (p) tests if p is an odd permutation, that is, sign (p) is −1.

oneDimensionalArray ( [integer, ]elements)

oneDimensionalArray (ls) creates a one-dimensional array consisting of the elements of
list ls.
oneDimensionalArray (n, s) creates a one-dimensional array of n elements, each with
value s.

one? (element)

one? (a) tests whether a is the unit 1.

open ( file [, string])

open (s[,mode]) returns the file s open in the indicated mode: "input" or "output".
Argument mode is "output" by default.

operator ( symbol [, nonNegativeInteger])

operator (f, n) makes f into an n-ary operator. If the second argument n is omitted, f
has arbitary arity, that is, f takes an arbitrary number of arguments.
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operators ( expression)

operators (f) returns a list of all basic operators in f , regardless of level.

optional (symbol)

optional (x) tells the pattern matcher that x can match an identity (0 in a sum, 1 in a
product or exponentiation), or calls error if x is not a symbol.

or (boolean, boolean)

a or b returns the logical or of booleans or bit aggregates a and b.
n or m returns the bit-by-bit logical or of the small integers n and m.

orbit (group, elements)

orbit (gp, el) returns the orbit of the element el under the permutation group gp, that is,
the set of all points gained by applying each group element to el.
orbit (gp, ls), where ls is a list or unordered set of elements, returns the orbit of ls under
the permutation group gp.

orbits (group)

orbits (gp) returns the orbits of the permutation group gp.

ord (character)

ord (c) returns an integer code corresponding to the character c.

order (element)

order (p) returns: 1pc 0

if p is a float: the magnitude of p (Note:

baseorder(x) ≤ |x| < base(1+order(x)).)

if p is a differential polynomial: the maximum number of differentiations
of a differential indeterminate among all those appearing in p.

if p is a differential variable: the number of differentiations of the
differential indeterminate appearing in p.

if p is an element of finite field: the order of an element in the
multiplicative group of the field (the function calls error if p is 0).

if p is a univariate power series: the degree of the lowest order non-zero
term in f . (A call to this operation results in an infinite loop if f has no
non-zero terms.)

if p is a q-adic integer: the exponent of the highest power of q dividing p
(see PAdicIntegerCategory).

if p is a permutation: the order of a permutation p as a group element.

if p is permutation group: the order of the group.

order (p, q) returns the order of the differential polynomial p in differential indeterminate
q.
order (p, q) returns the order of multivariate series p viewed as a series in q (this operation
results in an infinite loop if f has no non-zero terms).



1140 APPENDIX E. OPERATIONS

order (p, q) returns the largest n such that qn divides polynomial p, that is, the order of
p(x) at q(x) = 0.

orthonormalBasis ( matrix)

orthonormalBasis (M) returns the orthogonal matrix B such that BMB−1 is diagonal,
or calls error if M is not a symmetric matrix.

output (x)

output (x) displays x on the “algebra output” stream defined by )set output algebra.

outputAsFortran ( outputForms)

outputAsFortran (f) outputs OutputForm object f in FORTRAN format to the
destination defined by the system command )set output fortran. If f is a list of
OutputForm objects, each expression in f is output in order.
outputAsFortran (s, f), where s is a string, outputs s = f , but is otherwise identical.

outputAsTex ( outputForms)

outputAsTex (f) outputs OutputForm object f in TEX format to the destination defined
by the system command )set output tex. If f is a list of OutputForm objects, each
expression in f is output in order.

outputFixed ( [nonNegativeInteger])

outputFixed ([n]) sets the output mode of floats to fixed point notation, that is, as an
integer, a decimal point, and a number of digits. If n is given, then n digits are displayed
after the decimal point.

outputFloating ( [nonNegativeInteger])

outputFloating ([n]) sets the output mode to floating (scientific) notation, that is, m10e

is displayed as mEe. If n is given, n digits will be displayed after the decimal point.

outputForm (various)

outputForm (x) creates an object of type OutputForm from x, an object of type Integer,
DoubleF loat, String, or Symbol.

outputGeneral ( [nonNegativeInteger])

outputGeneral ([n]) sets the output mode (default mode) to general notation, that is,
numbers will be displayed in either fixed or floating (scientific) notation depending on the
magnitude. If n is given, n digits are displayed after the decimal point.

outputSpacing ( nonNegativeInteger)

outputSpacing (n) inserts a space after n digits on output. outputSpacing (0) means no
spaces are inserted. By default, n = 10.

over ( outputForm, outputForm)

over (o1, o2), where o1 and o2 are objects of type OutputForm (normally unexposed),
creates an output form for the vertical fraction of o1 over o2.
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overbar ( outputForm)

overbar (o), where o is an object of type OutputForm (normally unexposed), creates the
output form o with an overbar.

pack! (file)

pack! (f) reorganizes the file f on disk to recover unused space.

packageCall ()

packageCall (f)$P , where P is the package InputFormFunctions1(R) for some type R,
returns the input form corresponding to f$R. See also interpret.

pade ( integer, integer, series [ , series])

pade (nd, dd, s[, ds]) computes the quotient of polynomials (if it exists) with numerator
degree at most nd and denominator degree at most dd. If a single univariate Taylor series s
is given, the quotient approximate must match the series s to order nd+ dd. If two series s
and ds are given, ns is the numerator series of the function and ds is the denominator
series.

padicFraction ( partialFraction)

padicFraction (q) expands the fraction p-adically in the primes p in the denominator of q.
For example, padicFraction (3/(22)) = 1/2 + 1/(22). Use compactFraction to return to
compact form.

pair? (sExpression)

pair? (s) tests if SExpression object is a non-null Lisp object.

parabolic (point)

parabolic (pt) transforms pt from parabolic coordinates to Cartesian coordinates: the
function produced will map the point (u, v) to x = 1/2(u2 − v2), y = uv.

parabolicCylindrical ( point)

parabolicCylindrical (pt) transforms pt from parabolic cylindrical coordinates to
Cartesian coordinates: the function produced will map the point (u, v, z) to
x = 1/2(u2 − v2), y = uv, z.

paraboloidal (point)

paraboloidal (pt) transforms pt from paraboloidal coordinates to Cartesian coordinates:
the function produced will map the point (u, v, phi) to x = uvcos(ϕ), y = uvsin(ϕ),
z = 1/2(u2 − v2).

paren ( expressions)

paren (f) returns (f) unless f is a list [f1, . . . , fn] in which case it returns (f1, . . . , fn).
This prevents f or the constituent fi from being evaluated when operators are applied to
it. For example, log(1) returns 0, but log(paren 1) returns the formal kernel log((1)).
Also, atan(paren [x, 2]) returns the formal kernel atan((x, 2)).
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partialDenominators ( continuedFraction)

partialDenominators (x) extracts the denominators in x. If
x = continuedFraction(b0, [a1, . . .], [b1, . . .]), then
partialDenominators (x) = [b1, b2 . . .].

partialFraction ( element, factored)

partialFraction (numer, denom) is the main function for constructing partial fractions.
The second argument denom is the denominator and should be factored.

partialNumerators ( continuedFraction)

partialNumerators (x) extracts the numerators in x, if
x = continuedFraction(b0, [a1, . . .], [b1, . . .], . . .), then partialNumerators (x) = [a1, . . .].

partialQuotients ( continuedFraction)

partialQuotients (x) extracts the partial quotients in x, if
x = continuedFraction(b0, [a1, . . .], [b1, . . .], . . .), then partialQuotients (x) = [b0, b1, . . .].

particularSolution ( matrix, vector)

aSolution (M, v) finds a particular solution x of the linear system Mx = v. The result x is
returned as a vector, or "failed" if no solution exists.

partition (integer)

partition (n) returns the number of partitions of the integer n. This is the number of
distinct ways that n can be written as a sum of positive integers.

partitions ( integer [, integer, integer])

partitions (i, j) is the stream of all partitions whose number of parts and largest part are
no greater than i and j.
partitions (n) is the stream of all partitions of integer n.
partitions (p, l, n) is the stream of partitions of n whose number of parts is no greater
than p and whose largest part is no greater than l.

parts (aggregate)

parts (u) returns a list of the consecutive elements of u. Note: if u is a list, parts (u) = u.

pastel (color)

pastel (c) sets the shade of a hue c above “bright” but below “light”.

pattern ( rewriteRule)

pattern (r) returns the pattern corresponding to the left hand side of the rewrite rule r.

patternMatch ( expression, expression, patternMatchResult)

patternMatch (expr, pat, res) matches the pattern pat to the expression expr. The
argument res contains the variables of pat which are already matched and their matches.
Initially, res is the result of new(), an empty list of matches.
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perfectNthPower? (integer, nonNegativeInteger)

perfectNthPower? (n, r) tests if n is an r th power.

perfectNthRoot ( integer [, nonNegativeInteger])

perfectNthRoot (n) returns a record with fields “base” x and “exponent” r such that

n = xr and r is the largest integer such that n is a perfect r th power.
perfectNthRoot (n, r) returns the r th root of n if n is an r th power, and "failed"

otherwise.

perfectSqrt (integer)

perfectSqrt (n) returns the square root of n if n is a perfect square, and "failed"

otherwise.

perfectSquare? ( integer)

perfectSquare? (n) tests if n is a perfect square.

permanent (matrix)

permanent (x) returns the permanent of a square matrix x, equivalent to the
determinant except that coefficients have no change of sign.

permutation ( integer, integer)

permutation (n,m) returns the number of permutations of n objects taken m at a time.
Note: permutation (n,m) = n!/(n−m)!.

permutationGroup ( listPermutations)

permutationGroup (ls) coerces a list of permutations ls to the group generated by this
list.

permutationRepresentation ( permutations [, n])

permutationRepresentation (pi, n) returns the matrix δi,pi(i) (Kronecker delta) if the
permutation pi is in list notation and permutes 1, 2, . . . , n. Argument pi may either be
permutation or a list of integers describing a permutation by list notation.
permutationRepresentation ([pi1, . . . , pik], n) returns the list of matrices
[(δi,pi1(i)), . . . , (δi,pik(i))] (Kronecker delta) for permutations pi1, . . . , pik of 1, 2, . . . , n.

permutations ( integer)

permutations (n) returns the stream of permutations formed from 1, 2, . . . , n.

physicalLength ( flexibleArray)
physicalLength! ( flexibleArray, positiveInteger)

These operations apply to a flexible array a and concern the “physical length” of a, the
maximum number of elements that a can hold. When a destructive operation (such as
concat!) is applied that increases the number of elements of a beyond this number, new
storage is allocated (generally to be about 50% larger than current storage allocation) and
the elements from the old storage are copied over to the new storage area.
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physicalLength (a) returns the physical length of a.
physicalLength! (a, n) causes new storage to be allocated for the elements of a with a
physical length of n. The maxIndex elements from the old storage area are copied. An
error is called if n is less than maxIndex(a).

pi ()

pi () returns π, also denoted by the special symbol %pi.

pile ( listOfOutputForms)

pile (lo), where lo is a list of objects of type OutputForm (normally unexposed), creates the
output form consisting of the elements of lo displayed as a pile, that is, each element begins
on a new line and is indented right to the same margin.

plenaryPower ( element, positiveInteger)

Argument a is a member of a domain of category NonAssociativeAlgebra
plenaryPower (a, n) is recursively defined to be
plenaryPower (a, n− 1) ∗ plenaryPower(a, n− 1) for n > 1 and a for n = 1.

plusInfinity ()

plusInfinity () returns the constant %plusInfinity denoting +∞.

point ( u [, option])

point (p) returns a ThreeSpace object which is composed of one component, the point p.
point (l) creates a point defined by a list l.

point (sp) checks to see if the ThreeSpace object sp is composed of only a single point and,
if so, returns the point, or calls error if sp has more than one point.
point (sp, l) adds a point component defined by a list l to the ThreeSpace object sp.
point (sp, i) adds a point component into a component list of the ThreeSpace object sp at
the index given by i.
point (sp, p) adds a point component defined by the point p described as a list, to the
ThreeSpace object sp.

point? (space)

point? (sp) queries whether the ThreeSpace object sp, is composed of a single component
which is a point.

pointColor ( palette)

pointColor (v) specifies a color v for two-dimensional graph points. This option is
expressed in the form pointColor == v in the draw command. Argument p is either a
palette or a float.

pointColorDefault ( [palette])

pointColorDefault () returns the default color of points in a two-dimensional viewport.
pointColorDefault (p) sets the default color of points in a two-dimensional viewport to
the palette p.
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pointSizeDefault ( [positiveInteger])

pointSizeDefault () returns the default size of the points in a two-dimensional viewport.
pointSizeDefault (i) sets the default size of the points in a two-dimensional viewport to i.

polarCoordinates (x)

polarCoordinates (x) returns a record with components (r, ϕ) such that x = reiϕ.

polar (point)

polar (pt) transforms point pt from polar coordinates to Cartesian coordinates. The
function produced will map the point (r, θ) to x = rcos(θ) , y = rsin(θ).

pole? (series)

pole? (f) tests if the power series f has a pole.

polygamma (k, x)

polygamma (k, x) is the k th derivative of digamma (x), often written ψ(k, x) in the
literature.

polygon ( [sp, ]listOfPoints)
polygon? (space)

polygon ([sp, ]lp) adds a polygon defined by lp to the ThreeSpace object sp. Each lp is
either a list of points (objects of type Point) or else a list of small floats. If sp is omitted, it
is understood to be empty.
polygon (sp) returns ThreeSpace object sp as a list of polygons, or an error if sp is not
composed of a single polygon.
polygon? (sp) tests if the ThreeSpace object sp contains a single polygon component.

polynomial (series, integer [ , integer])

polynomial (s, k) returns a polynomial consisting of the sum of all terms of series s of
degree ≤ k and greater than or equal to 0.
polynomial (s, k1, k2) returns a polynomial consisting of the sum of all terms of Taylor
series s of degree d with 0 ≤ k1 ≤ d ≤ k2.

pop! (stack)

pop! (s) returns the top element x from stack s, destructively removing it from s, or calls
error if s is empty. Note: Use top (s) to obtain x without removing it from s.

position ( aggregate, aggregate [ , index])

position (x, a[, n]) returns the index i of the first occurrence of x in a where i ≥ n, and
minIndex (a)− 1 if no such x is found. The default value of n is 1.
position (cc, t, i) returns the position j >= i in t of the first character belonging to
character class cc.

positive? ( orderedSetElement)

positive? (x) tests if x is strictly greater than 0.
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positiveRemainder (integer, integer)

positiveRemainder (a, b), where b > 1, yields r where 0 ≤ r < b and r = a rem b.

possiblyInfinite? ( stream)

possiblyInfinite? (s) tests if the stream s could possibly have an infinite number of
elements. Note: for many datatypes, possiblyInfinite? (s) = not explictlyFinite?(s).

postfix ( outputForm, outputForm)

postfix (op, a), where op and a are objects of type OutputForm (normally unexposed),
creates an output form which prints as: a op.

powerAssociative? ()

powerAssociative? ()$F , where F is a domain of category
FiniteRankNonAssociativeAlgebra, tests if all subalgebras generated by a single element are
associative.

powerSum ( integer)

powerSum (n) is the n th power sum symmetric function. See CycleIndicators for details.

powmod (integer, integer, integer)

powmod (a, b, p), where a and b are non-negative integers, each < p, returns ab mod p.

precision ( [positiveInteger])

precision () returns the precision of Float values in decimal digits.
precision (n) set the precision in the base to n decimal digits.

prefix ( outputForm, listOfOutputForms)

prefix (o, lo), where o is an object of type OutputForm (normally unexposed) and lo is a
list of objects of type OutputForm, creates an output form depicting the nary prefix
application of o to a tuple of arguments given by list lo.

prefix? (string, string)

prefix? (s, t) tests if the string s is the initial substring of t.

prefixRagits ( listOfIntegers)

prefixRagits (rx) returns the non-cyclic part of the ragits of the fractional part of a radix
expansion. For example, if x = 3/28 = 0.10714285714285 . . ., then
prefixRagits (x) = [1, 0].

presub ( outputForm, outputForm)

presub (o1, o2), where o1 and o2 are objects of type OutputForm (normally unexposed),
creates an output form for o1 presubscripted by o2.

presuper ( outputForm, outputForm)

presuper (o1, o2), where o1 and o2 are objects of type OutputForm (normally unexposed),
creates an output form for o1 presuperscripted by o2.
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primaryDecomp ( ideal)

primaryDecomp (I) returns a list of primary ideals such that their intersection is the
ideal I.

prime ( outputForm [, positiveInteger])

prime (o[, n]), where o is an object of type OutputForm (normally unexposed), creates an
output form for o following by n primes (that is, a prime like “ ’ ”). By default, n = 1.

prime? (element)

prime? (x) tests if x cannot be written as the product of two non-units, that is, x is an
irreducible element. Argument x may be an integer, a polynomial, an ideal, or, in general,
any element of a domain of category UniqueFactorizationDomain.

primeFactor ( element, integer)

primeFactor (base, exponent) creates a factored object with a single factor whose base is
asserted to be prime (flag = "prime").

primeFrobenius ( finiteFieldElement [, nonNegativeInteger])

Argument a is a member of a domain of category FieldOfPrimeCharacteristic(p).
primeFrobenius (a[, s]) returns ap

s

. The default value of s is 1.

primes ( integer, integer)

primes (a, b) returns a list of all primes p with a ≤ p ≤ b.

primitive? ( finiteFieldElement)

primitive? (b) tests whether the element b of a finite field is a generator of the (cyclic)
multiplicative group of the field, that is, is a primitive element.

primitiveElement ( expressions [, expression])

primitiveElement (a1, a2) returns a record with four components: a primitive element a
with selector primelt, and three polynomials q1, q2, and q with selectors pol1, pol2, and
prim. The prime element a is such that the algebraic extension generated by a1 and a2 is
the same as that generated by a, ai = qi(a) and q(a) = 0. The minimal polynomial for a2
may involve a1, but the minimal polynomial for a1 may not involve a2. This operations
uses resultant.

primitiveMonomials ( polynomial)

primitiveMonomials (p) gives the list of monomials of the polynomial p with their
coefficients removed. Note: primitiveMonomials (

∑
aiX

(i)) = [X(1), . . . , X(n)].

primitivePart ( polynomial [, symbol])

primitivePart (p[, v]) returns the unit normalized form of polynomial p divided by the
content of p with respect to variable v. If no v is given, the content is removed with
respect to all variables.

principalIdeal ( listOfPolynomials)

principalIdeal ([f1, . . . , fn]) returns a record whose “generator” component is a generator
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of the ideal generated by [f1, . . . , fn] whose “coef” component is a list of coefficients
[c1, . . . , cn] such that generator =

∑
i ci fi.

print (outputForm)

print (o) writes the output form o on standard output using the two-dimensional formatter.

product ( element, element)

product (f(n), n = a..b) returns
∏b

n=a f(n) as a formal product.
product (f(n), n) returns the formal product P (n) verifying P (n+ 1)/P (n) = f(n).
product (s, t), where s and t are cartesian tensors, returns the outer product of s and t.
For example, if r = product(s, t) for rank 2 tensors s and t, then r is a rank 4 tensor given
by ri,j,k,l = si,jtk,l.
product (a, b), where a and b are elements of a graded algebra returns the
degree-preserving linear product. See GradedAlgebra for details.

prolateSpheroidal ( smallFloat)

prolateSpheroidal (a) returns a function to transform prolate spheroidal coordinates to
Cartesian coordinates. This function will map the point (ξ, η, ϕ) to
x = asinh(ξ)sin(η)cos(ϕ), y = asinh(ξ)sin(η)sin(ϕ), z = acosh(ξ)cos(η).

prologue (text)

prologue (t) extracts the prologue section of a IBM SCRIPT Formula Formatter or TEX
formatted object t.

properties ( basicOperator [, prop])

properties (op) returns the list of all the properties currently attached to op.
property (op, s) returns the value of property s if it is attached to op, and "failed"

otherwise.

pseudoDivide ( polynomial, polynomial)

pseudoDivide (p, q) returns (c, q, r), when
p′ := p leadingCoefficient(q)deg(p)−deg(q)+1 = cp is pseudo right-divided by q, that is,
p′ = sq + r.

pseudoQuotient ( polynomial, polynomial)

pseudoQuotient (p, q) returns r, the quotient when
p′ := pleadingCoefficient(q)degp−degq+1 is pseudo right-divided by q, that is, p′ = sq + r.

pseudoRemainder ( polynomial, polynomial)

pseudoRemainder (p, q) = r, for polynomials p and q, returns the remainder when
p′ := pleadingCoefficient(q)degp−degq+1 is pseudo right-divided by q, that is, p′ = sq + r.

puiseux ( expression [, options])

puiseux (f) returns a Puiseux expansion of the expression f . Note: f should have only
one variable; the series will be expanded in powers of that variable. Also, if x is a symbol,
puiseux (x) returns x as a Puiseux series.
puiseux (f, x = a) expands the expression f as a Puiseux series in powers of (x− a).
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puiseux (f, n) returns a Puiseux expansion of the expression f . Note: f should have only
one variable; the series will be expanded in powers of that variable and terms will be
computed up to order at least n.
puiseux (f, x = a, n) expands the expression f as a Puiseux series in powers of (x− a);
terms will be computed up to order at least n.
puiseux (n+− >a(n), x = a, r0.., r) returns

∑
n=r0,r0+r,r0+2r,... a(n)(x− a)n.

puiseux (a(n), n, x = a, r0.., r) returns
∑

n=r0,r0+r,r0+2r,... a(n)(x− a)n.
Note: Each of the last two commands have alternate forms whose third argument is the
finite segment r0..r1 producing a similar series with a finite number of terms.

push! ( element, stack)

push! (x, s) pushes x onto stack s, that is, destructively changing s so as to have a new
first (top) element x.

pushdown ( polynomial, symbol)
pushdterm ( monomial, symbol)

pushdown (prf, var) pushes all top level occurences of the variable var into the coefficient
domain for the polynomial prf .
pushdterm (monom, var) pushes all top level occurences of the variable var into the
coefficient domain for the monomial monom.

pushucoef (polynomial, variable)

pushucoef (upoly, var) converts the anonymous univariate polynomial upoly to a
polynomial in var over rational functions.

pushuconst ( rationalFunction, variable)

pushuconst (r, var) takes a rational function and raises all occurences of the variable var
to the polynomial level.

pushup (polynomial, variable)

pushup (prf, var) raises all occurences of the variable var in the coefficients of the
polynomial prf back to the polynomial level.

qelt (u [, options] )

qelt (u, p[, options]) is equivalent to a corresponding elt form except that it performs no
check that indicies are in range. Use HyperDoc to discover if a given domain has this
alternative operation.

qsetelt! (u, x, y [ , z])

qsetelt! (u, x, y[, z]) is equivalent to a corresponding setelt form except that it performs no
check that indicies are in range.

quadraticForm ( matrix)

quadraticForm (m) creates a quadratic form from a symmetric, square matrix m.

quatern (element, element, element, element)

quatern (r, i, j, k) constructs a quaternion from scalars.
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queue ( [listOfElements])

queue ()$R returns an empty queue of type R.
queue ([x, y, . . . , z]) creates a queue with first (top) element x, second element y, . . . , and
last (bottom) element z.

quickSort ( predicate, aggregate)

quickSort (f, agg) sorts the aggregate agg with the ordering predicate f using the
quicksort algorithm.

quo ( integer, integer)

a quo b returns the quotient of a and b discarding the remainder.

quoByVar (series)

quoByVar (a0 + a1x+ a2x
2 + · · · ) returns a1 + a2x+ a3x

2 + · · · Thus, this function
subtracts the constant term and divides by the series variable. This function is used when
Laurent series are represented by a Taylor series and an order.

quote (outputForm)

quote (o), where o is an object of type OutputForm (normally unexposed), creates an
output form o with a prefix quote.

quotedOperators ( rewriteRule)

quotedOperators (r), where r is a rewrite rule, returns the list of operators on the
right-hand side of r that are considered quoted, that is, they are not evaluated during any
rewrite, but applied formally to their arguments.

quotient (ideal, polynomial)

quotient (I, f) computes the quotient of the ideal I by the principal ideal generated by the
polynomial f , (I : (f)).
quotient (I, J) computes the quotient of the ideals I and J , (I : J).

radical (ideal)

radical (I) returns the radical of the ideal I.

radicalEigenvalues ( matrix)

radicalEigenvalues (m) computes the eigenvalues of the matrix m; when possible, the
eigenvalues are expressed in terms of radicals.

radicalEigenvectors ( matrix)

radicalEigenvectors (m) computes the eigenvalues and the corresponding eigenvectors of
the matrix m; when possible, values are expressed in terms of radicals.

radicalEigenvector ( eigenvalue, matrix)

radicalEigenvector (c,m) computes the eigenvector(s) of the matrix m corresponding to
the eigenvalue c; when possible, values are expressed in terms of radicals.
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radicalOfLeftTraceForm ()

radicalOfLeftTraceForm ()$F returns the basis for the null space of leftTraceMatrix ()
$F , where F is a domain of category FramedNonAssociativeAlgebra. If the algebra is
associative, alternative or a Jordan algebra, then this space equals the radical (maximal nil
ideal) of the algebra.

radicalRoots ( fractions)

radicalRoots (rf, v) finds the roots expressed in terms of radicals of the rational function
rf with respect to the symbol v.
radicalRoots (lrf, lv) finds the roots expressed in terms of radicals of the list of rational
functions lrf with respect to the list of symbols lv.

radicalSolve ( eq, x)

See solve (u, v).

radix (rationalNumber, integer)

radix (rn, b) converts rational number rn to a radix expansion in base b.

ramified? ( polynomial)
ramifiedAtInfinity? ()

Domain F is a domain of functions on a fixed curve.
ramified? (p)$F tests whether p(x) = 0 is ramified.
ramifiedAtInfinity? () tests if infinity is ramified.

random ( [u, v])

random ()$R creates a random element from domain D.
random (gp[, i]) returns a random product of maximal i generators of the permutation
group gp. The value of i is 20 by default.

range ( listOfSegments)

range (ls), where ls is a list of segments of the form [a1..b1, . . . , an..bn], provides a
user-specified range for clipping for the draw command. This command may also be
expressed locally to the draw command as the option range == ls. The values ai and bi
are either given as floats or rational numbers.

ranges ( listOfSegments)

ranges (l) provides a list of user-specified ranges for the draw command. This command
may also be expressed as an option to the draw command in the form ranges == l.

rank (matrix)

rank (m) returns the rank of the matrix m. Also:
rank (A,B) computes the rank of the complete matrix (A|B) of the linear system
AX = B.
rank (t), where t is a Cartesion tensor, returns the tensorial rank of t (that is, the number
of indices). See also FiniteRankAlgebra and FiniteRankNonAssociativeAlgebra.
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rarrow ( outputForm, outputForm)

rarrow (o1, o2), where o1 and o2 are objects of type OutputForm (normally unexposed),
creates a form for the mapping o1 → o2.

ratDenom ( expression [, option])

ratDenom (f [, u]) rationalizes the denominators appearing in f . If no second argument is
given, then all algebraic quantities are moved into the numerators. If the second argument
is given as an algebraic kernel a, then a is removed from the denominators. Similarly, if u
is a list of algebraic kernels [a1, . . . , an], the operation removes the ai’s from the
denominators in f .

rational? (element)
rationalIfCan ( element)
rational (element)

rational? (x) tests if x is a rational number, that is, that it can be converted to type
Fraction(Integer). Specifically, if x is complex, a quaternion, or an octonion, it tests that all
imaginary parts are 0.
rationalIfCan (x) returns x as a rational number if possible, and "failed" if it is not.
rational (x) returns x as a rational number if possible, and calls error if it is not.

rationalApproximation ( float, nonNegativeInteger [ , positiveInteger])

rationalApproximation (f, n[, b]) computes a rational approximation r to f with relative
error < b−n, that is |(r − f)/f | < b−n, for some positive integer base b. By default, b = 10.
The first argument f is either a float or small float.

rationalFunction ( series, integer, integer)

rationalFunction (f,m, n) returns a rational function consisting of the sum of all terms of
f of degree d with m ≤ d ≤ n. By default, n is the maximum degree of f .

rationalPoint? ( value, value)

rationalPoint? (a, b)$F tests if (x = a, y = b) is on the curve defining function field F .
See FunctionFieldCategory.

rationalPoints ()

rationalPoints ()$ returns the list of all the affine rational points on the curve defining
function field F . See FunctionFieldCategory.

rationalPower ( puiseuxSeries)

rationalPower (f(x)) returns r where the Puiseux series f(x) = g(xr).

ratPoly (expression)

ratPoly (f) returns a polynomial p such that p has no algebraic coefficients, and p(f) = 0.

rdexquo (lodOperator)

rdexquo (a, b), where a and b are linear ordinary differential operators, returns q such that
a = bq, or "failed" if no such q exists.
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rightDivide ( lodOperator, lodOperator)
rightQuotient ( lodOperator, lodOperator)
rightRemainder ( lodOperator, lodOperator)

rightDivide (a, b) returns the pair q, r such that a = qb+ r and the degree of r is less than
the degree of b. The pair is returned as a record with fields quotient and remainder. This
process is called “right division”. Also: rightQuotient (a, b) returns only q.
rightRemainder (a, b) returns only r.

read! (file)
readIfCan! (file)

read! (f) extracts a value from file f . The state of f is modified so a subsequent call to
read! will return the next element.
readIfCan! (f) returns a value from the file f or "failed" if this is not possible (that is,
either f is not open for reading, or f is at the end of the file).

readable? (file)

readable? (f) tests if the named file exists and can be opened for reading.

readLine! (file)
readLineIfCan! (file)

readLineIfCan! (f) returns a string of the contents of a line from file f , or "failed" if
this is not possible (if f is not readable or is positioned at the end of file).
readLine! (f) returns a string of the contents of a line from the file f , and calls error if
this is not possible.

real (x)
real? (expression)

real (x) returns real part of x. Argument x can be an expression or a complex value,
quaternion, or octonion.
real? (f) tests if expression f = real(f).

realEigenvectors ( matrix, float)

realEigenvectors (m, eps) returns a list of records, each containing a real eigenvalue, its
algebraic multiplicity, and a list of associated eigenvectors. All these results are computed
to precision eps as floats or rational numbers depending on the type of eps. Argument m is
a matrix of rational functions.

realElementary ( expression [, symbol])

realElementary (f, sy) rewrites the kernels of f involving sy in terms of the 4
fundamental real transcendental elementary functions: log, exp, tan, atan. If sy is omitted,
all kernels of f are rewritten.

realRoots ( rationalfunctions, v [ , w])

realRoots (rf, eps) finds the real zeros of a univariate rational function rf with precision
given by eps.
realRoots (lp, lv, eps) computes the list of the real solutions of the list lp of rational
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functions with rational coefficients with respect to the variables in lv, with precision eps.
Each solution is expressed as a list of numbers in order corresponding to the variables in lv.

realZeros ( polynomial, rationalNumber [ , option])

realZeros (pol) returns a list of isolating intervals for all the real zeros of the univariate
polynomial pol.
realZeros (pol[, eps]) returns a list of intervals of length less than the rational number eps
for all the real roots of the polynomial pol. The default value of eps is ???.
realZeros (pol, int[, eps]) returns a list of intervals of length less than the rational number
eps for all the real roots of the polynomial pol which lie in the interval expressed by the
record int. The default value of eps is ???.

recip (element)

recip (x) returns the multiplicative inverse for x, or "failed" if no inverse can be found.
See also FiniteRankNonAssociativeAlgebra and MonadWithUnit.

recur (function)

recur (f), where f is a function of type (NonNegativeInteger, R) → R for some domain R,
returns the function g such that g(n, x) = f(n, f(n− 1, . . . f(1, x) . . .)). For related
functions, see MappingPackage.

red ()

red () returns the position of the red hue from total hues.

reduce (op, aggregate [ , identity, element])

reduce (f, u[, ident, a]) reduces the binary operation f across u. For example, if u is
[x1, x2, . . . , xn] then reduce (f, u) returns f(. . . f(x1, x2), . . . , xn).

An optional identity element of f provided as a third argument affects the result if u has
less than two elements. If u is empty, the third argument is returned if given, and a call to
error occurs otherwise. If u has one element and the third argument is given, the value
returned is f(ident, x1). Otherwise x1 is returned. Thus both reduce (+, u) and
reduce (+, u, 0) return

∑n
i=1 xi. Similarly, reduce (∗, u) and reduce (∗, u, 1) return∏n

i=1 xi.

An optional fourth argument z acts as an “absorbing element”. reduce (f, u, x, z) reduces
the binary operation f across u, stopping when an “absorbing element” z is encountered.
For example reduce (or, u, false, true) will stop iterating across u returning true as soon
as an xi = true is found. Note: if u has one element x, reduce (f, u) returns x, or calls
error if u is empty.

reduceBasisAtInfinity ( basis)

reduceBasisAtInfinity (b1, . . . , bn), where the bi are functions on a fixed curve, returns
(xi bj) for all i, j such that xi bj is locally integral at infinity. See
FunctionFieldCategory using Browse.

reducedContinuedFraction ( element, stream)

reducedContinuedFraction (b0, b) returns a continued fraction constructed as follows. If
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b = [b1, b2, . . .] then the result is the continued fraction b0 + 1/(b1 + 1/(b2 + · · ·)). That is,
the result is the same as continuedFraction (b0, [1, 1, 1, . . .], [b1, b2, b3, . . .]).

reducedForm ( continuedFraction)

reducedForm (x) puts the continued fraction x in reduced form, that is, the function
returns an equivalent continued fraction of the form continuedFraction (b0, [1, 1, 1,
. . .], [b1, b2, b3, . . .]).

reducedSystem ( matrix [, vector])

reducedSystem (A, v) returns a matrix B such that Ax = v and Bx = v have the same
solutions. By default, v = 0.

reductum ( polynomial)

reductum (p) returns polynomial p minus its leading monomial, or zero if handed the zero
element. See also IndexedDirectProdcutCategory and MonogenicLinearOperator.

refine (polynomial, interval, precision)

refine (pol, int, tolerance) refines the interval int containing exactly one root of the
univariate polynomial pol to size less than the indicated tolerance. Argument int is an
interval denoted by a record with selectors left and right, each with rational number
values. The tolerance is either a rational number or another interval. In the latter case,
"failed" is returned if no such isolating interval exists.

regularRepresentation ( element, basis)

regularRepresentation (a, basis) returns the matrix of the linear map defined by left
multiplication by a with respect to basis basis. Element a is a complex element or an
element of a domain R of category FramedAlgebra. The second argument may be omitted
when a fixed basis is defined for R.

reindex ( cartesianTensor, listOfIntegers)

reindex (t, [i1, . . . , idim]) permutes the indices of cartesian tensor t. For example, if
r = reindex(t, [4, 1, 2, 3]) for a rank 4 tensor t, then r is the rank 4 tensor given by
r(i, j, k, l) = t(l, i, j, k).

relationsIdeal ( listOfPolynomials)

relationsIdeal (polyList) returns the ideal of relations among the polynomials in polyList.

relerror (float, float)

relerror (x, y), where x and y are floats, computes the absolute value of x− y divided by
y, when y ̸= 0.

rem (element, element)

a rem b returns the remainder of a and b.

remove (predicate, aggregate)

Argument u is any extensible aggregate such as a list.
remove (pred, u) returns a copy of u removing all elements x such that p(x) is true.
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Argument u may be any homogeneous aggregate including infinite streams. Note: for lists
and streams, remove(p, u) == [x for x in u | not p(x)].
remove! (pred, u) destructively removes all elements x of u such that pred (x) is true.
The value of u after all such elements are removed is returned.
remove! (x, u) destructively removes all values x from u.
remove! (k, t), where t is a keyed dictionary, searches the table t for the key k, removing
and returning the entry if there. If t has no such key, it returns "failed".

removeCoshSq ( expression)

removeCoshSq (f) converts every cosh(u)2 appearing in f into 1− sinh(x)2, and also
reduces higher powers of cosh (u) with that formula.

removeDuplicates ( aggregate)
removeDuplicates! ( aggregate)

removeDuplicates (u) returns a copy of u with all duplicates removed.
removeDuplicates! (u) destructively removes duplicates from u.

removeSinhSq ( expression)

removeSinhSq (f) converts every sinh(u)2 appearing in f into 1− cosh(x)2, and also
reduces higher powers of sinh (u) with that formula.

removeSinSq ( expression)

removeSinSq (f) converts every sin(u)2 appearing in f into 1− cos(x)2, and also reduces
higher powers of sin (u) with that formula.

removeZeroes ( [integer, ]laurentSeries)

removeZeroes ([n, ]f(x)) removes up to n leading zeroes from the Laurent series f(x). If
no integer n is given, all leading zeroes are removed.

reopen! ( file, string)

reopen! (f,mode) returns a file f reopened for operation in the indicated mode: "input"
or "output". For example, reopen! (f, "input") will reopen the file f for input.

repeating ( listOfElements [, stream])
repeating? ( stream)

repeating (l) is a repeating stream whose period is the list l.
repeating? (l, s) tests if a stream s is periodic with period l.

replace (string, segment, string)

replace (s, i..j, t) replaces the substring s(i..j) of s by string t.

represents ( listOfElements [, listOfBasisElements])

represents ([a1, .., an][, [v1, .., vn]]) returns a1v1 + · · ·+ anvn. Arguments vi are elements of
a domain of category FiniteRankAlgebra or FiniteRankNonAssociativeAlgebra built over a
ring R. The ai are elements of R. In a framed algebra or finite algebra extension field
domain with a fixed basis, [v1, . . . , vn] defaults to the elements of the fixed basis. See
FramedAlgebra, FramedNonAssociateAlgebra, and FiniteAlgebraicExtensionField.
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See also FunctionFieldCategory.

resetNew ()

resetNew () resets the internal counter that new () uses.

resetVariableOrder ()

resetVariableOrder () cancels any previous use of setVariableOrder and returns to the
default system ordering.

rest ( aggregate [, nonNegativeInteger])

rest (u) returns an aggregate consisting of all but the first element of u (equivalently, the
next node of u).

rest (u, n) returns the n th node of u. Note: rest (u, 0) = u.

resultant ( polynomial, polynoial [ , variable])

resultant (p, q, v) returns the resultant of the polynomials p and q with respect to the
variable v. If p and q are univariate polynomials, the variable v defaults to the unique
variable.

retract (element)
retractIfCan (element)

retractIfCan (a)@S returns a as an object of type S, or "failed" if this is not possible.
retract (a)@S transforms a into an element of S, or calls error if this is not possible.

retractable? ( typeAnyObject)

retractable? (a)$S tests if object a of type Any can be converted into an object of type S.

reverse ( linearAggregate)
reverse! ( linearAggregate)

reverse (a) returns a copy of linear aggregate a with elements in reverse order.
reverse! (a) destructively puts the elements of linear aggregate a in reverse order.

rightGcd (lodOperator, lodOperator)

rightGcd (a, b), where a and b are linear ordinary differential operators, computes the
value g of highest degree such that a = g ∗ aa and b = g ∗ bb for some values aa and bb. The
value g is computed using right-division.

rhs ( rewriteRuleOrEquation)

rhs (u) returns the right-hand side of the rewrite rule or equation u.

right ( binaryRecursiveAggregate)

right (a) returns the right child.

rightAlternative? ()

See leftAlternative?.
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rightCharacteristicPolynomial ( element)

See leftCharacteristicPolynomial.

rightDiscriminant ( basis)

See leftDiscriminant.

rightMinimalPolynomial ( element)

See leftMinimalPolynomial.

rightNorm ( element)

See leftNorm.

rightPower ( monad, nonNegativeInteger)

See rightPower.

rightRankPolynomial ()

See leftRankPolynomial.

rightRank (basis)

See leftRank.

rightRecip ( element)

See leftRecip.

rightRegularRepresentation ( element [, basis])

See leftRegularRepresentation.

rightTraceMatrix ( [basis])

See leftTraceMatrix.

rightTrim (string, various)

See leftTrim.

rightUnits ()

See leftUnits.

rischNormalize (expression, x)

rischNormalize (f, x) returns [g, [k1, . . . , kn], [h1, . . . , hn]] such that g = normalize(f, x)
and each ki was rewritten as hi during the normalization.

rightLcm ( lodOperator, lodOperator)

rightLcm (a, b), where a and b are linear ordinary differential operators, computes the
value m of lowest degree such that m = aa ∗ a = bb ∗ b for some values aa and bb. The value
m is computed using right-division.

roman ( integerOrSymbol)

roman (x) creates a roman numeral for integer or symbol x.



1159

romberg (floatFunction, fourFloats, threeIntegers )

rombergOpen (floatFunction, fourFloats, twoIntegers)
rombergClose (floatFunction, fourFloats, twoIntegers)

romberg (fn, a, b, epsrel, epsabs, nmin, nmax, nint) uses an adaptive romberg method to
numerically integrate function fn over the closed interval from a to b, with relative
accuracy epsrel and absolute accuracy epsabs; the refinement levels for the checking of
convergence vary from nmin to nmax. The method is called “adaptive” since it requires an
additional parameter nint giving the number of subintervals over which the integrator
independently applies the convergence criteria using nmin and nmax. This is useful when
a large number of points are needed only in a small fraction of the entire interval.
Parameter fn is a function of type Float → Float; a, b, epsrel, and epsabs are floats; nmin,
nmax, and nint are integers. The operation returns a record containing: value, an
estimate of the integral; error, an estimate of the error in the computation; totalpts, the
total integral number of function evaluations, and success, a boolean value that is true if
the integral was computed within the user specified error criterion. See
NumericalQuadrature for details.

rombergClosed (fn, a, b, epsrel, epsabs, nmin, nmax) similarly uses the Romberg method
to numerically integrate function fn over the closed interval a to b, but is not adaptive.

rombergOpen (fn, a, b, epsrel, epsabs, nmin, nmax) is similar to rombergClosed, except
that it integrates function fn over the open interval from a to b.

root ( outputForm [, positiveInteger])

root (o[, n]), where o and n are objects of type OutputForm (normally unexposed), creates

an output form for the n th root of the form o. By default, n = 2.

rootOfIrreduciblePoly ( polynomial)

rootOfIrreduciblePoly (f) computes one root of the monic, irreducible polynomial f ,
whose degree must divide the extension degree of F over GF . That is, f splits into linear
factors over F .

rootOf ( polynomial [, variable])

rootOf (p[, y]) returns y such that p(y) = 0. The object returned displays as ′y. The
second argument may be omitted when p is a polynomial in a unique variable y.

rootSimp ( expression)

rootSimp (f) transforms every radical of the form (abqn+r)1/n appearing in expression f
into bq(abr)1/n. This transformation is not in general valid for all complex numbers b.

rootsOf ( polynomialOrExpression [, symbol])

rootsOf (p[, y]) returns the value of [y1, . . . , yn] such that p(yi) = 0. The yi are symbols of
the form %y with a suffix number which are bound in the interpreter to respective root
values. Argument p is either an expression or a polynomial. Argument y may be omitted in
which case p must contain exactly one symbol.
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rootSplit ( expression)

rootSplit (f) transforms every radical of the form (a/b)1/n appearing in f into a1/n/b1/n.
This transformation is not in general valid for all complex numbers a and b.

rotate! (queue)

rotate! (q) rotates queue q so that the element at the front of the queue goes to the back
of the queue.

round (float)

round (x) computes the integer closest to x.

row (matrix, positiveInteger)

row (m, i) returns the i th row of the matrix or two-dimensional array m.

rowEchelon (matrix)

rowEchelon (m) returns the row echelon form of the matrix m.

rst (stream)

rst (s) returns a pointer to the next node of stream s. Caution: this function should only
be called after a empty? test returns true since no error check is performed.

rubiksGroup ()

rubiksGroup () constructs the permutation group representing Rubic’s Cube acting on
integers 10i+ j for 1 ≤ i ≤ 6, 1 ≤ j ≤ 8. The faces of Rubik’s Cube are labelled: Front,
Right, Up, Down, Left, Back and numbered from 1 to 6. The pieces on each face (except
the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in
the upper left corner. The moves of the cube are represented as permutations on these
pieces, represented as a two digit integer ij where i is the number of the face and j is the
number of the piece on this face. The remaining ambiguities are resolved by looking at the
6 generators representing 90-degree turns of the faces.

rule (various)

Section 6.21 on page 208

rules (ruleset)

rules (r) returns the list of rewrite rules contained in ruleset r.

ruleset ( listOfRules)

ruleset ([r1, . . . , rn]) creates a ruleset from a list of rewrite rules r1, . . . , rn.

rungaKutta ( vector, integer, fourFloats, integer, function)
rungaKuttaFixed ( vector, integer, float, float, integer, function)

rungaKutta (y, n, a, b, eps, h, ncalls, derivs) uses a 4–th order Runga-Kutta method to
numerically integrate the ordinary differential equation dy/dx = f(y, x) from x1 to x2,
where y is an n–vector of n variables. Initial and final values are provided by solution
vector y. The local truncation error is kept within eps by changing the local step size.
Argument h is a trial step size and ncalls is the maximum number of single steps the
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integrator is allowed to take. Argument derivs is a function of type (Vector Float, Vector
Float, Float) → Void, which computes the right-hand side of the ordinary differential
equation, then replaces the elements of the first argument by updated elements.

rungaKuttaFixed (y, n, x1, x2, ns, derivs) is similar to rungaKutta except that it uses
ns fixed steps to integrate the solution vector y from x1 to x2, returning the values in y.

saturate (ideal, polynomial [ , listOfVariables])

saturate (I, f [, lvar]) is the saturation of the ideal I with respect to the multiplicative set
generated by the polynomial f in the variables given by lvar, a list of variables. Argument
lvar may be omitted in which case lvar is taken to be the list of all variables appearing in
f .

say (strings)

say (u) sends a string or a list of strings u to output.

sayLength ( listOfStrings)

sayLength (ls) returns the total number of characters in the list of strings ls.

scalarMatrix ( scalar [, dimension])

scalarMatrix (r[, n]) returns an n-by-n matrix with scalar r on the diagonal and zero
elsewhere. The dimension may be omitted if the result is to be an object of type
SquareMatrix (n,R) for some n.

scan (binaryFunction, aggregate, element)

scan (f, a, r) successively applies reduce (f, x, r) to more and more leading sub-aggregates
x of aggregrate a. More precisely, if a is [a1, a2, . . .], then scan (f, a, r) returns
[reduce(f, [a1], r), reduce(f, [a1, a2], r), . . .]. Argument a can be any linear aggregate
including streams. For example, if a is a list or an infinite stream of the form [x1, x2, . . .],
then scan(+, a, 0) returns a list or stream of the form [x1, x1 + x2, . . .].

scanOneDimSubspaces ( listOfVectors, integer)

scanOneDimSubspaces (basis, n) gives a canonical representative of the n th

one-dimensional subspace of the vector space generated by the elements of basis. Consult
RepresentationPackage2 using details.

script (symbol, listOfListsOfOutputForms)

script (sy, [a, b, c, d, e]) returns sy with subscripts a, superscripts b, pre-superscripts c,
pre-subscripts d, and argument-scripts e. Omitted components are taken to be empty. For
example, script (s, [a, b, c]) is equivalent to script (s, [a, b, c, [], []]).

scripted? (symbol)

scripted? (sy) tests if sy has been given any scripts.

scripts ( symbolOrOutputForm [, listOfOutputForms])

scripts (o, lo), where o is an object of type OutputForm (normally unexposed) and lo is a
list [sub, super, presuper, presub] of four objects of type OutputForm (normally unexposed),
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creates a form for o with scripts on all four corners.
scripts (s) returns all the scripts of s as a record with selectors sub, sup, presup, presub,
and args, each with a list of output forms as a value.

search (key, table)

search (k, t) searches the table t for the key k, returning the entry stored in t for key k, or
"failed" if t has no such key.

sec (expression)
secIfCan (expression)

sec (x) returns the secant of x.
secIfCan (z) returns sec (z) if possible, and "failed" otherwise.

sec2cos (expression)

sec2cos (f) converts every sec (u) appearing in f into 1/cos(u).

sech (expression)
sechIfCan ( expression)

sech (x) returns the hyperbolic secant of x.
sechIfCan (z) returns sech (z) if possible, and "failed" otherwise.

sech2cosh ( expression)

sech2cosh (f) converts every sech (u) appearing in f into 1/cosh(u).

second (aggregate)

second (u) returns the second element of recursive aggregate u. Note:
second (u) = first(rest(u)).

segment ( integer [, integer])

segment (i[, j]) returns the segment i..j. If not qualified by a by clause, this notation for
integers i and j denotes the tuple of integers i, i+ 1, . . . , j. When j is omitted,
segment (i) denotes the half open segment i.., that is, a segment with no upper bound.
segment (x = bd), where bd is a binding, returns bd. For example, segment (x = a..b)
returns a..b.

select (pred, aggregate)
select! (pred, aggregate)

select (p, u) returns a copy of u containing only those elements x such that p(x) is true.
For a list l, select(p, l) == [x for x in l|p(x)]. Argument u may be any finite aggregate or
infinite stream.
select! (p, u) destructively changes u by keeping only values x such that p(x) is true.
Argument u can be any extensible linear aggregate or dictionary.

semicolonSeparate ( listOfOutputForms)

semicolonSeparate (lo), where lo is a list of objects of type OutputForm (normally
unexposed), returns an output form which separates the elements of lo by semicolons.
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separant ( differentialPolynomial)

separant (polynomial) returns the partial derivative of the differential polynomial p with
respect to its leader.

separate ( polynomial, polynomial)

separate (p, q) returns (a, b) such that polynomial p = ab and a is relatively prime to q.
The result produced is a record with selectors primePart and commonPart with value a
and b respectively.

separateDegrees ( polynomial)

separateDegrees (p) splits the polynomial p into factors. Each factor is a record with
selector deg, a non-negative integer, and prod, a product of irreducible polynomials of
degree deg.

separateFactors ( listOfRecords, polynomial)

separateFactors (lfact, p) takes the list produced by separateDegrees along with the
original polynomial p, and produces the complete list of factors.

separateFactors ( listOfRecords, integer)

separateFactors (ddl, p) refines the distinct degree factorization produced by ddFact to
give a complete list of factors.

sequences ( listOfIntegers)
sequences (listOfIntegers, listOfIntegers)

sequences ([l0, l1, l2, .., ln]) is the set of all sequences formed from l0 0’s, l1 1’s, l2 2’s, . . . ,
ln n’s.
sequences (l1, l2) is the stream of all sequences that can be composed from the multiset
defined from two lists of integers l1 and l2. For example, the pair ([1, 2, 4], [2, 3, 5])
represents multiset with 1 2, 2 3’s, and 4 5’s.

series ( specifications [, . . . ])

series (expression) returns a series expansion of the expression f . Note: f must have only
one variable. The series will be expanded in powers of that variable.
series (sy), where sy is a symbol, returns sy as a series.
series (st), where t is a stream [a0, a1, a2, . . .] of coefficients ai from some ring, creates the
Taylor series a0 + a1x+ a2x

2 + . . .. Also, if st is a stream of elements of type
Record(k:NonNegativeInteger, c:R), where k denotes an exponent and c, a non-zero
coefficient from some ring R, it creates a stream of non-zero terms. The terms in st must
be ordered by increasing order of exponents.
series (f, x = a[, n]) expands the expression f as a series in powers of (x− a) with n terms.
If n is missing, the number of terms is governed by the value set by the system command
)set streams calculate.
series (f, n) returns a series expansion of the expression f . Note: f should have only one
variable; the series will be expanded in powers of that variable and terms will be computed
up to order at least n.
series (i+− >a(i), x = a,m..[n, k]) creates the series

∑
i=m..n by k a(i)(x− a)i. Here m, n,
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and k are rational numbers. Upper-limit n and stepsize k are optional and have default
values n =∞ and k = 1.
series (a(i), i, x = a,m..[n, k]) returns

∑
i=m..nbyk a(n)(x− a)n.

seriesSolve (eq, y, x, c)

eq denotes an equation to be solved; alternatively, an expression u may be given for eq in
which case the equation eq is defined as u = 0.

leq denotes a list [eq1 . . . eqn] of equations; alternatively, a list of expressions [u1 . . . un] may
be given of leq in which case the equations eqi are defined by ui = 0.

seriesSolve (eq, y, x = a, [y(a) =]b) returns a Taylor series solution of eq around x = a with
initial condition y(a) = b. Note: eq must be of the form f(x, y)y′(x) + g(x, y) = h(x, y).

seriesSolve (eq, y, x = a, [b0, . . . , b(n−1)]) returns a Taylor series solution of eq around x = a

with initial conditions y(a) = b0, y
′(a) = b1, . . . y

(n−1)(a) = b(n−1). Equation eq must be of

the form f(x, y, y′, . . . , y(n−1)) ∗ y(n)(x) + g(x, y, x′, . . . , y(n−1)) = h(x, y, y′, . . . , y(n−1)).

seriesSolve(leq, [y1, . . . , yn], x = a, [y1(a) = b1, . . . , yn(a) = bn]) returns a Taylor series
solution of the equations eqi around x = a with initial conditions yi(a) = bi. Note: each eqi
must be of the form fi(x, y1, y2, . . . , yn)y

′
1(x) + gi(x, y1, y2, . . . , yn) = h(x, y1, y2, . . . , yn).

seriesSolve(leq, [y1, . . . , yn], x = a, [b1, . . . , bn]) is equivalent to the same command with
fourth argument [y1(a) = b1, . . . , yn(a) = bn].

setchildren! ( recursiveAggregate)

setchildren! (u, v) replaces the current children of node u with the members of v in
left-to-right order.

setColumn! (matrix)

setColumn! (m, j, v) sets the j th column of matrix or two-dimensional array m to v.

setDifference ( list, list)

setDifference (l1, l2) returns a list of the elements of l1 that are not also in l2. The order
of elements in the resulting list is unspecified.

setelt ( structure, index, value [ , option])

setelt (u, x, y), also written u.x := y, sets the image of x to be y under u, regarded as a
function mapping values from the domain of x to the domain of y. Specifically, if u is: 1pc 0

a list: u.first := x is equivalent to setfirst! (u, x). Also, u.rest := x is
equivalent to setrest! (u, x), and u.last := x is equivalent to setlast! (u,
x).

a linear aggregate, u(i..j) := x destructively replaces each element in the
segment u(i..j) by x. The value x is returned. Note: This function has
the same effect as for k in i..j repeat u.k := x; x. The length of u
is unchanged.

a recursive aggregate, u.value := x is equivalent to setvalue! (u, x) and
sets the value part of node u to x. Also, if u is a BinaryTreeAggregate,
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u.left := x is equivalent to setleft! (u, x) and sets the left child of u to x.
Simiarly, u.right := x is equivalent to setright! (u, x). See also
setchildren!.

a table of category TableAggregate(Key, Entry): u(k) := e is equivalent
to (insert([k, e], t); e), where k is a key and e is an entry.

a library: u.k := v saves the value v in the library u, so that it can later
be extracted by u.k.

setelt (u, i, j, r), also written, u(i, j) := r, sets the element in the i th row and j th column
of matrix or two-dimensional array u to r.
setelt (u, rowList, colList, r), also written u([i1, i2, . . . , im], [j1, j2, . . . , jn]) := r, where u is
a matrix or two-dimensional array and r is another m by n matrix or array, destructively
alters the matrix u: the xik,jl is set to r(k, l).

setEpilogue! ( formattedObject, listOfStrings)

setEpilogue! (t, strings) sets the epilogue section of a formatted object t to strings.
Argument t is either an IBM SCRIPT Formula Formatted or TEX formatted object.

setfirst! ( aggregate, value)

setfirst! (a, x) destructively changes the first element of recursive aggregate a to x.

setFormula! ( formattedObject, listOfStrings)

setFormula! (t, strings) sets the formula section of a formatted object t to strings.

setIntersection ( list, list)

setIntersection (l1, l2) returns a list of the elements that lists l1 and l2 have in common.
The order of elements in the resulting list is unspecified.

setlast! ( aggregate, value)

setlast! (u, x) destructively changes the last element of u to x. Note: u.last := x is
equivalent.

setleaves! ( balancedBinaryTree, listOfElements)

setleaves! (t, ls) sets the leaves of balanced binary tree t in left-to-right order to the
elements of ls.

setleft! ( binaryRecursiveAggregate)

setleft! (a, b) sets the left child of a to be b.

setPrologue! ( formattedObject, listOfStrings)

setPrologue! (t, strings) sets the prologue section of a formatted object t to strings.
Argument t is either an IBM SCRIPT Formula Formatted or TEX formatted object.

setProperties! ( basicOperator, associationList)

setProperties! (op, al) sets the property list of basic operator op to association list l.
Note: argument op is modified “in place”, that is, no copy is made.



1166 APPENDIX E. OPERATIONS

setProperty! (basicOperator, string, value)

setProperty! (op, s, v) attaches property s to op, and sets its value to v. Argument op is
modified “in place”, that is, no copy is made.

setrest! ( aggregate[, integer], aggregate)

Arguments u and v are finite or infinite aggregates of the same type.
setrest! (u, v) destructively changes the rest of u to v.

setrest! (x, n, y) destructively changes x so that rest (x, n), that is, x after the n th

element, equals y. The function will expand cycles if necessary.

setright! ( binaryRecursiveAggregate)

setright! (a, x) sets the right child of t to be x.

setRow! ( matrix, integer, row)

setRow! (m, i, v) sets the i th row of matrix or two-dimensional array m to v.

setsubMatrix! (matrix, integer, integer, matrix)

setsubMatrix (x, i1, j1, y) destructively alters the matrix x. Here x(i, j) is set to
y(i− i1 + 1, j − j1 + 1) for i = i1, . . . , i1 − 1 + nrows(y) and j = j1, . . . , j1 − 1 + ncols(y).

setTex! ( text, listOfStrings)

setTex! (t, strings) sets the TeX section of a TeX form t to strings.

setUnion ( list, list)

setUnion (l1, l2) appends the two lists l1 and l2, then removes all duplicates. The order of
elements in the resulting list is unspecified.

setvalue! (aggregate, value)

setvalue! (u, x) destructively changes the value of node u to x.

setVariableOrder ( listOfSymbols [, listOfSymbols])

setVariableOrder ([a1, . . . , am], [b1, . . . , bn]) defines an ordering on the variables given by
a1 > a2 > . . . > am > other variables b1 > b2 > . . . > bn.
setVariableOrder ([a1, . . . , an]) defines an ordering given by a1 > a2 > . . . > an > all
other variables.

sFunction ( listOfIntegers)

sFunction (li) is the S-function of the partition given by list of linteger li, expressed in
terms of power sum symmetric functions. See CycleIndicators for details.

shade (palette)

shade (p) returns the shade index of the indicated palette p.

shellSort (sortingFunction, aggregate)

shellSort (f, a) sorts the aggregate a using the shellSort algorithm with sorting function f .
Aggregate a can be any finite linear aggregate which is mutable (for example, lists, vectors,
and strings). The sorting function f has type (R, R) → Boolean where R is the domain of
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the elements of a.

shift (integerNumber, integer)

shift (a, i) shifts integer number or float a by i digits.

showAll? ()

showAll? () tests if all computed entries of streams will be displayed according to system
command )set streams showall.

showAllElements ( stream)

showAllElements (s) creates an output form displaying all the already computed
elements of stream s. This command will not result in any further computation of elements
of s. Also, the command has no effect if the user has previously entered )set streams
showall true.

showTypeInOutput ( boolean)

showTypeInOutput (bool) affects the way objects of Any are displayed. If bool is true,
the type of the original object that was converted to Any will be printed. If bool is false, it
will not be printed.

shrinkable (boolean)

shrinkable (b)$R tells Axiom that flexible arrays of domain R are or are not allowed to
shrink (reduce their physicalLength) according to whether b is true or false.

shufflein ( listOfIntegers, streamOfListsOfIntegers )

shufflein (li, sli) maps shuffle (li, u) onto all members u of sli, concatenating the results.
See PartitionsAndPermutations.

shuffle ( listOfIntegers, listOfIntegers)

shuffle (l1, l2) forms the stream of all shuffles of l1 and l2, that is, all sequences that can
be formed from merging l1 and l2. See PartitionsAndPermutations.

sign ( various [, . . . ])

sign (x), where x is an element of an ordered ring, returns 1 if x is positive, −1 if x is
negative, 0 if x equals 0.
sign (p), where p is a permutation, returns 1, if p is an even permutation, or −1, if it is
odd.
sign (f, x, a, s) returns the sign of rational function f as symbol x nears a, a real value
represented by either a rational function or one of the values %plusInfinity or
%minusInfinity. If s is: 1pc 0

the string "left": from the left (below).

the string "right: from the right (above).

not given: from both sides if a is finite.

simplify ( expression)

simplify (f) performs the following simplifications on f : 1pc 0
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rewrites trigs and hyperbolic trigs in terms of sin, cos, sinh, cosh.

rewrites sin2 and sinh2 in terms of cos and cosh.

rewrites eaeb as ea+b.

simplifyExp ( expression)

simplifyExp (f) converts every product eaeb appearing in f into ea+b.

simpson (floatFunction, fourFloats, threeIntegers )

simpsonClosed (floatFunction, fourFloats, twoIntegers)
simpsonOpen (floatFunction, fourFloats, twoIntegers)

simpson (fn, a, b, epsrel, epsabs, nmin, nmax, nint) uses the adaptive simpson method to
numerically integrate function fn over the closed interval from a to b, with relative
accuracy epsrel and absolute accuracy epsabs; the refinement levels for the checking of
convergence vary from nmin to nmax. The method is called “adaptive” since it requires an
additional parameter nint giving the number of subintervals over which the integrator
independently applies the convergence criteria using nmin and nmax. This is useful when
a large number of points are needed only in a small fraction of the entire interval.
Parameter fn is a function of type Float → Float; a, b, epsrel, and epsabs are floats; nmin,
nmax, and nint are integers. The operation returns a record containing: value, an
estimate of the integral; error, an estimate of the error in the computation; totalpts, the
total integral number of function evaluations, and success, a boolean value which is true if
the integral was computed within the user specified error criterion. See
NumericalQuadrature for details.

simpsonClosed (fn, a, b, epsrel, epsabs, nmin, nmax) similarly uses the Simpson method
to numerically integrate function fn over the closed interval a to b, but is not adaptive.

simpsonOpen (fn, a, b, epsrel, epsabs, nmin, nmax) is similar to simpsonClosed, except
that it integrates function fn over the open interval from a to b.

sin (expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
sin (x) returns the sine of x if possible, and calls error otherwise.
sinIfCan (x) returns sin (x) if possible, and "failed" otherwise.

sin2csc (expression)

sin2csc (f) converts every sin (u) appearing in f into 1/csc(u).

singular? ( polynomialOrFunctionField)
singularAtInfinity? ()

singular? (p) tests whether p(x) = 0 is singular.
singular? (a)$F tests if x = a is a singularity of the algebraic function field F (a domain
of FunctionFieldCategory).
singularAtInfinity? ()$F tests if the algebraic function field F has a singularity at
infinity.

sinh (expression)
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sinhIfCan (expression )

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
sinh (x) returns the hyperbolic sine of x if possible, and calls error otherwise.
sinhIfCan (x) returns sinh (x) if possible, and "failed" otherwise.

sinh2csch (expression )

sinh2csch (f) converts every sinh (u) appearing in f into 1/csch(u).

size ()

size ()$F returns the number of elements in the domain of category Finite. By definition,
each such domain must have a finite number of elements. See also
FreeAbelianMonoidCategory.

size? (aggregate, nonNegativeInteger)

size? (a, n) tests if aggregate a has exactly n elements.

sizeLess? (element, element)

sizeLess? (x, y) tests whether x is strictly smaller than y with respect to the
euclideanSize.

sizeMultiplication ()

sizeMultiplication ()$F returns the number of entries in the multiplication table of the
field. Note: The time of multiplication of field elements depends on this size.

skewSFunction (listOfIntegers, listOfIntegers)

skewSFunction (li1, li2) is the S-function of the partition difference li1 − li2, expressed in
terms of power sum symmetric functions. See CycleIndicators for details.

solve (u, v [ , w])

eq denotes an equation to be solved; alternatively, an expression u may be given for eq in
which case the equation eq is defined as u = 0.

leq denotes a list [eq1 . . . eqn] of equations; alternatively, a list of expressions [u1 . . . un] may
be given for leq in which case the equations eqi are defined by ui = 0.

epsilon is either a rational number or a float.

complexSolve (eq, epsilon) finds all the real solutions to precision epsilon of the
univariate equation eq of rational functions with respect to the unique variable appearing
in eq. The complex solutions are either expressed as rational numbers or floats depending
on the type of epsilon.

complexSolve ([eq1 . . . eqn], epsilon) computes the real solutions to precision epsilon of a
system of equations eqi involving rational functions. The complex solutions are either
expressed as rational numbers or floats depending on the type of epsilon.

radicalSolve (eq[, x]) finds solutions expressed in terms of radicals of the equation eq
involving rational functions. Solutions will be found with respect to a Symbol given as a
second argument to the operation. This second argument may be omitted when eq contains
a unique symbol.
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radicalSolve (leq, lv) finds solutions expressed in terms of radicals of the system of
equations leq involving rational functions. Solutions are found with respect to a list lv of
Symbols, or with respect to all variables appearing in the equations, if no second argument
is given.

solve (eq[, x]) finds exact symbolic solutions to equation eq involving either rational
functions or expressions of type Expression(R). Solutions will be found with respect to a
Symbol given as a second argument to the operation. The second argument may be
omitted when eq contains a unique symbol.

solve (leq, lv) finds exact solutions to a system of equations leq involving rational functions
or expressions of type Expression (R). Solutions are found with respect to a list of lv of
Symbols, or with respect to all variables appearing in the equations if no second argument
is given.

solve (eq, epsilon) finds all the real solutions to precision epsilon of the univariate equation
eq of rational functions with respect to the unique variable appearing in eq. The real
solutions are either expressed as rational numbers or floats depending on the type of
epsilon.

solve ([eq1 . . . eqn], epsilon) computes the real solutions to precision epsilon of a system of
equations eqi involving rational functions. The real solutions are either expressed as
rational numbers or floats depending on the type of epsilon.

solve (M, v), where M is a matrix and v is a Vector of coefficients, finds a particular
solution of the system Mx = v and a basis of the associated homogeneous system MX = 0.

solve (eq, y, x = a, [y0 . . . ym]) returns either the solution of the initial value problem eq,
y(a) = y0, y

′(a) = a1, . . . or "failed" if no solution can be found. Note: an error occurs if
the equation eq is not a linear ordinary equation or of the form dy/dx = f(x, y).

solve (eq, y, x) returns either a solution of the ordinary diffential equation eq or "failed"
if no non-trivial solution can be found. If eq is a linear ordinary differential equation, a
solution is of the form [h, [b1, . . . , ]] where h is a particular solution and [b1, . . . , bm] are
linearly independent solutions of the associated homogeneous equation f(x, y) = 0. The
value returned is a basis for the solution of the homogeneous equation which are found
(note: this is not always a full basis).

See also dioSolve, contractSolve, polSolve, seriesSolve, linSolve.

solveLinearlyOverQ ( vector)

solveLinearlyOverQ ([v1, . . . , vn], u) returns [c1, . . . , cn] such that c1v1 + · · ·+ cnvn = u,
or "failed" if no such rational numbers ci exist. The elements of the vi and u can be from
any extension ring with an explicit linear dependence test, for example, expressions,
complex values, polynomials, rational functions, or exact numbers. See
LinearExplicitRingOver.

solveLinearPolynomialEquation ( listOfPolys, poly)

solveLinearPolynomialEquation ([f1, . . . , fn], g), where g is a polynomial and the fi are



1171

polynomials relatively prime to one another, returns a list of polynomials ai such that
g/
∏

i fi =
∑

i ai/fi, or "failed" if no such list of ai’s exists.

sort ([predicate, ]aggregate)
sort! ([predicate, ]aggregate)

sort ([p, ]a) returns a copy of a sorted using total ordering predicate p.
sort! ([p, ]u) returns u destructively changed with its elements ordered by comparison
function p.
By default, p is the operation ≤. Thus both sort (u) and sort! (u) returns u with its
elements in ascending order.
Also: sort (lp) sorts a list of permutations lp according to cycle structure, first according to
the length of cycles, second, if S has Finite or S has OrderedSet, according to
lexicographical order of entries in cycles of equal length.

spherical (point)

spherical (pt) transforms point pt from spherical coordinates to Cartesian coordinates,
mapping (r, θ, ϕ) to x = r sin(ϕ) cos(θ), y = r sin(ϕ) sin(θ), z = r cos(ϕ).

split (element, binarySearchTree)

split (x, t) splits binary search tree t into two components, returning a record of two
components: less, a binary search tree whose components are all less than x; and, greater,
a binary search tree with all the rest of the components of t.

split! (aggregate, integer)

split! (u, n) splits u into two aggregates: the first consisting of v, the first n elements of u,
and w consisting of all the rest. The value of w is returned. Thus v = first(u, n) and
w := rest(u, n). Note: afterwards rest (u, n) returns empty ().

splitDenominator ( listOfFractions)

splitDenominator (u), where u is a list of fractions [q1, . . . , qn], returns [[p1, . . . , pn], d]
such that qi = pi/d and d is a common denominator for the qi’s. Similarly, the function is
defined for a matrix (respectively, a polynomial) u in which case the qi are the elements of
(respectively, the coefficients of) u.

sqfrFactor ( element, integer)

sqfrFactor (base, exponent) creates a factored object with a single factor whose base is
asserted to be square-free (flag = "sqfr").

sqrt ( expression [, option])

sqrt (x) returns the square root of x.
sqrt (x, y), where x and y are p-adic integers, returns a square root of x where argument y
is a square root of x mod p. See also PAdicIntegerCategory.

square? (matrix)

square? (m) tests if m is a square matrix.
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squareFree ( element)

squareFree (x) returns the square-free factorization of x, that is, such that the factors are
pairwise relatively prime and each has multiple prime factors. Argument x can be a
member of any domain of category UniqueFactorizationDomain such as a polynomial or
integer.

squareFreePart ( element)

squareFreePart (p) returns product of all the prime factors of p each taken with
multiplicity one. Argument p can be a member of any domain of category
UniqueFactorizationDomain such as a polynomial or integer.

squareFreePolynomial ( polynomial)

squareFreePolynomial (p) returns the square-free factorization of the univariate
polynomial p.

squareTop (matrix)

squareTop (A) returns an n-by-n matrix consisting of the first n rows of the m-by-n
matrix A. The operation calls error if m < n.

stack (list)

stack ([x, y, . . . , z]) creates a stack with first (top) element x, second element y, . . . , and
last element z.

standardBasisOfCyclicSubmodule ( listOfMatrices, vector)

standardBasisOfCyclicSubmodule (lm, v) returns a matrix representation of cyclic
submodule over a ring R, where lm is a list of matrices and v is a vector, such that the
non-zero column vectors are an R-basis for Av. See RepresentationPackage2 using
Browse.

stirling1 ( integer, integer)
stirling2 ( integer, integer)

stirling1 (n,m) returns the Stirling number of the first kind.
stirling2 (n,m) returns the Stirling number of the second kind.

string? (various)
string (sExpression)

string? (s) tests if SExpression object s is a string.
string (s) converts the symbol s to a string. An error is called if the symbol is
subscripted.
string (s) returns SExpression object s as an element of String if possible, and otherwise
calls error.

strongGenerators ( listOfPermutations)

strongGenerators (gp) returns strong generators for the permutation group gp.

structuralConstants ( basis)

structuralConstants (basis) calculates the structural constants
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[(γi,j,k) for k in 1..rank()$R] of a domain R of category FramedNonAssociativeAlgebra over
a ring R, defined by: vivj = γi,j,1v1 + · · ·+ γi,j,nvn, where v1, . . . , vn is the fixed R-module
basis.

style (string)

style (s) specifies the drawing style in which the graph will be plotted by the indicated
string s. This option is expressed in the form style == s.

sub (outputForm, outputForm)

sub (o1, o2), where o1 and o2 are objects of type OutputForm (normally unexposed), creates
an output form for o1 subscripted by o2.

subMatrix (matrix, integer, integer, integer, integer)

subMatrix (m, i1, i2, j1, j2) extracts the submatrix [m(i, j)] where the index i ranges from
i1 to i2 and the index j ranges from j1 to j2.

submod (integerNumber, integerNumber, integerNumber)

submod (a, b, p), where 0 ≤ a < b < p > 1, returns a− b mod p, for integer numbers a, b
and p.

subResultantGcd ( polynomial, polynomial)

subResultantGcd (p, q) computes the gcd of the polynomials p and q using the
SubResultant GCD algorithm.

subscript (symbol, listOfOutputForms)

subscript (s, [a1, . . . , an]) returns symbol s subscripted by output forms a1, . . . , an as a
symbol.

subset (integer, integer, integer)

subSet (n,m, k) calculates the k th m-subset of the set 0, 1, . . . , (n− 1) in the lexicographic
order considered as a decreasing map from 0, . . . , (m− 1) into 0, . . . , (n− 1). See
SymmetricGroupCombinatoricFunctions.

subset? (set, set)

subset? (u, v) tests if set u is a subset of set v.

subspace ( threeSpace)

subspace (s) returns the space component which holds all the point information in the
ThreeSpace object s.

substring? (string, string, integer)

substring? (s, t, i) tests if s is a substring of t beginning at index i. Note: substring?(s,
t, 0) = prefix?(s, t).

subst (expression, equations)

subst (f, k = g) formally replaces the kernel k by g in f .
subst (f, [k1 = g1, . . . , kn = gn]) formally replaces the kernels k1, . . . , kn by g1, . . . , gn in
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f .
subst (f, [k1, . . . , kn], [g1, . . . , gn]) formally replaces kernels ki by gi in f .

suchThat (symbol, predicates)

suchThat (sy, pred) attaches the predicate pred to symbol sy. Argument pred may also be
a list [p1, . . . , pn] of predicates pi. In this case, the predicate pred attached to sy is
p1 and . . . and pn.
suchThat (r, [a1, . . . , an], f) returns the rewrite rule r with the predicate f(a1, . . . , an)
attached to it.

suffix? (string, string)

suffix? (s, t) tests if the string s is the final substring of t.

sum ( rationalFunction, symbolOrSegmentBinding)

sum (a(n), n), where a(n) is an rational function or expression involving the symbol n,
returns the indefinite sum A of a with respect to upward difference on n, that is,
A(n+ 1)−A(n) = a(n).
sum (f(n), n = a..b), where f(n), a, and b are rational functions (or polynomials),
computes and returns the sum f(a) + f(a+ 1) + · · ·+ f(b) as a rational function (or
polynomial).

summation ( expression, segmentBinding)

summation (f, n = a..b) returns the formal sum
∑b

n=a f(n).

sumOfDivisors ( integer)

sumOfDivisors (n) returns the sum of the integers between 1 and integer n (inclusive)
which divide n. This sum is often denoted in the literature by σ(n).

sumOfKthPowerDivisors ( integer, nonNegativeInteger)

sumOfKthPowerDivisors (n, k) returns the sum of the k th powers of the integers
between 1 and n (inclusive) which divide n. This sum is often denoted in the literature by
σk(n).

sumSquares (integer)

sumSquares (p) returns the list [a, b] such that a2 + b2 is equal to the integer prime p, and
calls error if this is not possible. It will succeed if p is 2 or congruent to 1 mod 4.

sup (element, element)

sup (x, y) returns the least element from which both x and y can be subtracted. The
purpose of sup is to act as a supremum with respect to the partial order imposed by the −
operation on the domain. See OrderedAbelianMonoidSup for details.

super (outputForm, outputForm)

super (o1, o2), where o1 and o2 are objects of type OutputForm (normally unexposed),
creates an output form for o1 superscripted by o2.
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superscript (symbol, listOfOutputForms)

superscript (s, [a1, . . . , an]) returns symbol s superscripted by output forms [a1, . . . , an].

supersub (outputForm, listOfOutputForms)

supersub (o, lo), where o is an object of type OutputForm (normally unexposed) and lo is a
list of output forms of the form [sub1, super1, sub2, super2, . . . , subn, supern] creates an
output form with each subscript aligned under each superscript.

surface (function, function, function)

surface (c1, c2, c3) creates a surface from three parametric component functions c1, c2, and
c3.

swap! (aggregate, index, index)

swap! (u, i, j) interchanges elements i and j of aggregate u. No meaningful value is
returned.

swapColumns! (matrix, integer, integer)

swapColumns! (m, i, j) interchanges the i th and j th columns of m returning m which is
destructively altered.

swapRows! (matrix, integer, integer)

swapRows! (m, i, j) interchanges the i th and j th rows of m, returning m which is
destructively altered.

symbol? (sExpression)

symbol? (s) tests if SExpression object s is a symbol.

symbol (sExpression)

symbol (s) returns s as an element of type Symbol, or calls error if this is not possible.

symmetric? (matrix)

symmetric? (m) tests if the matrix m is square and symmetric, that is, if each
m(i, j) = m(j, i).

symmetricDifference (set, set)

symmetricDifference (u, v) returns the set aggregate of elements x which are members of
set aggregate u or set aggregate v but not both. If u and v have no elements in common,
symmetricDifference (u, v) returns a copy of u. Note:
symmetricDifference(u, v) = union(difference(u, v),difference(v, u))

symmetricGroup ( integers)

symmetricGroup (n) constructs the symmetric group Sn acting on the integers 1, . . . , n.
The generators are the n-cycle (1, . . . , n) and the 2-cycle (1, 2).
symmetricGroup (li), where li is a list of integers, constructs the symmetric group acting
on the integers in the list li. The generators are the cycle given by li and the 2-cycle
(li(1), li(2)). Duplicates in the list will be removed.
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symmetricRemainder ( integer, integer)

symmetricRemainder (a, b), where b > 1, yields r where −b/2 ≤ r < b/2.

symmetricTensors ( matrices, positiveInteger)

symmetricTensors (la, n), where la is a list [a1, . . . , ak] of m-by-m square matrices,
applies to each matrix ai, the irreducible, polynomial representation of the general linear
group GLm corresponding to the partition (n, 0, . . . , 0) of n.

systemCommand ( string)

systemCommand (cmd) takes the string cmd and passes it to the runtime environment
for execution as a system command. Although various things may be printed, no usable
value is returned.

tableau ( listOfListOfElements)

tableau (ll) converts a list of lists ll to an object of type Tableau.

tableForDiscreteLogarithm ( integer)

tableForDiscreteLogarithm (n) returns a table of the discrete logarithms of a0 up to
an−1 which, when called with the key lookup (ai), returns i for i in 0..n− 1 for a finite
field. This operation calls error if not called for prime divisors of order of multiplicative
group.

table ( [listOfRecords])

table ([p1, p2, . . . , pn]) creates a table with keys of type Key and entries of type Entry.
Each pair pi is a record with selectors key and entry with values from the corresponding
domains Key and Entry.
table ()$T creates a empty table of domain T of category TableAggregate.

tail (aggregate)

tail (a) returns the last node of recursive aggregate a.

tan (expression)
tanIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
tan (x) returns the tangent of x.
tanIfCan (x) returns tan (x) if possible, and "failed" otherwise.

tan2cot ( expression)

tan2cot (f) converts every tan (u) appearing in f into 1/cot(u).

tan2trig ( expression)

tan2trig (f) converts every tan (u) appearing in f into sin (u)/cos(u).

tanh (expression)
tanhIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or Expression value or a series.
tanh (x) returns the hyperbolic tangent of x.
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tanhIfCan (x) returns tanh (x) if possible, and "failed" otherwise.

tanh2coth ( expression)

tanh2coth (f) converts every tanh (u) appearing in f into 1/coth(u).

tanh2trigh ( expression)

tanh2trigh (f) converts every tanh (u) appearing in f into sinh (u)/cosh(u).

taylor (various, ..)

taylor (u) converts the Laurent series u(x) to a Taylor series if possible, and if not, calls
error.
taylor (f) converts the expression f into a Taylor expansion of the expression f . Note: f
must have only one variable.
taylor (sy), where sy is a symbol, returns sy as a Taylor series.
taylor (n+− > a(n), x = a) returns

∑
n=0... a(n)(x− a)n).

taylor (f, x = a[, n]) expands the expression f as a series in powers of (x− a) with n terms.
If n is missing, the number of terms is governed by the value set by the system command
)set streams calculate.
taylor (i+− > a(i), x = a,m..[n, k]) creates the Taylor series

∑
i=m..n by k a(i)(x− a)i.

Here m, n and k are integers. Upper-limit n and stepsize k are optional and have default
values n =∞ and k = 1.
taylor (a(i), i, x = a,m..[n, k]) returns

∑
i=m..nbyk a(n)(x− a)n.

taylorIfCan ( laurentSeries)

taylorIfCan (f(x)) converts the Laurent series f(x) to a Taylor series if possible, and
returns "failed" if this is not possible.

taylorRep ( laurentSeries)

taylorRep (f(x)) returns g(x), where f = xng(x) is represented by [n, g(x)].

tensorProduct ( listOfMatrices [, listOfMatrices])

tensorProduct ([a1, . . . , ak][, [b1, . . . , bk]]) calculates the list of Kronecker products of the
matrices ai and bi for 1 ≤ i ≤ k. If a second argument is missing, the bi is defined as the
corresponding ai. Also, tensorProduct (m), where m is a matrix, is defined as
tensorProduct ([m], [m]). Note: If each list of matrices corresponds to a group
representation (representation of generators) of one group, then these matrices correspond
to the tensor product of the two representations.

terms (various)

terms (s) returns a stream of the non-zero terms of series s. Each term is returned as a
record with selectors k and c, which correspond to the exponent and coefficient,
respectively. The terms are ordered by increasing order of exponents.
terms (m), where m is a free abelian monoid of the form e1a1 + · · ·+ enan, returns
[[a1, e1], . . . , [an, en]]. See FreeAbelianMonoidCategory.

tex ( formattedObject)

tex (t) extracts the TeX section of a TeX formatted object t.
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third (aggregate)

third (u) returns the third element of a recursive aggregate u. Note:
third (u) = first(rest(rest(u))).

title (string)

title (s) specifies string s as the title for a plot. This option is expressed as a option to the
draw command in the form title == s.

top (stack)
top! (dequeue)

top (s) returns the top element x from s.
top! (d) returns the element at the top (front) of the dequeue.

toroidal (value)

toroidal (element) transforms from toroidal coordinates to Cartesian coordinates:
toroidal (a) is a function that maps the point (u, v, ϕ) to
x = asinh(v)cos(ϕ)/(cosh(v)− cos(u)), y = asinh(v)sin(ϕ)/(cosh(v)− cos(u)),
z = asin(u)/(cosh(v)− cos(u)).

toScale (boolean)

toScale (b) specifies whether or not a plot is to be drawn to scale. This command may be
expressed as an option to the draw command in the form toScale == b.

totalDegree ( polynomial, listOfVariables)

totalDegree (p[, lv]) returns the maximum sum (over all monomials of polynomial p) of
the variables in the list lv. If a second argument is missing, lv is defined to be all the
variables appearing in p.

totalfract ( polynomial)

totalfract (prf) takes a polynomial whose coefficients are themselves fractions of
polynomials and returns a record containing the numerator and denominator resulting
from putting prf over a common denominator.

totalGroebner ( listOfPolynomials, listOfVariables)

totalGroebner (lp, lv) computes the Gröbner basis for the list of polynomials lp with the
terms ordered first by total degree and then refined by reverse lexicographic ordering. The
variables are ordered by their position in the list lv.

tower (expression)

tower (f) returns all the kernels appearing in f , regardless of level.

trace ( various, ..)

trace (m) returns the trace of the matrix m, that is, the sum of its diagonal elements.
trace (a) returns the trace of the regular representation of a, an element of an algebra of
finite rank. See FiniteRankAlgebra.
trace (a[, d]), where a is an element of a finite algebraic extension field, computes the trace
of a with respect to the field of extension degree d over the ground field of size q. This
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operation calls error if d does not divide the extension degree of a. The default value of d

is 1. Note: trace (a, d) =
∑n/d

i=0 a
qdi .

traceMatrix ( [basis])

traceMatrix ([v1, .., vn]) is the n-by-n matrix whose i, j element is Tr(vivj). If no
argument is given, the vi are assumed to be elements of the fixed basis.

tracePowMod (poly, nonNegativeInteger, poly )

tracePowMod (u, k, v) returns
∑k

i=0 u
2i , all computed modulo the polynomial v.

transcendenceDegree ()

transcendenceDegree ()$F returns the transcendence degree of the field extension F , or
0 if the extension is algebraic.

transcendent? ( element)

transcendent? (a) tests whether an element a of a domain that is an extension field over a
ground field F is transcendent with respect to F .

transpose ( matrix [, options])

transpose (m) returns the transpose of the matrix m.

transpose (t[, i, j]) exchanges the i th and j th indices of t. For example, if
r = transpose(t, 2, 3) for a rank four tensor t, then r is the rank four tensor given by
r(i, j, k, l) = t(i, k, j, l). If i and j are not given, they are assumed the first and last index of
t.

tree ( value [, listOfChildren])

tree (x, ls) creates an element of Tree with value x at the root node, and immediate
children ls in left-to-right order.
tree (x) is equivalent to tree (x, []$List(S)) where x has type S.

trapezoidal (floatFunction, fourFloats, threeIntegers )

trapezoidalClosed (floatFunction, fourFloats, twoIntegers)
trapezoidalOpen (floatFunction, fourFloats, twoIntegers)

trapezoidal (fn, a, b, epsrel, epsabs, nmin, nmax, nint) uses the adaptive trapezoidal
method to numerically integrate function fn over the closed interval from a to b, with
relative accuracy epsrel and absolute accuracy epsabs, where the refinement levels for the
checking of convergence vary from nmin to nmax. The method is called “adaptive” since
it requires an additional parameter nint giving the number of subintervals over which the
integrator independently applies the convergence criteria using nmin and nmax; this is
useful when a large number of points are needed only in a small fraction of the entire
interval. Parameter fn is a function of type Float → Float; a, b, epsrel, and epsabs are
floats; nmin, nmax, and nint are integers. The operation returns a record containing:
value, an estimate of the integral; error, an estimate of the error in the computation;
totalpts, the total integral number of function evaluations, and success, a boolean value
that is true if the integral was computed within the user specified error criterion. See
NumericalQuadrature for details.
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trapezoidalClosed(fn, a, b, epsrel, epsabs, nmin, nmax) similarly uses the trapezoidal
method to numerically integrate function fn over the closed interval a to b, but is not
adaptive.

trapezoidalOpen(fn, a, b, epsrel, epsabs, nmin, nmax) is similar to trapezoidalClosed,
except that it integrates function fn over the open interval from a to b.

triangularSystems ( listOfFractions, listOfSymbols)

triangularSystems (lf, lv) solves the system of equations defined by lf with respect to
the list of symbols lv; the system of equations is obtaining by equating to zero the list of
rational functions lf . The result is a list of solutions where each solution is expressed as a
“reduced” triangular system of polynomials.

trigs (expression)

trigs (f) rewrites all the complex logs and exponentials appearing in f in terms of
trigonometric functions.

trim (string, characterOrCharacterClass)

trim (s, c) returns s with all characters c deleted from right and left ends. For example,
trim(" abc ", char " ") returns "abc". Argument c may also be a character class, in
which case s is returned with all characters in cc deleted from right and left ends. For
example, trim("(abc)", charClass "()") returns ”abc”.

truncate ( various [, options])

truncate (x) returns the integer between x and 0 closest to x.
truncate (f,m[, n]) returns a (finite) power series consisting of the sum of all terms of f of
degree d with n ≤ d ≤ m. Upper bound m is ∞ by default.

tubePoints ( positiveInteger)

tubePoints (n) specifies the number of points, n, defining the circle that creates the tube
around a three-dimensional curve. The default is 6. This option is expressed in the form
tubePoints == n.

tubePointsDefault ( [positiveInteger])

tubePointsDefault (i) sets the number of points to use when creating the circle to be
used in creating a three-dimensional tube plot to i.
tubePointsDefault () returns the number of points to be used when creating the circle to
be used in creating a three-dimensional tube plot.

tubeRadius (float)

tubeRadius (r) specifies a radius r for a tube plot around a three-dimensional curve. This
operation may be expressed as an option to the draw command in the form tubeRadius

== r.

tubeRadiusDefault ( [float])

tubeRadiusDefault (r) sets the default radius for a three-dimensional tube plot to r.
tubeRadiusDefault () returns the radius used for a three-dimensional tube plot.



1181

twist ()

twist (f), where f is a function of type (A,B)C, is the function g such that
g(a, b) = f(b, a). See MappingPackage for related functions.

unary? ( basicOperator)

unary? (op) tests if basic operator op is unary, that is, takes exactly one argument.

union (set, elementOrSet)

union (u, x) returns the set aggregate u with the element x added. If u already contains x,
union (u, x) returns a copy of x.
union (u, v) returns the set aggregate of elements that are members of either set aggregate
u or v. See also Multiset.

unit ( [various])

unit () returns a unit of the algebra (necessarily unique), or "failed" if there is none.
unit (u) extracts the unit part of the factored object u.
unit (l) marks off the units on a viewport according to the indicated list l. This option is
expressed in the draw command in the form unit ==[f1, f2].

unit? (element)

unit? (x) tests whether x is a unit, that is, if x is invertible.

unitCanonical ( element)

unitCanonical (x) returns unitNormal (x).canonical.

unitNormalize ( factored)

unitNormalize (u) normalizes the unit part of the factorization. For example, when
working with factored integers, this operation ensures that the bases are all positive
integers.

unitNormal (element)

unitNormal (x) tries to choose a canonical element from the associate class of x. If
successful, it returns a record with three components “unit”, “canonical” and “associate”.
The attribute canonicalUnitNormal, if asserted, means that the “canonical” element is
the same across all associates of x. If unitNormal (x) = [u, c, a] then ux = c, au = 1.

unitsColorDefault ( [palette])

unitsColorDefault (p) sets the default color of the unit ticks in a two-dimensional
viewport to the palette p.
unitsColorDefault () returns the default color of the unit ticks in a two-dimensional
viewport.

unitVector ( positiveInteger)

unitVector (n) produces a vector with 1 in position n and zero elsewhere.

univariate ( polynomial [, variable])

univariate (p[, v]) converts the multivariate polynomial p into a univariate polynomial in v
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whose coefficients are multivariate polynomials in all the other variables. If v is omitted,
then p must involve exactly one variable.

universe ()

universe ()$R returns the universal set for finite set aggregate R.

unparse (inputForm)

unparse (f) returns a string s such that the parser would transform s to f , or calls error
if f is not the parsed form of a string.

unrankImproperPartitions0 ( integer, integer, integer)

unrankImproperPartitions0 (n,m, k) computes the k th improper partition of
nonnegative n in m nonnegative parts in reverse lexicographical order. Example: [0, 0, 3] <
[0, 1, 2] < [0, 2, 1] < [0, 3, 0] < [1, 0, 2] < [1, 1, 1] < [1, 2, 0] < [2, 0, 1] < [2, 1, 0] < [3, 0, 0]. The
operation calls error if k is negative or too big. Note: counting of subtrees is done by
numberOfImproperPartitions.

unrankImproperPartitions1 ( integer, integer, integer)

unrankImproperPartitions1 (n,m, k) computes the k th improper partition of
nonnegative n in at most m nonnegative parts ordered as follows: first, in reverse
lexicographical order according to their non-zero parts, then according to their positions
(i.e. lexicographical order using subSet: [3, 0, 0] < [0, 3, 0] < [0, 0, 3] < [2, 1, 0] < [2, 0, 1] <
[0, 2, 1] < [1, 2, 0] < [1, 0, 2] < [0, 1, 2] < [1, 1, 1]). Note: counting of subtrees is done by
numberOfImproperPartitionsInternal.

unravel ( listOfElement)

unravel (t) produces a tensor from a list of components such that unravel (ravel(t)) = t.

upperCase (string)
upperCase? (string)
upperCase! (string)

upperCase! (s) destructively replaces the alphabetic characters in s by upper case
characters.
upperCase () returns the class of all characters for which upperCase? is true.
upperCase (c) converts a lower case letter c to the corresponding upper case letter. If c is
not a lower case letter, then it is returned unchanged.
upperCase (s) returns the string with all characters in upper case.
upperCase? (c) tests if c is an upper case letter, that is, one of A..Z.

validExponential ( listOfKernels, expression, symbol)

validExponential ([k1, . . . , kn], f, x) returns g if exp (f) = g and g involves only k1 . . . kn,
and "failed" otherwise.

value ( recursiveAggregate)

value (a) returns the “value” part of a recursive aggregate a, typically the root of tree.
See, for example, BinaryTree.
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var1Steps ( positiveInteger)

var1Steps (n) indicates the number of subdivisions n of the first range variable. This
command may be expressed as an option to the draw command in the form
var1Steps == n.

var1StepsDefault ( [positiveInteger])

var1StepsDefault () returns the current setting for the number of steps to take when
creating a three-dimensional mesh in the direction of the first defined free variable (a free
variable is considered defined when its range is specified (that is, x = 0..10)).
var1StepsDefault (i) sets the number of steps to take when creating a three-dimensional
mesh in the direction of the first defined free variable to i (a free variable is considered
defined when its range is specified (that is, x = 0..10)).

var2Steps ( positiveInteger)

var2Steps (n) indicates the number of subdivisions, n, of the second range variable. This
option is expressed in the form var2Steps == n.

var2StepsDefault ( [positiveInteger])

variable ( various)

variable (f) returns the (unique) power series variable of the power series f .
variable (segb) returns the variable from the left hand side of the SegmentBinding segb.
For example, if segb is v = a..b, then variable (segb) returns v.
variable (v) returns s if v is any derivative of the differential indeterminate s.

variables ( expression)

variables (f) returns the list of all the variables of expression, polynomial, rational
function, or power series f .

vconcat ( outputForms [, OutputForm] (normally unexposed))

vconcat (o1, o2), where o1 and o2 are objects of type OutputForm (normally unexposed),
returns an output form for the vertical concatenation of forms o1 and o2.
vconcat (lo), where lo is a list of objects of type OutputForm (normally unexposed),
returns an output form for the vertical concatenation of the elements of lo.

vector ( listOfElements)

vector (l) converts the list l to a vector.

vectorise (polynomial, nonNegativeInteger)

vectorise (p, n) returns [a0, . . . , an−1] where p = a0 + a1x+ · · ·+ an−1x
n−1 + higher order

terms. The degree of polynomial p can be different from n− 1.

vertConcat (matrix, matrix)

vertConcat (x, y) vertically concatenates two matrices with an equal number of columns.
The entries of y appear below the entries of x.
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viewDefaults ()

viewDefaults () resets all the default graphics settings.

viewPosDefault ( [listOfNonNegativeIntegers])

viewPosDefault ([x, y]) sets the default X and Y position of a viewport window. Unless
overridden explicitly, newly created viewports will have the X and Y coordinates x, y.
viewPosDefault () returns the default X and Y position of a viewport window unless
overridden explicitly, newly created viewports will have these X and Y coordinate.

viewSizeDefault ( [listOfPositiveIntegers])

viewSizeDefault ([w, h]) sets the default viewport width to w and height to h.

viewWriteAvailable ()

viewWriteAvailable () returns a list of available methods for writing, such as BITMAP,
POSTSCRIPT, etc.

viewWriteDefault ( listOfStrings)

viewWriteDefault () returns the list of things to write in a viewport data file; a
viewAlone file is always generated.
viewWriteDefault (l) sets the default list of things to write in a viewport data file to the
strings in l; a viewAlone file is always generated.

void ()

void () produces a void object.

weakBiRank ( element)

weakBiRank (x) determines the number of linearly independent elements in the bixbj ,
i, j = 1, . . . , n, where b = [b1, . . . , bn] is the fixed basis of a domain of category
FramedNonAssociativeAlgebra.

weight (u)

weight (u) returns 1pc 0

if u is a differential polynomial: the maximum weight of all differential
monomials appearing in the differential polynomial u.

if u is a derivative: the weight of the derivative u.

if u is a basic operator: the weight attached to u.

weight (p, s) returns the maximum weight of all differential monomials appearing in the
differential polynomial p when p is viewed as a differential polynomial in the differential
indeterminate s alone.
weight (op, n) attaches the weight n to op.

weights ( differentialPolynomial, differentialIndeterminated)

weights (p, s) returns a list of weights of differential monomials appearing in the
differential polynomial p when p is viewed as a differential polynomial in the differential
indeterminate s alone. If s is missing, a list of weights of differential monomials appearing
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in differential polynomial p.

whatInfinity ( orderedCompletion)

whatInfinity (x) returns 0 if x is finite, 1 if x is ∞, and −1 if x is −∞.

wholePart ( various)

wholePart (x) returns the whole part of the fraction x, that is, the truncated quotient of
the numerator by the denominator.
wholePart (x) extracts the whole part of x. That is, if
x = continuedFraction(b0, [a1, a2, . . .], [b1, b2, . . .]), then wholePart (x) = b0.
wholePart (p) extracts the whole part of the partial fraction p.

wholeRadix ( listOfIntegers)

wholeRadix (l) creates an integral radix expansion from a list of ragits. For example,
wholeRadix ([1, 3, 4]) returns 134.

wholeRagits ( listOfIntegers)

wholeRagits (rx) returns the ragits of the integer part of a radix expansion.

wordInGenerators (permutation, permutationGroup)

wordInGenerators (p, gp) returns the word for the permutation p in the original
generators of the permutation group gp, represented by the indices of the list, given by
generators.

wordInStrongGenerators ( permutation, permutationGroup)

wordInStrongGenerators (p, gp) returns the word for the permutation p in the strong
generators of the permutation group gp, represented by the indices of the list, given by
strongGenerators.

wordsForStrongGenerators ( listOfListsOfIntegers)

wordsForStrongGenerators (gp) returns the words for the strong generators of the
permutation group gp in the original generators of gp, represented by their indices in the
list of nonnegative integers, given by generators.

wreath (symmetricPolynomial, symmetricPolynomial)

wreath (s1, s2) is the cycle index of the wreath product of the two groups whose cycle
indices are s1 and s2, symmetric polynomials with rational number coefficients.

writable? (file)

writable? (f) tests if the named file can be opened for writing. The named file need not
already exist.

write! (file, value)

write! (f, s) puts the value s into the file f . The state of f is modified so that subsequent
calls to write! will append values to the end of the file.
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writeLine! ( textfile [, string])

writeLine! (f) finishes the current line in the file f . An empty string is returned. The call
writeLine! (f) is equivalent to writeLine! (f, ””).
writeLine! (f, s) writes the contents of the string s and finishes the current line in the file
f . The value of s is returned.

xor (boolean, boolean)

xor (a, b) returns the logical exclusive-or of booleans or bit aggregates a and b.
xor (n,m) returns the bit-by-bit logical xor of the small integers n and m.

xRange (curve)

xRange (c) returns the range of the x-coordinates of the points on the curve c.

yCoordinates ( function)

yCoordinates (f), where f is a function defined over a curve, returns the coordinates of f
with respect to the natural basis for the curve. Specifically, the operation returns
[[a1, . . . , an], d] such that f = (a1 + . . .+ any

n−1)/d.

yellow ()

yellow () returns the position of the yellow hue from total hues.

youngGroup (various)

youngGroup ([n1, . . . , nk]) constructs the direct product of the symmetric groups Sn1,
. . . , Snk.
youngGroup (lambda) constructs the direct product of the symmetric groups given by the
parts of the partition lambda.

yRange (curve)

yRange (c) returns the range of the y-coordinates of the points on the curve c.

zag ( outputForm, outputForm)

zag (o1, o2), where o1 and o2 are objects of type OutputForm (normally unexposed), return
an output form displaying the continued fraction form for o2 over o1.

zero ( nonNegativeInteger [, nonNegativeInteger])

zero (n) creates a zero vector of length n.
zero (m,n) returns an m-by-n zero matrix.

zero? (element)

zero? (x) tests if x is equal to 0.

zeroDim? (ideal)

zeroDim? (I) tests if the ideal I is zero dimensional, that is, all its associated primes are
maximal.

zeroDimPrimary? ( ideal)

zeroDimPrimary? (I) tests if the ideal I is 0-dimensional primary.
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zeroDimPrime? ( ideal)

zeroDimPrime? (I) tests if the ideal I is a 0-dimensional prime.

zeroOf ( polynomial [, symbol])

zeroOf (p[, y]) returns y such that p(y) = 0. If possible, y is expressed in terms of radicals.
Otherwise it is an implicit algebraic quantity that displays as ′y. If no second argument is
given, then p must have a unique variable y.

zerosOf ( polynomial [, symbol])

zerosOf (p, y) returns [y1, . . . , yn] such that p(yi) = 0. The yi’s are expressed in radicals if
possible. Otherwise they are implicit algebraic quantities that display as yi. The returned
symbols y1, . . . , yn are bound in the interpreter to respective root values. If no second
argument is given, then p must have a unique variable y.

zRange (curve)

zRange (c) returns the range of the z-coordinates of the points on the curve c.
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Appendix F

Programs for Axiom Images

This appendix contains the Axiom programs used to generate the images in the gallery color
insert of this book. All these input files are included with the Axiom system. To produce
the images on page 6 of the gallery insert, for example, issue the command:

)read images6

These images were produced on an IBM RS/6000 model 530 with a standard color graphics
adapter. The smooth shaded images were made from X Window System screen dumps. The
remaining images were produced with Axiom-generated PostScript output. The images were
reproduced from slides made on an Agfa ChromaScript PostScript interpreter with a Matrix
Instruments QCR camera.

F.1 images1.input

)read tknot Read torus knot program

torusKnot(15,17, 0.1, 6, 700) A (15,17) torus knot

1189
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F.2 images2.input

These images illustrate how Newton’s method converges when computing the complex cube
roots of 2. Each point in the (x, y)-plane represents the complex number x + iy, which is
given as a starting point for Newton’s method. The poles in these images represent bad
starting values. The flat areas are the regions of convergence to the three roots.

)read newton Read the programs from

)read vectors Chapter 10

f := newtonStep(x**3 - 2) Create a Newton’s iteration

function for $x^3 = 2$

The function fn computes n steps of Newton’s method.

clipValue := 4 Clip values with magnitude > 4

drawComplexVectorField(f**3, -3..3, -3..3) The vector field for $f^3$

drawComplex(f**3, -3..3, -3..3) The surface for $f^3$

drawComplex(f**4, -3..3, -3..3) The surface for $f^4$

F.3 images3.input

)r tknot

for i in 0..4 repeat torusKnot(2, 2 + i/4, 0.5, 25, 250)

F.4 images5.input

The parameterization of the Etruscan Venus is due to George Frances.

venus(a,r,steps) ==

surf := (u:DFLOAT, v:DFLOAT): Point DFLOAT +->

cv := cos(v)

sv := sin(v)

cu := cos(u)

su := sin(u)

x := r * cos(2*u) * cv + sv * cu

y := r * sin(2*u) * cv - sv * su

z := a * cv

point [x,y,z]

draw(surf, 0..\%pi, -\%pi..\%pi, var1Steps==steps,

var2Steps==steps, title == "Etruscan Venus")

venus(5/2, 13/10, 50) The Etruscan Venus

The Figure-8 Klein Bottle parameterization is from “Differential Geometry and Computer
Graphics” by Thomas Banchoff, in Perspectives in Mathematics, Anniversary of Oberwol-
fasch 1984, Birkhäuser-Verlag, Basel, pp. 43-60.
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klein(x,y) ==

cx := cos(x)

cy := cos(y)

sx := sin(x)

sy := sin(y)

sx2 := sin(x/2)

cx2 := cos(x/2)

sq2 := sqrt(2.0@DFLOAT)

point [cx * (cx2 * (sq2 + cy) + (sx2 * sy * cy)), _

sx * (cx2 * (sq2 + cy) + (sx2 * sy * cy)), _

-sx2 * (sq2 + cy) + cx2 * sy * cy]

draw(klein, 0..4*\%pi, 0..2*\%pi, var1Steps==50, Figure-8 Klein bottle

var2Steps==50,title=="Figure Eight Klein Bottle")

The next two images are examples of generalized tubes.

)read ntube

rotateBy(p, theta) == Rotate a point $p$ by

c := cos(theta) $\theta$ around the origin

s := sin(theta)

point [p.1*c - p.2*s, p.1*s + p.2*c]

bcircle t == A circle in three-space

point [3*cos t, 3*sin t, 0]

twist(u, t) == An ellipse that twists

theta := 4*t around four times as

p := point [sin u, cos(u)/2] $t$ revolves once

rotateBy(p, theta)

ntubeDrawOpt(bcircle, twist, 0..2*\%pi, 0..2*\%pi, Twisted Torus

var1Steps == 70, var2Steps == 250)

twist2(u, t) == Create a twisting circle

theta := t

p := point [sin u, cos(u)]

rotateBy(p, theta)

cf(u,v) == sin(21*u) Color function with $21$ stripes

ntubeDrawOpt(bcircle, twist2, 0..2*\%pi, 0..2*\%pi, Striped Torus

colorFunction == cf, var1Steps == 168,

var2Steps == 126)

F.5 images6.input

-- The height and coloar are the real and argument parts
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-- of the Gamma function, respectively.

gam(x,y) ==

g := Gamma complex(x,y)

point [x,y,max(min(real g, 4), -4), argument g]

draw(gam, -\%pi..\%pi, -\%pi..\%pi, The Gamma Function

title == "Gamma(x + \%i*y)", _

var1Steps == 100, var2Steps == 100)

b(x,y) == Beta(x,y)

draw(b, -3.1..3, -3.1 .. 3, title == "Beta(x,y)") The Beta Function

atf(x,y) ==

a := atan complex(x,y)

point [x,y,real a, argument a]

draw(atf, -3.0..\%pi, -3.0..\%pi) The Arctangent function

F.6 images7.input

First we look at the conformal map z 7→ z + 1/z.

)read conformal

-- Read program for drawing conformal maps

-- The coordinate grid for the complex plane

f z == z

-- Mapping 1: Source

conformalDraw(f, -2..2, -2..2, 9, 9, "cartesian")

-- The map z mapsto z + 1/z

f z == z + 1/z

-- Mapping 1: Target

conformalDraw(f, -2..2, -2..2, 9, 9, "cartesian")

The map z 7→ −(z + 1)/(z − 1) maps the unit disk to the right half-plane, as shown on the
Riemann sphere.

-- The unit disk

f z == z

-- Mapping 2: Source
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riemannConformalDraw(f,0.1..0.99,0..2*\%pi,7,11,"polar")

-- The map x mapsto -(z+1)/(z-1)

f z == -(z+1)/(z-1)

-- Mapping 2: Target

riemannConformalDraw(f,0.1..0.99,0..2*\%pi,7,11,"polar")

-- Riemann Sphere Mapping

riemannSphereDraw(-4..4, -4..4, 7, 7, "cartesian")

F.7 images8.input

)read dhtri

)read tetra

drawPyramid 4 Sierpinsky’s Tetrahedron

Sierpinsky’s Tetrahedron

)read antoine

drawRings 2 Antoine’s Necklace

Aintoine’s Necklace

)read scherk

drawScherk(3,3) Scherk’s Minimal Surface

)read ribbonsnew

drawRibbons([x**i for i in 1..5], x=-1..1, y=0..2) Ribbon Plot

F.8 conformal.input

The functions in this section draw conformal maps both on the plane and on the Riemann
sphere.

C := Complex DoubleFloat Complex Numbers

S := Segment DoubleFloat Draw ranges

R3 := Point DFLOAT Points in 3-space

conformalDraw(f, rRange, tRange, rSteps, tSteps, coord) draws the image of the coordinate
grid under f in the complex plane. The grid may be given in either polar or Cartesian
coordinates. Argument f is the function to draw; rRange is the range of the radius (in polar)
or real (in Cartesian); tRange is the range of θ (in polar) or imaginary (in Cartesian); tSteps,
rSteps, are the number of intervals in the r and θ directions; and coord is the coordinate
system to use (either "polar" or "cartesian").

conformalDraw: (C -> C, S, S, PI, PI, String) -> VIEW3D
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conformalDraw(f,rRange,tRange,rSteps,tSteps,coord) ==

-- Function for changing an (x,y)

transformC :=

-- pair into a complex number

coord = "polar" => polar2Complex

cartesian2Complex

cm := makeConformalMap(f, transformC)

-- Create a fresh space

sp := createThreeSpace()

-- Plot the coordinate lines

adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps)

-- Draw the image

makeViewport3D(sp, "Conformal Map")

riemannConformalDraw(f, rRange, tRange, rSteps, tSteps, coord) draws the image of the
coordinate grid under f on the Riemann sphere. The grid may be given in either polar or
Cartesian coordinates. Its arguments are the same as those for conformalDraw.

riemannConformalDraw:(C->C,S,S,PI,PI,String)->VIEW3D

riemannConformalDraw(f, rRange, tRange,

rSteps, tSteps, coord) ==

-- Function for changing an $(x,y)$

transformC :=

-- pair into a complex number

coord = "polar" => polar2Complex

cartesian2Complex

-- Create a fresh space

sp := createThreeSpace()

cm := makeRiemannConformalMap(f, transformC)

-- Plot the coordinate lines

adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps)

curve(sp,[point [0,0,2.0@DFLOAT,0],point [0,0,2.0@DFLOAT,0] ])

-- Add an invisible point at the north pole for scaling

makeViewport3D(sp,"Map on the Riemann Sphere")

-- Plot the coordinate grid

adaptGrid(sp, f, uRange, vRange, uSteps, vSteps) ==

-- using adaptive plotting for coordinate lines, and draw

-- tubes around the lines

delU := (hi(uRange) - lo(uRange))/uSteps

delV := (hi(vRange) - lo(vRange))/vSteps

uSteps := uSteps + 1; vSteps := vSteps + 1

u := lo uRange

-- Draw coordinate lines in the v direction; curve c fixes the

-- current value of u

for i in 1..uSteps repeat

c := curryLeft(f,u)

cf := (t:DFLOAT):DFLOAT +-> 0

makeObject(c,vRange::SEG Float,colorFunction==cf,
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-- Draw the v coordinate line

space == sp, tubeRadius == .02, tubePoints == 6)

u := u + delU

v := lo vRange

-- Draw coodinate lines in the u direction; curve c fixes the

-- current value of v

for i in 1..vSteps repeat

c := curryRight(f,v)

cf := (t:DFLOAT):DFLOAT +-> 1

makeObject(c,uRange::SEG Float,colorFunction==cf,

-- Draw the u coordinate line

space == sp, tubeRadius == .02, tubePoints == 6)

v := v + delV

void()

-- Map a point in the complex plane to the Riemann sphere

riemannTransform(z) ==

r := sqrt norm z

cosTheta := (real z)/r

sinTheta := (imag z)/r

cp := 4*r/(4+r**2)

sp := sqrt(1-cp*cp)

if r>2 then sp := -sp

point [cosTheta*cp, sinTheta*cp, -sp + 1]

-- Convert Cartesian coordinates to complex Cartesian form

cartesian2Complex(r:DFLOAT, i:DFLOAT):C ==

complex(r, i)

-- Convert polar coordinates to complex Cartesian form

polar2Complex(r:DFLOAT, th:DFLOAT):C ==

complex(r*cos(th), r*sin(th))

-- Convert complex function f to a mapping: (DFLOAT,DFLOAT) maps to R3

-- in the complex plane

makeConformalMap(f, transformC) ==

(u:DFLOAT,v:DFLOAT):R3 +->

z := f transformC(u, v)

point [real z, imag z, 0.0@DFLOAT]

-- Convert a complex function f to a mapping: (DFLOAT,DFLOAT) maps to R3

-- on the Riemann sphere

makeRiemannConformalMap(f, transformC) ==

(u:DFLOAT, v:DFLOAT):R3 +->

riemannTransform f transformC(u, v)

-- Draw a picture of the mapping of the complex plane to

-- the Riemann sphere

riemannSphereDraw: (S, S, PI, PI, String) -> VIEW3D

riemannSphereDraw(rRange,tRange,rSteps,tSteps,coord) ==
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transformC :=

coord = "polar" => polar2Complex

cartesian2Complex

-- Coordinate grid function

grid := (u:DFLOAT, v:DFLOAT): R3 +->

z1 := transformC(u, v)

point [real z1, imag z1, 0]

-- Create a fresh space

sp := createThreeSpace()

-- Draw the flat grid

adaptGrid(sp, grid, rRange, tRange, rSteps, tSteps)

connectingLines(sp,grid,rRange,tRange,rSteps,tSteps)

-- Draw the sphere

makeObject(riemannSphere,0..2*\%pi,0..\%pi,space==sp)

f := (z:C):C +-> z

cm := makeRiemannConformalMap(f, transformC)

-- Draw the sphere grid

adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps)

makeViewport3D(sp, "Riemann Sphere")

-- Draw the lines that connect the points in the complex

-- plane to the north pole of the Riemann sphere

connectingLines(sp,f,uRange,vRange,uSteps,vSteps) ==

delU := (hi(uRange) - lo(uRange))/uSteps

delV := (hi(vRange) - lo(vRange))/vSteps

uSteps := uSteps + 1; vSteps := vSteps + 1

u := lo uRange

for i in 1..uSteps repeat

v := lo vRange

for j in 1..vSteps repeat

p1 := f(u,v)

-- Project p1 onto the sphere

p2 := riemannTransform complex(p1.1, p1.2)

-- Create a line function

fun := lineFromTo(p1,p2)

cf := (t:DFLOAT):DFLOAT +-> 3

-- Draw the connecting line

makeObject(fun, 0..1,space==sp,tubePoints==4,

tubeRadius==0.01,colorFunction==cf)

v := v + delV

u := u + delU

void()

-- A sphere sitting on the complex plane, with radius 1

riemannSphere(u,v) ==

sv := sin(v)

0.99@DFLOAT*(point [cos(u)*sv,sin(u)*sv,cos(v),0.0@DFLOAT])+

point [0.0@DFLOAT, 0.0@DFLOAT, 1.0@DFLOAT, 4.0@DFLOAT]

-- Create a line function that goes from p1 to p2
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lineFromTo(p1, p2) ==

d := p2 - p1

(t:DFLOAT):Point DFLOAT +->

p1 + t*d

F.9 tknot.input

Create a (p, q) torus-knot with radius r around the curve. The formula was derived by Larry
Lambe.

)read ntube

torusKnot: (DFLOAT, DFLOAT, DFLOAT, PI, PI) -> VIEW3D

torusKnot(p, q ,r, uSteps, tSteps) ==

-- Function for the torus knot

knot := (t:DFLOAT):Point DFLOAT +->

fac := 4/(2.2@DFLOAT-sin(q*t))

fac * point [cos(p*t), sin(p*t), cos(q*t)]

-- The cross section

circle := (u:DFLOAT, t:DFLOAT): Point DFLOAT +->

r * point [cos u, sin u]

-- Draw the circle around the knot

ntubeDrawOpt(knot, circle, 0..2*\%pi, 0..2*\%pi,

var1Steps == uSteps, var2Steps == tSteps)

F.10 ntube.input

The functions in this file create generalized tubes (also known as generalized cylinders).
These functions draw a 2-d curve in the normal planes around a 3-d curve.

R3 := Point DFLOAT Points in 3-Space

R2 := Point DFLOAT Points in 2-Space

S := Segment Float Draw ranges

Introduce types for functions:

ThreeCurve := DFLOAT -> R3 --the space curve function

TwoCurve := (DFLOAT, DFLOAT) -> R2 --the plane curve function

Surface := (DFLOAT, DFLOAT) -> R3 --the surface function

Frenet frames define a

FrenetFrame := coordinate system around a

Record(value:R3,tangent:R3,normal:R3,binormal:R3)

point on a space curve

frame: FrenetFrame The current Frenet frame

for a point on a curve

ntubeDraw(spaceCurve, planeCurve, u0..u1, t0..t1) draws planeCurve in the normal planes
of spaceCurve. The parameter u0..u1 specifies the parameter range for planeCurve and t0..t1
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specifies the parameter range for spaceCurve. Additionally, the plane curve function takes
a second parameter: the current parameter of spaceCurve. This allows the plane curve to
change shape as it goes around the space curve. See section F.4 on page 1190 for an example
of this.

ntubeDraw: (ThreeCurve,TwoCurve,S,S) -> VIEW3D

ntubeDraw(spaceCurve,planeCurve,uRange,tRange) ==

ntubeDrawOpt(spaceCurve, planeCurve, uRange, _

tRange, []$List DROPT)

ntubeDrawOpt: (ThreeCurve,TwoCurve,S,S,List DROPT) -> VIEW3D

-- This function is similar to ntubeDraw, but takes

-- optional parameters that it passes to the draw command

ntubeDrawOpt(spaceCurve,planeCurve,uRange,tRange,l) ==

delT:DFLOAT := (hi(tRange) - lo(tRange))/10000

oldT:DFLOAT := lo(tRange) - 1

fun := ngeneralTube(spaceCurve,planeCurve,delT,oldT)

draw(fun, uRange, tRange, l)

nfrenetFrame(c, t, delT) numerically computes the Frenet frame about the curve c at t.
Parameter delT is a small number used to compute derivatives.

nfrenetFrame(c, t, delT) ==

f0 := c(t)

f1 := c(t+delT)

t0 := f1 - f0 The tangent

n0 := f1 + f0

b := cross(t0, n0) The binormal

n := cross(b,t0) The normal

ln := length n

lb := length b

ln = 0 or lb = 0 =>

error "Frenet Frame not well defined"

n := (1/ln)*n Make into unit length vectors

b := (1/lb)*b

[f0, t0, n, b]$FrenetFrame

ngeneralTube(spaceCurve, planeCurve,delT, oltT) creates a function that can be passed
to the system axiomFundraw command. The function is a parameterized surface for the
general tube around spaceCurve. delT is a small number used to compute derivatives. oldT
is used to hold the current value of the t parameter for spaceCurve. This is an efficiency
measure to ensure that frames are only computed once for each value of t.

ngeneralTube: (ThreeCurve, TwoCurve, DFLOAT, DFLOAT) -> Surface

ngeneralTube(spaceCurve, planeCurve, delT, oldT) ==

-- Indicate that frame is global

free frame

(v:DFLOAT, t: DFLOAT): R3 +->
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-- If not already computed compute new frame

if (t $\sim$= oldT) then

frame := nfrenetFrame(spaceCurve, t, delT)

oldT := t

p := planeCurve(v, t)

-- Project $p$ into the normal plane

frame.value + p.1*frame.normal + p.2*frame.binormal

F.11 dhtri.input

Create affine transformations (DH matrices) that transform a given triangle into another.

tri2tri: (List Point DFLOAT, List Point DFLOAT) -> DHMATRIX(DFLOAT)

-- Compute a DHMATRIX that transforms t1 to t2, where

-- t1 and t2 are the vertices of two triangles in 3-space

tri2tri(t1, t2) ==

n1 := triangleNormal(t1)

n2 := triangleNormal(t2)

tet2tet(concat(t1, n1), concat(t2, n2))

tet2tet: (List Point DFLOAT, List Point DFLOAT) -> DHMATRIX(DFLOAT)

-- Compute a DHMATRIX that transforms t1 to t2, where t1 and t2

-- are the vertices of two tetrahedrons in 3-space

tet2tet(t1, t2) ==

m1 := makeColumnMatrix t1

m2 := makeColumnMatrix t2

m2 * inverse(m1)

-- Put the vertices of a tetrahedron into matrix form

makeColumnMatrix(t) ==

m := new(4,4,0)$DHMATRIX(DFLOAT)

for x in t for i in 1..repeat

for j in 1..3 repeat

m(j,i) := x.j

m(4,i) := 1

m

-- Compute a vector normal to the given triangle, whose

-- length is the square root of the area of the triangle

triangleNormal(t) ==

a := triangleArea t

p1 := t.2 - t.1

p2 := t.3 - t.2

c := cross(p1, p2)

len := length(c)

len = 0 => error "degenerate triangle!"

c := (1/len)*c
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t.1 + sqrt(a) * c

-- Compute the area of a triangle using Heron’s formula

triangleArea t ==

a := length(t.2 - t.1)

b := length(t.3 - t.2)

c := length(t.1 - t.3)

s := (a+b+c)/2

sqrt(s*(s-a)*(s-b)*(s-c))

F.12 tetra.input

-- Bring DH matrices into the environment

)set expose add con DenavitHartenbergMatrix

-- Set up the coordinates of the corners of the tetrahedron.

x1:DFLOAT := sqrt(2.0@DFLOAT/3.0@DFLOAT)

x2:DFLOAT := sqrt(3.0@DFLOAT)/6

p1 := point [-0.5@DFLOAT, -x2, 0.0@DFLOAT]

p2 := point [0.5@DFLOAT, -x2, 0.0@DFLOAT]

p3 := point [0.0@DFLOAT, 2*x2, 0.0@DFLOAT]

p4 := point [0.0@DFLOAT, 0.0@DFLOAT, x1]

-- The base of the tetrahedron

baseTriangle := [p2, p1, p3]

-- The middle triangle inscribed in the base of the tetrahedron

-- The bases of the triangles of the subdivided tetrahedron

mt := [0.5@DFLOAT*(p2+p1), 0.5@DFLOAT*(p1+p3), 0.5@DFLOAT*(p3+p2)]

bt1 := [mt.1, p1, mt.2]

bt2 := [p2, mt.1, mt.3]

bt3 := [mt.2, p3, mt.3]

bt4 := [0.5@DFLOAT*(p2+p4), 0.5@DFLOAT*(p1+p4), 0.5@DFLOAT*(p3+p4)]

-- Create the transformations that bring the base of the

-- tetrahedron to the bases of the subdivided tetrahedron

tt1 := tri2tri(baseTriangle, bt1)

tt2 := tri2tri(baseTriangle, bt2)

tt3 := tri2tri(baseTriangle, bt3)

tt4 := tri2tri(baseTriangle, bt4)

-- Draw a Sierpinsky tetrahedron with n levels of recursive

-- subdivision

drawPyramid(n) ==

s := createThreeSpace()

dh := rotatex(0.0@DFLOAT)
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drawPyramidInner(s, n, dh)

makeViewport3D(s, "Sierpinsky Tetrahedron")

-- Recursively draw a Sierpinsky tetrahedron

-- Draw the 4 recursive pyramids

drawPyramidInner(s, n, dh) ==

n = 0 => makeTetrahedron(s, dh, n)

drawPyramidInner(s, n-1, dh * tt1)

drawPyramidInner(s, n-1, dh * tt2)

drawPyramidInner(s, n-1, dh * tt3)

drawPyramidInner(s, n-1, dh * tt4)

-- Draw a tetrahedron into the given space with the given

-- color, transforming it by the given DH matrix

makeTetrahedron(sp, dh, color) ==

w1 := dh*p1

w2 := dh*p2

w3 := dh*p3

w4 := dh*p4

polygon(sp, [w1, w2, w4])

polygon(sp, [w1, w3, w4])

polygon(sp, [w2, w3, w4])

void()

F.13 antoine.input

Draw Antoine’s Necklace. Thank you to Matthew Grayson at IBM’s T.J Watson Research
Center for the idea.

-- Bring DH matrices into the environment

)set expose add con DenavitHartenbergMatrix

-- The transformation for drawing a sub ring

torusRot: DHMATRIX(DFLOAT)

-- Draw Antoine’s Necklace with n levels of recursive subdivision

-- The number of subrings is 10^n. Do the real work

drawRings(n) ==

s := createThreeSpace()

dh:DHMATRIX(DFLOAT) := identity()

drawRingsInner(s, n, dh)

makeViewport3D(s, "Antoine’s Necklace")

In order to draw Antoine rings, we take one ring, scale it down to a smaller size, rotate it
around its central axis, translate it to the edge of the larger ring and rotate it around the
edge to a point corresponding to its count (there are 10 positions around the edge of the
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larger ring). For each of these new rings we recursively perform the operations, each ring
becoming 10 smaller rings. Notice how the DHMATRIX operations are used to build up
the proper matrix composing all these transformations.

-- Recursively draw Antoine’s Necklace

drawRingsInner(s, n, dh) ==

n = 0 =>

drawRing(s, dh)

void()

t := 0.0@DFLOAT Angle around ring

p := 0.0@DFLOAT Angle of subring from plane

tr := 1.0@DFLOAT Amount to translate subring

inc := 0.1@DFLOAT The translation increment

for i in 1..10 repeat Subdivide into 10 linked rings

tr := tr + inc

inc := -inc

-- Transform ring in center to a link

dh’ := dh*rotatez(t)*translate(tr,0.0@DFLOAT,0.0@DFLOAT)*

rotatey(p)*scale(0.35@DFLOAT, 0.48@DFLOAT, 0.4@DFLOAT)

drawRingsInner(s, n-1, dh’)

t := t + 36.0@DFLOAT

p := p + 90.0@DFLOAT

void()

-- Draw a single ring into the given subspace,

-- transformed by the given DHMATRIX

drawRing(s, dh) ==

free torusRot

torusRot := dh

makeObject(torus, 0..2*\%pi, 0..2*\%pi, var1Steps == 6,

space == s, var2Steps == 15)

-- Parameterization of a torus, transformed by the

-- DHMATRIX in torusRot.

torus(u ,v) ==

cu := cos(u)/6

torusRot*point [(1+cu)*cos(v),(1+cu)*sin(v),(sin u)/6]

F.14 scherk.input

Scherk’s minimal surface, defined by: ez cos(x) = cos(y). See: A Comprehensive Introduction
to Differential Geometry, Vol. 3, by Michael Spivak, Publish Or Perish, Berkeley, 1979, pp.
249-252.

-- Offsets for a single piece of Scherk’s minimal surface

(xOffset, yOffset):DFLOAT
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-- Draw Scherk’s minimal surface on an m by n patch

drawScherk(m,n) ==

free xOffset, yOffset

space := createThreeSpace()

for i in 0..m-1 repeat

xOffset := i*\%pi

for j in 0 .. n-1 repeat

-- Draw only odd patches

rem(i+j, 2) = 0 => ’iter

yOffset := j*\%pi

-- Draw a patch

drawOneScherk(space)

makeViewport3D(space, "Scherk’s Minimal Surface")

-- The first patch that makes up a single piece of

-- Scherk’s minimal surface

scherk1(u,v) ==

x := cos(u)/exp(v)

point [xOffset + acos(x), yOffset + u, v, abs(v)]

-- The second patch

scherk2(u,v) ==

x := cos(u)/exp(v)

point [xOffset - acos(x), yOffset + u, v, abs(v)]

-- The third patch

scherk3(u,v) ==

x := exp(v) * cos(u)

point [xOffset + u, yOffset + acos(x), v, abs(v)]

-- The fourth patch

scherk4(u,v) ==

x := exp(v) * cos(u)

point [xOffset + u, yOffset - acos(x), v, abs(v)]

-- Draw the surface by breaking it into four

-- patches and then drawing the patches

drawOneScherk(s) ==

makeObject(scherk1,-\%pi/2..\%pi/2,0..\%pi/2,space==s,

var1Steps == 28, var2Steps == 28)

makeObject(scherk2,-\%pi/2..\%pi/2,0..\%pi/2,space==s,

var1Steps == 28, var2Steps == 28)

makeObject(scherk3,-\%pi/2..\%pi/2,-\%pi/2..0,space==s,

var1Steps == 28, var2Steps == 28)

makeObject(scherk4,-\%pi/2..\%pi/2,-\%pi/2..0,space==s,

var1Steps == 28, var2Steps == 28)

void()
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Appendix G

Glossary

!

(syntax) Suffix character for destructive operations.

,

(syntax) a separator for items in a tuple, for example, to separate arguments of a function
f(x, y).

=>

(syntax) the expression a => b is equivalent to ifathen exit b.

?

1. (syntax) a suffix character for Boolean-valued function names, for example, odd?. 2.
Prefix character for “optional” pattern variables. For example, the pattern f(x + y) does
not match the expression f(7), but f(?x+ y) does, with x matching 0 and y matching 7. 3.
The special type ? means don’t care. For example, the declaration: x : Polynomial? means
that values assigned to x must be polynomials over an arbitrary underlying domain.

abstract datatype
a programming language principle used in Axiom where a datatype definition has defined in
two parts: (1) a public part describing a set of exports, principally operations that apply to
objects of that type, and (2) a private part describing the implementation of the datatype
usually in terms of a representation for objects of the type. Programs that create and other-
wise manipulate objects of the type may only do so through its exports. The representation
and other implementation information is specifically hidden.

abstraction
described functionally or conceptually without regard to implementation.

accuracy
the degree of exactness of an approximation or measurement. In computer algebra systems,
computations are typically carried out with complete accuracy using integers or rational
numbers of indefinite size. Domain Float provides a function precision to change the
precision for floating-point computations. Computations using DoubleFloat have a fixed
precision but uncertain accuracy.

1205
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add-chain
a hierarchy formed by domain extensions. If domain A extends domain B and domain B
extends domain C, then A has add-chain B-C.

aggregate
a data structure designed to hold multiple values. Examples of aggregates are List, Set,
Matrix and Bits.

AKCL
Austin Kyoto Common LISP, a version of KCL produced by William Schelter, Austin,
Texas.

algorithm
a step-by-step procedure for a solution of a problem; a program

ancestor
(of a domain or category) a category that is a parent, or a parent of a parent, and so on. See
a Cross Reference page of a constructor in Browse.

application
(syntax) an expression denoting “application” of a function to a set of argument parameters.
Applications are written as a parameterized form. For example, the form f(x, y) indicates
the “application of the function f to the tuple of arguments x and y.” See also evaluation
and invocation.

apply
See application.

argument
1. (actual argument) a value passed to a function at the time of a function call; also called
an actual parameter. 2. (formal argument) a variable used in the definition of a function to
denote the actual argument passed when the function is called.

arity
1. (function) the number of arguments. 2. (operator or operation) corresponds to the arity
of a function implementing the operator or operation.

assignment
(syntax) an expression of the form x := e, meaning “assign the value of e to x.” After
evaluation, the variable x points to an object obtained by evaluating the expression e. If
x has a type as a result of a previous declaration, the object assigned to x must have that
type. The interpreter must often coerce the value of e to make that happen. For example,
the expression x : Float := 11 first declares x to be a float, then forces the interpreter to
coerce the integer 11 to 11.0 in order to assign a floating-point value to x.

attribute
a name or functional form denoting any useful computational or mathematical property. For
example, commutative(” ∗ ”) asserts that ∗ is commutative. Also, finiteAggregate is
used to assert that an aggregate has a finite number of immediate components.

basis
(algebra) S is a basis of a module M over a ring if S generates M , and S is linearly inde-
pendent.
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benefactor
(of a given domain) a domain or package that the given domain explicitly references (for
example, calls functions from) in its implementation. See a Cross Reference page of a
constructor in Browse.

binary
operation or function with arity 2.

binding
the association of a variable with properties such as value and type. The top-level environ-
ment in the interpreter consists of bindings for all user variables and functions. When a
function is applied to arguments, a local environment of bindings is created, one for each
formal argument and local variable.

block
(syntax) a control structure where expressions are sequentially evaluated.

body
a function body or loop body.

boolean
objects denoted by the literals true and false; elements of domain Boolean. See also
Bits.

built-in function
a function in the standard Axiom library. Contrast user function.

v

cache
1. (noun) a mechanism for immediate retrieval of previously computed data. For example,
a function that does a lengthy computation might store its values in a hash table using the
function argument as the key. The hash table then serves as a cache for the function (see also
)set function cache). Also, when recurrence relations that depend upon n previous values
are compiled, the previous n values are normally cached (use )set functions recurrence

to change this). 2. (verb) to save values in a cache.

capsule
the part of the body of a domain constructor that defines the functions implemented by the
constructor.

case
(syntax) an operator used to evaluate code conditionally based on the branch of a
Union. For example, if value u is Union(Integer, ”failed”), the conditional expression
ifucaseIntegerthenAelseB evaluates A if u is an integer and B otherwise.

Category
the distinguished object denoting the type of a category; the class of all categories.

category
(basic concept) types denoting classes of domains. Examples of categories are Ring (“the
class of all rings”) andAggregate (“the class of all aggregates”). Categories form a hierarchy
(formally, a directed acyclic graph) with the distinquished category Type at the top. Each
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category inherits the properties of all its ancestors. Categories optionally provide “default
definitions” for operations they export. Categories are defined in Axiom by functions called
category constructors. Technically, a category designates a class of domains with common
operations and attributes but usually with different functions and representations for its
constituent objects. Categories are always defined using the Axiom library language (see also
category extension). See also file catdef.spad for definitions of basic algebraic categories in
Axiom, aggcat.spad for data structure

category constructor
a function that creates categories, described by an abstract datatype in the Axiom program-
ming language. For example, the category constructor Module is a function that takes a
domain parameter R and creates the category “modules over R.”

category extension
A category A directly extends a category B if its definition has the form A == Bwith... or
A == Join(..., B, ...). In this case, we also say that B is the parent of A. We say that a
category A extends B if B is an ancestor of A. A category A may also directly extend B
if B appears in a conditional expression within the Exports part of the definition to the
right of a with. See, for example, file catdef.spad for definitions of the algebra categories
in Axiom, aggcat.spad for data structure categories.

category hierarchy
hierarchy formed by category extensions. The root category is Type. A category can be
defined as a Join of two or more categories so as to have multiple parents. Categories may
also be parameterized so as to allow conditional inheritance.

character
1. an element of a character set, as represented by a keyboard key. 2. a component of a
string. For example, the 1st element of the string ”hellothere” is the character h.

client
(of a given domain) any domain or package that explicitly calls functions from the given
domain. See a Cross Reference page of a constructor in Browse.

coercion
an automatic transformation of an object of one type to an object of a similar or desired
target type. In the interpreter, coercions and retractions are done automatically by the
interpreter when a type mismatch occurs. Compare conversion.

comment
textual remarks imbedded in code. Comments are preceded by a double dash (--). For
Axiom library code, stylized comments for on-line documentation are preceded by two plus
signs (++).

Common LISP
A version of LISP adopted as an informal standard by major users and suppliers of LISP.

compile-time
the time when category or domain constructors are compiled. Contrast run-time.

compiler
a program that generates low-level code from a higher-level source language. Axiom has
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three compilers. A graphics compiler converts graphical formulas to a compiled subroutine
so that points can be rapidly produced for graphics commands. An interpreter compiler
optionally compiles user functions when first invoked (use )set functions compile to turn
this feature on). A library compiler compiles all constructors (available on an “as-is” basis
for Release 1).

computational object
In Axiom, domains are objects. This term is used to distinguish the objects that are members
of domains rather than the domains themselves.

conditional
a control structure of the form ifAthenBelseC. The evaluation of A produces true or false.
If true, B evaluates to produce a value; otherwise C evaluates to produce a value. When
the value is not required, the elseC part can be omitted.

constant
(syntax) a reserved word used in signatures in Axiom programming language to signify that
an operation always returns the same value. For example, the signature 0 : constant− > $
in the source code of AbelianMonoid tells the Axiom compiler that 0 is a constant so that
suitable optimizations might be performed.

constructor
a function that creates a category, domain, or package.

continuation
when a line of a program is so long that it must be broken into several lines, then all but
the first line are called continuation lines. If such a line is given interactively, then each
incomplete line must end with an underscore.

control structure
program structures that can specify a departure from normal sequential execution. Axiom
has four kinds of control structures: blocks, case statements, conditionals, and loops.

conversion
the transformation of an object of one type to one of another type. Conversions that can
be performed automatically by the interpreter are called coercions. These happen when the
interpreter encounters a type mismatch and a similar or declared target type is needed. In
general, the user must use the infix operation :: to cause this transformation.

copying semantics
the programming language semantics used in PASCAL but not in Axiom. See also pointer
semantics for details.

data structure
a structure for storing data in the computer. Examples are lists and hash tables.

datatype
equivalent to domain in Axiom.

declaration
(syntax) an expression of the form x : T where T is some type. A declaration forces all values
assigned to x to be of that type. If a value is of a different type, the interpreter will try to
coerce the value to type T . Declarations are necessary in case of ambiguity or when a user
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wants to introduce an unexposed domain.

default definition
a function defined by a category. Such definitions appear in category definitions of the form
C : Category == TaddI
in an optional implementation part I to the right of the keyword add.

default package
an optional package of functions associated with a category. Such functions are necessarily
defined in terms of other operations exported by the category.

definition
(syntax) 1. An expression of the form f(a) == b defining function f with formal arguments
a and body b; equivalent to the statement f == (a) + − > b. 2. An expression of the
form a == b where a is a symbol, equivalent to a() == b. See also macro where a similar
substitution is done at parse time.

delimiter
a character that marks the beginning or end of some syntactically correct unit in the lan-
guage, for example, " for strings, blanks for identifiers.

dependent
(of a given constructor) another constructor that mentions the given constructor as an ar-
gument or among the types of an exported operation. See a Cross Reference page of a
constructor in Browse.

destructive operation
An operation that changes a component or structure of a value. In Axiom, destructive
operations have names ending with an exclamation mark (!). For example, domain List has
two operations to reverse the elements of a list, one named reverse that returns a copy of the
original list with the elements reversed, another named reverse that reverses the elements
in place, thus destructively changing the original list.

documentation
1. on-line or hard-copy descriptions of Axiom; 2. text in library code preceded by ++

comments as opposed to general comments preceded by --.

domain
(basic concept) a domain corresponds to the usual notion of datatypes. Examples of domains
are List Float (“lists of floats”), Fraction Polynomial Integer (“fractions of polynomi-
als of integers”), and Matrix Stream CardinalNumber (“matrices of infinite streams of
cardinal numbers”). The term domain actually abbreviates domain of computation. Tech-
nically, a domain denotes a class of objects, a class of operations for creating and otherwise
manipulating these objects, and a class of attributes describing computationally useful prop-
erties. Domains may also define functions for its exported operations, often in terms of some
representation for the objects. A domain itself is an object created by a function called a
domain constructor. The types of the exported operations of a domain are arbitary; this
gives rise to a special class of domains called packages.

domain constructor
a function that creates domains, described by an abstract datatype in the Axiom program-
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ming language. Simple domains like Integer and Boolean are created by domain construc-
tors with no arguments. Most domain constructors take one or more parameters, one usually
denoting an underlying domain. For example, the domain Matrix(R) denotes “matrices
over R.” Domains Mapping, Record, and Union are primitive domains. All other do-
mains are written in the Axiom programming language and can be modified by users with
access to the library source code and the library compiler.

domain extension
a domain constructor A is said to extend a domain constructor B if A’s definition has the
form A == Badd.... This intuitively means “functions not defined by A are assumed to
come from B.” Successive domain extensions form add-chains affecting the search order for
functions not implemented directly by the domain during dynamic lookup.

dot notation
using an infix dot (.) for the operation elt. If u is the list [7, 4,−11] then both u(2) and u.2
return 4. Dot notation nests to the left: f.g.h is equivalent to (f.g).h.

dynamic
that which is done at run-time as opposed to compile-time. For example, the interpreter may
build a domain “matrices over integers” dynamically in response to user input. However, the
compilation of all functions for matrices and integers is done during compile-time. Constrast
static.

dynamic lookup
In Axiom, a domainmay or may not explicitly provide function definitions for all its exported
operations. These definitions may instead come from domains in the add-chain or from
default packages. When a function call is made for an operation in the domain, up to five
steps are carried out.

1. If the domain itself implements a function for the operation, that function is returned.

2. Each of the domains in the add-chain are searched; if one of these domains implements
the function, that function is returned.

3. Each of the default packages for the domain are searched in order of the lineage. If
any of the default packages implements the function, the first one found is returned.

4. Each of the default packages for each of the domains in the add-chain are searched in
the order of their lineage. If any of the default packages implements the function, the
first one found is returned.

5. If all of the above steps fail, an error message is reported.

empty
the unique value of objects with type Void.

environment
a set of bindings.

evaluation
a systematic process that transforms an expression into an object called the value of the
expression. Evaluation may produce side effects.
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exit
(reserved word) an operator that forces an exit from the current block. For example, the
block (a := 1; ifi > 0thenexita; a := 2) will prematurely exit at the second statement with
value 1 if the value of i is greater than zero. See => for an alternate syntax.

explicit export
1. (of a domain D) any attribute, operation, or category explicitly mentioned in the type
exports part E for the domain constructor definition D : E == I 2. (of a category C) any
attribute, operation, or category explicitly mentioned in the type specification part E for the
category constructor definition C : Category == E

export
explicit export or implicit export of a domain or category

expose
some constructors are exposed, others unexposed. Exposed domains and packages are recog-
nized by the interpreter. Use )set expose to control what is exposed. Unexposed construc-
tors will appear in Browse prefixed by a star (“*”).

expression
1. any syntactically correct program fragment. 2. an element of domain Expression.

extend
see category extension or domain extension.

field
(algebra) a domain that is a ring where every non-zero element is invertible and where
xy = yx; a member of category Field. For a complete list of fields, click on Domains under
Cross Reference for Field in Browse.

file
1. a program or collection of data stored on disk, tape or other medium. 2. an object of a
File domain.

float
a floating-point number with user-specified precision; an element of domain Float. Floats
are literals written either without an exponent (for example, 3.1416), or with an exponent
(for example, 3.12E − 12). Use function precision to change the precision of the mantissa
(20 digits by default). See also small float.

formal parameter
(of a function) an identifier bound to the value of an actual argument on invocation. In the
function definition f(x, y) == u, for example, x and y are the formal parameters.

frame
the basic unit of an interactive session; each frame has its own step number, environment,
and history. In one interactive session, users can create and drop frames, and have several
active frames simultaneously.

free
(syntax) A keyword used in user-defined functions to declare that a variable is a free variable
of that function. For example, the statement freex declares the variable x within the body
of a function f to be a free variable in f . Without such a declaration, any variable x that
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appears on the left-hand side of an assignment before it is referenced is regarded as a local
variable of that function. If the intention of the assignment is to give a value to a global
variable x, the body of that function must contain the statement freex. A variable that is
a parameter to the function is always local.

free variable
(of a function) a variable that appears in a body of a function but is not bound by that
function. Contrast with local variable.

function
implementation of operation. A function takes zero or more argument parameters and pro-
duces a single return value. Functions are objects that can be passed as parameters to func-
tions and can be returned as values of functions. Functions can also create other functions
(see also InputForm). See also application and invocation. The terms operation and func-
tion are distinct notions in Axiom. An operation is an abstraction of a function, described
by a name and a signature. A function is created by providing an implementation of that
operation by Axiom code. Consider the example of defining a user-function fact to compute
the factorial of a nonnegative integer. The Axiom statement fact : Integer− > Integer de-
scribes the operation, whereas the statement fact(n) = reduce(∗, [1..n]) defines the function.
See also generic function.

function body
the part of a function’s definition that is evaluated when the function is called at run-time;
the part of the function definition to the right of the ==.

garbage collection
a system function that automatically recycles memory cells from the heap. Axiom is built
upon Common LISP that provides this facility.

garbage collector
a mechanism for reclaiming storage in the heap.

Gaussian
a complex-valued expression, for example, one with both a real and imaginary part; a member
of a Complex domain.

generic function
the use of one function to operate on objects of different types. One might regard Axiom as
supporting generic operations but not generic functions. One operation + : (D,D)− > D
exists for adding elements in a ring; each ring however provides its own type-specific function
for implementing this operation.

global variable
A variable that can be referenced freely by functions. In Axiom, all top-level user-defined
variables defined during an interactive user session are global variables. Axiom does not
allow fluid variables, that is, variables bound by a function f that can be referenced by
functions that f calls.

Gröbner basis
(algebra) a special basis for a polynomial ideal that allows a simple test for membership. It
is useful in solving systems of polynomial equations.
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group
(algebra) a monoid where every element has a multiplicative inverse.

hash table
a data structure designed for fast lookup of information stored under “keys”. A hash table
consists of a set of entries, each of which associates a key with a value. Finding the object
stored under a key can be fast for a large number of entries since keys are hashed into
numerical codes for fast lookup.

heap
1. an area of storage used by data in programs. For example, Axiom will use the heap to
hold the partial results of symbolic computations. When cancellations occur, these results
remain in the heap until garbage collected. 2. an object of a Heap domain.

history
a mechanism that records input and output data for an interactive session. Using the history
facility, users can save computations, review previous steps of a computation, and restore
a previous interactive session at some later time. For details, issue the system command
)history ? to the interpreter. See also frame.

ideal
(algebra) a subset of a ring that is closed under addition and multiplication by arbitrary ring
elements; thus an ideal is a module over the ring.

identifier
(syntax) an Axiom name; a literal of type Symbol. An identifier begins with an alphabetical
character, %, ?, or !, and may be followed by any of these or digits. Certain distinguished
reserved words are not allowed as identifiers but have special meaning in Axiom.

immutable
an object is immutable if it cannot be changed by an operation; it is not a mutable object.
Algebraic objects are generally immutable: changing an algebraic expression involves copying
parts of the original object. One exception is an object of typeMatrix. Examples of mutable
objects are data structures such as those of type List. See also pointer semantics.

implicit export
(of a domain or category) any exported attribute or operation or category that is not an
explicit export. For example, Monoid and * are implicit exports of Ring.

index
1. a variable that counts the number of times a loop is repeated. 2. the “address” of an
element in a data structure (see also category LinearAggregate).

infix
(syntax) an operator placed between two operands; also called a binary operator. For ex-
ample, in the expression a + b, + is the infix operator. An infix operator may also be used
as a prefix. Thus +(a, b) is also permissible in the Axiom language. Infix operators have a
precedence relative to one another.

input area
a rectangular area on a HyperDoc screen into which users can enter text.

instantiate
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to build a category, domain, or package at run-time.

integer
a literal object of domain Integer, the class of integers with an unbounded number of digits.
Integer literals consist of one or more consecutive digits (0-9) with no embedded blanks.
Underscores can be used to separate digits in long integers if desirable.

interactive
a system where the user interacts with the computer step-by-step.

interpreter
the part of Axiom responsible for handling user input during an interactive session. The inter-
preter parses the user’s input expression to create an expression tree, then does a bottom-up
traversal of the tree. Each subtree encountered that is not a value consists of a root node
denoting an operation name and one or more leaf nodes denoting operands. The interpreter
resolves type mismatches and uses type-inferencing and a library database to determine ap-
propriate types for the operands and the result, and an operation to be performed. The
interpreter next builds a domain to perform the indicated operation, and invokes a function
from the domain to compute a value. The subtree is then replaced by that value and the
process continues. Once the entire tree has been processed, the value replacing the top node
of the tree is displayed back to the user as the value of the expression.

invocation
(of a function) the run-time process involved in evaluating a function application. This
process has two steps. First, a local environment is created where formal arguments are
locally bound by assignment to their respective actual argument. Second, the function body
is evaluated in that local environment. The evaluation of a function is terminated either by
completely evaluating the function body or by the evaluation of a return expression.

iteration
repeated evaluation of an expression or a sequence of expressions. Iterations use the reserved
words for, while, and repeat.

Join
a primitive Axiom function taking two or more categories as arguments and producing a
category containing all of the operations and attributes from the respective categories.

KCL
Kyoto Common LISP, a version of Common LISP that features compilation of LISP into
the C Programming Language.

library
In Axiom, a collection of compiled modules respresenting category or domain constructors.

lineage
the sequence of default packages for a given domain to be searched during dynamic lookup.
This sequence is computed first by ordering the category ancestors of the domain according
to their level number, an integer equal to the minimum distance of the domain from the
category. Parents have level 1, parents of parents have level 2, and so on. Among categories
with equal level numbers, ones that appear in the left-most branches of Joins in the source
code come first. See a Cross Reference page of a constructor in Browse. See also dynamic
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lookup.

LISP
acronym for List Processing Language, a language designed for the manipulation of non-
numerical data. The Axiom library is translated into LISP then compiled into machine code
by an underlying LISP system.

list
an object of a List domain.

literal
an object with a special syntax in the language. In Axiom, there are five types of literals:
booleans, integers, floats, strings, and symbols.

local
(syntax) A keyword used in user-defined functions to declare that a variable is a local variable
of that function. Because of default assumptions on variables, such a declaration is often
not necessary but is available to the user for clarity when appropriate.

local variable
(of a function) a variable bound by that function and such that its binding is invisible to
any function that function calls. Also called a lexical variable. By default in the interpreter:

1. any variable x that appears on the left-hand side of an assignment is normally regarded
a local variable of that function. If the intention of an assignment is to change the
value of a global variable x, the body of the function must then contain the statement
freex.

2. any other variable is regarded as a free variable.

An optional declaration localx is available to declare explicitly a variable to be a local
variable. All formal parameters are local variables to the function.

loop
1. an expression containing a repeat. 2. a collection expression having a for or a while,
for example, [f(i)foriinS].

loop body
the part of a loop following the repeat that tells what to do each iteration. For example,
the body of the loop forxinSrepeatB is B. For a collection expression, the body of the loop
precedes the initial for or while.

macro
1. (interactive syntax) An expression of the form macroa == b where a is a symbol causes
a to be textually replaced by the expression b at parse time. 2. An expression of the form
macrof(a) == b defines a parameterized macro expansion for a parameterized form f . This
macro causes a form f(x) to be textually replaced by the expression c at parse time, where
c is the expression obtained by replacing a by x everywhere in b. See also definition where
a similar substitution is done during evaluation. 3. (programming language syntax) An
expression of the form a ==> b where a is a symbol.

mode
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a type expression containing a question-mark (?). For example, the mode POLY ? designates
the class of all polynomials over an arbitrary ring.

mutable
objects that contain pointers to other objects and that have operations defined on them
that alter these pointers. Contrast immutable. Axiom uses pointer semantics as does LISP
in contrast with many other languages such as PASCAL that use copying semantics. See
pointer semantics for details.

name
1. a symbol denoting a variable, such as the variable x. 2. a symbol denoting an operation,
that is, the operation divide : (Integer, Integer)− > Integer.

nullary
a function with no arguments, for example, characteristic; operation or function with arity
zero.

object
a data entity created or manipulated by programs. Elements of domains, functions, and
domains themselves are objects. The most basic objects are literals; all other objects must be
created by functions. Objects can refer to other objects using pointers and can be mutable.

object code
code that can be directly executed by hardware; also known as machine language.

operand
an argument of an operator (regarding an operator as a function).

operation
an abstraction of a function, described by a signature. For example,
fact : NonNegativeInteger− > NonNegativeInteger describes an operation for “the fac-
torial of a (non-negative) integer.”

operator
special reserved words in the language such as + and ∗; operators can be either prefix or
infix and have a relative precedence.

overloading
the use of the same name to denote distinct operations; an operation is identified by a
signature identifying its name, the number and types of its arguments, and its return types.
If two functions can have identical signatures, a package call must be made to distinguish
the two.

package
a special case of a domain, one for which the exported operations depend solely on the
parameters and other explicit domains (contain no $). Intuitively, packages are collections
of (polymorphic) functions. Facilities for integration, differential equations, solution of linear
or polynomial equations, and group theory are provided by packages.

package call
(syntax) an expression of the form e$P where e is an application and P denotes some package
(or domain).
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package constructor
same as domain constructor.

parameter
see argument.

parameterized datatype
a domain that is built on another, for example, polynomials with integer coefficients.

parameterized form
a expression of the form f(x, y), an application of a function.

parent
(of a domain or category) a category which is explicitly declared in the source code definition
for the domain either to the left of the with or as an export of the domain. See category
extension. See also a Cross Reference page of a constructor in Browse.

parse
1. (verb) to transform a user input string representing a valid Axiom expression into an
internal representation as a tree-structure; the resulting internal representation is then “in-
terpreted” by Axiom to perform some indicated action.

partially ordered set
a set with a reflexive, transitive and antisymetric binary operation.

pattern matching
1. (on expressions) Given an expression called the “subject” u, the attempt to rewrite u using
a set of “rewrite rules.” Each rule has the form A == B where A indicates an expression
called a “pattern” and B denotes a “replacement.” The meaning of this rule is “replace A by
B.” If a given pattern A matches a subexpression of u, that subexpression is replaced by B.
Once rewritten, pattern matching continues until no further changes occur. 2. (on strings)
the attempt to match a string indicating a “pattern” to another string called a “subject”,
for example, for the purpose of identifying a list of names. In Browse, users may enter search
strings for the purpose of identifying constructors, operations, and attributes.

pile
alternate syntax for a block, using indentation and column alignment (see also block).

pointer
a reference implemented by a link directed from one object to another in the computer
memory. An object is said to refer to another if it has a pointer to that other object.
Objects can also refer to themselves (cyclic references are legal). Also more than one object
can refer to the same object. See also pointer semantics.

pointer semantics
the programming language semantics used in languages such as LISP that allow objects to
be mutable. Consider the following sequence of Axiom statements:
x : V ectorInteger := [1, 4, 7]
y := x
swap!(x, 2, 3)
The function swap is used to interchange the second and third value in the list x, producing
the value [1, 7, 4]. What value does y have after evaluation of the third statement? The
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answer is different in Axiom than it is in a language with copying semantics. In Axiom, first
the vector [1, 2, 3] is created and the variable x set to point to this object. Let’s call this
object V . Next, the variable y is made to point to V just as x does. Now the third statement
interchanges the last 2 elements of V (the ! at the end of the name swap tells you that this
operation is destructive, that is, it changes the elements in place). Both x and y perceive
this change to V . Thus both x and y then have the value [1, 7, 4]. In PASCAL, the second
statement causes a copy of V to be stored under y. Thus the change to V made by the third
statement does not affect y.

polymorphic
a function (for example, one implementing an algorithm) defined with categorical types so as
to be applicable over a variety of domains (the domains which are members of the categorical
types). Every Axiom function defined in a domain or package constructor with a domain-
valued parameter is polymorphic. For example, the same matrix + function is used to add
“matrices over integers” as “matrices over matrices over integers.”

postfix
an operator that follows its single operand. Postfix operators are not available in Axiom.

precedence
(syntax) refers to the so-called binding power of an operator. For example, ∗ has higher
binding power than + so that the expression a+ b ∗ c is equivalent to a+ (b ∗ c).
precision
the number of digits in the specification of a number. The operation digits sets this for
objects of Float.

predicate
1. a Boolean-valued function, for example, odd : Integer− > Boolean. 2. a Boolean-valued
expression.

prefix
(syntax) an operator such as − that is written before its single operand. Every function of one
argument can be used as a prefix operator. For example, all of the following have equivalent
meaning in Axiom: f(x), fx, and f.x. See also dot notation.

quote
the prefix operator ’ meaning do not evaluate.

Record
(basic domain constructor) a domain constructor used to create an inhomogeneous aggre-
gate composed of pairs of selectors and values. A Record domain is written in the form
Record(a1 : D1, . . . , an : Dn) (n > 0) where a1, . . . , an are identifiers called the selectors of
the record, and D1, . . . , Dn are domains indicating the type of the component stored under
selector an.

recurrence relation
A relation that can be expressed as a function f with some argument n which depends on
the value of f at k previous values. In most cases, Axiom will rewrite a recurrence relation
on compilation so as to cache its previous k values and therefore make the computation
significantly more efficient.
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recursion
use of a self-reference within the body of a function. Indirect recursion is when a function
uses a function below it in the call chain.

recursive
1. A function that calls itself, either directly or indirectly through another function. 2.
self-referential. See also recursive.

reference
see pointer

relative
(of a domain) A package that exports operations relating to the domain, in addition to those
exported by the domain. See a Cross Reference page of a constructor in Browse.

representation
a domain providing a data structure for elements of a domain, generally denoted by the spe-
cial identifier Rep in the Axiom programming language. As domains are abstract datatypes,
this representation is not available to users of the domain, only to functions defined in the
function body for a domain constructor. Any domain can be used as a representation.

reserved word
a special sequence of non-blank characters with special meaning in the Axiom language.
Examples of reserved words are names such as for, if , and free, operator names such as +
and mod, special character strings such as == and :=.

retraction
to move an object in a parameterized domain back to the underlying domain, for example to
move the object 7 from a “fraction of integers” (domain Fraction Integer) to “the integers”
(domain Integer).

return
when leaving a function, the value of the expression following return becomes the value of
the function.

ring
a set with a commutative addition, associative multiplication, a unit element, where multi-
plication is distributive over addition and subtraction.

rule
(syntax) 1. An expression of the form ruleA == B indicating a “rewrite rule.” 2. An
expression of the form rule(R1; ...;Rn) indicating a set of “rewrite rules” R1,...,Rn. See
pattern matching for details.

run-time
the time when computation is done. Contrast with compile-time, and dynamic as opposed
to static. For example, the decision of the intepreter to build a structure such as “matrices
with power series entries” in response to user input is made at run-time.

run-time check
an error-checking that can be done only when the program receives user input; for example,
confirming that a value is in the proper range for a computation.
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search string
a string entered into an input area on a HyperDoc screen.

selector
an identifier used to address a component value of a Record datatype.

semantics
the relationships between symbols and their meanings. The rules for obtaining the meaning
of any syntactically valid expression.

semigroup
(algebra) a monoid which need not have an identity; it is closed and associative.

side effect
action that changes a component or structure of a value. See destructive operation for
details.

signature
(syntax) an expression describing the type of an operation. A signature has the form name :
source− > target, where source is the type of the arguments of the operation, and target
is the type of the result.

small float
an object of the domain DoubleFloat for floating-point arithmetic as provided by the
computer hardware.

small integer
an object of the domain SingleInteger for integer arithmetic as provided by the computer
hardware.

source
the type of the argument of a function; the type expression before the − > in a signature.
For example, the source of f : (Integer, Integer)− > Integer is (Integer, Integer).

sparse
data structure whose elements are mostly identical (a sparse matrix is one filled mostly with
zeroes).

static
that computation done before run-time, such as compilation. Contrast dynamic.

step number
the number that precedes user input lines in an interactive session; the output of user results
is also labeled by this number.

stream
an object of Stream(R), a generalization of a list to allow an infinite number of elements.
Elements of a stream are computed “on demand.” Streams are used to implement various
forms of power series.

string
an object of domain String. Strings are literals consisting of an arbitrary sequence of
characters surrounded by double-quotes ("), for example, ”Lookhere!”.
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subdomain
(basic concept) a domain together with a predicate characterizing the members of the domain
that belong to the subdomain. The exports of a subdomain are usually distinct from the
domain itself. A fundamental assumption however is that values in the subdomain are
automatically coerceable to values in the domain. For example, if n and m are declared
to be members of a subdomain of the integers, then any binary operation from Integer is
available on n and m. On the other hand, if the result of that operation is to be assigned
to, say, k, also declared to be of that subdomain, a run-time check is generally necessary to
ensure that the result belongs to the subdomain.

such that clause
(syntax) the use of | followed by an expression to filter an iteration.

suffix
(syntax) an operator that is placed after its operand. Suffix operators are not allowed in the
Axiom language.

symbol
objects denoted by identifier literals; an element of domain Symbol. The interpreter, by
default, converts the symbol x into Variable(x).

syntax
rules of grammar and punctuation for forming correct expressions.

system commands
top-level Axiom statements that begin with ). System commands allow users to query the
database, read files, trace functions, and so on.

tag
an identifier used to discriminate a branch of a Union type.

target
the type of the result of a function; the type expression following the -> in a signature.

top-level
refers to direct user interactions with the Axiom interpreter.

totally ordered set
(algebra) a partially ordered set where any two elements are comparable.

trace
use of system function )trace to track the arguments passed to a function and the values
returned.

tuple
an expression of two or more other expressions separated by commas, for example, 4, 7, 11.
Tuples are also used for multiple arguments both for applications (for example, f(x, y)) and
in signatures (for example, (Integer, Integer)− > Integer). A tuple is not a data structure,
rather a syntax mechanism for grouping expressions.

type
The type of any category is the unique symbol Category. The type of a domain is any category
to which the domain belongs. The type of any other object is either the (unique) domain to
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which the object belongs or a subdomain of that domain. The type of objects is in general
not unique.

Type
a category with no operations or attributes, of which all other categories in Axiom are
extensions.

type checking
a system function that determines whether the datatype of an object is appropriate for a
given operation.

type constructor
a domain constructor or category constructor.

type inference
when the interpreter chooses the type for an object based on context. For example, if the
user interactively issues the definition f(x) == (x+%i)∗∗2 then issues f(2), the interpreter
will infer the type of f to be Integer− > ComplexInteger.

unary
operation or function with arity 1.

underlying domain
for a domain that has a single domain-valued parameter, the underlying domain refers to
that parameter. For example, the domain “matrices of integers” (Matrix Integer) has
underlying domain Integer.

Union
(basic domain constructor) a domain constructor used to combine any set of domains into a
single domain. A Union domain is written in the form Union(a1 : D1, ..., an : Dn) (n > 0)
where a1, ..., an are identifiers called the tags of the union, and D1, ..., Dn are domains
called the branches of the union. The tags

ai

are optional, but required when two of the

Di

are equal, for example, Union(inches : Integer, centimeters : Integer). In the interpreter,
values of union domains are automatically coerced to values in the branches and vice-versa
as appropriate. See also case.

unit
(algebra) an invertible element.

user function
a function defined by a user during an interactive session. Contrast built-in function.

user variable
a variable created by the user at top-level during an interactive session.

value
1. the result of evaluating an expression. 2. a property associated with a variable in a
binding in an environment.
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variable
a means of referring to an object, but not an object itself. A variable has a name and an
associated binding created by evaluation of Axiom expressions such as declarations, assign-
ments, and definitions. In the top-level environment of the interpreter, variables are global
variables. Such variables can be freely referenced in user-defined functions although a free
declaration is needed to assign values to them. See local variable for details.

Void
the type given when the value and type of an expression are not needed. Also used when
there is no guarantee at run-time that a value and predictable mode will result.

wild card
a symbol that matches any substring including the empty string; for example, the search
string “*an*” matches any word containing the consecutive letters “a” and “n”.

workspace
an interactive record of the user input and output held in an interactive history file. Each
user input and corresponding output expression in the workspace has a corresponding step
number. The current output expression in the workspace is referred to as %. The output
expression associated with step number n is referred to by %%(n). The k-th previous output
expression relative to the current step number n is referred to by %%(−k). Each interactive
frame has its own workspace.
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License

Portions Copyright (c) 2005 Timothy Daly

The Blue Bayou image Copyright (c) 2004 Jocelyn Guidry

Portions Copyright (c) 2004 Martin Dunstan

Portions Copyright (c) 1991-2002,

The Numerical ALgorithms Group Ltd.

All rights reserved.

This book and the Axiom software is licensed as follows:

Redistribution and use in source and binary forms, with or

without modification, are permitted provided that the following

conditions are

met:

- Redistributions of source code must retain the above

copyright notice, this list of conditions and the

following disclaimer.

- Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other

materials provided with the distribution.

- Neither the name of The Numerical ALgorithms Group Ltd.

nor the names of its contributors may be used to endorse

or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
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CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.
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** , 289
+->, 196
,, 1205
?, 1205
# , 568, 782
%e, 11
%i, 11
%infinity, 11
%minusInfinity, 11
%pi, 11
%plusInfinity, 11
∼=, 127
=>, 1205

abbreviation, 68, 972

constructor, 68, 885

abbreviation category, 973

abbreviation domain, 973

abbreviation package, 973

abbreviation query, 973

abbreviation remove, 973

abs , 153

abstract datatype, 1205

abstraction, 1205

accuracy, 1205

Ada, 11

adaptive plotting, 224, 234, 235, 283,

284

add, 887, 904, 917

add-chain, 1206

addmod , 753

aggregate, 1206

Airy function, 292

AKCL, 1206

algebra

non-associative, 395

algebraic number, 303, 305

AlgebraPackage, 1075

algorithm, 1206

ancestor, 1206

And , 753

anonymous function, 196

antiderivative, 325

Antoine’s Necklace, 1201

Any, 81, 93

APL, 63, 905

append , 633

appendPoint , 241

application, 1206

ApplicationProgramInterface, 401

apply, 1206

approximants , 452

approximate , 712

approximation, 311, 316, 343

apropos, 1004

argument, 1206

argument , 565

arithmetic

modular, 358

arity, 1206

arity , 413

array

flexible, 23

one-dimensional, 22

two-dimensional, 27

ArrayStack, 402

aspSection, 956

assign , 957

assignment, 6, 1206

delayed, 120

immediate, 119

multiple immediate, 122

AssociationList, 406--408

associativity law, 395
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attribute, 939, 1206

axiom, 905

axiom, 1

badge, 82

balanced binary tree, 25

BalancedBinaryTree, 409

BasicOperator, 411--414, 564

basis, 1206

Gröbner, 1178, 1213

normal, 370

orthonormal, 312

benefactor, 1207

Bernoulli

polynomial, 337, 344

Bessel function, 292

binary, 1207

binary , 415

binary search tree, 24

BinaryExpansion, 415

BinarySearchTree, 417

BinaryTree, 1075

binding, 1207

biRank , 1075

bit? , 13

blankSeparate , 204

block, 1207

body, 1207

Boolean, 127, 1207

boolean, 1207

box , 1095

break, 123, 130, 138

Browse, 185, 931

browse, 974

built-in function, 1207

by, 140

C language

assignment, 120

cache, 1207

capsule, 1207

CardinalNumber, 419--421

Cartesian

coordinate system, 228, 262

ovals, 223

CartesianTensor, 423, 426, 427, 431

case, 77, 80, 1207

Category, 1207

category, 14, 63, 84, 899, 1207

anonymous, 909

constructor, 899

defaults, 903

definition, 900

membership, 903

category constructor, 1208

category extension, 1208

category hierarchy, 1208

cd, 110, 111, 974, 996

ceiling , 908

center , 204

Character, 434, 435, 1094, 1111, 1125,

1182

character, 1208

character set, 112

CharacterClass, 437

characteristic

value, 309

vector, 309

characteristic , 64

clear, 975

Clef, 2

client, 1208

CliffordAlgebra, 439

clipping, 225, 278

clipPointsDefault , 224

close, 105, 975

coefficients , 804

coerce , 243

coercion, 1208

collection, 147

Color, 229

color, 106, 229

curve, 226

multiplication, 229

point, 226

shade, 230

colormap, 280

column , 661, 787

command line editor, 2

comment, 1208

Common LISP, 1208

compactFraction , 689, 1141
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compile, 927, 974, 977

compile-time, 1208

compiler, 1208

complete , 150

Complex, 447--450

complex

floating-point number, 289

complex , 447, 980

Complex DoubleFloat, 878

complex numbers, 15

ComplexCategory, 980

complexIntegrate , 326

component , 241, 243

computation timings

displaying, 994

computational object, 1209

concat

concat
, 21

concat , 60, 91, 157, 587, 770, 903, 925

cond , 957

conditional, 127, 892, 908, 1209

conformal map, 1192, 1193

conjugate , 448

cons , 633

constant, 1209

constant function argument, 176

constantRight , 651

constructor, 1209

abbreviation, 68, 885

category, 899, 1208

domain, 60, 1210

exposed, 94

hidden, 94

package, 64, 885, 1218

content , 696, 804

continuation, 1209

ContinuedFraction, 450--452

continuedFraction , 450, 452

contract , 426

control structure, 1209

convergents , 451

conversion, 915, 1209

coordinate system, 278

Cartesian, 228, 262

cylindrical, 275

parabolic cylindrical, 249

spherical, 263

toroidal, 250

coordinates , 274

CoordinateSystems, 273, 275

copy , 656, 789

copying semantics, 1209

correctness, 905

count , 790

countable? , 421

create3Space , 267

createIrreduciblePoly , 376, 379

createNormalElement , 1135

createNormalPrimitivePoly , 378

createPrimitiveNormalPoly , 378

curry , 651

curryLeft , 650

curryRight , 650

curve

color, 226

non-singular, 223

one variable function, 218

parametric plane, 220

parametric space, 247

plane algebraic, 223

smooth, 223

CycleIndicators, 457

cycleRagits , 710

cyclic list, 21

cyclotomic polynomial, 297

cylindrical , 275

cylindrical coordinate system, 275

D , 496, 627, 683, 701, 803

d02cjf , 954

data structure, 1209

datatype, 1209

parameterized, 1218

ddFact , 1163

decimal , 475

DecimalExpansion, 475

declaration, 6, 1209

default definition, 1210

default definitions, 903

default package, 1210

definition, 1210
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degree , 433, 434, 623, 685, 698, 802

delayed assignment, 120

delete

delete
, 408

delete , 60, 408

deleteProperty

deleteProperty
, 414

delimiter, 1210

denom , 495, 526

dependent, 1210

Dequeue, 476

DeRhamComplex, 467, 470

derivative, 40

destructive operation, 1210

determinant , 523, 662, 692, 908

diagonalMatrix , 656

difference , 748

differential equation, 348

partial, 395

differentialVariables , 684

differentiation, 40

formal, 41

partial, 41

digit? , 1094

digits , 14, 520, 521, 525, 1219

dimension , 419

directory

default for searching, 110

for spool files, 996

DirectProduct, 916

discrete logarithm, 361, 365

display, 979

display operation, 98

DistinctDegreeFactorization, 1163

DistributedMultivariatePolynomial, 483

dithering, 281

divide , 550, 806

divisors , 556

documentation, 901, 1210

domain, 13, 1210

add, 917

representation, 915

domain constructor, 1210

domain extension, 1211

dot , 916

dot notation, 1211

DoubleFloat, 485, 1221

DoubleFloatSpecialFunctions, 290

doubleRank , 1075

DrawOption, 264, 274

drawToScale , 225

dynamic, 1211

dynamic lookup, 1211

edit, 974, 980

editing files, 981

eigenvalue, 309

eigenvector, 309

element

primitive, 361, 367

ElementaryFunctionODESolver, 348

else, 127

elt , 635, 780, 781, 787, 815, 816

emacs, 981

empty, 1211

empty? , 633

endOfFile? , 784

entries , 755

environment, 887, 1211

eq? , 488

EqTable, 488

equality testing, 127

Equation, 127, 489

equation, 127

differential, 348

solving, 348

solving in closed-form, 348

solving in power series, 356

linear

solving, 312

polynomial

solving, 315, 317

essential singularity, 321

Etruscan Venus, 1190

EuclideanDomain, 1096, 1169

EuclideanGroebnerBasisPackage, 491

euclideanSize , 1169

Euler

Beta function, 291, 1192

gamma function, 290
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polynomial, 296

totient function, 296

eulerPhi , 553, 557

eval , 343, 647, 686, 700

evaluation, 1211

even? , 548

exists? , 512

Exit, 492

exit, 1212

exiting Axiom, 2

exp , 454

expand , 501, 639, 746

explicit export, 1212

exponent , 1103

export, 1212

explicit, 1212

implicit, 1214

expose, 1212

exposed

constructor, 94

exposed.lsp, 94

exposure

group, 94

Expression, 215, 326, 493, 495, 496, 562,

647, 881

expression, 1212

ExpressionSpace, 1095

ExpressionToUnivariatePowerSeries, 336

exquo , 78, 550

extend, 1212

exteriorDifferential , 470

factor , 450, 499, 526, 551, 695

Factored, 388, 499--501, 503--505, 691

FactoredFunctions2, 506, 507

factorization, 301

factorList , 500, 505

factors , 500

fibonacci , 181, 552, 559

Fibonacci numbers, 157, 179, 194, 329

Field, 62, 908

field, 62, 1212

finite

conversions, 372

extension of, 362, 364, 367, 370

prime, 358

Galois, 358

Hilbert class, 395

prime, 358

splitting, 387

File, 508, 509

file, 1212

.Xdefaults, 106

.Xdefaults, 234, 282, 286

.axiom.input, 110

aggcat.spad, 1208

catdef.spad, 1208

exposed.lsp, 94

history, 983

input, 32, 109, 125, 971, 984, 993

vs. package, 888

where found, 110

sending output to, 111

spool, 996

start-up profile, 110

FileName, 510, 512, 513

filename , 513

fin, 981

finite field, 358, 362, 364, 367, 370

factoring polynomial with coefficients

in, 302

finite? , 420

FiniteAlgebraicExtensionField, 1135

FiniteFieldPolynomialPackage, 376, 378--380

first , 20, 634, 892, 925

firstDenom , 690

firstNumer , 690

FlexibleArray, 514

Float, 14, 89, 289, 454, 517, 519--522,

525, 1205, 1212, 1219

float, 1212

floating point, 14

floating-point number, 289

complex, 289

FloatingPointSystem, 1091, 1094, 1103,

1113

fluid variable, 193

font, 106

for, 138, 1215, 1216, 1220

formal parameter, 1212

FORTRAN, 11

assignment, 120
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FORTRAN output format, 114

arrays, 117

breaking into multiple statements,

114

data types, 115

integers vs. floats, 115

line length, 114

optimization level, 116

precision, 116

FortranCode, 957

FortranOutputStackPackage, 961

FortranProgram, 965

FortranScalarType, 961

FortranType, 961

FoundationLibraryDoc, 954

Fraction, 17, 64, 79, 89, 92, 525, 526,

702, 908

fraction

partial, 16

fractionPart , 520

fractRagits , 711

frame, 96, 981, 1212

exposure and, 96

frame drop, 983

frame import, 983

frame last, 982

frame names, 982

frame new, 982

frame next, 982

free, 189, 1212, 1220, 1224

free variable, 189, 1213

fullPartialFraction , 528

FullPartialFractionExpansion, 528

function, 29, 1213

Airy Ai, 292

Airy Bi, 292

anonymous, 196

declaring, 198

restrictions, 200

arguments, 154

Bessel, 292

built-in, 1207

caching values, 178

calling, 10

coloring, 261

compiler, 168

complex arctangent, 298

complex exponential, 297

constant argument, 176

declaring, 185, 198

digamma, 291

E1, 291

Ei, 291

Ei1, 291

Ei2, 291

Ei3, 291

Ei4, 291

Ei5, 291

Ei6, 292

elementary, 323

En, 291

Euler Beta, 291, 1192

from an object, 182

Gamma, 290, 1192

hypergeometric, 292

interpretation, 168

made by function, 182

numeric, 289

one-line definition, 160

parameters, 154

piece-wise definition, 29, 170

polygamma, 291

predicate, 176

special, 290

totient, 296

vs. macro, 153

with no arguments, 165

function , 647, 648

function body, 1213

FunctionFieldCategory, 1115, 1116

FunctionSpaceComplexIntegration, 326

FunctionSpaceIntegration, 324

Galois

field, 358

group, 386

gamete, 396

garbage collection, 1213

garbage collector, 1213

Gaussian, 1213

gcd , 499, 526, 548, 696, 802, 804
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GeneralDistributedMultivariatePolynomial,

533

generalFortran, 958

GeneralSparseTable, 535

generate , 150

GenerateUnivariatePowerSeries, 340

generic function, 1213

genetics, 395

getGraph , 245

global variable, 189, 1213

GradedAlgebra, 433, 434

GradedModule, 433

Gram-Schmidt algorithm, 1110

graphics, 55, 217

.Xdefaults, 286

button font, 286

graph label font, 286

graph number font, 286

inverting background, 287

lighting font, 287

message font, 287

monochrome, 287

PostScript file name, 234, 282, 287

title font, 287

unit label font, 287

volume label font, 287

2D commands

axes, 235

close, 236

connect, 236

graphs, 236

key, 236

move, 236

options, 236

points, 236

resize, 236

scale, 236

state of graphs, 236

translate, 236

2D control-panel, 232

axes, 234

box, 234

buttons, 234

clear, 233

drop, 233

hide, 234

lines, 234

messages, 233

multiple graphs, 233

pick, 233

points, 234

ps, 234

query, 233

quit, 234

reset, 234

scale, 232

transformations, 232

translate, 232

units, 234

2D defaults

available viewport writes, 235

2D options

adaptive, 224

clip in a range, 225

clipping, 224

coordinates, 228

curve color, 226

point color, 226

range, 227

set units, 227

to scale, 225

3D commands

axes, 283

close, 283

control-panel, 283

define color, 283

deltaX default, 285

deltaY default, 285

diagonals, 283

drawing style, 283

eye distance, 283

intensity, 285

key, 283

lighting, 283

modify point data, 284

move, 284

outline, 284

perspective, 284

phi default, 285

reset, 284

resize, 284

rotate, 284
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scale, 286

scale default, 286

showRegion, 284

subspace, 284

theta default, 286

title, 285

translate, 285

viewpoint, 285

3D control-panel, 278

axes, 281

bounds, 281

buttons, 280

bw, 281

clip volume, 283

clipping on, 283

color map, 280

eye reference, 282

hide, 282

intensity, 282

light, 282

messages, 280

move xy, 282

move z, 282

outline, 281

perspective, 283

pixmap, 281

ps, 281

quit, 282

reset, 282

rotate, 279

save, 281

scale, 279

shade, 281

show clip region, 283

smooth, 281

solid, 281

transformations, 279

translate, 280

view volume, 282

wire, 281

3D defaults

available viewport writes, 286

reset viewport defaults, 285

tube points, 285

tube radius, 285

var1 steps, 285

var2 steps, 285

viewport position, 286

viewport size, 286

viewport writes, 286

3D options, 260

color function, 261

title, 260

variable steps, 264

advanced

build 3D objects, 267

clip, 278

coordinate systems, 273

color, 229

hue function, 229

multiply function, 229

number of hues, 229

primary color functions, 229

palette, 230

plot3d defaults

adaptive, 283

set adaptive, 284

set max points, 284

set min points, 284

set screen resolution, 284

set 2D defaults

adaptive, 234

axes color, 234

clip points, 234

line color, 235

max points, 235

min points, 235

point color, 235

point size, 235

reset viewport, 235

screen resolution, 235

to scale, 234

units color, 235

viewport position, 235

viewport size, 235

write viewport, 235

three-dimensional, 245

two-dimensional, 218

Xdefaults

2d, 287

GraphicsDefaults, 224, 225

GraphImage, 237, 241, 243
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groebner , 570

Gröbner basis, 1178

Gröbner basis, 1213

GroebnerFactorizationPackage, 536, 538

groebnerFactorize , 536, 538

GroebnerPackage, 539

ground? , 697

group, 1214

cyclic, 367

dihedral, 390, 395

exposure, 94

Galois, 386

symmetric, 395

hash table, 1214

hasHi , 814

Heap, 539

heap, 1214

height , 563

help, 983

hex , 541

HexadecimalExpansion, 541

hexDigit? , 1111

hi , 745

Hilbert class field, 395

history, 984, 1214

history )change, 985

history )off, 985

history )on, 985

history )restore, 974

history )save, 974

history )write, 110, 974

hither clipping plane, 282

HomogeneousDistributedMultivariatePolynomial,

543

horizConcat , 659

htxl1, 955, 956

hue, 229

HyperDoc, 2

HyperDoc, 101

HyperDoc, 931

HyperDoc X Window System defaults, 106

IBM Script Formula Format, 113

ideal, 1214

primary decomposition, 383

identifier, 1214

if, 127, 893, 1209, 1220

imag , 449

immediate assignment, 119

immutable, 1214

implicit export, 1214

in, 138

include, 986

incr , 745

indentation, 123, 900

index, 1214

inequality testing, 127

∞ (= %infinity), 11

infix, 1214

initial , 687

input area, 1214

insert , 60

instantiate, 1214

Integer, 13, 15, 64, 78, 87, 153, 545--551

integer, 1215

IntegerLinearDependence, 554, 556

IntegerNumberTheoryFunctions, 181, 552,

553, 556, 557, 559, 560

IntegerPrimesPackage, 149, 151, 551, 552

integralCoordinates , 1115

integralMatrix , 1116

integralMatrixAtInfinity , 1116

integrate , 324, 327, 701

integration, 43, 324

definite, 327

result as a complex functions, 326

result as list of real functions, 325

interactive, 1215

interpret-code mode, 168

interpreter, 1215

interrupt, 2

intersect , 748

inv , 92

inverse , 661, 947

invmod , 753

invocation, 1215

is? , 413, 565

iterate, 123, 135, 140

iteration, 138, 146, 1215

nested, 143, 148

parallel, 143, 149
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jacobi , 552, 553, 560

Jacobi symbol, 1118

Join, 900, 914, 1215

KCL, 1215

Kernel, 562--565

kernel , 562

kernels , 562

KeyedAccessFile, 566--569

keys , 567, 569, 608, 755, 781, 783

Klein bottle, 1190

Korn shell, 981

Laplace transform, 323

Laurent series, 338

LazardSetSolvingPackage, 597

lazy evaluation, 331

lcm , 526, 548, 696, 802

leader , 687

leadingCoefficient , 700, 801

leadingMonomial , 700

leftDivide , 623

leftExactQuotient , 624

leftGcd , 624

leftLcm , 624

leftQuotient , 624

leftRemainder , 624

leftTrim , 771

legendre , 552, 560

Legendre polynomials, 5

lexTriangular , 570, 571

LexTriangularPackage, 570, 571, 580, 837

lhs , 489

Library, 607, 608

library, 986, 1215

operations

* , 13--15, 17, 60, 63, 427, 499,

651, 905, 1093

** , 652, 905

+ , 13--15, 60, 63, 64, 96

- , 13--15, 60, 87

.. , 639

/ , 62, 64, 89, 525, 702

< , 1129

= , 64, 127, 488, 489, 547

# , 186, 634, 768, 815

0 , 14

1 , 14

abelianGroup , 1067

abs , 1068

absolutelyIrreducible? , 1068

acos , 1068

acosh , 1068

acoshIfCan , 1068

acosIfCan , 1068

acot , 1068

acoth , 1068

acothIfCan , 1068

acotIfCan , 1068

acsc , 1068

acsch , 1068

acschIfCan , 1068

acscIfCan , 1068

adaptive , 1068

addmod , 1069

airyAi , 1069

airyBi , 1069

Aleph , 1069

algebraic? , 1069

alphabetic , 1069

alphabetic? , 1069

alphanumeric , 1069

alphanumeric? , 1069

alternating , 1069

alternatingGroup , 1069

alternative? , 1069

and , 1070

antiCommutator , 1072

antisymmetric? , 1072

antisymmetricTensors , 1072

any , 1072

any? , 1072

append , 1072

approximants , 1070

approximate , 1070

approxNthRoot , 1070

approxSqrt , 1070

areEquivalent? , 1070

argscript , 1070

argument , 1070

arity , 1070

asec , 1071
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asech , 1071

asechIfCan , 1071
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LISP, 1216

lisp, 987
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created by iterator, 146
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local, 1216
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discrete, 361, 365
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lowerCase , 435, 772
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makeViewport2D , 241
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MappingPackage2, 651
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multiset , 664
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numberOfDivisors , 557

numberOfFractionalTerms , 690

numberOfHues() , 229

numberOfImproperPartitions , 1182

NumberTheoreticPolynomialFunctions, 296

numer , 495, 526

numeric operations, 289

object, 1217
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rank , 663, 943

rational function
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Record, 26
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row , 661, 787
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scripted? , 778
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search , 567, 782
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SemiGroup, 902, 905

semigroup, 1221
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Laurent, 338
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numerical approximation, 343
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set, 994
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set expose add constructor, 96
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set fortran, 114

set fortran explength, 114
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set fortran optlevel, 114, 116
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set fortran startindex, 118
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set output characters, 112
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set output script, 113
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setrest
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sumOfKthPowerDivisors , 557
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Symbol, 775, 776, 778, 779

symbol, 1222

naming, 6

SymbolTable, 962
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synonym, 996
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system, 997

system commands, 1222

Table, 780--783
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transform
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trapezoidal method, 1180
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balanced binary, 25
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user function, 1223
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vectorise , 804
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weight , 685
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write , 235, 282, 286, 508, 568, 785
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WuWenTsunTriangularSet, 819

X Window System, 2, 106

xor , 753
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Zech logarithm, 362, 1109
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